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and long-range lateral connections within cortical areasTerrence J. Sejnowski*
as well as feedforward connections. He recognized thatHoward Hughes Medical Institute
single synapses were generally too weak in cortex toThe Salk Institute
cause a postsynaptic neuron to fire a spike and that10010 North Torrey Pines Road
patterns of converging synaptic inputs were required.La Jolla, California 92037
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The central problem that concerned Hebb was the originUniversity of California, San Diego
of what he believed was relatively autonomous activityLa Jolla, California 92093
in the cerebrum: “... we know practically nothing about
what goes on between the arrival of the excitation at a
sensory projection area and its later departure from theIt has been 50 years since Donald Hebb published the
motor area of the cortex” (xvi). Hebb conjectured thatOrganization of Behavior: A Neuropsychological Theory
cortical circuits admit self-sustaining activity that rever-in 1949. This book was written at a time when behavior-
berated in what he called “cell assemblies.” This ideaism was dominant in North American psychology. The
was inspired by evidence for recurrent connections be-approach that Hebb advocated, based on what was
tween neighboring cells in the cortex. Although rever-then known about the brain, was out of favor among
beratory activity lasting for up to half a second hadpsychologists who believed that only external sensory
been observed by Lorente de Nó, Hebb went furtherstimuli and motor responses ought to be included in
and suggested that such activity in one cortical circuitany explanation of behavior. Most neuroscientists have
could through converging projections activate other ar-heard about the “Hebb synapse,” but few know why he
eas of cortex and lead to a sequence of activations hepostulated this learning rule. This is a good time to take
called a “phase sequence.” Although these ideas remaina closer look at this book and let Hebb speak for himself.
highly speculative, they reflect recent issues such asHebb was on the faculty of the Psychology Depart-
spike timing and spike synchrony that today are at thement at McGill University. One of his research interests
forefront of theoretical research on the cortical neuralwas the behavioral effects of brain lesions, and he had
code (Abbott and Sejnowski, 1999).collaborated with Wilder Penfield, a colleague at McGill,

Hebb needed a way to sustain persistent reverbera-but he was more broadly interested in the development
tory activity (a “trace”) in cortical circuits. He proposedof behavior and learning, which he saw as intimately
that patterns of connections between neurons couldrelated. In 1949, much of what we now take for granted
sustain reverberatory activity if their strengths could beabout the organization of the nervous system and the
adjusted by an activity-dependent mechanism for syn-properties of neurons was not yet discovered. Hodgkin
aptic plasticity that he called a “Neurophysiological Pos-

and Huxley’s landmark series of papers on the ionic
tulate”:

basis of the action potential would appear in 1952; the
classic paper by Fatt and Katz on the quantal theory of
synaptic transmission would appear in the same year.
Not much was known about the localization of function
in the cortex outside primary sensory and motor areas,
and Lashley’s theory of equipotentiality of the cerebral
cortex was still influential.

Most of what was then known about cortical neurons
and circuits was based on static pictures of neurons
stained with the Golgi technique. Even though the “neu-
ron doctrine” went back to Cajal, conclusive evidence
that the neuron was indeed a functional unit awaited
the electron microscope in the 1950s and recordings
from single cortical neurons in the 1960s. In the introduc-
tion to his book, Hebb states that his theory “is evidently
a form of connectionism, one of the switchboard variety,
though it does not deal in direct connections between
the afferent and efferent pathways: not an ‘S–R’ psychol- Figure 1. Summary Diagram of Connectivity between Cells in Visual
ogy, if R means a muscular response. The connections Cortex Taken from Figure 8 in Hebb (1949)
serve rather to establish autonomous central activities, Cells A and B in primary visual cortex (area 17) receive strong excita-
which then are the basis for further learning” (xix). One tion from a visual stimulus in their receptive fields (as do other cells

in the cross-hatched region). Cells C and D in extrastriate visualof the few figures in the book, reproduced in Figure 1,
cortex (area 18) provide feedback connections to area 17. Cell Edepicts the connections between area 17 (primary visual
does not receive strong visual input in its receptive field but doescortex) and area 18 (extrastriate visual cortex), and is
receive feedback input from horizontal connections within the cor-

remarkably modern in including feedback projections tex. Hebb’s interpretation of this diagram anticipates the recently
discovered modulation of the primary receptive field responses in
area 17 from visual stimuli outside the classical receptive field.* E-mail: terry@salk.edu.
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When an axon of cell A is near enough to excite cell
B and repeatedly or persistently takes part in firing
it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as
one of the cells firing B, is increased. (62)

This passage is the origin of the “Hebb learning rule”
and made Hebb an adjective. Most good ideas have
precursors, and earlier versions of Hebb’s can be found
in books by Jerzy Konorski and even William James,
but it was Hebb’s version that proved most influential.
His words have been interpreted to mean that synaptic
plasticity should be based on coincidence detection;
that is, strengthening of the synapse should occur when
the release of neurotransmitter from a presynaptic termi-
nal coincides with the depolarization of the postsynaptic
cell. Evidence for a coincidence detection mechanism
has been found in the hippocampus, where long-term
potentiation (LTP), discovered there in 1973 by Tim Bliss

Figure 2. Synaptic Modification in Cultured Hippocampal Neuronsand Terje Lomo, was shown to be Hebbian (Kelso et al.,
1986). LTP of synapses on hippocampal neurons can The relative timing of the paired postsynaptic spike and excitatory

synaptic inputs (inset) determines whether the subsequent changebe elicited by pairing synaptic input with strong depolar-
in the excitatory postsynaptic current (EPSC) increases (when theizing current, when neither alone produces a long-last-
spike follows the synaptic input) or decreases (when the spike pre-ing change, consistent with this interpretation. Further-
cedes the synaptic input). This is a temporally asymmetric form of

more, the induction of LTP at some synapses is Hebbian synaptic plasticity. From Bi and Poo (1998). Calibration: 50
controlled by the NMDA receptor, which requires both mV, 10 ms.
binding of glutamate and depolarization to allow entry
of calcium into the cell. Insofar as the NMDA receptor
is a coincidence detector, it might even be called a spike causes LTD) (Bell et al., 1997). Thus, this tempo-

rally asymmetry in synaptic plasticity is widespread in“Hebb molecule.” The only part that Hebb had appar-
ently not gotten quite right was his statement about the cerebellar as well as cortical structures. In Figure 2,

where the time delay between the synaptic stimulus andfiring of cell B, since LTP could still be induced after
fast spiking was abolished by blocking active currents in the postsynaptic spike was varied over a wide range,

the window for plasticity is around 620 ms and thethe postsynaptic neuron, suggesting that cooperativity
with other synaptic inputs might be needed to depolarize transition between LTP and LTD occurs within a time

difference of a few milliseconds.the dendrite sufficiently to open the NMDA receptor.
Another issue is that increases in the strength of a syn- This temporally asymmetric form of synaptic plasticity

has many nice features. First, it solves the problem ofapse from random coincidences will end inexorably in
saturation. Hebb suggested that unused synapses balancing LTD and LTP in a particularly elegant way,

since chance coincidences should occur about equallymight decay, and a form of long-term depression (LTD)
induced by low-frequency activity might provide such with positive and negative relative time delays. Second,

when sequences of inputs are repeated in a network ofdecay from spontaneous activity in the cortex. However,
if synaptic strengths are to encode long-term memories, neurons with recurrent excitatory connections, this form

of synaptic plasticity will learn the sequence, and theit is important to have a mechanism for LTD as specific
as that for LTP. pattern of activity in the network will tend to predict

future input. This may occur in the visual cortex whereTemporally Asymmetric Synaptic Plasticity
Monosynaptic connections between pairs of cells are simulations of cortical neurons can become directionally

selective when exposed to moving visual stimuli (Raobest examined with dual intracellular recordings in corti-
cal slices. In an experiment designed to test the impor- and Sejnowski, 2000). Similar models have been pro-

posed for neurons in other brain regions, although thetance of relative timing of the presynaptic release of
neurotransmitter and the postsynaptic activity to LTP, temporal window for synaptic plasticity was taken to be

100 ms in the hippocampus (Blum and Abbott, 1996),Markram et al. (1997) paired stimulation of cell A either
10 ms before or after spike initiation in cell B. They found where there is evidence that the locations of place cells

shift to earlier locations in rats running repetitivelyreliable LTP when the presynaptic stimulus preceded
the postsynaptic spike, but, remarkably, there was LTD through a maze (Mehta et al., 1997), and ,1 ms in a

model for learning auditory localization by the relativewhen the presynaptic stimulus immediately followed the
postsynaptic spike. Similar results have been found for timing of spikes from two ears (Gerstner et al., 1996).

Is the temporally asymmetric learning algorithm Heb-hippocampal neurons grown in culture (Bi and Poo,
1998; Debanne et al., 1998), between retinal axons and bian? The rapid transition between LTP and LTD at the

moment of temporal coincidence does not conform toneurons in the optic tectum of frogs (Zhang et al., 1998),
and in the electrical line organ of weakly electric fish— the traditional view of a Hebbian synapse. Notice that

in Hebb’s formulation the synapse increases in strengththis is different from the others in that it is of opposite
polarity (presynaptic release before the postsynaptic “when an axon of cell A is near enough to excite cell B
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and repeatedly or persistently takes part in firing it.” For few years to examine the information carried by single
spikes (Rieke et al., 1997) and to analyze models ofcell A to take part in firing cell B implies causality, not

simple coincidence. Thus, the importance of temporal spiking neurons such as those based on integrate-and-
fire processing units or more realistic compartmentalorder is implicit in Hebb’s formulation. If cell A produces

an excitatory event just before cell B fires a spike, then models with ion channels based on Hodgkin–Huxley
kinetics (Ritz and Sejnowski, 1997). These are beingit is likely to have contributed. Hebb did not specify

what should happen if cell A fires just after cell B, but used to explore the computational consequences of the
temporally asymmetric Hebbian learning rule.weakening is consistent with causality since it is then

unlikely for cell A to have caused cell B to fire. The If relative timing of spikes has a major influence on
the strengths of synapses in the cortex, then spike timingtemporally asymmetric learning rule may be more Heb-

bian than the earlier coincidence version. is likely to be internally regulated. In particular, local
inhibitory interneurons, such as basket cells that canFor the spike at the soma to influence synapses on

distal dendrites, there must be a flow of information induce rebound spiking in many cortical pyramidal cells,
may have an important function in regulating the timingfrom the soma toward the dendrites, which violates the

principle of dynamic polarization. This reverse flow of of spikes within a column of neurons (Ritz and Sejnow-
ski, 1997). The relative order of spikes in a populationinformation could not occur without active currents in

dendrites, which we now know support exactly the sort of neurons could also be used to encode information
about objects in the world (Hopfield, 1995). In particular,of backpropagating action potentials in pyramidal neu-

rons required by the strict form of Hebb’s postulate. the first neuron in a population to spike in response to
a sensory stimulus will have an advantage, since itsHow the backpropagating spike interacts with the
synapses will be the first to be activated and more likelyNMDA receptor to produce a knife-edge switch from
to be strengthened compared to synapses from otherLTP to LTD is an open research problem.
neurons that spike later (Van Rullen et al., 1998; AbbottThe temporally asymmetric Hebbian learning rule is
and Song, 1999). This gets to the core of what assemblesequivalent to the temporal difference learning algorithm
cell assemblies and emphasizes how far into the futurein reinforcement learning (Rao and Sejnowski, 2000) and
Hebb’s ideas about cell assemblies and phase se-can be used to make predictions and implement classi-
quences have endured.cal conditioning (Montague and Sejnowski, 1994). The

Hebb relied on guesswork and intuition when factsunconditioned stimulus in a classical conditioning ex-
and details were missing. In particular, he focused onperiment must occur before the reward for the stimulus–
synapses as a fundamental computational unit and onreward association to occur. This is reflected in the
activity-dependent synaptic plasticity as a basic opera-temporal difference learning algorithm by a postsynap-
tion for both the development of the nervous systemtic term that depends on the time derivative of the post-
and the emergence of higher cognitive functions. Al-synaptic activity level. The goal is for the synaptic input
though we now know much more about synapses, andto predict future reward: if the reward is greater than
in particular about the conditions under which synapticpredicted, the postsynaptic neuron is depolarized and
strengths can be changed, the links between thesethe synapse strengthens, but if the reward is less than
changes and cognition remain tenuous (Quartz and Sej-predicted, the postsynaptic neuron is hyperpolarized
nowski, 1997). Hebb recognized that several importantand the synapse decreases in strength. There is evi-
levels of organization in the brain above the synapsedence in primates that the transient output from dopa-
and neuron were also essential, with neural assembliesmine neurons in the ventral tegmental area carries infor-
having a privileged position. Determining the size ofmation about the reward predicted from a sensory
these assemblies, their dynamics, and the extent tostimulus (Schultz et al., 1997), and in bees an octopami-
which their activities can be linked to perception andnergic neuron has a similar role (Montague and Sejnow-
cognition remains an exciting research program that willski, 1994). The temporal window for classical condition-
take us well into the next century.ing is several seconds, much longer than the window

Hebb’s book is written in a readable style that hasfor LTP/LTD observed at cortical and hippocampal syn-
almost disappeared from the scientific literature. Itapses. A circuit of neurons in the basal ganglia and
ranges over topics from perception to sleep and fromfrontal cortex may be needed to extend the computation
pain to the emotions. He treats each of these issuesof temporal differences to such long time intervals. It is
from the fresh perspective of learning in cell assemblies.surprising to find the same learning algorithm in different
In many respects, Hebb could be called the first of thetypes of learning systems in different parts of the brain.
modern cognitive neuroscientists, bringing to bear whatThis suggests that the temporal order of input stimuli is
was then known about the cognitive, neuroanatomical,a useful source of information about causal dependence
neurophysiological, and computational constraints. How-in many different learning contexts and over a range of
ever, his insights seem to come from a deeper streamtime scales.
and are almost prophetic, making his book part of aSpike Timing and Neural Assemblies
much older tradition. I suspect that as we learn moreHebb explicitly framed his Neurophysiological Postulate
about the brain, we will discover more in Hebb’s bookin terms of spikes. Although the traditional coincidence
that we do not now fully appreciate.version of the Hebbian learning rule has been applied

to many types of neural network models, such as those
Selected Readingthat use the average firing rates or average membrane

potentials of neurons, the temporally asymmetric ver- Abbott, L.F., and Sejnowski, T.J. (1999). Neural Codes and Distrib-
sion of the Hebb rule is most appropriate in models that uted Representations: Foundations of Neural Computation (Cam-

bridge, MA: MIT Press).include spikes. There has been a major effort in the last
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