
Quick Review PSYCO 452 Week 1 (January 2016) 
 
Key Architecture: Perceptron 
 

 
 
Easiest way to think about it: a distributed associative memory that uses nonlinear activation functions in 
the output unit. 
 
Perceptron Learning 
 
Any learning rule that we are considering involves computing a weight change, and then adding that 
weight change to the existing weight of the connection.  Any connection has an input end and an output 
end.  The Hebb rule involves multiplying a learning rate times activity at the input end times activity at the 
output end. 
 

 
 
The delta rule involves multiplying the learning rate times the activity at the input end times the error at 
the output end. 
 

 
 
The delta rule, as in the figure above, is used when that output unit activity is defined by a threshold 
function. 
 
When an integration device is used in the output, then we can use calculus to define a gradient descent 
learning rule.  This tries to find the steepest downhill slope in the error space.  For an integration device, it 



is identical to the delta rule, with the exception that error is also multiplied by the derivative of the output 
unit’s activation function: 
 

Wij(new) = Wij(old) +  ai (tj – oj)f’(net) = Wij(old) +  ai (tj – oj)(aj)(1 - aj) 
 
 

For the gradient descent rule for a value unit, which uses the Gaussian activation function, two different 
kinds of error are computed.  The first is the difference between desired and actual output unit activity.  
The second is the difference between net input and the mean of the Gaussian, but just for those patterns 
that are supposed to turn the output unit on: 
 
 
 
 
 
This leads to a slightly more elaborate learning rule that includes both types of error, and scales each with 
the derivative of the Gaussian: 
 

Wij(new) = Wij(old) + (tj – oj)G’(net)ai  + (tj * net)G’(net)ai  
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