
Collective Computation 
in Neuronlike Circuits 

Electronic circuits based on neurobiological models are able to solve 
complex problems rapidly. Their computational properties emerge {rom 
the collective interaction of many parts linked together in a network 

by David W. Tank and John]. Hopfield 

M
odern digital computers are 
latecomers to the world of 
computation. Biological com­

puters-the brain and nervous sys­
tem of animals and human beings­
have existed for millions of years, 
and they are marvelously effective in 
processing sensory information and 
controlling the interactions of ani­
mals with their environment. Tasks 
such as reaching for a sandwich, 
recognizing a face or remembering 
things associated with the taste of 
madeleines are computations just as 
much as multiplication and running 
video games are. 

The fact that biological computa­
tion is so effective suggests that it 
may be possible to attain similar ca­
pabilities in artificial devices based 
on the design principles of neural 
systems. We have studied a number 
of "neural network" electronic cir­
cuits that can carry out significant 
computations. Such simple models 
have only a metaphorical resem­
blance to nature's computers, but 
they offer an elegant, different way of 
thinking about machine computa­
tion, which is inspiring new micro­
electronic chip and computer de­
signs. They may also provide fresh 
insights into the biological systems. 

Current research on this subject 
builds on a long history of efforts to 
capture the principles of biological 
computation in mathematical mod­
els. The effort began with the pio­
neering investigations of neurons as 
logical devices by Warren S. McCul­
loch and Walter H. Pitts in 1943. In the 
1960's Frank Rosenblatt of Cornell 
University and Bernard Widrow, who 
is now at Stanford University, creat­
ed "adaptive neurons" and simple 
networks that learn. Widrow's Ada­
line (short for adaptive linear ele-
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ment) is a single-neuron system that 
can learn to recognize a pattern such 
as a letter regardless of its orienta­
tion or size. Through the 1960's and 
1970's a small number of investiga­
tors such as Shunichi Amari, Leon N. 
Cooper, Kunihiko Fukushima and 
Stephen Grossberg attempted to 
model the behavior of real neurons 
in computational networks more 
closely and to develop mathematics 
and architectures for extracting fea­
tures from patterns, for classifying 
patterns and for "associative memo­
ry," in which pieces of the stored in­
formation itself serve to retrieve an 
entire memory. 

The 1980's have seen an extraor­
dinary growth of interest in neu­
ral models and their computational 
properties. Many factors converged 
to bring this about: neurobiologists 
were gaining more understanding of 
how information is processed in na­
ture, cheap computer power made it 
possible to analyze the models in de­
tail and there was growing interest in 
parallel computation and analog VLSI 
(very-large-scale integration), which 
lend themselves to implementations 
of neuronlike circuits. New concepts 
in the mathematics of neural models 
accompanied these developments. 
Our work has focused on the princi­
ples that give rise to computational 
behavior in a particular type of neu­
ronlike circuit. 

Neurons, or nerve cells, are com­
plex, but even a highly Simpli­

fied model of a neuron, when it is 
connected with others in an appro­
priate network, can do significant 
computations. A biological neuron 
receives information from other neu­
rons through synaptic connections 
and passes on signals to as many as a 

thousand other neurons. The syn­
apse, or connection between neu­
rons, mediates the "strength" with 
which a signal crosses from one neu­
ron to another. One can readily build 
artificial "neural" circuits from sim­
ple electronic components: opera­
tional amplifiers replace the neurons, 
and wires, resistors and capacitors 
replace the synaptic connections. 
The output voltage of the amplifier 
represents the activity of the model 
neuron, and CUFrents through the 
wires and resistors represent the 
flow of information in the network. 

Strikingly, both the Simplified bio­
logical model and the artificial net­
work share a common mathematical 
formulation as a dynamical system­
a system of several interacting parts 
whose state evolves continuously 
with time. The manner in which a dy­
namical system evolves depends on 
the form of the interactions. In any 
neural network the interactions re­
sult from the effects one "neuron" 
has on another by virtue of the con­
nection between them. Thus it is not 
surprising that the behavior of the 
neural circuits depends critically on 
the details of the connections. The 
particular circuits we have studied 
have connection patterns appropri­
ate for computing solutions to opti­
mization problems, a class of mathe­
matical problems that involve find­
ing a "best solution" from among a 
very large number of choices. 

The computational behavior ex­
hibited by such circuits is a collec­
tive property that results from hav­
ing many computing elements act on 
one another in a richly interconnect­
ed system. The collective properties 
can be studied using Simplified mod­
el neurons, in much the same way as 
it is possible to understand other 
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large physical systems by greatly re­
ducing the details of their basic com­
ponents. For example, to study the 
origin of collective laws of fluid mo­
tion, one can simplify the description 
of complex molecular collisions and 
produce a tractable model that cap­
tures collective features such as tem­
perature and viscosity. Similarly, in 
seeking to develop a tractable model 
of the computations carried out by a 
large number of model neurons, we 
de-emphasized the details of the 
processing that goes on at the level of 
the individual cells and synapses. By 
simplifying in this way, we were able 
to discover the general principles by 
which one can understand collective 
computation in these circuits. 

To comprehend how collective 
circuits work, it helps to take a 

very broad view of the essence of 
computation. Any computing entity, 

whether it is a digital or analog de­
vice or a collection of nerve cells, be­
gins with an initial state and moves 
through a series of changes to arrive 
at a state that corresponds to an "an­
swer." The process can be pictured 
as a path, from initial state to answer, 
through the physical "configuration 
space" of the computer as it evolves 
with time. In a digital computer, for 
example, the configuration space is 
defined by the set of voltages for its 
devices. The input data and program 
provide initial values for these volt­
age settings, which change as the 
computation proceeds and eventual­
ly reach a final configuration, which 
is reported to an output device, such 
as a screen or a printer. 

For any computer there are two 
critical questions: How does it deter­
mine the overall path? And how does 
it restore itself to that path when 
physical fluctuations and "noise" 

cause the computation to drift hope­
lessly off course? In a digital comput­
er the path is broken down into logi­
cal steps that are embodied in the 
computer's program. In addition, 
each computing unit protects against 
voltage fluctuations by treating a 
range of voltages, rather than just the 
exact voltage, as being equal to a 
nominal value; for example, signals 
between .8 volt and 1. 2 volts can all 
be restored to 1.0 volt after each logi­
cal step in the computation. 

In collective-decision circuits the 
process of computation is significant­
ly different. The overall progress of 
the computation is determined not 
by step-by-step instructions but by 
the rich structure of connections 
among computing devices. Instead 
of advancing and then restoring the 
computational path at discrete inter­
vals, the circuit channels or focuses it 
in one continuous process. These 

COMPUTATIONAL ENERGY of a collective-decision circuit can 

be pictured as a landscape of hills and valleys. The connection 

pattern and other physical characteristics of the circuit deter­

mine its contours. The circuit computes by following a path that 

decreases the computational energy until the path reaches the 

bottom of a valley, just as a raindrop moves downhill to mini-

mize its gravitational potential energy. The surface shown here 

could represent an associative memory, in which the valleys cor­

respond to memories that are stored as associated sets of infor­

mation (x's). If the circuit is started out with approximate or in­

complete information, it follows a path downhill (colored arrow) 
to the nearest valley, which contains the complete information. 
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AN ACTUAL PATH 
DUETO NOISE 

CORRECT RESULT 

DESIRED PATH 

AND IMPERFECTIONS 

COMPUTATIONAL PATH describes how the physical state of a computer changes as it 

computes. In a digital computer the path is a sequence of discrete steps controlled 

by the lines of code in a computer program. After each step the computation is restored 

to the desired path (red line). In collective-decision circuits the computational path is 

continuously focused in a way determined by the pattern of connections in the circuit. 

two styles of computation are rather 
like two different approaches by 
which a committee makes decisions. 
In a digital-computer-style commit­
tee the members vote yes or no in se­
quence; each member knows about 
only a few preceding votes and can­
not change a vote once it is cast. 
In contrast, in a collective-decision 
committee the members vote togeth­
er and can express a range of opin­
ions; the members know about all 
the other votes and can change their 
opinions. The committee generates a 
collective decision, or what might be 
called a sense of the meeting. 

The nature of collective computa­
tion suggests that it might be par­

ticularly effective for problems that 
involve global interaction between 
different parts of the problem. We 
have designed circuits that perform 
this type of computation to solve cer­
tain optimization problems. A typical 
example is the task-assignment prob­
lem, which poses the question: If you 
have a certain number of assistants 
and a certain number of tasks, and 
each assistant does each task at a dif­
ferent rate, how should you assign 
the tasks so that the corresponding 
rates add up to the largest total rate? 
The neural-network circuit that can 
solve the problem has many inter­
connected amplifiers that process 
the data in parallel. It is able to follow 
the computational path to a solution 
rapidly. Because this is a rather com­
plicated circuit, it is helpful to first 
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examine some simple circuits that 
illuminate the basic principles of all 
such circuits. 

The simplest example for the pur­
pose is the flip-flop, a circuit that is 
widely used in the electronics in­
dustry. The circuit has two stable 
states-which give it its name-and it 
makes a decision by choosing one 
state over the other. It can be built 
from a pair of saturable amplifiers 
[see illustration on opposite page). In 
such an amplifier the output voltage 
increases as the input rises until it 
reaches a saturation level, beyond 
which it will not change. The reverse 
is also true: as the input decreases, 
the output falls until it saturates at a 
minimum value. In the flip-flop the 
output of each of the two amplifiers is 
inverted (that is, multiplied by -1) 
and connected to the input of the oth­
er. The amplifiers mutually inhibit 
each other because a high output by 
either one will drive down the in­
put of the other amplifier. This pro­
duces a self-consistent pattern, be­
cause each amplifier will drive the 
other one to be in the opposite state. 
The flip-flop therefore has two sta­
ble states: if amplifier A is putting out 
+ 1, then B will put out -I, and 
vice versa. The significant feature 
of this circuit is that the pattern of 
the connections is the key to its 
stability and determines the form of 
its stable states. 

A seemingly remarkable feature of 
the flip-flop is that no matter what ini­
tial inputs are supplied to the circuit 

when it is turned on, it will make a 
rapid trajectory to one of the stable 
states. To understand the phenome­
non, picture what happens when a 
raindrop lands on a terrain of hills 
and valleys. The drop moves gener­
ally downhill until it ends up at the 
bottom of a nearby valley. The path 
taken is one in which the gravitation­
al potential energy of the raindrop 
is continuously decreasing. Similar­
ly, the flip-flop's trajectory is associ­
ated with a mathematical quantity 
we call the computational energy E, 
which can be visualized as a ter­
rain on which the flip-flop's voltage 
state moves continuously downhill. 

E is defined by an explicit mathe­
matical formula that depends on the 
characteristics of the amplifiers, the 
strength of the excitatory and inhibi­
tory connections between them, and 
any external inputs. For fixed inputs 
in a particular circuit, if E is calculat­
ed for each possible configuration 
of amplifier voltages, it defines a con­
tinuous surface. For the flip-flop E 
can be plotted on a three-dimension­
al graph [see illustration on opposite 
page). The surface contains two val­
leys near the voltage configurations 
(+ I, -1) and ( -I, + 1), which corre­
spond to the two stable states. When 
the circuit is operating, the changing 
voltages will describe a downhill mo­
tion along the E surface, and eventu­
ally the circuit's configuration will 
come to rest at the bottom of one of 
the valleys. 

The concept of the computational 
energy proves useful in under­

standing many features of collective­
decision circuits. For example, modi­
fications of the flip-flop circuit alter 
the shape of the E surface in well-de­
fined ways. If the strengths of the in­
hibitory connections increase, the 
valleys become deeper in relation to 
the "neutral point," or saddle pOint, 
in the middle of the E surface. Exter­
nal sources of current also alter the 
contours of the surface; if a positive 
current is supplied to the input of one 
of the amplifiers, it will tend to drive 
the amplifier to the + 1 output state. 
The valley corresponding to this sta­
ble configuration will become deep­
er, and the change will be accompa­
nied by an increase in the size of the 
"basin of attraction," the area within 
which any starting pOint will settle 
into the stable state at the bottom of 
the basin. If the external current is 
large enough, the basin of attraction 
will fill the entire flip-flop space, elim­
inating the valley corresponding to 
the other stable state and leaving 
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only one stable state for the circuit. 
The simple flip-flop circuit illus­

trates how the process of following 
the trajectory can be interpreted as a 
process of decision making. For ex­
ample, the circuit can decide which 
of two numbers is larger if the ampli­
fiers are given two external input cur­
rents that are proportional to the 
numbers. The amplifier with the larg­
er input will then have a deeper val-

ley at the stable state for which its 
output is + 1, and its basin of attrac­
tion would expand to include the 
"neutral point." When the computa­
tion is begun by setting the voltages 
at this point, the circuit state would 
follow a downhill path to the deeper 
valley. When the circuit stabilizes, 
one can note which of the two ampli­
fiers is in the + 1 state and so deter­
mine which number is the larger. For 

any pair of numbers the correspond­
ing input currents will cause the E 
surface to change in an appropriate 
way, thereby ensuring that the path 
will lead to the correct answer. 

For more complicated collective­
decision circuits the corresponding 
E surface acquires so many dimen­
sions that it becomes impossible to 
draw. Nonetheless, one can under­
stand the general features of the sur-
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FLIP-FLOP CIRCUIT is built from two saturable amplifiers. In a 

saturable amplifier, as the input voltage increases or decreases, 

the output saturates at maximum and minimum voltages. The 

output can be normal or inverted (a). A resistor connects the out­

put of one amplifier to the input of the other; its resistance de­

termines the strength of the connection. The normal output ter­

minal (open circle) can be used to make an excitatory connection. 

In the flip-flop the inverted output terminal (filled circle) is em­

ployed instead to make inhibitory connections. A capacitor and 

a resistor are connected in parallel at each input to store the 

charge flowing to the terminal and produce an input voltage and 

to allow a discharge current to flow (b). If the minimum and maxi­

mum outputs are + 1 and -1 and amplifier A is saturated at + 1, 
B's input will be driven down and B's output will saturate at -1. 

Vb 

\ Vb 

(-1,-1) 
Va (+1,-1) 

e MODIFICATION WITH EXTERNAL CURRENT 

(-1,-1) 

B's output will in turn be inverted and drive up the input to A, 
thus keeping the output of A saturated at + 1. The reverse situa­

tion, in which A is saturated at -1 and Bat + I, is also stable. The 

configuration of the amplifier voltages is represented as a point 

on a two-dimensional plane (c). Each axis represents the output 

of one of the amplifiers, from -1 to + 1. The circuit will always 

move to one of the two stable points near (+ 1,-1) and (-1,+ 1), 
no matter what the initial voltages were. A third axis represents 

the value of the computational energy Efor each voltage config­

uration (d). The two stable points appear as valleys in the E sur­

face. The edges of the surface rise steeply, because it is impossi­

ble to exceed the minimum and maximum outputs. If an external 
current is given to one of the amplifiers, this will deepen the val­

ley that corresponds to that amplifier's be ng in the + 1 state (e). 
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face and use these as a guide to de­
signing and understanding the cir­
cuits. For example, we can generalize 
from the E surface of the flip-flop to 
devise a collective-decision circuit 
that can solve the slightly more diffi­
cult problem of determining the larg­
est number in a set of n numbers. The 
circuit can be thought of as an n-flop, 
consisting of n amplifiers, each of 
which is connected to all others with 
inhibitory connections of equal val­
ue. It would have n stable states and 
its E surface would have n valleys. 
When a set of input currents is sup­
plied to its amplifiers, the deepest 

valley would develop for the state 
that has a + 1 output for the amplifier 
receiving the largest input. 

In both the flip-flop and the n-flop 
there is a one-to-one relation be­

tween the number of amplifiers and 
the possible solutions, so that as the 
number of solutions gets larger, the 
size of the circuit does too. Is it possi­
ble to design a collective circuit that 
can represent a greater number of 
solutions than there are amplifiers? 
Such circuits do indeed exist. They 
have stable states that consist of con­
figurations of amplifiers in the + 1 

COLLECTIONS 
r-____________________ A� __________________ � 

/GEOLOGY PHYSICS CHEMISTRY HISTORY POETRY ART \ 
10 5 4 6 5 

SARAH 
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GEORGE 
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KAREN 

SAM 

TIM 

TOTAL RATE=40 BEST SOLUTION: TOTAL RATE=44 
SARAH SARAH 

TO TO 
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TO TO 

PHYSlCS ART 
KAREN KAREN 

TO TO 
ART CHEMISTRY 

SAM SAM 

TO TO 

POETRY POETRY 

TIM TIM 

TO TO 

HISTORY PHYSICS 

TASK-ASSIGNMENT PROBLEM requires assigning each assistant to one collection of 

books. The rates at which books are shelved per minute are represented in a table (a). 
For this six-by-six problem there are 720 ways to assign the tasks. The pink squares 

show two possibilities (b). The best assignment has the largest sum of shelving rates. 
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state. This is a more economical use 
of amplifiers, just as the Roman al­
phabet is more economical than Chi­
nese ideographs in its use of sym­
bols to encode words. 

In 1984 we discovered that net­
works of this type could rapidly com­
pute good solutions to optimization 
problems such as the task-assign­
ment problem mentioned above. As 
an example, imagine you are super­
vising the job of reshelving books for 
a large library. You have a number of 
assistants to do this for you. Each one 
is familiar with each collection-his­
tory, physics and so on-but to vary­
ing degrees. Thus Jessica can shelve 
six books per minute in geology, four 
per minute in physics and so on, 
whereas George can shelve one book 
per minute in geology, eight per min­
ute in physics and so on. You must 
assign one category to each assis­
tant. How should you assign the 
tasks so that the total rate of reshelv­
ing the books is as high as possible? 

One could attack the problem by 
brute force, trying out every possible 
combination in sequence. But if there 
are many assistants and collections, 
one would soon be overwhelmed by 
the number of possibilities. If there 
are n categories of books and n assis­
tants, the number of possible solu­
tions would be the factorial of n, or 
n(n - l)(n - 2) ...  1. There are better 
iterative digital-computer algorithms 
that can arrive at an answer in a time 
period proportional to n cubed. The 
computation could be done even 
faster, however, if one could take full 
advantage of the problem's essence: 
the fact that the proper assignment of 
each worker depends on the capabil­
ities of every other worker. Ideally 
the mutual dependencies should be 
considered simultaneously. It is pre­
cisely this kind of computation that 
can be done quickly and efficiently 
by a collective-decision circuit. 

The data in the task-assignment 
problem consist of the set of 

shelving rates. These data can be ar­
ranged in a table, in which each row 
contains the rates for an individual 
assistant and each column repre­
sents a book category. An assign­
ment of tasks can then be thought of 
as the choice of n elements in the ta­
ble, with the constraint that there can 
be one and only one element chosen 
in each row and column, because 
only one assistant can be assigned to 
each category. The best solution has 
the highest sum of rates for the cho­
sen assistants. 
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OPTIMIZING CIRCUIT to solve the task-assignment problem 

consists of a network of interconnected n-flops. The amplifiers 

in each row and column are linked by inhibitory connections, 

which provide the constraint that only one amplifier in any giv­

en row and column can be in the + 1 state. Because each of the 36 
amplifiers in this network inhibits 10 other amplifiers, there are 

360 connections altogether. The diagram depicts the connec­

tions for one of the amplifiers. The amplifiers receive input cur­

rents proportional to the shelving rates. The amplifiers that cor­

respond to the best solution-the combination of inputs that 

add up to the largest sum-put out a + 1 and the rest put out a O. 
The + 1 outputs can drive a display, such as a light-bulb array. 

We solved the problem by building 
an n-by-n array of amplifiers in which 
each row corresponds to an assistant 
and each amplifier in the row corre­
sponds to a different task. The ampli­
fiers in each row and column are 
linked by mutually inhibitory con­
nections; this provides the constraint 
that only one assistant can be as­
signed to each collection, because if 
one of the amplifiers has a + 1 output, 
the other amplifiers are inhibited. 
Another way of looking at the circuit 
is that each row and column is an n­
flop. These n-flops cannot function 
independently, however, because 
each amplifier belongs to two such n­
flops. As you will see below, this pat­
tern of connections is the key to the 
circuit: it ensures that the circuit will 
have self-consistent stable states that 

110 

correspond to possible solutions to 
the problem. 

What are the stable states of this 
network and what does its E surface 
look like? The stable states consist 
of configurations of 36 amplifiers in 
which there are six amplifiers with 
+ 1 outputs, with one and only one 
such amplifier in any row or column. 
In a six-by-six array the number of 
these stable states is 720, or 6 factori­
al. The E surface for the circuit has 
valleys of equal depth for each of the 
720 possibilities. An input current 
proportional to the shelving rate of 
each assistant for each collection is 
fed to the corresponding amplifier. 
The valley for each possible solution 
becomes deeper by an amount pro­
portional to the sum of its corre­
sponding shelving rates. 

The network carries out the com­
putation by following a trajectory 
down the E surface. In the final con­
figuration the circuit usually settles 
into the deepest valley, which is 
the correct choice because it corre­
sponds to the task assignment that 
has the highest total shelving rate. In 
simulation studies we have shown 
that this particular circuit will al­
most always find the best solution 
to the problem, and a slightly more 
complex circuit will always find the 
best solution. 

One reason we are interested in 
studying this type of circuit is that 
perceptual problems can often be 
expressed as an optimization. Our 
senses gather a large set of informa­
tion about the external world-infor­
mation that is inevitably imprecise 
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and "noisy." The edge of an object 
might be hidden behind another ob­
ject, for example. We know, howev­
er, that the edges of objects are con­
tinuous, and just because we cannot 
see an edge does not make us won­
der whether the object has changed 
its shape. Our interpretation of the in­
formation is constrained by what we 
already know. 

This knowledge can often be repre­
sented as a set of constraints, similar 
to those in the task-assignment prob­
lem, and express it in an E function. 
The perceptual problem then be-

comes equivalent to finding the 
deepest valley in the E surface. For 
example, Cristof Koch, Jose Marro­
quin and Alan Yuille, who were then 
at the Massachusetts Institute of 
Technology, showed how several 
important problems in computer vi­
sion could be cast as an optimization 
problem and solved by a collective­
decision circuit in which knowledge 
of the real world had been imposed 
as a set of constraints. Their circuit 
was able to take incomplete depth 
information of a three-dimensional 
world and reconstruct missing infor-

FEATURES ASSIGNED TO NODES 
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ASSOCIATIVE MEMORY with six nodes, or "neurons," is linked by excitatory (solid line) 
and inhibitory (broken line) connections. The number of lines in each link represents 

the strength of the connection; each solid line represents a connection strength of + 1 
and each broken line represents a strength of -1. Each node might represent a charac­

teristic of a person, as is shown in the table (a). Suppose one wants to store three memo­

ries, or sets of characteristics (b). The nodes that are supposed to be in the + 1 state are 

given an excitatory link to the other + 1 nodes and an inhibitory link to the -1 nodes. 

To store information about all three memories one simply adds up the connections (c). 
For example, the link between nodes 2 and 4 is (-1) + (-1) + (+ 1), or -1. When the cir· 

cuit is turned on for memory A, the network produces (d) the correct pattern of nodes 

in the + 1 state (red) and -1 state (blue). The pattern is self-consistent: at each node the 

positive (red) and negative (blue) incoming currents always add up to have the same 

sign as the node itself. If the network is given partial data-about a thin, short Jones, for 

example-it will go into a stable state from which one can retrieve the entire memory. 

112 

mation such as the locations of the 
edges of objects. 

A nother particularly interesting 
J-\.application for collective-deci­
sion circuits is associative memory, 
which is a form of optimization prob­
lem. An associative memory is dif­
ferent in principle from a digital­
computer memory. A conventional 
computer stores information by as­
signing addresses, which identify the 
physical locations where the data 
will be stored in hardware, such as 
a sector or track on a floppy disk. 
When the central processor requires 
a piece of data, it issues an instruc­
tion to read the data at a particular 
address. The address itself contains 
no information about the nature of 
the data stored there. 

Now reflect for a moment about 
your own memories. If you think of a 
particular friend, you will remember 
many facts-name, age, hair color, 
height, job, hobbies, schooling, fam­
ily, house, shared experiences and so 
forth. These facts are somehow com­
bined to form your memory of the in­
dividual. There is no notion of stor­
age address in the way you retrieve 
such information from your memory. 
Instead pieces of the information it­
self are used in place of an address. 

Associative memory is an idea that 
came from psychology, not electrical 
engineering. Fruit flies and garden 
slugs have associative memories. In­
deed, the fact that such relatively 
simple nervous systems display the 
phenomenon suggests that it must 
be a natural-almost spontaneous­
property of neuron ensembles. It 
seems reasonable to ask whether 
associative memory could also be 
achieved in networks of artificial 
neuronlike devices. In the 1970's a 
number of investigators, including 
James A. Anderson of Brown Univer­
sity and Teuvo Kohonen of the Uni­
versity of Helsinki, developed math­
ematical models of associative mem­
ory. The concept of the E surface 
provides a means to understand and 
study associative-memory circuits 
built of saturable amplifiers. 

How would one make a collective­
decision circuit behave like an asso­
ciative memory? Consider a space of 
many Cartesian coordinates in which 
each axis is labeled with some attri­
bute a person might have. One axis 
might refer to height, one to hair col­
or, one to weight, one to sailing expe­
rience, one to the first name of the in­
dividual, one to city of residence and 
so on. Any point in the space de-
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scribes the characteristics of a hypo­
thetical possible individual. Each of 
your friends is represented by a par­
ticular point in the space. Because 
you have very few friends compared 
with the set of all possible individ­
uals, if you put a mark at the position 
of each of the people you know, you 
will have marked a very few points in 
a large space. When someone gives 
you partial information about a per­
son-for example color of hair and 
weight but not name-this describes 
an approximate location in the space 
of possible people. The idea of an as­
sociative memory is to find the friend 
who best matches the partial data. 

A collective-decision circuit such 
J-\.as the one described for the task­
assignment problem could perform 
as an associative memory if the E sur­
face can be shaped to have valleys, 
or stable points, at the places that 
correspond to particular memories. 
A pattern of input voltages corre­
sponding to a partial memory would 
be supplied to the amplifiers and the 
circuit would then follow a trajectory 
to the bottom of a local valley in the E 
terrain and read out the output state 
of the amplifiers as the stored mem­
ory. Unlike the task-assignment cir­
cuit, in which the connections are 
highly regular because of the simple 
global rules that constrain the prob­
lem, in an associative memory the 
connections are irregular and the sta­
ble points are scattered somewhat at 
random because the memories need 
not have any particular relationship 
among themselves. To construct an 
associative memory, therefore, one 
must find connections between am­
plifiers such that the many desired 
memories are represented simulta­
neously by the circuit's stable states. 

A simple associative memory of six 
interconnected amplifiers illustrates 
how information can be stored in 
such a network [see illustration on op­
posite page]. The memory states of 
the system could be described as six­
bit binary words, in which each bit 
corn;sponds to one of the two possi­
ble saturated output states of an am­
plifier, + 1 and -1. For example, 
memory Ais (+ 1, + 1,+ 1, -1,-1, -1) .  
As with the flip-flop circuit, a state 
can be stable only if it is self-consis­
tent. This is accomplished by ensur­
ing that each amplifier with a + 1 out­
put has an excitatory connection to 
the input of every other amplifier 
that has a + 1 output and an inhibito­
ry connection to the input of each 
amplifier that has a -1 output, and 

VLSI COLLECTIVE-DECISION CIRCUIT was designed in 1985 at the California Institute 

of Technology by Massimo Sivilotti, Michael R. Emerling and Carver A Mead. It contains 

22 amplifiers, which are the lighter-color components along the diagonal. The devices 

filling the rest of the square provide the connections, which can be programmed to 

make the chip an associative memory. The size of the chip is six by six millimeters. 

vice versa for amplifiers that have 
-1 outputs. All the inputs to an am­
plifier are added up to give a big sig­
nal with the correct sign. If one looks 
at the E surface for this associative 
memory, one will find that the con­
nections have created a valley at the 
location of the memory. 

Because the data are distributed 
in the pattern of the connections in 
the circuit, many other memories 
can be overlaid in the same circuit. 
It is merely necessary to calculate 
the connections separately for each 
memory and add them to the con­
nections for the memories already 
in storage. This Simple additive rule 
works quite effectively as long as not 
too many of the same connections 
are shared among many memories. 
Problems arise if memories are too 
similar or too numerous; the valleys 
on the E surface get too close and be­
gin to interact. (The number of unre­
lated memories that can be stored ef­
fectively is about 15 percent of the 
number of "neurons" in the circuit.) 
There are cleverer schemes that can 
store a larger number of memories or 
memories that are more similar. 

The associative memory described 
above requires only local informa­
tion about two linked "neurons" in 

order to modify the strength of the 
existing connection between them. 
This is appealing because it offers a 
theory of associative memory that is 
consistent with a biological model 
proposed more than 30 years ago by 
Donald O. Hebb. Hebb postulated 
that biological associative memory 
must reside in the synaptic connec­
tions between nerve cells and that 
the process of learning and memo­
ry storage involves changes in the 
strength with which nerve signals 
are transmitted across individual 
synapses. According to his theory, 
synapses linking pairs of neurons 
that are simultaneously active be­
come stronger, thereby reinforcing 
those pathways in the brain that are 
excited by speCific experiences. As 
in our associative-memory model, 
this involves local instead of global 
changes in the connections. The Heb­
bian synapse had long eluded actual 
observation, but recently several in­
v-estigators have reported evidence 
for such mechanisms in the brain. 

Many laboratories are now ex­
ploring how to fabricate and use 

devices for collective computation. A 
variety of prototypes have already 
been built with microelectronic and 
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optical hardware. To be useful, cir­
cuits will have to be large, with hun­
dreds or thousands of "neurons, " 
and because these may be densely 
interconnected, the circuits may con­
tain tens of thousands or even mil­
lions of connections. In addition, in 
order to build a general-purpose cir­
cuit such as an associative-memory 
chip one would need a simple meth­
od for modifying the connection 
strengths. 

John) .  Lambe and his collaborators 
at the Jet Propulsion Laboratory con­
structed from integrated-circuit am­
plifiers the first associative-memory 
network of the type we have de­
scribed. The connections between 
each pair of amplifiers were chosen 
through a mechanical switch. The 
network was expanded to contain 3 2  
amplifiers, with microcomputer-con­
trolled transistor switches replacing 
the mechanical ones. These pioneer­
ing circuits work as predicted but are 
too cumbersome to be of practical 
use. The first VLSI version was fabri­
cated by Massimo Sivilotti, Michael 
R. Emerling and Carver A. Mead of 
the California Institute of Technolo­
gy. The circuit reduced a 2 2-amplifier 
network with 462 interconnections 
to an area smaller than a square cen­
timeter. The chip functioned as an as­
sociative memory when the connec­
tion matrix was appropriately pro­
grammed. Similar VLSI circuits with 
54 amplifiers have been built by Law­
rence D. Jackel, Richard E. Howard 
and Hans Peter Graf of the AT&T 
Bell Laboratories. One of the attrac­
tive features of collective-decision 
circuits is that they converge on a 
good solution rapidly, typically in a 
few multiples of the characteristic 
response time of the computing de­
vices. In several of the microelec­
tronic implementations this conver­
gence has occurred in less than one 
microsecond. Mead's group has re­
cently built a VLSI "artificial retina" 
chip for image processing, using 
collective-computation principles in 
the design. 

Advanced optics provides another 
promising medium for building col­
lective-decision circuits. In that ap­
proach light beams would replace 
the wires. Because light beams can 
pass through one another without in­
teraction, this raises the possibility of 
implementing complicated network 
topologies that might be difficult to 
achieve in VLSI .  Demetri Psaltis of 
Caltech and Nabil Farhat of the Uni­
versity of Pennsylvania have built 
working prototypes of optical col-

lective circuits [see "Optical Neural 
Computers, " by Yaser S. Abu-Mos­
tafa and Demetri Psaltis; SCIENTIFIC 
AMERICAN, MarchI. 

Many investigators are studying 
neuronlike circuits different from the 
ones we have described. A popular 
model is the feedforward Perceptron, 
which has been shown to be effective 
for a broad range of applications, 
such as pattern recognition. This 
model consists of simple processing 
units arranged in several layers. In­
formation is passed into the network 
through an input layer, and the result 
of the network's computation is read 
out at the output layer. There are 
connections between the layers, and 
information flows forward only. Such 
feedforward networks have simpli­
fied dynamical behavior and re­
duced computational capability. On 
the other hand, many useful learning 
rules have been devised for such cir­
cuits that make it easy to find the 
appropriate connection pattern. One 
well-known example, called back­
propagation, has been independent­
ly derived by David Parker, by David 
Rumelhart, Geoffrey Hinton and Ron­
ald Williams, and by Paul ) .  Werbos. 
One goal of current research is to un­
derstand how similar learning algo­
rithms might be applied to networks 
that have the richer dynamical be­
havior produced by the kind of feed­
back employed in the circuits we 
have discussed. 

The study of collective computa­
tion in neuronlike circuits has 

shown that such networks can carry 
out computations that are not trivial. 
Computations that are more compli­
cated may require having many sim­
ple decisions interact collectively to 
produce a complex decision. Anoth­
er feature of many complex deci­
sions is that they must combine in­
formation arriving over an extended 
period of time. Suppose, for example, 
one wants to identify someone from 
a distance by the way he walks. One 
must first make Simple decisions 
about the positions of limbs, com­
bine these over time to determine a 
sequence of movements and from 
these form a complex pattern that 
can be associated with a particular in­
dividual . The study of such hierar­
chical and time-varying collective­
decision systems has just begun, but 
we believe that, as in the case of the 
circuit-design principles we have de­
scribed, the research will be pro­
pelled by the architectures and de­
sign rules of nature's computers. 
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