PSYCO 452 Week 2: Distributed Memory

•Introduction To Connectionism •Building Associations –Hebb Learning –Delta Learning

The Classical Approach

The Classical approach adopts a strict "structure/rule" distinction in its view of information processing

Some Classical Problems

- Poor for ill-posed problems
- Not damage resistant
- Does not degrade
 gracefully

- Serial -- therefore slow
- Not biologically plausible!

An Alternative

- Since the 1980s there has been an explosion of interest in parallel distributed processing (PDP) or connectionist architectures
- These architectures have been developed to solve the Classical problems

PDP Networks Are Parallel

- PDP models are networks of simple processors that operate simultaneously
- This causes fast computation, even if components are slow
- This is intended to fix the speed limitation of Classical models

Biological Motivation

- PDP modelers pay more attention to the brain than do Classical researchers
- A PDP processor can be viewed as an abstract, simplified description of a neuron

Distributed Representations

- A PDP network's knowledge is stored as a pattern of weighted connections between processors
- These connections are analogous to a Classical program
- This knowledge is very distributed, providing damage resistance and graceful degradation

Synthetic Approach

- Our first pass at synthetic psychology will be to use connectionist building blocks as our architecture
 - What are the building blocks?
 - What can we build with them?
- Over the next three weeks, we will consider three different building blocks:
 - Association
 - Decision
 - Trains of thought

First Building Block: Association

 One of the key building blocks for a connectionist system is a method for storing associations between and input and output pattern

 Let us begin by considering a couple of simple methods by which this sort of association could be achieved

Hebb And Association

 "When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes place in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased" (Hebb, 1949)

• Principle of contiguity!

Content Addressable Memory

- Modern views of Hebb learning involve the strengthening of synapses (both excitatory and inhibitory) as well as the weakening of synapses
- These two processes have been combined to create many interesting models of content addressable memories

Distributed Memory

• A simple distributed memory system consists of two sets of processors, and a set of modifiable connections between them

Hebb Rule 1

- Present two patterns of activity
- Associate the patterns because of their temporal contiguity
- Later, one pattern will cue the other

Hebb Rule 2 Make more excitatory the connections between same-state processors Make more inhibitory the

connections between opposite-state processors

Hebb Rule 3

- · To recall, activate processors with the cue
- Their activity sends a signal through existing connections

Hebb Rule 4

· The network signal should reconstruct the other pattern in the second set of processing units

Demonstrating Associative Learning

- Let's examine the Hebb rule in action
- · Let us also determine some conditions in which Hebb learning does not work very well

James

Activity Of Input Unit	Activity Of Output Unit	Direction Of Dealred Weight Change
Positive	Positive	Positive
Negative	Negative	Positive
Negative	Positive	Negative
Positive	Negative	Negative

Algebra Of The Hebb Rule

- Let W(t) be a matrix of connection weights at time t
- Let a and b be two to-be-associated vectors
- Hebb learning becomes:

$$W(t+1) = W(t) + a b^{2}$$

 The outer product defines Hebb learning!

Cue		Comments
8	$ \begin{array}{l} r = W_{r^2} \\ = ((b \circ a^T) + (d \circ c^T))a \\ = b \circ a^T \circ a + d \circ c^T \circ a \\ = b \circ a^T \circ a + d \circ (c^T \circ a) \\ = b \circ (f) + d(0) \\ = b \end{array} $	Equation 9-6 Expand My from Table 9-2 Monthly The Departments Monthly The Law products with parentheses Computer inner products (orthonormal assumption) b is correctly recalled
c	$ \begin{aligned} r &= W_{s}c \\ &= (b \bullet a^{T}) + (d \bullet c^{T}))c \\ &= b \bullet a^{T} \bullet c + d \bullet c^{T} \bullet c \\ &= b \bullet a^{T} \bullet c + d \bullet c^{T} \bullet c \\ &= b \bullet (a^{T} \circ c) + d \bullet (c^{T} \circ c) \\ &= b(0) + d(f) \\ &= d \end{aligned} $	Equation 9-6 Expand W, Irom Table 9-2 Move vector c into the parentheses biographic innore into the parentheses computer innore products (othorocomal assumption) of is correctly recalled

Limitations Of Hebb Rule

- We can use linear algebra to reveal some interesting limitations of Hebb learning
- For instance, what if we relax the mutual orthogonality constraint?
- What if the correlation between c and a is equal to 0.5?

а		Equation 9-6 Expand <i>W</i> , from Table 9-2 Move vector a into the parentheses Identify the inner products with parentheses Compute inner products <i>b</i> is <u>not</u> correctly recalled!
c	$ \begin{array}{l} r = W_{s} c \\ = ((b \bullet a^{T}) + (d \bullet c^{T}))c \\ = b \bullet a^{T} a c + d \bullet c^{T} + c \\ = b \bullet a^{T} a c + d \bullet c^{T} + c \\ = b \bullet a^{T} a c + d \bullet (c^{T} \bullet c) \\ = b (\%) + d(t) \\ $	Equation 9-6 Expand W ₂ from Table 9-2 Move vector c into the parentheses Identify the inner products with parentheses Compute inner products d is not correctly recalled!

Correcting The Hebb Rule

- We would like to develop a new kind of Hebb learning rule
- This rule would permit the network to correctly recall correlated patterns
- This rule would also allow the network to improve its performance with repeated presentations of patterns

Error And Weight Change

Positive	Positive	T > 0	ţ.	Positive
Positive	Negative	T<0	to	Negative
Positive	Zero	T = 0	None	Zero
Negative	Positive	T > 0	to	Negative
Negative	Negative	T < 0	to	Positive
Negative	Zero	T = 0	None	Zero

