
 - 1 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Minds And Machines:
Connectionism And Psy-

chological Modeling

Michael R.W. Dawson
University OF Alberta

Edmonton, Alberta
Canada T6G 2P9
1-(780)-492-5175

mdawson@ualberta.ca

130,736

 - i -

Minds And Machines © M.R.W. Dawson 12/02/2016

Chapter 1: The Kids In The Hall .. 1
1.1 Synthetic Versus Analytic Traditions .. 2

Chapter 2: Advantages And Disadvantages Of Modeling 4
2.1 What Is A Model? .. 4
2.2 Advantages And Disadvantages Of Models ... 2

2.2.1 Rigorous Specification Of Theory .. 2
2.2.1.1 Precision Of Terms .. 2
2.2.1.2 New Tools For Studying Concepts ... 3
2.2.1.3 Revelation Of Hidden Assumptions ... 3

2.2.2 Problems With Formalization ... 4
2.2.2.1 The Irrelevant Specification Problem ... 4
2.2.2.2 The Relevant Formalization Problem ... 4
2.2.2.3 The Communication Problem ... 6

2.2.3 Exploration Of Complex Domains .. 7
2.2.3.1 The Economy Of Models .. 7
2.2.3.2 Beyond Mathematical Boundaries ... 8

2.2.4 Problems With Exploring Complex Domains ... 8
2.2.4.1 Bonini’s Paradox .. 9
2.2.4.2 The Validation Problem .. 9

2.2.5 Serendipity ... 10
2.2.5.1 Emergence And Surprise ... 10
2.2.5.2 An Example: Banding In Value Units ... 11

2.2.6 Luck: Good And Bad .. 12
2.2.6.1 Is Good Luck Bad Science? ... 12
2.2.6.2 Good Luck, Bad Control ... 13
2.2.6.3 Going Beyond The Model .. 13

Chapter 3: Models Of Data .. 14
3.1 An Example Of A Model Of Data .. 14
3.2 Properties Of Models Of Data ... 16

3.2.1 Models Of Data Fit Pre-Existing Measurements .. 17
3.2.2 Models Of Data Are Usually Linear .. 17
3.2.3 Models Of Data Are Evaluated By Goodness Of Fit .. 18
3.2.4 Models Of Data Rarely Surprise Us ... 18
3.2.5 Models Of Data Do Not Behave ... 20

Chapter 4: Mathematical Models .. 21
4.1 An Example Mathematical Model ... 22
4.2 Mathematical Models vs. Models Of Data .. 25

4.2.1 The Need For Pre-Existing Measurements .. 25
4.2.2 Linearity ... 25
4.2.3 Goodness Of Fit ... 25
4.2.4 Surprise ... 26
4.2.5 Model Behavior .. 26

Chapter 5: Computer Simulations .. 27
5.1 A Sample Computer Simulation .. 27

5.1.1 Production System Models .. 27
5.1.2 A Cryptarithmetic Example .. 28

5.2 Connectionist Models .. 30
5.2.1 Properties Of Connectionism ... 30
5.2.2 A Connectionist Example ... 31

5.3 Properties Of Computer Simulations .. 32
5.3.1 Requirement For Existing Data .. 32
5.3.2 Linearity ... 32
5.3.3 Goodness Of Fit ... 33
5.3.4 Surprise ... 34
5.3.5 Model Behavior .. 35

Chapter 6: First Steps Toward Synthetic Psychology 36
6.1 Introduction ... 36

6.1.1 Synthetic Psychology Vs. Embodied Cognitive Science .. 37
6.1.2 Overview: Synthesis, Emergence, Analysis ... 38

6.2 Building A Thoughtless Walker ... 38
6.2.1 A Class Project .. 39

 - ii -

Minds And Machines © M.R.W. Dawson 12/02/2016

6.2.2 Materials .. 39
6.3 Step 1: Synthesis .. 39

6.3.1 From Rotation To Stepping .. 40
6.3.2 Balance .. 40
6.3.3 Leg Support ... 40

6.4 Step 2: Emergence ... 40
6.4.1 Two-Legged System .. 41
6.4.2 Four-Legged System ... 41
6.4.3 Six-Legged System .. 42
6.4.4 Emergence And Surprise ... 43

6.5 Step 3: Analysis .. 43
6.5.1 Emergence And The Thoughtless Walker ... 44

6.5.1.1 Recognizable, Recurring Patterns ... 44
6.5.1.2 Rule-Governed System .. 45
6.5.1.3 Dynamic System .. 45
6.5.1.4 Adaptive System .. 46
6.5.1.5 Persistent Patterns, Changing Components .. 46

6.5.2 Comparison To Biological Walking .. 46
6.5.2.1 Lifelike Motion .. 47
6.5.2.2 Control With No Brain .. 48
6.5.2.3 Limitations And Future Explorations .. 48

6.6 ISSUES CONCERNING SYNTHETIC PSYCHOLOGY ... 49
Chapter 7: Uphill Analysis, Downhill Synthesis? 51

7.1 Introduction ... 51
7.2 from homeostats to tortoises .. 51

7.2.1 Feedback And Machines ... 52
7.3.1 Ashby’s Homeostat .. 53

7.3.1.1 Basic Design .. 53
7.3.1.2 Behavior Of The Homeostat ... 54
7.3.1.3 Implications .. 54

7.3.2 Grey Walter’s Tortoises ... 55
7.3.2.1 Basic Design .. 55
7.3.2.2 Behavior ... 55
7.3.2.2 Implications .. 56

7.4 vehicles ... 57
7.4.1 Braitenberg’s General Approach .. 58
7.4.2 Some Example Vehicles .. 58

7.4.2.1 Vehicle 1: Getting Around .. 58
7.4.2.2 More Advanced Vehicles ... 58
7.4.2.3 Vehicle 6: Selection, The Impersonal Engineer ... 59
7.4.2.4 Further Sophistications .. 60

7.5 SYNTHESIS AND EMERGENCE: SOME MODERN EXAMPLES 60
7.5.1 NETtalk .. 60
7.5.2 Cricket Phonotaxis ... 62
7.5.3 Stigmergy And Group Behavior ... 63

7.6 THE LAW OF UPHILL ANALYSIS AND DOWNHILL SYNTHESIS 64
7.6.1 From Demonstration To Explanation ... 65
7.6.2 Implications Of Braitenberg’s Law ... 67
7.6.3 Towards Synthetic Psychology .. 67

Chapter 8: Connectionism As Synthetic Psychology 68
8.1 INTRODUCTION .. 68
8.2 Beyond Sensory Reflexes .. 68

8.2.1 Visuomotor modules .. 69
8.2.2 Reflexes Vs. Representations .. 70
8.2.3 Synthesis And Representation ... 71

8.3 Connectionism, Synthesis, And Representation .. 72
8.3.1 Connectionism And Synthesis ... 72
8.3.2 Connectionism And Synthesis: An Example .. 74

8.3.2.1 Metric Representations Of Space .. 74
8.3.2.2 Are Spatial Representations Metric? .. 75
8.3.2.3 A Synthetic Approach To Spatial Representation .. 75

8.3.2.3.1 Defining The Problem ... 76
8.3.2.3.2 Choosing The Network Architecture ... 77

 - iii -

Minds And Machines © M.R.W. Dawson 12/02/2016

8.3.2.3.3 Training The Network ... 77
8.3.3 Connectionism And Emergence: A Prelude ... 77
8.3.4 Connectionism And Analysis ... 78

8.3.4.1 Connectionism And Representation ... 78
8.3.4.2 Connectionism And Bonini’s Paradox .. 80
8.3.4.3 Interpreting Connectionist Networks .. 80

8.3.5 Connectionism And Analysis: An Example .. 80
8.3.5.1 Relating The Map Of Alberta To Hidden Unit Connection Weights ... 80
8.3.5.2 Relating Connection Weights To Hidden Unit MDS Spaces .. 81
8.3.5.3 Coarse Coding From Hidden Unit Activations To Distance Ratings .. 82

8.3.6 Connectionism And Emergence: An Example ... 82
8.3.6.1 Implications For The Hippocampal Cognitive Map .. 83
8.3.6.1 Coarse Allocentric Coding And Nonmetric Judgments .. 84
8.3.6.3 Implications .. 86

8.4 SUMMARY AND CONCLUSIONS ... 86
Chapter 9: Building Associations ... 88

9.1 From Associationism To Connectionism .. 88
9.1.1 Philosophical considerations .. 89

9.1.1.1 Aristotelian Contributions ... 89
9.1.1.2 17th Century Associationism In Philosophy .. 89
9.1.1.3 18th Century Philosophy And Associationism ... 91
9.1.1.4 19th Century Philosophy And Associationism ... 91

9.1.2 Psychology, Associationism, and Connectionism .. 92
9.1.2.1 19th Century Contributions Of William James .. 92
9.1.2.2 The Paired Associate Task .. 94
9.1.2.3 20th Century Models Of Distributed Memory .. 94

9.2 Building An Associative Memory .. 95
9.2.1 Defining the problem .. 95
9.2.2 The Network Architecture .. 95

9.2.2.1 Processing Units .. 95
9.2.2.2 Modifiable Connections .. 97
9.2.2.3 The Retrieval Operation ... 98
9.2.2.4 Hebb-Style Learning .. 99

9.2.3 Behavior Of The Distributed Associative Memory ...103
9.2.3.1 Computational Account Of The Model ... 103
9.2.3.2 Observing The Behavior .. 105

9.3 Beyond The Limitations Of Hebb Learning ... 106
9.3.1 The Limitations Of Hebb Learning ..106
9.3.2 Overcoming The Limitations ...107

9.3.2.1 Supervised Learning .. 107
9.3.2.2 The Delta Rule ... 109
9.3.2.3 The Power Of The Delta Rule .. 109

9.4 Associative Memory And Synthetic Psychology ... 110
Chapter 10: Making Decisions .. 112

10.1 The Limits Of Linearity .. 112
10.1.1 A Chain Of Distributed Memories ...112
10.1.2 Removing The Links Of The Chain ...113

10.2 A Fundamental Nonlinearity ... 114
10.2.1 The Need For Nonlinearity ..114
10.2.2 The All-Or-None Law ..114

10.3 Building A Perceptron: A Nonlinear Associative memory 116
10.3.1 From Distributed Associative Memory To The Perceptron ..116
10.3.2 The Perceptron’s Architecture ..117

10.3.2.1 Processing Units .. 117
10.3.2.2 Modifiable Connections .. 118
10.3.2.3 Decision: The Retrieval Operation ... 118

10.3.3 Learning With Nonlinearity ..119
10.3.3.1 Rosenblatt’s Learning Rule .. 119
10.3.3.2 The Gradient Descent Rule .. 120
10.3.3.3 Perceptrons And Linear Nonseparability.. 122
10.3.3.4 The Dawson-Schopflocher Learning Rule ... 124
10.3.3.5 Exploring The Three Learning Rules ... 125

10.4 The Psychology Of Perceptrons ... 126
10.4.1 Supervised Learning And Classical Conditioning ...126

 - iv -

Minds And Machines © M.R.W. Dawson 12/02/2016

10.4.2 The Patterning Problem ..126
10.4.2.1 Patterning Problems In Classical Conditioning .. 126
10.4.2.2 A Multilayer Account Of Negative Patterning ... 128
10.4.3.3 Perceptrons And Patterning ... 129
10.4.3.4 Summary And Implications .. 133

10.5 THE NEED FOR LAYERS .. 134
Chapter 11: Sequences of Decisions ... 135

11.1 The logic of layers ... 135
11.1.1 Hidden Units Detect Higher-Order Features ...135
11.1.2 Hidden Units Transform Pattern Spaces ...136

11.2 training multilayered networks .. 137
11.2.1 The Credit Assignment Problem ...137
11.2.2 Error Backpropagation ..138
11.2.3 The Generalized Delta Rule ..139
11.2.4 The Dawson-Schopflocher Rule ...140
11.2.5 Exploring Learning In Multilayered Networks ..140

11.3 a simple case study: exclusive or ... 141
11.3.1 Using Hidden Units To Detect Additional Features ...141
11.3.2 Using Hidden Units To Transform The Pattern Space ..142

11.4 a second case study: classifying musical chords ... 142
11.4.1 Defining The Problem ...143
11.4.2 Classifying Chords With A Network ..145

11.5 a third case study: from connectionism to selectionism 146
11.5.1 Instructionist Versus Selectionist Theories ...146
11.5.2 A Connectionist Formulation Of Selectionism ...148
11.5.3 A Case Study: The Parity Problem ...149

11.5.3.1 Defining The Problem .. 149
11.5.3.2 Manipulating The Number Of Hidden Units ... 149
11.5.3.3 Manipulating The Initial Structure Of Connection Weights .. 149
11.5.3.4 Training The Networks ... 150
11.5.3.4 The Potential Power Of Selectionism... 150
11.5.3.5 The Need For Future Research ... 151

Chapter 12: From Synthesis To Analysis ... 153
12.1 representing musical chords in a pdp network ... 153

12.1.1 Linear Analysis Of Hidden Unit Responses ..153
12.1.2 Representation Of Notes By Connection Weights ..155
12.1.3 Problems With Major Chords, And How To Solve Them ..158
12.1.4 Implications Of The Interpretation ...159

12.2 interpreting the internal structure of value unit networks 160
12.2.1 Identifying Trigger Features In Integration Device Networks160
12.2.2 Families Of Trigger Features In Value Units ...162
12.2.3 Identifying Local Features In A Network Of Value Units ...163

12.2.3.1 Problem Definition .. 163
12.2.3.2 Network Architecture And Problem Encoding .. 163
12.2.3.3 Training The Network ... 163
12.2.3.4 Identifying Definite Features Associated With Bands .. 164

12.2.4 Identifying Distributed Features In A Network Of Value Units166
12.2.4.1 Problem Definition .. 166
12.2.4.2 Network Architecture .. 166
12.2.4.3 Training The Network ... 166
12.2.4.4 Activations, Cluster Analysis, And The Number Of Clusters Problem 167
12.2.4.5 Solving The Number Of Clusters Problem ... 168
12.2.4.6 Cluster Analysis Of The Zoo Network .. 168

12.3 network interpretation and synthetic psychology .. 171
12.3.1 Interpretations Based On Finding Local Features In Bands ..171

12.3.1.1 The Wason Card Selection Problem .. 171
12.3.2 Interpretations Based On Finding Features Distributed Across Hidden Units172

12.3.2.1 The Mushroom Problem ... 172
12.3.2.2 The Mushroom Problem With Extra Outputs ... 173

12.3.3 Interpretations Based On Other Techniques. ..173
Chapter 13: From Here To Synthetic Psychology 174
References .. 176

 - 1 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Chapter 1: The Kids In The Hall

It is noon on a beautiful March day in Edmonton. At King Edward Elementary School, a

group of schoolchildren aren't playing outside in the sunshine during the lunchtime recess. In-
stead, they form a crowd in a dark hall that is only illuminated by a small, bright flashlight resting
on the middle of the floor. They are acting like scientists, and have in hand pencils and index
cards for recording their observations. The focus of their scientific interest is the behavior of two
small Lego robots that are navigating through the hallway. Both robots look like tiny tractors from
outer space. Motors turn two large wheels at the rear, and a smaller front wheel turns as a robot
steers through the hallway. Two small red LEDs shine like headlights mounted on the front. A
thin, flexible barrier surrounds each robot, looking like a flexible hoop or shell.

One of the robots wanders down the hall, away from the flashlight, bumping into dark

baseboards. As it comes in contact with the wall, it stops and does a short gyrating dance.
Sometimes this causes it to point towards the light, but soon it steers itself to point in another di-
rection. On several occasions, the students have to scramble out of the way of an approaching
machine. The second robot spends more time bumping into the flashlight. When it is steering, it
slowly moves in and out of the pool of light that the flashlight provides.

These students have had some experience building and programming other Lego robots

as part of a weekly science fair club. They understand the function of the components that they
can see on the moving robots. However, they did not construct these two machines. Their task
was to try and figure out why each robot behaved the way that it did. By inspecting their move-
ment, could the students come up with a general story about the program stored in each robot,
about how each robot sensed the world, or about why the robots seemed to be different?

When they observed the robots behaving independently, their previous experience was

evident. Many of the kids wrote down observations like "one likes the light and the other one
likes the dark." Nevertheless, some students came up with theories that far exceeded my pro-
gramming abilities. One suggested that one of the robots "thinks when stops, figures out things,
searches for dark." The complexity of their theories -- or least the complexity of the programming
that their theories required -- increased dramatically when they observed the two robots moving
at the same time. "They want to get away from each other." "The black robot likes to hit things
and the green robot likes people." "Together they attack things."

It is later that same week. University students in an undergraduate psychology course

find themselves with pens and index cards in hand, facing the same task as the kids at King Ed-
ward Elementary School. The undergraduates have a strong technical background in the science
of behavior, but have had no previous experience with Lego robots. Many of their observations of
robot behavior lead to proposals of very sophisticated internal mechanisms, and of complex rela-
tionships between the two machines. "The turquoise robot seemed to be the smarter robot. It
first began to move in a circular motion, but seems to be able to adjust its behavior according to
the behavior of the black robot." "They must be sending sequence information to each other."
"Turquoise keeps trying to attack Black." "Now Turquoise moves to where the flashlight used to
be." "Turquoise seems to be more exploratory, directed." "The robots took turns moving. One
moved, while the other remains stationary." "Turquoise hesitates until Black hits the light. Tur-
quoise then follows Black off to the right."

The apparent complexity of the robots’ behavior is, perhaps surprisingly, not evident in

their internal mechanisms. The two robots are variations of one of the vehicles described in a
classic text on synthetic psychology (Braitenberg, 1984). The two LEDs are part of a pair of light
sensors that measure the brightness around them. Each light sensor is connected to a motor,
and the motor’s speed is determined by the light sensor’s signal. In one robot, the light sensor on
the right of the machine drives the right motor and the left sensor drives left motor. In the other

 - 2 -

Minds And Machines © M.R.W. Dawson 12/02/2016

robot, the connections between light sensors and motors are crossed so that the light sensor on
one side sends a signal to the motor on the other side. The barrier surrounding the robot, when
pushed, depresses one of four touch sensors mounted on the body of robot. When any one of
these sensors are activated, the motors are stopped, and then a reflex is initiated in which the two
motors run backwards and then forwards at randomly selected speeds for a short period of time.
These mechanisms, and only these mechanisms, are responsible for one robot preferring the
dark and the other preferring the light, as well as for any apparently sophisticated interactions
between the two machines.

1.1 SYNTHETIC VERSUS ANALYTIC TRADITIONS

When asked to describe and explain robot behavior, both sets of students were facing

the situation that makes scientific psychology difficult. The only given is the external behavior of
a complicated system. The internal processes that mediate this behavior cannot be directly ob-
served. The challenge is to infer plausible and testable theories of these unknown internal pro-
cesses purely on the basis of what can be seen directly. “How do we represent information men-
tally and how do we use that information of to interact with the world in adaptive ways? The prob-
lem persists because it is extraordinarily difficult, perhaps the most difficult one in all of science”
(Paivio, 1986, p. 3).

In spite of this difficulty, psychology has made many advances by carefully observing and

analyzing behavioral regularities. For example, psychology has developed many detailed theo-
ries of the intricate processes involved in visual perception. These theories can predict minute
aspects of behavior with astonishing accuracy, and are also consistent with discoveries about the
underlying structure of the brain.

However, some researchers would argue that in spite of such success, psychology and

cognitive science in general requires alternative research strategies. There is a growing tenden-
cy in cognitive science to adopt a radically different -- and non-analytic -- approach to understand-
ing mental phenomena. This approach is evident in research associated with such labels as syn-
thetic psychology, based-based robotics, or embodied cognitive science (e.g., Brooks, 1999;
Pfeifer & Scheier, 1999). This research is based upon the general assumption that theory building
in cognitive science would be better served by synthesis than analysis.

Practitioners of embodied cognitive science would not be surprised that the students

came up with theories that overestimated the complexity of the two robots. They would also pre-
dict that these theories would become more and more complicated as the scene being observed
became more complex as well (for instance, by containing two moving robots instead of just one).
According to synthetic psychology's “law of uphill analysis and downhill synthesis”, a theory cre-
ated by analyzing a complicated situation is guaranteed to be more complicated than a theory
created using the synthetic approach (Braitenberg, 1984).

One reason for this is that when we observe complex behavior, we have difficulty deter-

mining how much of the complexity is due to the mechanisms of the behaving agent and how
much is due to the environment in which the agent behaves. For the kids in the hallway, the
problem is to decide how much of the behavior is explicitly programmed, and how much is the
result of both static and dynamic environmental variables. It seems that we have a tendency to
attribute more intelligence to the behaving system than might be necessary.

Embodied cognitive science proposes that simpler and better theories will be produced if

they are developed synthetically. In the most basic form, this is done as follows: First, a re-
searcher decides on a set of basic building blocks, such as a library of primitive operations. For
the two robots, the building blocks were the sensors, the motors, and a relatively simple pro-
gramming language developed by Lego. Second, a system is constructed by organizing these
building blocks in a particular way. For the two robots, this was done by physically situating the
sensors and motors in a particular fashion, and by writing elementary code to convert sensor

 - 3 -

Minds And Machines © M.R.W. Dawson 12/02/2016

readings into motor speeds. Third, the system is situated in an environment, and its behavior is
observed. For the designer, one of the interesting questions is whether the observed behavior is
more surprising or interesting than might be expected given what is known about how the system
was constructed.

If these three steps are followed, then there are two general expectations. First, because

the system is constructed from known components, the researcher should have an excellent un-
derstanding of how it works. Second, when the system is embedded into a real environment, the
interaction between the system and this environment should result in emergent phenomena.
These emergent phenomena will be complicated behaviors that are surprising in the sense that
they were not directly intended or programmed into the system. The net result of all of this is
(hopefully) a better and simpler theory of the complex behavior then would have been the case
had the theory been created just by analyzing an existing system’s behavior.

The purpose of the first part of this book is to explore the differences between synthetic

and analytic approaches to cognitive science. I am going to make the argument that when you
adopt an analytic approach to explaining mental phenomena, a "cognitive model" is viewed in a
very particular way. Synthetic researchers treat models very differently, and their work offers
some advantages that may not be evident to those who use models in the analytic tradition.

The general aim of this book is to broaden the notion of what a cognitive model is, and to

demonstrate what models, probably construed, can do for psychology and for cognitive science. I
am not going to argue for the synthetic approach and against the analytic tradition, because later
I hope to make a strong case that both traditions are required even when one's work is predomi-
nantly synthetic. I am going to argue that a synthetically designed model is a liberating and excit-
ing addition to the toolbox of analytic researchers.

 - 4 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Chapter 2: Advantages And Disad-
vantages Of Modeling

2.1 WHAT IS A MODEL?

In science, phenomena that are difficult to study or to understand in their own right are often ap-

proached through the use of models. The kinds of models that are used are as diverse as science itself.
In biology, model organisms are used to study processes that cannot be easily measured in humans. In
engineering, models of physical structures are tested in wind tunnels. Some might argue that physics is
concerned with the development and testing of mathematical models of physical systems

Even within a single discipline, one can find a bewildering diversity of model types. For example,

in psychology, computer simulation models have been created for many cognitive phenomena (Boden,
1977; Feigenbaum & Feldman, 1995; Grossberg, 1988; VanLehn, 1991). Mathematical models have
been used to study human perception, learning, judgments and choice (Bock & Jones, 1968; Caelli, 1981;
Restle, 1971). Statistical models have become the primary tool for expressing relationships between vari-
ables (Lunneborg, 1994; Pedhazur, 1982; Winer, 1971). Model organisms, such as the long-finned squid
Loligo pealei, have been used to help understand the generation and transmission of nervous impulses
(Hille, 1990; Levitan & Kaczmarek, 1991).

A famous philosophical passage highlights the perils of defining even the simplest of terms:

“Consider for example the proceedings that we call ‘games’. I mean board games, card-games, ball
games, Olympic games, and so on. What is common to them all? -- Don't say: ‘There must be something
common, or they would not be called 'games' ‘-but look and see whether there is anything common to all”
(Wittengstein, 1953, p. 31e). Given the diversity that we have briefly noted above, the term ‘model’ could
just have easily been used to demonstrate this point! Wittgenstein went on to argue that there was only a
family resemblance between members of a category. “For if you look at them you will not see something
that is common to all, but similarities, relationships, and a whole series of them at that.” The features that
constitute these similarities and relationships change as different members of the same class are com-
pared to one another. What kind of family resemblance would we find amongst the members of the class
‘model’?

Intuitively, a model is an artifact that can be mapped on to a phenomenon that we are having dif-

ficulty understanding. By examining the model we can increase our understanding of what we are model-
ing. “A calculating machine, an anti-aircraft ‘predictor’, and Kelvin’s tidal predictor all show the same abil-
ity. In all these latter cases, the physical process which it is desired to predict is imitated by some me-
chanical device or model which is cheaper, or quicker, or more convenient in operation” (Craik, 1943, p.
51).

For it to be useful, the artifact must be easier to work with or easier to understand than is the

phenomenon being modeled. This usually results because the model reflects some of the phenomena’s
properties, and does not reflect them all. A model is useful because it simplifies the situation by omitting
some characteristics. “Any kind of working model of a process is, in a sense, an analogy. Being different
it is bound somewhere to break down by showing properties not found in the process it imitates or by not
possessing properties possessed by the process it imitates” (Craik, 1943, p. 53). Similarly, “the word
model may be used instead of theory to indicate that the theory is only expected to hold as an approxima-
tion, or that employing it depends upon various simplifying assumptions” (Braithwaite, 1970. p. 269).

While a model can imitate a phenomenon, it need not resemble it. “Kelvin’s tide-predictor, which

consists of a number of pulleys on levers, does not resemble a tide in appearance, but it works in the
same way in certain essential respects – it combines oscillations of various frequencies so as to produce
an oscillation which closely resembles in amplitude at each moment the variation in tide level at any

 - 2 -

Minds And Machines © M.R.W. Dawson 12/02/2016

place” (Craik, 1943, p. 51). Similarly, Galileo revolutionized science by using geometry to represent phys-
ical quantities like velocity and acceleration that do not themselves resemble lines or angles (Haugeland,
1985).

Of course, consistent with Wittgenstein’s notion of family resemblance, none of the claims made

in the preceding paragraphs apply equally well to every model. For instance, some models are less anal-
ogous than others. The properties of the ionic channels in one model, the giant axon of the squid, are
expected to correspond perfectly to the properties of the same channels in the human nervous system
(Kuffler, Nicholls, & Martin, 1984). Similarly, some models, such as the scale models of structures that are
tested in wind tunnels, have much stronger resemblances to entities in the real world than do other kinds
of models.

One property that does seem common to all models, though, is the notion of predictive utility. A

model is used to generate predictions that can be used to test the validity of a theory. The model is used
because in some sense it provides an easier or faster route to prediction. Later in this book we will see
that the many different kinds of models available to psychology can be used in a variety of ways, and that
in some sense it is not correct to describe the models of synthetic psychology as providing “predictive
utility”. Prior to embarking on that much longer discussion in later chapters, let us first turn quickly to con-
sidering some of the advantages and disadvantages of using models in general.

2.2 ADVANTAGES AND DISADVANTAGES OF MODELS

Modeling in psychology or cognitive science is associated with both advantages and disad-

vantages (e.g., Lewandowsky, 1993). In this section of the chapter, we will consider three general ad-
vantages of modeling. However, after each of these three advantages, we will follow with a discussion of
associated disadvantages. Models are like fine knives with which you can create gourmet meals, but with
which you can also cut off your fingers.

2.2.1 Rigorous Specification Of Theory

“Theory in a field as immature as psychology cannot be expected to amount to much -- and it

doesn’t” (Royce, 1970. p. 17). There are many reasons for skepticism about the quality of psychological
theory. Some researchers have argued that psychologists, envious of physics, attempted to develop
quantitative theories without first laying a proper qualitative foundation (Kohler, 1975). Others would ar-
gue that whenever psychological theories are expressed verbally, they are necessarily vague and impre-
cise. As well, there is a long tradition in experimental psychology of being extremely wary of verbal data
(Ericsson & Simon, 1984). It would not be surprising if there were an accompanying wariness of verbally
or informally stated theories.

How do you make theories better? Many researchers would argue that this is accomplished by

translating an informal verbal theory into a formal mathematical expression or into a working computer
simulation. "Even deceptively simple models can benefit from the rigor of simulations" (Lewandowsky,
1993, p. 236).

2.2.1.1 Precision Of Terms

There are several reasons that the process of formalization is useful. First, it adds precision in

specifying theoretical terms. An informal theory can be full of references to terms with vague definitions
like “memory" or "attention". Many academic debates emerge because different researchers use the
same terms in different ways. In a formal model, conceptual terms have to be carefully operationalized in
order for the model to work. This forced precision enables the theorist to communicate his ideas to others
less ambiguously then would be the case if the theory were communicated as an informal statement.

One interesting historical example of this can be found in experimental aesthetics. One of the

main goals of this discipline was to measure subjects’ responses or preferences, and to relate these
measurements to properties of the works of art or other objects that were presented (Berlyne, 1971). In

 - 3 -

Minds And Machines © M.R.W. Dawson 12/02/2016

this field, it has proven difficult to specify both properties of stimuli and properties of preferences. For ex-
ample, the Gestalt psychologists introduced the notion of "goodness of configuration" with their Law of
Prägnanz (Kohler, 1975). According to this law, we perceive organized patterns instead of isolated ele-
ments, and we actively organize these patterns to make them “good".

Unfortunately, the definition of good in the Law of Prägnanz was particularly vague: "psychologi-

cal organization will always be as ‘good’ as the prevailing conditions allow. In this definition the term
‘good’ is undefined. It embraces such properties as regularity, symmetry, simplicity and others" (Kohler,
1975, p. 110). Berlyne (1971) revolutionized the field with formalization, in particular by characterizing
stimulus properties numerically using definitions of complexity and redundancy that were taken from
mathematical information theory. Berlyne took the same approach to the notion of preference, formaliz-
ing emotion in terms of arousal. Berlyne’s approach led to extremely vibrant study of aesthetics by exper-
imental psychologists in the 1960s and '70s. The renaissance of the field was largely driven by the fact
that Berlyne’s formalization permitted researchers in different labs to have more precise understanding of
the stimulus and response properties that were being studied in diverse experiments.

2.2.1.2 New Tools For Studying Concepts

A second advantage of formalization comes from recognizing that the language in which a theory

is expressed determines the kinds of ways in which the theory can be tested or explored. For instance,
after a verbal theory has been formalized mathematically, one can use mathematical operations to inves-
tigate its implications (Coombs, Dawes, & Tversky, 1970; Lunneborg, 1994; Wickens, 1982). In other
words, formalization not only results in a more precise specification of the concepts in the theory, but also
results in a more precise set of tools for studying these concepts.

One example of this can be found in my own research on how the human visual system tracks

the identity of moving targets (Dawson, 1991). In one approach, I converted a general theory of this track-
ing into a particular type of computer simulation. I was then able to use the simulation to generate hy-
potheses about what human subjects would see when presented apparent motion displays that had never
been studied before (Dawson & Pylyshyn, 1988). In a second approach, I formalized the theory using
some of the elementary operations of linear algebra. With this formalization, I was able to prove that the
computer simulation would generate unique solutions to tracking problems. I was also able to prove that
there was a strong relationship between my model and a more general model that was unrelated to mo-
tion processing (Hopfield, 1982). The algebra showed that both models could be described as minimizing
identical energy functions. Both of these proofs were examinations of crucial characteristics of my theory,
but would have been impossible to conduct had the model not been expressed algebraically.

2.2.1.3 Revelation Of Hidden Assumptions

A third advantage of formalization is that it can reveal hidden assumptions in an informal theory

which themselves need to be fleshed out in greater detail in order for the theory to be complete. For ex-
ample, many theories in cognitive psychology are expressed as flowcharts of black boxes. Ideally, each
black box in such a flowchart is supposed to be a primitive operation that needs no further explanation
(Cummins, 1983; Dawson, 1998). Bringing the flowchart to life in, for instance, a computer simulation
can reveal that some of these alleged primitives are themselves very complicated processes that require
further analysis and explanation.

As a case in point, consider the study of vision. For most people, visual perception is extremely

easy: we just look at something and see it. Because of this, artificial intelligence researchers believed in
the 1960s that it would be very straightforward to build computer vision programs. “In the 1960s almost
no one realized that machine vision was difficult” (Marr, 1982, p. 16). Indeed, Marvin Minsky has admitted
that he assigned computer vision to a student as a summer programming project (Horgan, 1993). How-
ever, when serious attempts were directed towards programming a machine to see, astonishing difficul-
ties arose. It became painfully obvious that underlying the process of seeing was a set of enormously
complicated information processing problems that the human visual system was solving effortlessly in real
time. Identifying the nature of these problems, let alone solving them, became a staggering challenge for

 - 4 -

Minds And Machines © M.R.W. Dawson 12/02/2016

vision researchers – and the core of a new discipline. Vision research has obviously benefited from at-
tempts to formalize our intuitions about perceptual processing.

2.2.2 Problems With Formalization

We have seen in the preceding section that one general property of the model is that it can result

in the conversion of an informal theory into a theory that is stated more rigorously or more precisely.
We've also seen that there are several advantages to doing this. However, it is important to realize that
the formalization of the theory can also be hazardous. Let's briefly consider some potential disad-
vantages of formalization.

2.2.2.1 The Irrelevant Specification Problem

One potential problem with formalization is that this process requires a researcher to make de-

sign decisions. For instance, in a computer simulation one might have many possible ways for represent-
ing information. To build a model, one of these representational formats must be selected. The hope is
that the specific choice is theory-neutral. If the choice is theory-neutral, this means that the simulation will
behave in the same manner whatever representational format is chosen. However, this is often not the
case. Many design decisions are theory-laden. In other words, the behavior of the model is affected by
the design decisions. With one representational code a computer simulation might behave one way, but
it will behave differently with another representational code. Lewandowsky (1993) calls this the irrelevant
specification problem.

To illustrate the irrelevant specification problem, let us consider a model of how human subjects

perform in a particular memory task. One of the earliest techniques for studying memory was the paired-
associate learning task (Ashcraft, 1989). In this task, subjects were presented pairs of consonant-vowel-
consonant nonsense syllables (CVCs), such as XOP-LUD. When presented the first member of the pair,
subjects’ task was to remember the second member of the pair. So, when presented XOP a subject
would respond with LUD. The dependent measure for this task was usually the number of trials that were
required before a short list of these pairs was remembered perfectly. The paired-associate learning task
was central to the study of interference theories of forgetting.

In 1961, a computer simulation of this type of memory task, called EPAM for Elementary Perceiv-

er and Memorizer, was first described (Feigenbaum, 1995). This model used a discrimination learning
process to create a discrimination net to represent remembered CVCs. This discrimination net was very
similar to modern decision trees used by computer scientists for pattern recognition (e.g., Quinlan, 1986).
Each branch of Feigenbaum's discrimination net was a test that would distinguish one CVC from another.
Each terminal leaf of the discrimination net was one of the component letters of a CVC. During learning,
EPAM would grow its discrimination net using the minimum amount of information required. As more
items were added to the net, the early discrimination tasks might start to fail, which allowed EPAM to
model interference effects in paired-associate learning.

One of the key design decisions in EPAM was the assumption that the primitive symbols in the

discrimination net were individual letters. Feigenbaum and Feldman (1995) made this design decision for
the very plausible reason "letters are familiar and are well-learning units for the adult subject” (p. 301).
However, it turns out that this design decision is theory-laden. In one of my first experiences with com-
puter simulation in a Minds and Machines course taught by Zenon Pylyshyn at the University of Western
Ontario, we started with an EPAM model that used Feigenbaum’s coding format. We then revised the
model by making a different design decision about the internal symbols. In the revised model, we de-
scribed each letter as a set of visual features. As a result, the discrimination net terminated in featural
subcomponents of a CVC’s component letters. The revised model had a great deal of difficulty learning
any paired associates, indicating that the choice of internal representation strongly affects the model's
performance.

2.2.2.2 The Relevant Formalization Problem

 - 5 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Hodges (1983) describes a problem that mathematician Alan Turing encountered when he for-
malized a method for playing chess. "Alan had all the rules written out on its paper, and found himself
torn between executing the moves that his algorithm demanded, and doing what was obviously a better
move. There were long silences while he totted up the scores and chose the best minimax ploy, hoots
and growls when he could see it missing chances" (p. 440). This illustrates a disadvantage that I will call
the relevant formalization problem. After you formalize a model, like Turing, you have to accept its bad
properties along with the good. The relevant formalization problem occurs when this is not done, because
there is a strong temptation to selectively focus on a formalization’s successes, and ignore its failures.

My own experience with the relevant formalization problem came when I taught myself connec-

tionism by programming the equations in a popular account of the generalized delta rule (Rumelhart, Hin-
ton, and Williams, 1986b). After programming the equations, I tested my work by trying to train networks
on the problems that Rumelhart, Hinton, and Williams described. To my dismay, I found that in several
cases my program didn't converge to a trained connectionist network. Thinking that there must be a bug
in my code, I spent a great deal of time poring over it, and was frustrated by failing to find any errors. It
turned out that my code was correct, but that in many cases it was failing to converge because the net-
work connection weights were driving the system into a local minimum.

I should have expected this, because the generalized delta rule is, in principle, subject to this kind

of problem (Minsky & Papert, 1988). However, I had different expectations because, in my opinion, Ru-
melhart, Hinton, and Williams (1986b) had fallen into the relevant formalization problem. They reported
that "we do not know the frequency of such local minima, but our experience with this and other problems
is that they are quite a rare. We have found only one other situation in which a local minimum has oc-
curred in many hundreds of problems of various sorts” (p. 332). My own experience with this kind of net-
work is that problems like local minima are much more frequent.

Having to take the formalization seriously can be extremely productive. One excellent example of

this is found in work that uses production systems to model human search of short-term memory (Newell,
1973), and is described in the paragraphs that follow.

Sternberg (1969) reported one famous study of short-term memory. In the Sternberg memory

task, subjects were given a string of digits to hold in short-term memory. After a set delay, subjects were
presented an additional probe digit. Their task was to say whether or not the probe was a member of the
memorized list. The dependent measure in this experiment was reaction time. Sternberg found a linear
increase in response time as a function of the number of digits in the memorized list. Sternberg also
found that the slope of the reaction time function for lists that did not contain the probe was twice the
slope of the reaction time function for lists that did. Sternberg used these results to propose a self-
terminating serial search model of short-term memory; this was one of the first experiments that demon-
strated how reaction time data could be used to infer the properties of internal processes.

Newell (1973) described a series of production system models of the Sternberg memory task.

Production systems are described in more detail later in Chapter 5. For the time being, a production sys-
tem is essentially a set of condition-action pairs that scan a memory. When the contents of the memory
match a production’s condition, then it takes control of the memory and performs its action. Usually this
action involves changing the contents of the memory, so that some other production’s condition might be
met.

Newell (1973) found that it was very easy to create fairly simple production system models of the

Sternberg memory task. In fact, he describes seven different production system models written in a lan-
guage called PSG. Each of these models was capable of making the correct response when given the
probe. However, only one of these models generated response latency functions that resembled those of
human subjects. Interestingly, this production system was not a model of search. Instead, it was a model
of a general encoding and decoding scheme that could be used to perform the Sternberg task, as well as
other basic tasks in cognitive psychology.

 - 6 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Given this result, it would have been quite reasonable for Newell (1973) to report only his last
production system model. However, had he done so, he would have fallen victim to the relevant formali-
zation problem. This is because one of his basic assumptions was that production systems described the
functional architecture of human cognition. “In this view PSG represents the basic structure of the human
information processing system. It follows that any program written in PSG should be a viable program for
the human subject” (p. 494). As a result, in addition to coming up with one model that fits the human re-
action time data, Newell must come up with a theory about why humans might use that production sys-
tem, and not any of the other six, some of which are simpler. “Our example makes clear that multiple
production systems are possible. Without a theory of which system is selected the total view remains
essentially complete”.

Newell (1973) went on to explore why an encoding model for performing the Sternberg memory

task might be more adaptive than other possible production systems. He proposed that for the Sternberg
task, short-term memory is unreliable, and an encoding model of memory processing is better at dealing
with this unreliability. He also showed how an encoding strategy works well for a variety of other tasks,
which is not the case for the simpler production system models that he was able to devise. However,
Newell also identified plausible alternatives to the encoding model that are worthy of further exploration.
In short, by avoiding the relevant formalization problem, Newell was able to develop a rich and detailed
understanding of the Sternberg memory task that went far beyond what would be possible by only having
a single, successful model that fit the data.

2.2.2.3 The Communication Problem

In formalizing a theory, a typical goal is to convert a set of informal verbal statements into a set of

precise expressions that can be manipulated by some formal mechanism – mathematics, logic, or an al-
gorithm. With this goal in mind, it is apparent that a theory will be more technical after formalization than
it was before. This leads to another problem that must be faced: communicating the formalization to oth-
ers, including those who might be interested in the domain, but not as interested in the technical details of
the formalization.

Zeigler (1976) points out that the construction and testing phase of modeling can be quite exciting

– often more exciting than recasting the model into a form for general distribution. As a result, “once the
modeling challenge has been successfully overcome and the modeler’s own curiosity satisfied, he may
find it difficult to become enthusiastic about the task of clarifying it for himself and communicating to oth-
ers what he has accomplished” (p. 7). But clarification and communication are both required if the model
is to have any impact.

Zeigler (1976) proposes that the effective communication of a model involves the following as-

pects. First, the researcher must generate an informal description of the model and its underlying goals
and assumptions. Second, the researcher must provide a formal description of the model, including a
presentation of the program used if the model is a simulation. Third, the researcher should present the
tests of the model, including results and analysis. Fourth, the researcher should generate some conclu-
sions about the model’s range of application, validity, and cost. Finally, the researcher should relate his
or her current model to both past and future models.

Zeigler (1976) notes that when the model is communicated, two different audiences must be kept

in mind. One audience is the set of potential users of the model or its variations. The other audience is
composed of “people who may not use the program or model directly but may make other uses of it in
relation to their own research and development – call them the colleagues” (p. 8). With these two differ-
ent audiences in mind, Zeigler suggests that the “informal description of the model is the most natural and
effective way of establishing contact with the reader’s intuition and of interfacing your world model with his
world model” (p. 9). However, it is important to realize that with the audience of colleagues, this informal
account might be the only way that contact is made. They may not be interested in paying the necessary
attention to the more formal descriptions of the model, because they are an audience that isn’t interested
in using it.

 - 7 -

Minds And Machines © M.R.W. Dawson 12/02/2016

 2.2.3 Exploration Of Complex Domains

We have already seen that one advantage of modeling is the rigorous specification of theory. A

second advantage is that models permit the exploration of complex ideas. “Simulations can be of value in
this way either because a seemingly attractive idea might otherwise be too unconstrained to support pre-
dictions and tests or because a complex model may resist analytic exploration” (Lewandowsky, 1993, p.
237). Let us briefly explore each of these ideas.

2.2.3.1 The Economy Of Models

In mathematical psychology, as we will see in Chapter 4, one usually attempts to define a rela-

tionship between one set of variables and another. Within this framework, it sometimes is the case that
there are a great many variables to be explored. Each of these variables can take on one of many differ-
ent numerical values. The problem for a mathematical psychologist is to explore the set of possible set-
tings for the variables in order to determine the best possible model. Mathematical psychologists have
realized that the fastest, most economical approach to exploring the parameter space for a model is to
use computer simulations (Estes, 1975; Luce, 1989, 1997, 1999).

The economy of modeling provides advantages for scientists who have little direct interest in

mathematical psychology. Many are interested in studying systems that are highly complex, and that are
also very difficult and expensive to examine experimentally. For example, neuroscientists who study the
nervous systems of animals have to face the combined expenses of maintaining animals, of providing
resources for drug or surgical treatments, and of histological examination of manipulated nervous sys-
tems – not to mention the ethical expenses of sacrificing animals for the advancement of knowledge.
When a neuroscience experiment is performed, it would be very valuable to have a strong sense before-
hand that the experiment is going to work, and is also going to provide important information. This kind of
research is simply too expensive for “fishing” for interesting results.

One approach for increasing the likelihood that an experiment is going to be successful is to use

computer simulation techniques to identify key issues, or predict the likely outcomes of experiments. The
simulation is itself much less expensive to run, and can be easily used to simulate a variety of experi-
ments. One can use the simulation to “fish” for interesting results in a fashion that is far faster and
cheaper than by actually performing the experiments on animals. Once an interesting set of predictions
has been identified using the computer simulation, the result can be verified by actually performing the
experiment on animals. The expectation is that the experiment should be successful because of all of the
simulation work that was carried out beforehand. The results of the experiment can then be used to re-
fine the computer simulation, so that it reflects an advancing state of knowledge, and so that it can be
used to predict more sophisticated results in the future.

One excellent example of exploiting the economy of modeling is found in the research of neuro-

scientist Gary Lynch and his colleagues (e.g., Lynch, 1986). Lynch is primarily concerned with under-
standing the neural mechanisms underlying memory, and uses the olfactory system of the rat as his pri-
mary research focus. Lynch’s research has uncovered many precise details about the neural circuitry
that permits rats to remember and process information about different smells. A great deal of this infor-
mation has been the result of experiments on rat brains. However, computer simulation has also been a
central tool in Lynch’s research program.

For instance, Granger, Ambros-Ingerson, and Lynch (1989) developed a computer simulation of

olfactory cortex. The simulation consisted of 100 input cells (simulating axons of the lateral olfactory
tract) randomly and sparsely connected to up to 500 cells in the olfactory cortex. Processing units in the
simulation have a number of mathematical properties that model such characteristics as synaptic con-
ductance, dendritic summation, excitatory and inhibitory signal characteristics, spike generation, and the
speed of axon transmission. Depending upon the kinds of pulses transmitted to the network, it can learn
by modifying the pattern of connectivity between its processing units. Granger et al. found that after
learning a set of distinct groups of odors, the simulation’s initial response to a cue odor only indicated the
category to which it belonged. Subsequent responses to the same stimulus successively subdivided the

 - 8 -

Minds And Machines © M.R.W. Dawson 12/02/2016

category into increasingly specific encodings of the original cue. In other words, the model was demon-
strating its ability to organize olfactory memories at a number of different levels of detail.

Importantly, the simulation created by Granger et al. (1989) led to at least five different predic-

tions that were specific, and which were also not intuitively obvious. For example, in the simulation only a
small number of cells responded to a specific input. As well, different cells responded when the simula-
tion was presented different “sniffs”, with the patterns of which cells were firing reflecting similarities and
differences among odor cues. It is these sorts of specific, surprising predictions made by the model that
can be selected as likely candidates for empirical study in animal systems. In the Lynch lab, there is a
constant back-and-forth exchange of information between simulations and experiments, with each infor-
mation exchange resulting in a more and more detailed understanding of the neural circuitry.

2.2.3.2 Beyond Mathematical Boundaries

In many disciplines there can be a marked competition between theorists and experimentalists.

In physics, Lederman (1993, p. 13) observes, “In the eternal love-hate relation between theory and exper-
iment, there is a kind of scorekeeping. How many important discoveries were predicted by theory? How
many were complete surprises?” The tension between theory and experiment is also a frequently ob-
served characteristic of psychology (Kukla, 1989; Paivio, 1986, Chaps 1-2).

One reason for this tension is that it is possible for theorists to make predictions about observa-

tions that take years for experimentalists to confirm. Many examples of this can be found in physics (e.g.,
Bodanis, 2000). For example, Einstein’s general theory of relativity was first publicized in 1915. One of its
major predictions, of the curvature of space, could not be empirically confirmed until observations of star
positions during total solar eclipses were made in 1919 and 1922. In the 1930s, Chandrasekhar used
special relativity theory to predict that white dwarf stars could only exist up to a certain mass. He proved
that if a star were larger than this limit, then it would ultimately collapse into a denser object (a neutron
star or a black hole). This theory was extremely controversial when it was originally proposed, and was
not empirically supported until observations in the 1960s that discovered pulsars, and which later demon-
strated that pulsars were rotating neutron stars.

In these examples from physics, formal theories anticipated experimental results by years or dec-

ades. With the advent of computer simulation techniques, however, it is now possible to experimentally
study models of systems whose complexity cannot yet be captured by mathematical formalisms.

In a wide variety of fields, researchers are interested in the properties of systems that have a

large number of (often simple) components. Frequently, one component can influence the behavior of
neighboring components in a manner that can only be captured by nonlinear equations. Furthermore, the
behavior of one component’s neighbors can influence the behavior of that component via feedback. In
spite of the fact that these systems do not have any component that serves as a central controller, they
often exhibit interesting, emergent, and systematic regularities. Examples of such systems include slime
molds, insect colonies, and biological neural networks, to name a few. A new discipline, called complexi-
ty theory, is concerned with studying the properties shared by these diverse systems (Holland, 1998;
Johnson, 2001; Waldrop, 1992).

The many nonlinear interactions in a distributed system like an ant colony or a brain make it very

difficult to summarize the behavior of the system as a whole mathematically. However, it is possible to
program a computer to simulate the interactions between system components. This means that the sys-
tem can be studied, and understood, by making empirical observations about the behavior of the comput-
er simulation even in the absence of formal theory. The fields of artificial life, genetic algorithms, artificial
neural networks, and synthetic psychology all depend crucially upon the fact that one can use computers
to explore regularities in domains that are currently too complicated to describe in formal equations.

2.2.4 Problems With Exploring Complex Domains

 - 9 -

Minds And Machines © M.R.W. Dawson 12/02/2016

From the preceding section, it is clear that models provide a medium that provides many ad-
vantages for researchers interested in exploring complicated ideas in an efficient, inexpensive manner.
These ideas can even be explored in advance of any mathematical account of the domain. However,
while the ability to explore complex domains is a definite advantage of modeling, it can lead to some in-
teresting disadvantages. Two of these are considered in the subsections below.

2.2.4.1 Bonini’s Paradox

Dutton and Starbuck (1971) used the name Bonini’s paradox to identify one problem with com-

puter simulations of complex phenomena. Bonini’s paradox, named after Stanford business professor
Charles Bonini, occurs when a computer simulation is at least as difficult to understand as the phenome-
non that it was supposed to illuminate. “The computer simulation researcher needs to be particularly
watchful of the complexity dilemma. If he hopes to understand complex behavior, he must construct
complex models, but the more complex the model, the harder it is to understand. ... As more than one
user has realized while sadly contemplating his convoluted handiwork, he can easily construct a comput-
er model that is more complicated than the real thing. Since science is to make things simpler, such re-
sults can be demoralizing as well as self-defeating” (Dutton & Briggs, 1971, p. 103).

While any model may fall into this trap, Bonini’s paradox is particularly relevant for researchers

who use connectionist networks. Connectionist models are introduced in more detail later in this book,
and are essentially brain-like networks of simple nonlinear processors that can learn to solve complex
pattern recognition problems. Connectionist researchers freely admit that in many cases it is extremely
difficult to determine how their networks accomplish the tasks that they have been taught. “If the purpose
of simulation modeling is to clarify existing theoretical constructs, connectionism looks like exactly the
wrong way to go. Connectionist models do not clarify theoretical ideas, they obscure them” (Seidenberg,
1993, p. 229).

Connectionist networks can fall prey to Bonini’s paradox for several reasons. First, because con-

nectionist models are usually taught by example, they do not require a researcher to come up with de-
tailed theory of how to perform a pattern recognition task prior to creating the model. In other words,
connectionist networks allow “for the possibility of constructing intelligence without first understanding it”
(Hillis, 1988, p. 176). Second, one can train connectionist networks that are extremely large; their sheer
size and complexity makes it difficult to understand their internal workings. For example, Seidenberg and
McClelland’s (1989) network for computing a mapping between graphemic and phonemic word represen-
tations uses 400 input units, up to 400 hidden units, and 460 output units. Determining how such a large
network works is an intimidating task. This is particularly true because in many PDP networks, it is very
difficult to consider the role that one processing unit plays independent from the role of the other pro-
cessing units to which it is connected (see also Farah, 1994).

Difficulties in understanding how a particular connectionist network accomplishes the task that it

has been trained to perform has raised serious doubts about the ability of connectionists to provide fruitful
theories about cognitive processing. McCloskey (1991) warns “connectionist networks should not be
viewed as theories of human cognitive functions, or as simulations of theories, or even as demonstrations
of specific theoretical points” (p. 387). In a nutshell, this dismissal was based largely on the view that
connectionist networks are generally uninterpretable (see also Dawson & Shamanski, 1994). It is clear
that the success of connectionist networks, or of any other type of model, to contribute to psychological
theory, depends heavily upon a researcher’s ability to avoid Bonini’s paradox. Later in this book we will
see several examples of how this can be accomplished.

2.2.4.2 The Validation Problem

In Chapters 3 and 4, we will see that two common modeling approaches in psychology are mod-

els of data and mathematical modeling. Both use mathematical equations to describe and predict behav-
ioral regularities. The equations represent a theoretical statement about behavior. The validity of the
theoretical statement is usually assessed using “goodness of fit”: the equation makes certain predictions

 - 10 -

Minds And Machines © M.R.W. Dawson 12/02/2016

about what behavior should be observed in experimental subjects. The validity of the theory depends
upon the extent that the predictions are consistent with these empirical observations.

However, the fact that new modeling techniques such as computer simulation permit the study of

systems that cannot be formally described had led to a situation in which this traditional notion of theory
validation does not work very well. Mathematical psychologists, for example, are deeply disturbed by the
fact that it is very difficult to formulate a procedure for measuring the validity of computer simulations (Es-
tes, 1975; Luce, 1999).

This problem is compounded by the bottom-up strategies used in the simulations that are of con-

cern to complexity theorists. In many instances, these simulations involve defining the interactions be-
tween neighboring components in the model, without being concerned with the overall outcome of the
simulation. In other words, rather than modeling a particular phenomenon (which we will see is the typi-
cal top-down strategy used to create models of data and to propose mathematical models), complexity
theorists are interested in discovering what surprising properties emerge from the interactions of known
components. In many cases, they may have no idea what kinds of regularities will emerge from their
simulation.

This makes it particularly difficult to validate a complexity theorist’s simulation, because it may not

even be known a priori what the model is a model of. This is one of the reasons that many of these simu-
lations are viewed skeptically. For instance, these models have been described as being “fact free sci-
ence” by evolutionary biologist John Maynard Smith (Mackenzie, 2002). Some have argued that it is im-
possible to verify or validate these kinds of simulations (Oreskes, Shrader-Frechette, & Belitz, 1994).
“Like a novel, a model may be convincing – it may ring true if it is consistent with our experience of the
natural world. But just as we may wonder how much the characters in a novel are drawn from real life
and how much is artifice, we might ask the same of a model: How much is based on observation and
measurement of accessible phenomena, how much is based on informed judgment, and how much is
convenience?”

Validating a model is a difficult problem that is a central concern of psychology and cognitive sci-

ence (Fodor, 1968; Pylyshyn, 1980, 1984). For the time being, let us simply be aware that this problem
exists. In several of the later chapters we will have an opportunity to consider how synthetic psycholo-
gists approach this problem.

2.2.5 Serendipity

We have already covered two of the main advantages of models: the rigorous specification of

theory and the ability to explore complicated domains. There is one further advantage to be considered –
the ability of a model to reveal serendipitous discoveries. Lewandowsky (1993) is concerned by the fact
that “a widespread opinion among critics is that theories or simulations somehow stand in the way of ser-
endipitous discovery” (p. 238). He goes on to point out the flaws in this view.

In the next three chapters of this book, the notion of serendipity will be important in distinguishing

different kinds of models. In particular, I will be arguing that some kinds of models (models of data,
mathematical models) provide less opportunity to surprise a researcher than do others (computer simula-
tions). However, as a prelude to that more detailed discussion, let us briefly consider some general as-
pects of how models can lead to surprises.

2.2.5.1 Emergence And Surprise

One of the reasons that some researchers believe that models cannot generate surprises is be-

cause systems like computer simulations are deterministic. If a computer can only follow its program,
then it stands to reason that it should be impossible for the program to surprise the programmer (Hauge-
land, 1985).

 - 11 -

Minds And Machines © M.R.W. Dawson 12/02/2016

The difficulty with this logic is that it assumes that the purpose of the programmer is to create a
program that is responsible for carrying out some overall, holistic, behavior. However, sometimes this is
not the programmer’s goal. Indeed, in many situations the programmer is concerned with programming
simple and well-defined local interactions between the components of a system. “Local turns out to be the
key term in understanding the power of swarm logic. We see emergent behavior in systems like ant colo-
nies when the individual agents in the system pay attention to their immediate neighbors rather than wait
for orders from above. They think locally and act locally, but their collective action produces global behav-
ior” (Johnson, 2001, p. 74).

In many situations, the programmer will have complete understanding of the programmed local

interactions, but will be unable to predict the global behavior that the local interactions produce. It is
these emergent properties that are surprising, and which are capable of providing new insights.

2.2.5.2 An Example: Banding In Value Units

One example of a serendipitous result from a model comes from my own laboratory’s research on

connectionist networks. As we will see in more detail later in this book, a connectionist model is a net-
work of simple processors that send numerical signals to one another. One of the basic tasks of any pro-
cessing unit in this kind of network is to add up the total incoming signal, and to convert it into an internal
level of activity. Mathematically, this is done using an equation called an activation function.

By 1989, Don Schopflocher and I had developed a method of training connectionist networks that

used a different activation function than is found in typical connectionist networks (Dawson, 1990; Daw-
son & Schopflocher, 1992). We called our architecture networks of value units, using terminology bor-
rowed from Ballard (1986), because the activation function tuned the processor so that it had a strong
response to a narrow range of incoming signal, and had a very weak response when the incoming signal
was too strong or too weak to fall in this narrow range (for more details, see Chapters 10 and 11).

After this architecture had been published, we continued to study it because it had several ad-

vantages that we wanted to exploit. However, one problem that we were concerned about was Bonini’s
paradox: the networks that we trained had an internal structure that was very difficult to understand. We
expended a great deal of fruitless effort trying to develop techniques for figuring out the “program” that
was encoded in the connection weights of our networks.

In the winter of 1993, we literally stumbled upon an emergent property of the value unit architec-

ture that aided network interpretation immeasurably. One of my philosophy graduate students, Istvan
Berkeley, had trained a network of value units to solve a logic problem developed by Bechtel and Abra-
hamsen (1991). He had devoted hundreds of hours to examining the structure of this particular network.
One kind of data that we collected in this process was analogous to “wiretapping” of neurons by neuro-
scientists: we simply recorded the activity of each processor within the network to each stimulus that the
network was presented.

In an effort to help interpret the network, Don Schopflocher took a copy of the “wiretapping” data,

and attempted some multivariate analyses. This didn’t provide any breakthroughs. However, Don did
notice that in the data a lot of numbers were repeated. He didn’t make anything of this, and neither did I.
In fact, I pretty much ignored this observation. Importantly, the very next day, Istvan – who had been
looking at the very same data – came to me and repeated, almost word for word, Don’s observation. Be-
ing told the same thing twice finally captured my attention, and I took the data and started to perform
some graphical analyses.

In very short order, I had selected a particular type of graph called a jittered density plot. One

such graph can be drawn for each one of our processing units. In a jittered density plot, each dot in the
graph represents the unit’s response to one stimulus pattern. The x-position of the dot indicates the ac-
tual level of unit activity. The y-position of the dot is randomly selected, and is used to try and prevent
dots from overlapping each other as much as possible.

 - 12 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Now, for a standard processing unit, a jittered density plot is not very informative, because it is
not very structured. Usually it is just a smear of dots throughout the whole graph. Our serendipitous find-
ing was that the jittered density plots for value units were much more structured. Rather than being an
uninformative smear, as in the example above, we found that the plots for the processors in Istvan’s net-
work were organized into tight bands, usually with a great deal of space separating one band from anoth-
er.

We were tremendously excited and surprised by this result, and our excitement grew and grew as

each new jittered density plot came out of the printer. A whole new set of questions jumped to mind.
Why did the bands emerge? Was there anything in common among the subset of patterns that fell into
one band? In answering these questions, we discovered that the bands provided a method for identifying
the kinds of features that were being detected by each unit in the network. We were then able to use
these features to determine how the network was solving the logic problem, and to make an argument
that connectionist networks might be more symbolic than was traditionally thought (Berkeley, Dawson,
Medler, Schopflocher, & Hornsby, 1995; Dawson, Medler, & Berkeley, 1997).

More recently, we have developed a much stronger formal understanding of why banding occurs,

and have used it to predict and discover banding for other problems and for other architectures
(McCaughan, Medler, & Dawson, 1999). We have also developed more sophisticated interpretation
techniques than the purely local ones that we reported in 1995 (Dawson, Boechler, & Valsangkar-Smyth,
2000; Dawson, Medler, McCaughan, Willson, & Carbonaro, 2000; Dawson & Piercey, 2001; Medler,
McCaughan, Dawson & Willson, 1999). However, all of these advances have depended upon our original
lucky discovery. Don Schopflocher and I had no idea that we were going to produce this result when we
developed our learning rule in 1989. Indeed, we were using this algorithm for approximately 4 years –
and encountering numerous dead ends in network interpretation – before we chanced upon this discov-
ery.

2.2.6 Luck: Good And Bad

For the other two advantages of modeling, the rigorous specification of theory and the ability to

explore complex phenomena, we have outlined accompanying disadvantages. What possible disad-
vantages might one find with an approach that permits serendipitous discovery? The subsections below
briefly consider three different kinds of concerns.

2.2.6.1 Is Good Luck Bad Science?

One concern that is often raised when serendipity is a key component of a research program is

that the program doesn’t seem to be very scientific. The traditional view of science is that it is a careful,
gradual, goal-directed advancement of knowledge, in which current information is used to generate and
test new hypotheses. Hypotheses “are the first rungs of the ladder of science, becoming theories as the
harder factual sides of the ladder are extended, and finally facts when the ladder makes firm contact with
structures established by other ladders of hypothesis” (Hocking, 1963, p. 3).

However, “science seldom proceeds in the straightforward logical manner imagined by outsiders.

Instead, its steps forward (and sometimes backward) are often very human events in which personalities
and cultural traditions play major roles” (Watson, 1968, p. ix). Put another way, “the discoveries of penicil-
lin, X-rays, and America have apparently failed to alert students of memory to the possibility of serendipi-
tous findings within their own field” (Watkins, 1990, p. 333).

Nevertheless, there is still some sense that if the advancement of one’s research field depends

overtly on serendipity, then this reflects a weakened dependence on theory or on prior knowledge. This
simply isn’t so. In very general terms, we will see that advances in synthetic psychology come about by
taking a set of components, by letting them interact, and by observing surprising emergent phenomena.
However, the role of theory and prior knowledge in this endeavor is still fundamentally important, because
it guides decisions about what components to select, and about the possible dynamics of their interaction.
In the words of Benjamin Franklin, diligence is the mother of good luck.

 - 13 -

Minds And Machines © M.R.W. Dawson 12/02/2016

2.2.6.2 Good Luck, Bad Control

We will see later that one of the modern arguments in favor of adopting a synthetic approach to

modeling, rather than analyzing a system into its components, is the opportunity for generating simpler
theories. “Analysis is more difficult than invention in the sense in which, generally, induction takes more
time to perform than deduction: in induction one has to search for the way, whereas in deduction one fol-
lows a straightforward path. A psychological consequence of this is the following: when we analyze a
mechanism, we tend to overestimate its complexity” (Braitenberg, 1984).

However, if many of the advances of synthetic psychology are going to depend upon emergent

surprises, then this view tells only half the story. There are many solid theoretical and empirical argu-
ments that make the point that analytic approaches are difficult, and lead to overly complicated theories.
However, a synthetic approach may be no less difficult. The tacit view of proponents of the synthetic ap-
proach, like Braitenberg, is that if one can build a system, then one must be able to understand it. How-
ever, we have already seen that this view is not completely correct. The idea that models can lead to
serendipitous results comes from the situation in which a modeler has a very precise understanding of a
system at one level (i.e., the level of the components), but has little understanding of the system at an-
other level (i.e., a higher level at which emergent surprises can be seen).

In other words, modelers in synthetic psychology are likely going to be in a situation in which they

have a high degree of control of their systems at a microlevel, but have much less control of their systems
at a macrolevel. Furthermore, they may have little understanding about how microlevel processes result
in macrolevel behaviors. We will see later in this book that the only way to deal with this problem is to
combine synthetic and analytic approaches. After one discovers an emergent surprise in a synthetic
model, a good deal of effort is going to be required to analyze the model in order to account for how the
surprise emerged. Finding lucky surprises will not suffice. Synthetic psychology is charged with explain-
ing the surprises too.

2.2.6.3 Going Beyond The Model

One final concern with the serendipity of modeling is that it requires a researcher to go beyond

the direct intent of his or her model. This is a problem because this requires the researcher to move
against a tradition that is a strong, tacit component of experimental psychology, as we will see in the next
two chapters. When many psychologists think of modeling, their view is that the purpose of a model is to
fit or mimic experimental data. The reason for this belief is that it is central to two types of models that
have a long history in psychology, models of data and mathematical models. In general, if a model of
data or a mathematical model does not fit the data, then the model is abandoned.

The possibility of discovering new and surprising characteristics of a model requires that this very

narrow view of what a model is intended to do, or of how a model should be evaluated, must be either
abandoned or suspended. This is because the only way that a model can surprise is if one examines
how it deals with situations that it was not originally intended to face. Once my students have developed
a model of some phenomena, I always ask them to find out what they can “get from the model for free”.
My request is an attempt to encourage them to determine whether their model has any interesting or sur-
prising emergent properties that they may not have considered. I also tell them that if a model doesn’t
have any surprises, then it may not be a very good model. My own experience is that this is true – but to
be aware of this truth, one must abandon the notion that the only purpose of a model is to fit data that has
already been collected from subjects!

 - 14 -

Minds And Machines © M.R.W. Dawson 12/02/2016

 Chapter 3: Models Of Data

Statistics is a field that develops techniques that uses observations of small samples to

make broad generalizations. Typically, the observations in question are in numerical form, and
the methods developed by statisticians are mathematical in nature. At the heart of any statistical
method is a model for data. “Models for data summarize a set of observations in the behavioral
or biological sciences so that we may communicate with our colleagues and the public”
(Lunneborg, 1994, p. 1). The purpose of this chapter is to provide a brief overview of models of
data, so that later we can contrast this type of model with others more likely to be found in syn-
thetic psychology.

According to Lunneborg (1994), a model of data is both explanatory and statistical. It is

explanatory in the sense that it typically describes the influence of one or more variables on an-
other response variable. In other words, if we know the values for the predictor variables then we
can predict or explain the value of the response variable. A model of data is statistical in the
sense that variability in the predictor variables will be related to variability in the response varia-
ble. By determining how strong the relationship is between predictor and response variability, we
can determine how well the model fits the data.

3.1 AN EXAMPLE OF A MODEL OF DATA

To illustrate some of the properties of models of data, we will be using a small set of

numbers taken from a published experiment (Dawson & Thibodeau, 1998). In this experiment, the
task was to search through for a visual target in a 4X4, an 8X8, or a 12X12 grid of distractor ob-
jects. The target was only present in half of the displays, and the type of display that the subject
saw from trial to trial was randomly selected. The response variable in this experiment was reac-
tion time – the time that elapsed from when the display was presented to when a subject pressed
a response key to indicate whether or not a target was seen.

Table 3-1 contains data from one subject in this experiment for only those displays in

which a target was present. The numbers in the Time column below give the average reaction
time in milliseconds for detecting the target in a number of different experimental conditions. We
would like to come up with a statistical model for these data.

Time Ob-

jects
Fil

ter
O

xF
766.44 16 0 0
704.62 16 1 1

6
796.63 16 2 3

2
1319.7

1
64 0 0

1230.5
7

64 1 6
4

1523.5
1

64 2 1
28

2118.9 144 0 0
2086.3

3
144 1 1

44
2351.3

2
144 2 2

88

 - 15 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Table 3-1. Sample data from the Dawson and
Thibodeau

(1998) study of visual search.

In this particular experiment, there were two conditions that were manipulated in an at-

tempt to affect reaction time. The first was the size of the grid – the number of objects to be
searched. Presumably, as more objects were displayed, it would take longer to find the target.
The Objects column in the table above lists the total number of objects that were displayed in
each of the three sizes of grid.

One kind of statistical model for the reaction time data would be an equation that used

the values in the Objects column to predict the values in the Time column. One mathematical
method for creating such a model is called multiple regression (Pedhazur, 1982). Multiple regres-
sion uses the underlying correlations between variables to come up with a linear equation that
uses one or more variables to predict the response variable as accurately as possible. Multiple
regression is a standard component of any statistical package. If I take the numbers from the
table and provide them to a multiple regression program, then this program will come up with the
following equation for predicting reaction time:

Time = (13.55* Objects) + 405.16 Equation 3-1

What does Lunneborg (1994) mean by describing this kind of model as being both ex-

planatory and statistical? To answer this question, consider Figure 3-1. It is a graph that plots
the Time values from the table on the y-axis, and the Objects values on the x-axis. The line on
the graph is the line that is defined by the regression equation that predicts Time from Objects.

0 50 100 150
NUMBER OF OBJECTS

0

1000

2000

3000

4000

R
T

 I
N

 M
IL

L
IS

E
C

O
N

D
S

The explanatory nature of the regression equation is revealed by the average change in
the position of the reaction times when the number of objects changes. As can be seen from the
graph, when the number of objects increases, there is a substantial increase in reaction time.
The explanatory nature of the model is evident, then, in the slope of the regression line.

Figure 3-1. Graphing reaction time in milliseconds as a function of the number of objects
in a visual search display.

 - 16 -

Minds And Machines © M.R.W. Dawson 12/02/2016

The goodness of fit between the model and the data indicates the statistical nature of the

model. On the graph, it is clear that the fit is good, because for each Objects value on the x-axis,
the corresponding Time values (the dots) are clustered very close together, and the regression
line runs through the middle of each cluster. This goodness of fit can be measured quantitatively
too, by considering the differences between the actual values in the Time column and the values
predicted by the regression equation. The regression software does this automatically by calcu-
lating a squared multiple correlation value (R2) that measures goodness of fit. For the equation
above, the value of R2 was calculated to be 0.79. This indicates very high goodness of fit – it
means that 79% of the variability in Time was predicted by the variability in Objects.

Other models for these data are feasible, and they show that other “goodness of fit” out-

comes are possible. For example, the second manipulation in the Dawson and Thibodeau (1998)
experiment was viewing condition. Subjects watched the display through one of three different
neutral density filters. A neutral density filter is an optical medium that reduces the amount of
light passing through it without changing other properties of the light, such as color. In other
words, these filters reduce the brightness of what is seen through them. These filters come in
different thicknesses, so that different filters let different amounts of light through. In this experi-
ment, subjects looked through a 0 unit filter which let 100 percent of the light through, a 1 unit
filter which let 10 percent of the light through, and a 2 unit filter which let only one percent of the
light through. The Filter column in the table above indicates which type of filter was used to ob-
tain the average reaction times that are listed.

If multiple regression is used to predict Time from Filter, then it generates the following

equation:

Time = (339.45* Filter) + 1077.73 Equation 3-2

With respect to goodness of fit, the equation results in an R2 equal to 0.12. In other

words, by itself the Filter variable only accounts for 12% of the variance in Time, and is therefore
providing a poorer fit to the data than was the case with the Objects variable. If we were to
graph this relationship, we would find that it would differ in appearance from Figure 3-1 by having
a wider spread within the different sets of dots, and a regression line that was much flatter in
slope.

Regression software can also be used to predict a variable using two or more predictors.

For instance, we could create a model for Time by using both Objects and Filter as predictors.
When this is done, the resulting regression equation is:

Time = (13.55 * Objects) + (339.45* Filter) + 65.70 Equation 3-3

The R2 for this equation is equal to 0.91, indicating that by using both predictors together,

nearly all of the variability in Time can be accounted for. Even though on its own Filter does not
provide a very good fit to the data, the relatively small amount of variance that this predictor can
explain is important, and is different from the variance explained by Objects. (Indeed, Dawson
and Thibodeau’s (1998) main discovery was that decreasing luminance slowed down visual
search.

3.2 PROPERTIES OF MODELS OF DATA

The regression example can be used to illustrate some of the general characteristics of

models of data. It will be instructive to keep these characteristics in mind, because we will be
interested in determining whether they are true of other types of models to be discussed later in
this chapter.

 - 17 -

Minds And Machines © M.R.W. Dawson 12/02/2016

3.2.1 Models Of Data Fit Pre-Existing Measurements

First, models of data assume that some phenomenon of interest has already been meas-

ured, because these measurements provide the to-be-modeled data. Furthermore, models of
data are analytic, because they usually involve decomposing the variability of the measured vari-
able into the separate sources of variability – the variability of the predictors.

Multiple regression provides a good example of the decompositional or analytic nature of

this type of model. In the most general sense, the overall variability of the dependent measure is
split into two components – the variability that can be accounted for by all the predictors in the
equation (called the “sum of squares regression”), and the variability that cannot be accounted for
by the predictors (called the “sum of squares error”). In a more particular sense, regression
equations can be used to partition the total R2 into the proportion of variance accounted for by
each predictor in the equation, although this is not a practice that is highly recommended by stat-
isticians because it can fail to take into account the correlations among predictor variables
(Pedhazur, 1982).

3.2.2 Models Of Data Are Usually Linear

Second, models of data are usually linear in nature. To say that a model is linear is to

accept a principle of superposition: if one knows the effect of predictor A on the dependent meas-
ure, and if one knows separately the effect of predictor B on the dependent measure, then the
combined effects of A and B on the dependent measure is equal to the sum of the effects of pre-
dictors A and B (Luce, 1999). This is particularly evident in the regression equation, because the
value for the dependent measure is predicted by summing the (weighted) values of the predic-
tors.

Some might argue that the assumption that a model is linear amounts to the assumption

that predictors in a statistical model are not presumed to interact. However, this is not the case.
Consider our visual search example. Dawson and Thibodeau (1998) expected an interaction be-
tween the Filter and the Objects variables, because they assumed that as the Filter became
stronger, the visual search mechanism would slow down considerably, and as a result it would
take much longer to move from one object to another. In short, the Objects effect should be in-
fluenced by the Filter value.

This expectation can be handled in linear regression in two steps. First, a new predictor

variable for the interaction between Objects and Filter is defined. Let us call this predictor OxF,
which is an acronym for “Object x Filter Interaction”. OxF can be calculated by simply taking the
value for Objects and multiplying it by the value for Filter, as is also shown in Table 3-1. Sec-
ond, one takes these three predictor values and uses a regression program to determine the
equation for predicting the Time value. When this is done, the following equation is delivered:

Time = (8.49 * Objects) + (-38.92 * Filter) + (5.07 * OxF) + 444.14 Equation 3-4

The R2 associated with this equation is 0.99, which shows that by including the interac-

tion term as a predictor, we can account for an additional 8% of the variance in Time that is not
predicted by Objects and Filter alone. Note that this equation is linear, in the sense that the pre-
dicted value for Time is a weighted sum of the three predictors in the regression equation.

If a linear model of data can account for interactions, then what kind of model is excluded

from traditional statistical analyses? The kind of model that is excluded is some nonlinear trans-
formation of the linear combination of the predictors. For example, one nonlinear transformation
that we will frequently encounter in later chapters is defined by the logistic equation. The logistic
equation is nonlinear, in the sense that if one were to plot the values obtained by computing f(x)
for different values of x (where f(x) is the logistic equation), then the graph of this function would
not be a straight line, but would instead be an s-shaped curve (see Figure 10-1c).

 - 18 -

Minds And Machines © M.R.W. Dawson 12/02/2016

The kind of statistical model that we would rarely see would be one in which a linear sum

of weighted predictors was used to create a value for x that would be passed into an equation like
the logistic. Using the visual search data as an example, a very uncommon statistical model
would be

Time = f((a * Objects) + (b * Filter) + (c * OxF) + d) Equation 3-5

In this equation, f is a nonlinear function, and a, b, c, and d are all constants. In later

chapters, we will see that many of the models in synthetic psychology are of interest because
they explicitly exploit nonlinear relationships.

3.2.3 Models Of Data Are Evaluated By Goodness Of Fit

A third property of a model of data is that its utility or value is highly dependent upon the

notion of goodness of fit. If only one model of data is being considered, then goodness of fit de-
termines whether it will be used at all. “If the fit is good enough, if enough of the response varia-
bility is explained by our model, it is retained. On the other hand, if the fit is not good enough, the
model is rejected” (Lunneborg, 1994, p. 15). If more than one model is being considered at one
time, then the best-fitting model is retained, and all of the other competing models are rejected.
For example, of the four regression equations provided earlier, we would choose Equation 3-4
(using Objects, Filter, and OxF as predictors) over the others, because it led to the highest R2
value.

The use of goodness of fit as the litmus test for retaining a model of data is a crucial

characteristic. First, it indicates that models of data are essentially quantitative in nature, be-
cause whether they are adopted depends upon a quantitative evaluation (namely, the value of
goodness of fit). Second, it demonstrates that the critical function of a model of data is to fit or
predict pre-existing data. If one were to think graphically, the best model would be one in which a
plot of the actual data and a plot of the data predicted by a model lay directly on top of one an-
other.

Why are these characteristics important to highlight? The main reason is because we

can use them to consider alternative forms of models that do not share them. In Errol Morris’
documentary Fast, Cheap and Out of Control, MIT roboticist Rodney Brooks says, “I like to look
at what everyone is doing, find some common thing that they're all assuming implicitly, but they
don't even realize they're assuming, and then to negate that thing”. Let us take Brooks’ perspec-
tive for a moment, and imagine the possibility (at least) of a different kind of model, a model
whose characteristics are opposite to the ones considered above. Could we create a model that
was qualitative in nature, instead of quantitative? Could we design a model that was not intended
to fit pre-existing data points, but instead was constructed in the absence of such information?
We will return to these questions later in this book.

3.2.4 Models Of Data Rarely Surprise Us

The three properties of models of data that we have considered to this point have been

positive in nature. The fourth property is perhaps a bit more negative: models of data leave very
little room for surprise. What does it mean to say that a model of data fails to surprise us? Let’s
explore this issue by using multiple regression as an example.

Usually one starts designing a model of data on the basis of general intuitions about the

relationships between variables (Lunneborg, 1994). For example, Dawson and Thibodeau (1998)
were aware that a number of theories of how attention is shifted during visual search relied upon
inhibitory mechanisms (Fukushima, 1986; Gerrissen, 1991; Koch & Ullman, 1985; LaBerge,
Carter, & Brown, 1992; Sandon, 1992). They were also aware of results showing that adapting
luminance could be used to affect inhibitory processes (Dawson & Di Lollo, 1990; Matin, 1968;

 - 19 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Roufs, 1972; Whitten & Brown, 1973). From this knowledge, Dawson and Thibodeau reasoned
that adapting luminance should affect visual search.

The next stage of model development is to convert intuitions into experiments. This re-

quires that concepts be operationalized into variables that can be measured and manipulated.
For example, at this stage of modeling Dawson and Thibodeau (1998) made design decisions
about how to measure visual search (i.e., in terms of search latency), about the number and type
of objects in the different displays, about how to manipulate adapting luminance with neutral den-
sity filters, and so on.

The final stage of modeling is to conduct the experiment in order to acquire the data from

which the statistical model will be generated. Goodness of fit can then be used to evaluate the
regression equation that defines the relationship between the dependent measure and our predic-
tors.

Where in this process can surprises emerge? The model of data that we produce in the

final stage can reveal surprises concerning the intuitions that we had at the early stages of devel-
opment – these intuitions might be shown to be wrong. Indeed, the whole point of conducting an
experiment is to test the validity of our intuitions. If we could not be surprised – if our intuitions
were guaranteed to be correct – then there would be no point at all to designing and conducting
an experiment.

However, a model of data can reveal few other surprises. Consider taking the model and

using it to predict new data points. For instance, imagine taking the best regression equation for
the visual search data, and using it to predict search latencies for a new number of objects (say, a
display size of 50) and for a new filter (say, 1.5 units). The regression equation would predict
what the search time should be in this new situation, and we could go out and collect this new
data to determine how accurate this prediction was. If the equation was an accurate predictor,
then we certainly wouldn’t be surprised. But what if the equation did not provide an accurate pre-
diction?

In this latter situation, we might be surprised, but this surprise would only be fleeting.

This is because as soon as the model fails to fit the data, it will be abandoned. Instead, we will
enter into a new phase of model development, either making slight revisions to the old model (for
instance, by adding a new predictor) or by coming up with a completely new model (Lunneborg,
1994). Models of data aren’t surprising with respect to future measurements, because they either
make accurate, non-surprising predictions or they are abandoned.

Let us consider surprise from a slightly different perspective. In many instances of com-

puter simulation, surprises emerge because when seemingly simple components are combined,
they sometimes generate behavior that is far more interesting than was expected or intended
(Lewandowsky, 1993). For example, Dawson (1991) developed a simple model of how the visual
system tracks the identities of objects as they move. He then found that this model provided a
new theory of how one apparent motion display, called the Ternus configuration, could have more
than one appearance depending on how the display was timed (Dawson, Nevin-Meadows, &
Wright, 1994; Dawson & Wright, 1994). One way to think about surprises like these is that they
are emergent properties of a model (Holland, 1998). We will be talking about emergence in much
greater detail in later chapters. For the time being, we can consider it as an example of a princi-
ple from Gestalt psychology, in which the whole is more than the sum of its parts (Kohler, 1975).

Unfortunately, most traditional models of data can’t surprise us in this way either. This is

because of their linear nature. In a linear model of data, the whole is exactly equal to the sum of
its parts (Luce, 1999). New and surprising phenomena will not emerge from a linear model of
data.

 - 20 -

Minds And Machines © M.R.W. Dawson 12/02/2016

3.2.5 Models Of Data Do Not Behave

A fifth property of models of data is also related to the issue of surprise. Models of data

provide descriptions of behavior, but do not behave.

For example, consider the various regression equations that were given earlier in this

chapter. Each of these equations describes a mathematical relationship between one kind of
measure (search latency) and one or more predictors (number of objects, filter type, etc.). How-
ever, none of these equations actually performs visual search. We can’t look at the behavior of
these models to find new and surprising properties of visual search.

Contrast this with some possible model that actually performs visual search. If this model

actually generated search behavior, then we could examine this behavior from a number of dif-
ferent perspectives. We could, of course, look at how long it took the model to find a target in the
display. But we could also look at the kinds of mistakes made by the model, the precise order in
which a display of visual objects was examined by the model, how long each individual object
was processed, and so on. Because the model behaves, and because we can observe and
measure this behavior in many different ways, the model is in a position to suggest new and pos-
sibly surprising results. We could then go back to the laboratory, and run new experiments to see
if these surprising results were also evident in human search behavior.

Lewandowsky and Hockley (1991) have proposed that one criterion for progress in cogni-

tive psychology is the extent to which data and theory have become interrelated. Progress is be-
ing made if theory generates data, and if the data collected in turn constrains the theory that is
being developed. This view is an updating of the old empiricist approach to theory evaluation in
experimental psychology, which argued that one could measure the quality of a theory in terms of
the number of new experiments that it inspired.

Because models of data do not behave, they do not lead directly to new experiments. In-

stead, models of data are best viewed as a quantitative measure of the validity of the theory that
led to a particular experiment being conducted. A regression equation of the type that we saw
earlier will only lead to new experiments indirectly, by generating sufficient goodness of fit to data
to increase our confidence in the theory or intuitions that directed the design of the experiment in
the first place. New experiments will be generated from this theory, not from the model of data
that was used to validate it.

 - 21 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Chapter 4: Mathematical Models

"It is a familiar historical fact that as science progresses, its theories become more and more

mathematical in form. Verbally stated propositions are replaced by exact quantitative logic" (Atkinson,
Bower, & Crothers, 1965, p. 2). In the study of behavior, one field that is particularly concerned about
converting verbal theories into quantitative theories is called mathematical psychology. In the previous
chapter, we saw that models of data are quantitative in nature, because they express a mathematical re-
lationship between a variable of interest and a set of predictors. Why do we distinguish the models of
mathematical psychology from quantitative models of data?

The primary reason for this distinction can be found in philosophy of science’s discussion of the

differences between regularities and laws (Bird, 1998, Chapter 1). A regularity is a fact that expresses a
true generalization that has been induced from a set of observations. For example, recall one of the re-
gression equations from the previous chapter:

Time = (8.49 * Objects) + (-38.92 * Filter) + (5.07 * OxF) + 444.14 Equation 4-1

Equation 4-1 expresses regularity because it is a generalization that is based upon a set of ob-

servations, and because we can make a plausible empirical argument for its truth because this equation
accounts for almost 100 percent of the variance of Time.

Some philosophers might argue that laws and regularities are identical. However, there are many

objections to this position (Bird, 1998). For instance, one can propose laws in the absence of regularities,
and one can identify an indefinite number of regularities that are not laws. As a result, philosophers of
science usually require that laws have stronger properties then merely being regularities. One proposal is
that a law expresses a causal relation between universal properties.

Equation 4-1 illustrates this latter point. It provides a compact and accurate summary of a set of

data, and can easily be seen as expressing regularity. However, we would likely be very uncomfortable
to say that this equation expresses a law of visual search. One reason for this is because this equation
expresses a regularity that was observed in the search processes of only one subject. We would proba-
bly not expect this equation to predict search times perfectly for every other subject. It would be much
more likely to find that the equations generated for other subjects were of the same type of, but had dif-
ferent values for the constants. In short, we would not expect a model of data to express a universal rela-
tionship.

In contrast to this, mathematical psychology really is interested in formulating psychological laws.

"From the first efforts toward psychological measurement, investigators have had in mind the goal of mak-
ing progress toward generality in psychological theory by developing quantities analogous to mass,
charge, and the like in physics and showing that laws and principals formulated in terms of these derive
quantities would have greater generality than those formulated in terms of observables" (Estes, 1975, p.
273). This explains why mathematical psychology has focused upon learning and perception. "In psy-
chology, mathematical theories have developed primarily in the field of experimental psychology, espe-
cially in learning, perception, and psychophysics. The data in these areas display the kind of consistent
regularities that are necessary for formulating empirical laws" (Atkinson et al., 1965, p. 1).

If we view models of data as being concerned with expressing regularities, and if we view math-

ematical models as being concerned with formulating laws, then it would be expected that the practice of
mathematical psychology is broader than the experimental methods that were briefly discussed in the
previous section. How does mathematical psychology proceed?

Mathematical models are the product of the cycle of theory formulation, deduction, and verifica-

tion (Atkinson et al., 1965; Coombs, Dawes & Tversky, 1970). First, an initial theory is inferred from ex-
tant data. Second, the theory is stated rigorously as a set of axioms. Third, logical and mathematical

 - 22 -

Minds And Machines © M.R.W. Dawson Please do not quote!

operations are used to deduce consequences from this set of axioms. Some of these consequences may
be surprising, and some of these consequences may even seem contradictory to expectations. Fourth,
new data is collected to see if it agrees with the deduced consequences. If agreement is not observed,
then the theory will be rejected and will have to be either revised or replaced. If agreement is observed,
then this new data has been explained. In this case, a fifth step can be taken in which the theory is used
to predict the outcome of phenomena that have not yet been observed. The mathematical model will
evolve by predicting new observations that in turn will result in the model being retained, revised, or re-
placed.

4.1 AN EXAMPLE MATHEMATICAL MODEL

If a puff of air is directed towards one of our eyes, a reflex will be triggered and the eye will blink.

Ordinarily, if we hear a tone, this reflex will not be triggered, and the eye will not blink. However, imagine
a situation in which we are subject to several trials in which we hear a particular tone, and then shortly
afterwards an air puff stimulates our eye. In this situation, learning will occur because it is advantageous
(for eye protection) to realize that the tone is a warning that a puff of air is on the way. After this learning
has occurred, the tone will produce an eyeblink, even if there is no puff of air.

This eyeblink learning is an example of classical or Pavlovian conditioning (Pavlov, 1927). In

Pavlovian conditioning, there are two stimuli: the unconditioned stimulus (US) and the conditioned stimu-
lus (CS). Prior to learning, the US will produce a definite response in the learner, called the uncondi-
tioned response (UR). The learner will not generate the UR if only the CS is presented prior to learning.
If, however, the US and the CS are paired together in a series of training trials, then eventually the CS will
elicit the UR. In this case, it is usually said that the CS elicits the conditioned response (CR).

Pavlovian conditioning is generally thought to be the result of a growing association between the

learner’s representations of the CS and the US. A number of factors have been shown to affect the
growth of this association. Informally, effective Pavlovian conditioning depends upon the US being unex-
pected or surprising, and upon the full attention of the learning being focused upon the CS (Pearce,
1997).

The requirement that the US be surprising for effective Pavlovian conditioning is illustrated in a

learning phenomenon called blocking (Kamin, 1969). Imagine a two stage conditioning experiment. In
the first stage, CS1 (a tone) precedes the US (an air puff), so that after a series of trials it will come to elic-
it the CR (an eyeblink). We then proceed to a second stage, in which two conditioned stimuli are used.
CS1 (a tone) and CS2 (a tap on the shoulder) are presented at the same time, both preceding the US. In
this second stage, it will turn out that our subject will not learn to produce the CR when only presented
CS2. It is as if the learning that had already occurred in the first stage blocked any new learning in stage
two. One account of this blocking would be to say that the initial learning removed the element of sur-
prise in the US. Because our subject had already learned that CS1 predicted the puff of air, there was no
need to alter that learning when CS1 was paired with CS2.

Blocking provided existing data that served as a springboard for the development of a mathemat-

ical theory of learning. One important example was the Rescorla-Wagner model of conditioning
(Rescorla & Wagner, 1972).

Rescorla and Wagner (1972) assumed that learning affected the strength of the association be-

tween the CS and the US. In their model, the strength of this association at trial t can be represented by
the symbol Vt. The point of their model was to specify how this associative strength changed from trial to
trial. The change in associative strength at trial t can be symbolized as Vt.

In general, Rescorla and Wagner (1972) assumed that if the CS and US were repeatedly paired

together then there would be a gradual increase in the association between them. However, this gradual
increase was not presumed to be limitless. They proposed that there was a maximum value of this asso-
ciation, and that this maximum value was determined by the magnitude of the US. In their model, this
maximum value is represented as . The salience of a CS is also known to affect learning; conditioning

 - 23 -

Minds And Machines © M.R.W. Dawson Please do not quote!

will occur more rapidly with a strong CS than with a weak CS (Pearce, 1997). Rescorla and Wagner in-
cluded a parameter in their model that reflected the salience of the CS, and designated this parameter
with the symbol .

Informally, Rescorla and Wagner (1972) proposed that the growth of the association between a

CS and the US is determined by the difference between the current strength of the association (Vt) and
the maximum strength of the association (). Early in conditioning, this difference will be large, and as a
result the change in associative strength (Vt) will be large. Later in training, this difference will be small-
er, because the current associative strength will have grown to be closer to the maximum. As a result,
later in training the change in associative strength (Vt) will be smaller.

Formally, this proposal can be written as the following equation that defines the amount of

change in associative strength at trial t, and which also uses to take into account the salience of the CS:

Vt = (- Vt) Equation 4-2

Given this expression, we can write a second equation that provides the value of the associative

strength at trial t+1 (Vt+1) on the basis of the previous associative strength Vt and the value Vt:

Vt+1 = Vt + Vt = Vt + (- Vt) Equation 4-3

This kind of recursive equation, in which the new value of a variable depends upon a previous

value, will be seen in many of the chapters that follow.

The preceding paragraphs have illustrated some of the preliminary steps in mathematical model-

ing: the conversion of an informal theory of a phenomenon into a formal statement. The next stage would
be to use this formal statement to derived predictions, and to see how well these predictions agree with
experimental data.

The Rescorla-Wagner model can easily be used to generate predictions by making some as-

sumptions about the parameters of the model, and then by using the equation to generated predicted val-
ues of Vt over a series of learning trials. For example, assume that prior to learning, the initial associative
strength (V0) was equal to 0, and that that the value of was equal to 0.1. Imagine doing two different
learning experiments with these settings. In the first, is set to 100, and for the other is set to 50. If Vt
is plotted on the same graph for both of these studies, it will be seen that the Rescorla-Wagner model
predicts that the growth of associative strength is represented by a nonlinear function. This function is
exponential in nature, decelerating as it approaches the asymptotic value of . In our hypothetical exper-
iment, the first line will climb towards the value of 100, while the other only climbs to the value of 50. Both
will reach their maximum value by the time that t takes on the value of 45 or 46. The Rescorla-Wagner
model can also be used to predict that the effect of CS salience is to change the rate at which associative
strength approaches the asymptote. The larger the salience, the sharper is the bend in the learning
curve, and the faster does learning reach the maximum associative strength.

The model can also be used to make predictions about more complicated learning situations. For

example, in one paradigm Pavlovian conditioning might proceed for a set number of trials, and then an
attempt to extinguish this learning might follow by presenting the CS without the US for some additional
trials. This situation can be handled in the Rescorla-Wagner model by changing the value of to 0 when
the extinction trials begin. Figure 4-1 shows what the model predicts when is equal to 100 for the first
50 learning trials, and is then set to 0 for another 50 extinction trials. For the solid line, was equal to
0.3, and for the dotted line was equal to 0.1. The graph shows that the model predicts that CS salience
also affects the rate of extinction.

 - 24 -

Minds And Machines © M.R.W. Dawson Please do not quote!

0 20 40 60 80 100 120
TRIAL

0

20

40

60

80

100

120

A
ss

o
ci

a
tiv

e
S

tr
e

ng
th

0.1
0.3

Alpha

T

he ex-
amples of the Rescorla-Wagner model that we have discussed to this point all assume that there is only
one conditioned stimulus involved in learning. However, one of the motivations for the model was coming
up with a theory that could account for phenomena like blocking. This requires that the equations that we
have seen take into account the possibility of there being a compound CS.

To handle multiple conditioned stimuli, Rescorla and Wagner (1972) proposed that the overall as-

sociative strength that was being modified was equal to the sum of the individual associative strengths
corresponding to each CS. Let us assume that there are three different conditioned stimuli CS1, CS2, and
CS3. Each of these, on any given trial, has a strength of association with the US that is represented re-
spectively as V1, V2, and V3. Overall associative strength (VTOTAL) for this example would therefore be
defined as:

VTOTAL = V1 + V2 + V3 Equation 4-4

Once VTOTAL has been defined, it can be used to calculate the change in each of the component

associative strengths. For example, to determine the change in associative strength for CS1 at some
trial, one would compute the following:

V1 = 1(- VTOTAL) Equation 4-5

Note that this equation requires the use of a value for CS salience that is unique to CS1 (that is,

1). Similar equations would be used to calculate V2 and V3. The overall change in associative
strength for this example would then be:

VTOTAL = V1 + V2 + V3 Equation 4-6

Rescorla and Wagner’s (1972) model was able to make predictions about learning that involved

compound stimuli (for an introduction, see (Pearce, 1997). For example, it provided an explanation of
blocking. It also provided an account of overshadowing, in which learning that involves two stimuli in a
compound results in a smaller increase in the associative strength of each than would be observed if
each stimulus was used as the only stimulus in Pavlovian conditioning. Miller, Barnet, and Grahame
(1995) review eighteen different successes of the model.

Figure 4-1. Extinction in the Rescorla-Wagner model.

 - 25 -

Minds And Machines © M.R.W. Dawson Please do not quote!

The ability of the Rescorla-Wagner model to make interesting predictions, and to have these pre-

dictions confirmed by later experimentation, has resulted in its continued popularity. However, there are
also many results that it does not explain. Miller et al. (1995) also review twenty-three specific failures of
the model. They proceed to argue that such failures are the result of five classes of problematic assump-
tions that underlie this particular mathematical model.

As we would expect from viewing mathematical modeling has a cycle of theory formulation, de-

duction, and verification, the failures of the Rescorla-Wagner model have led to a set of newer models
(for an introduction to some, see Pearce, 1997). These newer models typically retain some of the proper-
ties of the Rescorla-Wagner formulation, but attempt to address some of its problematic assumptions.
None of these models has arisen to replace the Rescorla-Wagner theory, because the newer models
tend to be more complicated and also have their own list of failures. “For the time being, researchers
would be well advised to continue using aspects of the Rescorla-Wagner model, along with those of other
contemporary models, to help them design certain classes of experiments” (Miller et al., 1995, p. 381).

4.2 MATHEMATICAL MODELS VS. MODELS OF DATA

Now that we have briefly considered the Rescorla-Wagner model as an example, we are in a bet-

ter position to consider some general properties of mathematical models, particularly in comparison to
models of data.

4.2.1 The Need For Pre-Existing Measurements

In the previous chapter, we saw that models of data required pre-existing measurements to be

made in order for the model to be specified. Mathematical models appear to relax this constraint some-
what. On the one hand, the practice of mathematical psychology would suggest that the initial form of a
mathematical model is grounded in an existing set of data. Furthermore, the initial tests of a mathemati-
cal model will usually examine its ability to be consistent with known phenomena. On the other hand,
once a model has shown some promise in dealing with the known, it is then used to generate predictions
about phenomena that may not yet have been observed. In this sense, the use of a mathematical model
is quite different from the use of a model of data.

4.2.2 Linearity

We saw that models of data are often constructed using traditional statistical methods, and as a

result are usually linear in nature. In contrast, many mathematical models are nonlinear in nature. For
instance, the nonlinearity of the Rescorla-Wagner model – evident in Figure 4-1 -- emerges from the re-
cursive nature of their equation, in which new association strength is based in part upon a previous value.
Mathematical models of judgment and decision are also frequently nonlinear in nature, because they in-
volve modeling discrete decisions (e.g., Bock & Jones, 1968). For example, the notion of a perceptual
threshold is a decidedly nonlinear construct.

4.2.3 Goodness Of Fit

We saw in Chapter 3 that a crucial aspect of models of data was some assessment of the good-

ness of fit between the model and empirical observations. Mathematical models share this property.
“What problems, some will ask, can you see in the matter of testing mathematical theories? Does not one
simply construct a model, apply it to data, and accept or reject on the basis of goodness of fit? Well, that
is indeed a standard procedure – perhaps the standard procedure” (Estes, 1975, p. 267).

However, the evaluation of a mathematical model using a goodness of fit metric can in some

sense be more exciting than is the case for a model of data. This is because a mathematical model can
lead to predictions about things that have yet to be observed. In this case, the model is the inspiration for
a novel set of experiments, and the issue is assessing goodness of fit to this new data.

 - 26 -

Minds And Machines © M.R.W. Dawson Please do not quote!

4.2.4 Surprise

One of the key differences between models of data and mathematical models concerns the issue

of surprise. It was argued earlier that models of data rarely surprise us. In contrast, the goal of a mathe-
matical model is to generate surprise, at least to the extent that it provides us with knowledge that we
didn't have prior to creating the model. "The purpose of constructing models is not to describe data,
which must be describe before models can be applied to them, but rather to generate new classifications
or categorizations of data" (Estes, 1975, p. 271). Estes goes on to say, "What we hope for primarily from
models is that they will bring out relationships between experiments or sets of data that we would not oth-
erwise have perceived. The fruit of interaction between models and data should be a new categorization
of phenomena in which observations are organized in terms of a rational scheme in contrast to the sur-
face demarcations manifest in data that have only come through routine statistical processing."

Given that both models of data and mathematical models describe quantitative relationships be-

tween variables, it is instructive to consider why the former model rarely surprises us, and why the latter
model is designed to surprise. One reason that mathematical models are capable of surprise is because
they appear to be much closer to a statement of law or theory than are models of data. This means that
mathematical models are far more flexible. As we saw in the Rescorla-Wagner example, one can use a
single mathematical model to create predictions for a rather diverse set of experimental paradigms. A
second reason that mathematical models are capable of surprise is because they are often nonlinear.
We will see later in this book that nonlinear interactions between components are a rich source of sur-
prise and complexity.

4.2.5 Model Behavior

 Finally, let us compare models of data to mathematical models with respect to the issue of

whether the model behaves. In this case, it would appear that both types of models are equivalent. As
was the case for models of data, mathematical models provide a description of behavior, and do not be-
have. For example, the Rescorla-Wagner model describes how one parameter, association strength, will
change during learning. This model, however, does not itself learn.

The reason for this is that mathematical models attempt to formalize psychological phenomena

by translating them into quantitative form. Most models in mathematical psychology are based upon the
foundations of measurement theory, which focuses upon procedures for measuring psychological varia-
bles. Measurement theory has a central place in textbooks that introduce mathematical psychology (At-
kinson et al., 1965; Coombs et al., 1970; Restle, 1971; Restle & Greeno, 1970). However, there is an
enormous difference between predicting the value of some measurement related to a psychological pro-
cess and actually carrying out this process.

 - 27 -

Minds And Machines © M.R.W. Dawson Please do not quote!

Chapter 5: Computer Simulations

Mathematical psychologists had high hopes about the potential impact for their discipline

on psychology as a whole. Unfortunately, many now believe that the promise of mathematical
psychology has not been fulfilled. "Many of us have hoped that mathematical psychology would
prove a major vehicle for developing theoretical interrelationships between psychology and the
various social sciences, thus facilitating both theoretical developments and applications. But as
things have actually gone, the flourishing of new mathematical models and methods has profited
various specific research areas greatly but has contributed less than we would like toward bridg-
ing the gaps between disciplines or mediating applications of social science to social problems"
(Estes, 1975, p. 265) Luce (1997, p. 79) shares this view: "On entering the field 45 years ago I
anticipated that has mathematical psychology developed, it would increasingly be incorporated
into the intellectual life of departments of psychology. In the United States, that has not hap-
pened to any great extent."

Why has mathematical psychology had such a limited success? Some mathematical

psychologists would argue that this is due to the arrival of computer simulation methods. For Es-
tes (1975, p. 268), one "aspect of the computer revolution which has raised new and, to say the
least, challenging problems for us is, of course, the advent of computer simulation models." Luce
(1997, p. 80) believes that computers have "made it relatively easy to simulate quite complex in-
teractive systems. For many, it is clearly simpler and more agreeable to program then it is to
study processes mathematically."

In what regards does a computer simulation differ from a mathematical model? Luce

(1999) has argued that mathematical models are attempts to capture regularities in observable
and measurable behavior. In contrast, much of the computer simulation research from cognitive
science is concerned with modeling inferred internal processes. "The distinction here is whether
the individual (or group) is treated as a ’black box’ having observable behavioral (phenomenolog-
ical) properties to formulate the theory, or whether in some sense one attempts to ‘open’ the
black box in order to formulate what is going on inside and how these processes give rise to be
observed behavior. Of course, behavioral regularities are common to both approaches – they are
just dealt with differently" (p. 725).

Why is there this difference in emphasis? The fundamental reason is that mathematical

psychology is grounded in measurement. As a result it ultimately attempts to model behavior;
that is, it attempts to predict measured values.

Computer simulations, however, are not tied to measurement theory. Instead, the simu-

lations are inspired by the computer metaphor, which is the claim that thinking is identical to the
kind of symbol manipulation carried out by a digital computer (e.g., Dawson, 1998). Indeed,
some would argue that this view is not a metaphor (e.g., Pylyshyn, 1979). As a result, computer
simulations are not merely models of behavior; they are instead intended to be systems that ac-
tually behave.

5.1 A SAMPLE COMPUTER SIMULATION

To enrich our understanding of the differences between computer simulations and the

other types of models that we have already discussed, let us turn to a specific example.

5.1.1 Production System Models

 Newell and Simon’s (1972) Human problem solving was the culmination of 17 years of

research. The goal of the book was to describe a rigorous theory of human problem solving from
an information processing perspective. Rather than focusing on very general characteristics of

 - 28 -

Minds And Machines © M.R.W. Dawson 12/02/2016

problem solving, Newell and Simon aimed to generate explicit theories of how individual subjects
solved specific problems. Their notion of an explicit theory was a computer simulation. “Such a
representation is no metaphor, but a precise symbolic model on the basis of which pertinent spe-
cific aspects of the man’s problem solving behavior can be calculated” (p. 5).

At the heart of their computer simulations was a proposal for a specific cognitive architec-

ture or “language of thought” (Fodor, 1975; Pylyshyn, 1984). A cognitive architecture is a theory
about the basic programming language that carries out cognitive information processing. Newell
and Simon (1972) argued that a plausible form of this architecture is the production system.

A production system is a set of operators that manipulate symbols stored in a working

memory. Each operator can be thought of as a condition-action pair, or as an “if-then” rule. In
general, all of the operators in a production system scan the working memory for the presence of
their condition. When a particular operator finds its condition, it seizes control and prevents the
other operators from working. It then performs its action, which usually involves re-writing some
of the information in the working memory. In other words, control -- what to do next -- is broad-
cast by the working memory, and is seized by one of the set of productions. After the production
performs its action, control is released, and is again broadcast by the memory.

In the most general sense, Newell and Simon (1972) proceeded by first collecting verbal

protocols of subjects as they thought aloud when solving a problem. They then took these verbal
protocols and used them to create problem behavior graphs. A problem behavior graph repre-
sents a subject’s state of knowledge about the problem being solved, as well as the operators
that converted one state of knowledge into the next. It also represents how a subject makes pro-
gress as they work on the problem. This also includes information about “backtracking”, situations
in which a subject feels that they have reached a dead end and therefore they return to an earlier
state of knowledge about a problem to try a different approach. The problem behavior graph is
then used to generate a set of productions that appear to underlie the subject’s problem solving
behavior. This set of productions constitutes a theory about problem solving that is instantiated
as a working computer program. The computer program is run, and the theory is validated (in
part) by comparing the problem behavior graph it generates to the one created from the subject’s
protocol.

Newell and Simon (1972) successfully used this methodology to create computer simula-

tions of problem solving behavior for a variety of problems. These included cryptarithmetic, in
which subjects must decode a letter expression into numbers; logic, in which a subject is given a
starting expression and a set of logical rules, and must use these to convert the starting expres-
sion into a goal expression; and chess, in which subjects must choose the best next move when
presented a position from the middle of a chess game. These problems are all well-defined: they
have a specific starting state, a solution that can be explicitly defined, and a set of explicit rules
that a subject must follow when trying to go from the start of the problem to its solution. The
problems that Newell and Simon studied were difficult enough to challenge subjects (i.e., to en-
sure that they actually engaged in problem solving behavior), but were not so difficult that they
could not be solved in a reasonable amount of time, or that they would produce a verbal protocol
that was prohibitively long for later analysis.

5.1.2 A Cryptarithmetic Example

To provide an example of Newell and Simon’s (1972) methodology, let us consider how

they modeled how one subject solved the following cryptarithmetic problem: DONALD + GERALD
= ROBERT, D = 5. The subject’s task is to figure out the digits represented by all of the other
letters in the problem given this starting information. The first step in the analysis was to have a
single subject solve the problem, speaking aloud at all times when the problem was being solved.
The subject’s session was tape recorded, providing the raw data for the analysis. The transcript
of the protocol, which contains 2186 words, is provided in their book.

 - 29 -

Minds And Machines © M.R.W. Dawson 12/02/2016

When the protocol was transcribed into written form, it was broken up into short phrases
that were labeled for later reference. This labeling was the first processing of the raw data, for
each phrase was assumed to represent a single task assertion or reference. However, the
“phrasing” of the protocol was not presumed to explicitly affect later analysis. Furthermore, there
was very little “cleaning up” of the protocol by removing variability and redundancy in what the
subject is saying. This was because parts that were easy to code did not require this, and be-
cause Newell and Simon (1972) preferred to keep parts of the transcript that were difficult to code
in their original form to extract any information that they did happen to contain.

The next step in the analysis was to take the transcribed protocol, and to infer from it the

subject’s problem space for the cryptarithmetic problem. A problem space defines the represen-
tational space in which a system’s problem solving activities take place. A human subject in their
studies was presumed to “encode these problem components -- defining goals, rules, and other
aspects of the situation -- in some kind of space that represents the initial situation presented to
him, the desired goal situation, various intermediate states, imagined or experienced, as well as
any concepts he uses to describe these situations to himself” (Newell & Simon, 1972, p. 59).

For instance, by examining the transcribed protocol obtained from one cryptarithmetic

subject, Newell and Simon (1972, pp. 166-168) recognized (among other things) that he assigned
digits to letters, inferred relations from the columns of the problem, generated digits that satisfied
certain relations, used relations like equality, inequality, and parity, and could consider disjunctive
sets. Newell and Simon used the protocol to create a problem space that included approximately
25 states of knowledge and rules (see Newell & Simon, 1972, Fig. 6.1).

The reason that Newell and Simon (1972) relied on the notion of a problem space was

that they assumed that problem solving was, in essence, a subject’s search through this space to
find a path (of rules that, when applied, produced intermediate states of knowledge) from the
starting state for the problem to the goal state. Because of this assumption that problem solving
was a form of search, their next step was to describe the full dynamics of the subject’s search
using a problem behavior graph. A problem behavior graph consists of a set of nodes connected
together by links. Each node represents some state of knowledge about the problem. Each link
represents a rule in the problem space that, when applied to the state of knowledge to the left of
the link, produces the state of knowledge to the right of the link.

The dynamics of search are represented in two ways in a problem behavior graph. First,

time increases from left to right across a single line in the problem behavior graph. Second,
sometimes after pursuing a train of thought a subject reaches a dead end, and has to backtrack
to some earlier point in their search. Newell and Simon (1972) represented this in the problem
behavior graph by creating a new line. This line started with the node to which subjects had
backtracked, drawn directly beneath its last location in the problem behavior graph. Newell and
Simon showed how a detailed problem behavior graph could be constructed by examining the
subject’s protocol, and by adhering to the components in the problem space that had been de-
rived for that subject (e.g., pp. 173-185).

The next step in Newell and Simon’s (1972) approach was to develop a production sys-

tem to account for the problem behavior graph that had been created from the subject’s thinking-
aloud protocol. The goal of the program was to make three things explicit: the processes for do-
ing the arithmetic, the processes for deciding what to do next, and the information remembered
by the subject as the problem is being solved (e.g., to permit back-tracking).

Newell and Simon (1972) were able to use the problem behavior graph to derive a pro-

duction system that accounted for their subject’s behavior. Each link between two nodes in the
problem behavior graph represents the input and output for a particular operation. Newell and
Simon examined the problem behavior graph to find evidence for the repetition of an operation’s
occurrence, viewing the operation as being a production. “Repetition of decision situations is the

 - 30 -

Minds And Machines © M.R.W. Dawson 12/02/2016

key issue, for if each situation called forth a unique process, then we could never verify that a
proposed process was in fact the one used” (p. 191).

For example, the problem behavior graph for one subject solving the DONALD + GER-

ALD = ROBERT problem consisted of 238 nodes. From this graph, Newell and Simon were able
to find evidence for 14 different productions. “The total program, then, is the collection of these
individual productions, plus the ordering of the productions that resolves conflict if several condi-
tions are satisfied concurrently” (p. 192).

Newell and Simon (1972) demonstrated that this small production system accounted for

approximately 80 percent of the structure of the subject’s problem behavior graph. Furthermore,
“most of the inadequacies of the model appear to be due either to the lack of a detailed account
of attention and memory mechanisms or to missing data” (p. 227). In other words, when the pro-
duction system failed, it seemed to be because the verbal protocol didn’t reveal all of the neces-
sary information. Newell and Simon were also able to show that while this approach produced a
computer simulation of one subject solving one problem, the discoveries made by this approach
generalized quite well to other problems and to other subjects.

5.2 CONNECTIONIST MODELS

The production system simulation that we have just discussed is an example of what

cognitive scientists would call a classical model (see also Dawson, 1998, Chapter 2). A classical
model is a distinct set of rules or operations that are designed to manipulate a set of symbols
stored in a memory system (Newell, 1980). In recent years, many researchers have become crit-
ical of some of the general assumptions that underlie classical models (e.g., Bechtel & Abraham-
sen, 1991; Brooks, 1999; Rumelhart & McClelland, 1986; Smolensky, 1988). These researchers
have proposed alternative proposals about the nature of the cognitive architecture.

5.2.1 Properties Of Connectionism

One example of an alternative type of model is a connectionist or parallel distributed pro-

cessing (PDP) network. Dawson (1998, Chapter 3) provides a brief introduction to this kind of
modeling, particularly in relation to classical cognitive science. Chapters 9 through 12 of this cur-
rent book present many connectionist ideas in detail. For the time being, let us quickly consider
some general properties of connectionism so that we can compare this type of simulation to the
other models that have been discussed in the current chapter.

A connectionist network is a system of inter-connected, simple processing units that can

be used to classify patterns presented to it. Such a network is usually made up of three kinds of
processing units: input units encode the stimulus or activity pattern that the network will eventual-
ly classify; hidden units detect features or regularities in the input patterns, which can be used to
mediate classification; and output units represent the network’s response to the input pattern (i.e.,
the category to which the pattern is to be assigned) on the basis of features or regularities that
have been detected by the hidden units. Processing units communicate by sending numerical
signals through weighted connections.

In most cases, a processing unit carries out three central functions: First, a processor

computes the total signal that it receives from other units. A net input function is used to carry out
this calculation. After the processing unit determines its net input, it transforms it into an internal
level of activity, which typically ranges between 0 and 1. The internal activity level is calculated by
means of an activation function. Finally, the processing unit uses an output function to convert its
internal activity into a signal to be sent to other units.

The signal sent by one processor to another is transmitted through a weighted connec-

tion, which is typically described as being analogous to a synapse. The connection itself is mere-
ly a communication channel. The weight associated with the connection defines its nature and

 - 31 -

Minds And Machines © M.R.W. Dawson 12/02/2016

strength. For example, inhibitory connections are defined with negative weights, and excitatory
connections are defined with positive weights. A strong connection has a weight with a large ab-
solute value, while a weak connection has a weight with a near-zero absolute value. The pattern
of connections in a PDP network defines the clausal relations between the processors and is
therefore analogous to a program in a conventional computer (Smolensky, 1988).

Unlike a conventional computer, though, a network is not given a step-by-step procedure

for performing a desired task. It is instead trained to solve the task on its own. For instance, con-
sider a popular supervised learning procedure called the generalized delta rule (Rumelhart, Hin-
ton, & Williams, 1986a, 1986b).

To train a network with the generalized delta rule, one begins with a network that has

small, randomly assigned connection weights. The network is then presented a set of training
patterns, each of which is paired with a known desired response. To train a network on one of
these patterns, the pattern is presented to the network’s input units, and the network generates a
response using its existing connection weights. An error value for each output unit is then calcu-
lated by comparing the actual output to the desired output. This error value is then used to modify
connection weights in such a way that the next time this pattern is presented to the network, the
network’s output errors will be smaller. By repeating this procedure a large number of times for
each pattern in the training set, the network’s response errors for each pattern can be reduced to
near zero. At the end of this procedure, the network will have a very specific pattern of connectivi-
ty (in comparison to its random start) and will have learned to perform the desired stimu-
lus/response pairing.

5.2.2 A Connectionist Example

The mushroom problem is a benchmark problem to be used to study machine learning

(Schlimmer, 1987). It consists of 8124 different mushrooms, each defined as a set of 21 different
features (odor, color, number of gills, etc). The task is to use these features to classify a mush-
room as being edible or not.

To provide a concrete example of connectionist simulation, let us briefly consider an ex-

ample of a PDP network trained to solve the mushroom problem. In one study, Dawson, Medler,
McCaughan, Willson, and Carbonaro (2000) taught a particular type of PDP network to solve the
mushroom problem. The network had one output unit, four hidden units, and twenty-one input
units (one for each input feature). The network was trained using a version of the generalized
delta rule (Dawson & Schopflocher, 1992) that is discussed in depth in Chapters 10 and 11. The
network learned to solve the problem (i.e., to correctly classify each of the 8124 mushrooms) after
a training session in which each pattern was presented 1852 times.

Dawson et al. (2000) were not merely interested in designing a PDP network to solve the

mushroom problem. They were also interested in determining how the trained network used the
mushroom features to classify the patterns. To do this, they recorded the responses of the hid-
den units to each of the training patterns. They then used a statistical technique called cluster
analysis to identify 13 different network states that were responsible for the network generating a
correct response. These internal states are called distributed representations, because each
state is defined by a specific pattern of activity across all of the hidden units.

Dawson et al. (2000) then examined the sets of input patterns that were caused the net-

work to generate each of these internal states. For example, each of 3288 different mushrooms
caused the hidden units in the network to produce the same internal state. They were interested
in determining what all of these patterns had in common to make the network behave in this way.
From this type of analysis for each of the internal states, Dawson et al. were able to identify a
simple equation that used only seven feature values (cap color = cinnamon, door = anise, gill col-
or = white, stalk color above ring = white, ring type = evanescent, habitat = meadows, habitat =
woods) to correctly classify every pattern in the training set. The hidden units were collectively

 - 32 -

Minds And Machines © M.R.W. Dawson 12/02/2016

representing the presence or absence of these specific features. The output unit then used this
distributed internal representation to solve the mushroom problem.

5.3 PROPERTIES OF COMPUTER SIMULATIONS

In the preceding sections, we have seen two very different examples of computer simula-

tion models. From these two examples, we are now in a position to compare and contrast com-
puter simulations to models of data and to mathematical models.

5.3.1 Requirement For Existing Data

Earlier, we saw that models of data depend completely upon having pre-existing meas-

urements for a model to be formulated. Mathematical models relaxed this need somewhat. They
usually are formulated on the basis of existing data, but are then later used to make predictions
about phenomena that may not yet have been observed.

Computer simulation models relax the need for pre-existing measurements even further.

In some instances, computer simulations are similar to mathematical models in that they can be
created from pre-existing measurements. We saw this earlier when verbal protocols were used
as the raw material from which a production system could be created. This model can then be
used to make novel predictions.

The example PDP simulation that we saw is even further removed from a model of data

and from a mathematical model. While classifying mushrooms as being edible or not is clearly a
task that humans are capable of accomplishing, Dawson et al. (2000) were able to build their
network without any knowledge of how people solve this classification problem. Indeed, one le-
gitimate question to investigate is whether people and the network classify mushrooms in the
same way. PDP networks allow “for the possibility of constructing intelligence without first under-
standing it” (Hillis, 1988, p. 176).

In short, it would appear that computer simulations do not absolutely require pre-existing

measurements in order to be created. This is a fairly radical departure from other kinds of models
that one would see in psychology (i.e., models of data or mathematical models).

5.3.2 Linearity

Previously, and we saw that models of data are typically linear. For example, regression

uses a linear sum of predictor values to estimate a value for a dependent measure. In contrast,
mathematical models frequently incorporate nonlinear relationships between variables. It was
argued earlier that this makes them more sophisticated than most models of data.

Although it is not a necessary property, most computer simulations incorporate nonlinear

elements or operations. Rather than realizing this as a nonlinear equation relating two variables,
computer simulations are often implicitly nonlinear. This is because many computer simulations
are designed to model internal information processes, which are tacitly nonlinear, but which also
are usually not formulated mathematically (Luce, 1999).

For example, consider the production system for cryptarithmetic. Each production in this

model represents a primitive operation to be performed on symbols stored in a memory. As such,
productions are not usually considered as being mathematical equations. However, from a
mathematical perspective a production could be described as being an object that was in one of
two different discrete states (active or not active). This state depends upon the contents of the
memory, but not in a way that is linear or even continuous. We would have to say that produc-
tions are nonlinear operators.

 - 33 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Our PDP example is also extremely nonlinear. This is because each of its hidden units
and its output unit can be described mathematically in terms of the equation that converts net in-
put into internal activity (i.e., the activation function). The activation function for the units in the
Dawson et al. (2000) network was a particular form of the Gaussian, which is clearly nonlinear
because it is a bell-shaped function as will be seen in Chapter 10. Most modern PDP networks
use nonlinear activation functions.

In principle, the typical nonlinear nature of computer simulations provides them with great

power and flexibility. Imagine the set of all possible mathematical functions. Now imagine the
subset of these functions that are linear. What is the relative size of this subset compared to the
larger set? Luce (1999) points out that the set of possible linear systems is "vanishingly small
among the class of all possible systems” (p. 729). What this means is that a linear system is only
capable of computing an extremely small subset of the possible mathematical functions.

In contrast to a linear system, a mathematical device called a Turing machine is capable

in principle of computing any mathematical function, linear or not (Minsky, 1972). Many of the
architectures used to simulate human information processing have this degree of power because
of their nonlinear nature. For example, Newell (1980) demonstrated that production systems
have this kind of power by showing how a Turing machine could be constructed from a set of
productions. Similarly, McCulloch and Pitts (1943) demonstrated how one could construct a Tu-
ring machine from units similar to those found in modern PDP networks. "To psychology, howev-
er defined, specification of the net would contribute all that could be achieved in the field" (p. 25).
Many modern researchers have derived many new proofs that demonstrate the tremendous
power, in principle, of current PDP networks (Cotter, 1990; Cybenko, 1989; Funahashi, 1989;
Hartman, Keeler, & Kowalski, 1989; Hornik, Stinchcombe & White, 1989; Lippmann, 1989;
Siegelmann, 1999).

5.3.3 Goodness Of Fit

Mathematical psychologists have not embraced the arrival of computer simulations with

tremendous enthusiasm. “I think that learning to live with computers is perhaps the single most
difficult and critical task facing mathematical psychology as a discipline” (Estes, 1975, p. 267).
There are three general reasons for this state of affairs, all of which appear to be related to the
theme that computer simulations are not easily evaluated in terms of the conventional “goodness
of fit” measures used to assess mathematical models and models of data.

First, computer simulations permit the creation of models that outstrip current mathemati-

cal methods, and as a result cannot be formally analyzed or specified (Luce, 1999). This is clear-
ly a problem for mathematical psychology, because one cannot evaluate goodness of fit if a
mathematical model cannot be formulated.

Second, the general architectures that lay at the heart of both symbolic and connectionist

computer simulations are so powerful, in principle, that any stimulus-response function can be
approximated to an arbitrary level of accuracy. Indeed, this is exactly the implication of many of
the existing proofs concerning the power of connectionist networks (Cotter, 1990; Cybenko, 1989;
Funahashi, 1989; Hartman, Keeler, & Kowalski, 1989; Hornik, Stinchcombe & White, 1989; Lipp-
mann, 1989). “If we have the right connections from the input units to a large enough set of hid-
den units, we can always find a representation that will form any mapping from input to output”
(Rumelhart, Hinton, & Williams, 1986a, p. 319). If the goal of a computer simulation were merely
to fit data, then there doesn’t seem to be much to be gained by this approach with so much power
at hand (Massaro, 1988). “The matter of fitting models to data has suddenly become so easy that
it no longer constitutes a useful method of tracing theoretical progress” (Estes, 1975, p. 267).
Similar arguments have been made against symbolic simulations (Paivio, 1986).

Third, mathematical psychologists are very concerned by the fact that “goodness of fit”

seems extremely difficult to define for many computer simulations. “To me the most troubling

 - 34 -

Minds And Machines © M.R.W. Dawson 12/02/2016

[trend] is some lack of concern about how complex computer models are to be evaluated empiri-
cally” (Luce, 1999, p. 733). Estes (1975, p. 268) states this concern plainly, noting that simula-
tions are models “that can be fitted to data just as readily as the more familiar mathematical mod-
els but that have no specifiable mathematical form and for which we are generally unable even to
formulate, let alone solve, the problem of testing goodness of fit.”

This last point highlights one of the key differences between computer simulations and

the other kinds of models that we have encountered. Both models of data and mathematical
models are designed to capture precise, quantitative relationships between variables. This is not
the case for many computer simulations. For instance, by focusing upon mechanisms that pro-
duce behavior, production systems are much more qualitative in nature than the models dis-
cussed in previous chapters. This qualitative nature makes goodness of fit very difficult to define
– and perhaps a less relevant property.

Goodness of fit becomes even more tenuous to define for connectionist models. Consid-

er the mushroom network that was described above. While this network was given information
about which mushrooms were poisonous and which were not, the network was not given any in-
formation about how a relationship between input features and mushroom classes was to be
computed. Importantly, the network was not designed to model human classification processes –
there was no information available to it about how humans classify mushrooms! In other words,
there was no behavioral data for the model to fit. In most cases it a network will not be of interest
just because it solves a particular problem. Rather, the model becomes interesting when we ex-
amine the internal representations that it uses to solve the problem (Dawson, 1998; Hanson &
Burr, 1990). As far as psychology is concerned, it is interesting to determine whether people use
the same kinds of information as that which is found represented inside the network. But to an-
swer this kind of research question, it is the person who is being fit to the model!

5.3.4 Surprise

Many people are reluctant to accept the notion that a computer simulation can lead to

surprise. How could a programmer possibly be surprised, when all that a computer does is follow
the instructions of a program that he or she wrote (Haugeland, 1985)?

However, surprise – and in particular surprise to a programmer – is a common outcome

of a computer simulation. Consider, for example, artist Harold Cohen’s program Aaron, which
has been evolving over the last several decades (McCorduck, 1991). Aaron is comprised of hun-
dreds of rules for creating complex drawings, and uses these rules to direct machinery to create
drawings on paper. “At first impression the drawings seem a relentless (and, given their source,
a surprising) celebration of nature, the earliest drawings an organic world of simple clouds and
whimsical creatures that just elude taxonomy; the later, more mature ones settings of frondescent
jungles peopled by half-nude innocents” (p. 113). Aaron’s creations have been the subject of
numerous, successful, shows in art galleries.

The drawings that emerge from Aaron are surprising, even to Cohen himself. “The first

time the program accumulated closed forms into something it knew to be an approximation of a
figure, and I found an array of quasi-people staring eyelessly at me from my old 4014, I recoiled
in fright. What was I getting myself into?” (McCorduck, 1988, p. 80). Cohen does not tell Aaron
what to draw. Instead, Aaron might be described as having an instinct to draw forms that are
governed by the general principles that Cohen has provided. For instance, “Aaron’s compositional
strategy could be summed up in a little rule that said ‘Put it where there’s room for it to be seen’”
(McCorduck, 1991, p. 69).

During its evolution, Cohen has equipped Aaron with rules about lines, open and closed

figures, plants and their growth, and human forms. Cohen views these rules as cognitive primi-
tives, and not as rules of form. “That’s one of the reasons the program is able to generate on its
own a much richer set of forms than anybody has been able to program by describing only forms”

 - 35 -

Minds And Machines © M.R.W. Dawson 12/02/2016

(McCorduck, 1991, p. 68). Cohen eventually realized that only a handful of principles were re-
quired, in combination, to provide Aaron with enormous creativity.

This last observation is critical to the issue of surprise in computer simulations. Those

who are skeptical of the ability of programs to surprise fail to recognize the fact that programmers
do not write the code for the overall behavior of a system, but rather write the code for its specific
component functions. The overall behavior that emerges when these component functions are
combined can be completely surprising to the programmer who wrote the code. This is particular-
ly true if the component functions are nonlinear in nature. One might have been very precise un-
derstanding of how each function behaves, but still be unable to predict the outcome of the non-
linear interactions between different functions.

For example, it is surprising that the complex and detailed structure of a problem-

behavior graph for a cryptarithmetic problem can emerge from a system comprised of only four-
teen different productions. However, this property appears to be true of production system mod-
els in general. “We need postulate only a very simple information processing system in order to
account for human problem solving in such tasks as chess, logic, and cryptarithmetic. The ap-
parently complex behavior of the information processing system in a given environment is pro-
duced by the interaction of the demands of that environment with a few basic parameters of a
system” (Newell & Simon, 1972, p. 870). Of course, this emerging complexity depends critically
upon the fact that the interactions are nonlinear, as we will see later in this book.

The same story is also true for connectionist models. “The study of connectionist ma-

chines has led to a number of striking and unanticipated findings; it’s surprising how much com-
puting can be done with a uniform network of simple interconnected elements” (Fodor & Py-
lyshyn, 1988, p. 6). Other more specific surprises emerge from the study of individual networks.
For instance, the mushroom network example earlier in the chapter revealed a completely novel
decision rule for this categorization task, as well as a completely novel parallel representation of
this rule (Dawson et al., 2000). We will see later in Chapter 12 that connectionist networks can
reveal surprising regularities in problems that lead directly to questions about whether human
problem solvers pay attention to these regularities. However, again the source of such surprises
is the fact that connectionist networks rely upon the interactions of nonlinear components to pro-
vide mappings from stimuli to responses.

5.3.5 Model Behavior

“Modern scientific psychology was started by quantification” (Koffka, 1935, p. 13). The

theory and application of behavioral quantification is the primary concern of measurement theory,
which supplies the foundations for both models of data and mathematical psychology (Coombs,
Dawes, & Tversky, 1970; Lunneborg, 1994; Restle & Greeno, 1970; Zeigler, 1976).

Quantification, or at least calculations involving numerical values, was also a central mo-

tivation for the development of modern computers (Williams, 1997). The development of electron-
ic computers was driven primarily by the need to calculate complex ballistic firing tables used to
aim artillery. In 1945, John von Neumann wrote a description of the proposed properties for the
EDVAC computer, providing the first account of what is now known as the von Neumann compu-
ting architecture. In his report, it is quite apparent that the function of the computer was to carry
out a variety of numerical calculations – the superiority of EDVAC’s design was that it would not
be limited to just calculating tables (von Neumann, 1973). There is no suggestion that computers
were capable of carrying out computations that were not numerical in nature.

However, computers are not merely number crunchers. Mathematician Alan Turing rec-

ognized that a general information processor should properly be viewed as a symbol manipulator,
and used this idea to propose the general characteristics of a universal computing device (Turing,
1936). Turing later was involved in using this proposal to aid in the development of one of the
first digital computers, the ACE (Hodges, 1983). Shortly after its development, his view of compu-

 - 36 -

Minds And Machines © M.R.W. Dawson 12/02/2016

tation as symbol manipulation led Turing to write about the possibility of machine intelligence (Tu-
ring, 1950). It is unclear to this day the extent to which von Neumann was aware of some of the
deeper implications of Turing’s 1936 paper when the EDVAC computer was being designed
(Hodges, 1983).

The reason that viewing computers as general symbol manipulators had inevitable impli-

cations for psychology was that around the same time that digital computers were being invented,
other researchers began to propose that cognitive processes involved symbol manipulation as
well. The modern roots of this idea are usually attributed to philosopher Kenneth Craik, who
wrote: “My hypothesis then is that thought models, or parallels, reality – that its essential feature
is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism, and that this symbolism
is largely of the same kind as that which is familiar to us in mechanical devices which aid thought
and calculation” (Craik, 1943, p. 57). Earlier roots for this kind of idea can be found in the 17th
century proclamation of British empiricist Thomas Hobbes that “by ratiocination, I mean computa-
tion” (Haugeland, 1985). By the late 1950s researchers in computer science, linguistics, psychol-
ogy, philosophy, and neuroscience were all taking Craik’s notion of symbolism very seriously,
which led to the birth of modern cognitive science. (For an excellent history of these modern de-
velopments, see Gardner, 1984.)

Why is this important? A standard argument against machine intelligence argues that

computers can’t actually duplicate intelligence, that at best they can only simulate intelligent be-
havior. “No one supposes that a computer simulation of a storm will leave us all wet, or a com-
puter simulation of a fire is likely to burn the house down. Why on earth would anyone in his right
mind suppose a computer simulation of mental processes actually had mental processes?”
(Searle, 1984, pp. 37-38). The answer to this question is that computers manipulate symbols,
and that while no one believes that storms or fires are caused by symbol manipulation, most cog-
nitive scientists believe that intelligence is.

While this view is not universally accepted (Churchland & Churchland, 1990; Dreyfus,

1992; Graubard, 1988; Searle, 1980, 1990, 1992), most cognitive scientists – be they classical or
connectionist – endorse it (Dawson, 1998). As a result, one consequence of the assumption that
cognition is information processing is that computers are not limited to generating some number
related to behavior, but instead are capable of actually behaving. This is a fundamental differ-
ence between computer simulations and the two other types of models that we have seen.

The production system for cryptarithmetic actually solves these kinds of problems. “We

have not treated the task as an unanalyzed ‘variable’ against which to plot our subject’s behavior
(as occurs in intelligence testing, or even in many experimental investigations, such as those on
functional fixity or the Einstellung effect). Rather we have attempted to discern the specific
mechanisms whereby each bit of task-oriented behavior is produced” (Newell & Simon, 1972, p.
303). Similarly, the mushroom network actually classifies mushrooms as being edible or poison-
ous. With these kinds of models, the questions that arise concern whether the behavior of the
model is due to the same kind of internal processes that might be found in human subjects. The
answer to such questions requires a completely different methodological approach that often
seems only remotely related to “goodness of fit” (Pylyshyn, 1984).

Chapter 6: First Steps Toward Synthetic
Psychology

6.1 INTRODUCTION

The preceding three chapters have provided a brief exposure to a variety of different types of

models that can be found in psychology. We are now in a position to use this background knowledge to

 - 37 -

Minds And Machines © M.R.W. Dawson 12/02/2016

focus our attention on synthetic psychology. The purpose of this chapter is to provide a brief introduction
to some of the basic properties that will be found in the synthetic approach. These properties will be in-
troduced by considering how to build a toy robot that walks.

Even within one class of models, computer simulations, we saw that there can be a great deal of

variety. Some computer simulations are analytic in nature. For example, one creates a production sys-
tem by taking a complicated phenomenon, breaking it down into its components, and using these compo-
nents to construct the simulation. This analytic approach has been highly successful in psychology and in
cognitive science. However, this approach is not the primary focus of this book.

We are instead primarily concerned with models that are synthetic in nature. An example of a

computer simulation consistent with the synthetic approach is a connectionist network of the sort that was
introduced in Chapter 5. When the synthetic approach is adopted, a set of basic building blocks is taken
and is assembled into a working system. The question of interest is whether these basic components can
be organized into a system that does something complicated, interesting, or surprising.

Why is this book focusing on the synthetic approach? One reason is that in modern cognitive

science there is a growing interest in developing models from the synthetic perspective. A number of fair-
ly recent simulation methodologies that are popular in cognitive science are essentially synthetic in na-
ture. These methods include artificial neural networks (e.g., Bechtel & Abrahamsen, 1991; Dawson,
1998), genetic algorithms (e.g., Holland, 1992; Mitchell, 1996), and artificial life (e.g., Langton, 1995;
Levy, 1992).

A second reason for exploring the synthetic approach is that it melds quite nicely with a new tradi-

tion in robotics, artificial intelligence, and cognitive science. This new tradition is defining a new field, a
field that has been associated with a variety of labels in recent years. These labels include behavior-
based robotics (Brooks, 1999), new artificial intelligence, based-based artificial intelligence, and embod-
ied cognitive science (Pfeifer & Scheier, 1999). The embodied cognitive science movement is gaining
popularity, and is challenging the traditional symbol-based conception of artificial intelligence and cogni-
tive science using many of the same arguments that were put forth by connectionist researchers in the
early 1980s.

6.1.1 Synthetic Psychology Vs. Embodied Cognitive Science

Importantly, embodied cognitive science and synthetic psychology are not identical fields. Em-

bodied cognitive science is a reaction against the traditional view that human beings as information pro-
cessing systems “receive input from the environment (perception), process that information (thinking), and
act upon the decision reached (behavior). This corresponds to the so-called sense-think-act cycle”
(Pfeifer & Scheier, 1999, p. 37). This has also been called the sense-model-plan act framework (Brooks,
1999). The sense-think-act cycle, which is a fundamental characteristic of conventional cognitive sci-
ence, is an assumption that the embodied approach considers to be fatally flawed.

One of the aims of embodied cognitive science is to replace the sense-think-act cycle with a prin-

ciple of sensory-motor coordination (Pfeifer & Scheier, 1999), which might be construed as a sense-act
cycle. The purpose of this change is to eliminate, as much as possible, thinking -- the use of internal rep-
resentations to mediate intelligence. What makes this a plausible move to consider is the possibility that
if one situates an autonomous agent in the physical world in such a way that the agent can sense the
world, then no internal representation of the world is necessary. “The realization was that the so-called
central systems of intelligence – or core AI as it has been referred to more recently – was perhaps an un-
necessary illusion, and that all the power of intelligence arose from the coupling of perception and actua-
tion systems” (Brooks, 1999, p. viii).

The synthetic approach is an important component of this movement, because it opens the door

to discovering behaviors that emerge from the interaction between an agent and its environment. Embod-
ied cognitive scientists seek this kind of emergence because they do not want to explain complex behav-
ior by only appealing to internal mechanisms. Instead, “if we want to achieve wall-following behavior, we

 - 38 -

Minds And Machines © M.R.W. Dawson 12/02/2016

should design not a module for wall-following within the agent, but instead basic processes that together,
interacting with the environment, engender this desired behavior” (Pfeifer & Scheier, 1999, p. 307). How-
ever, the synthetic approach is not equivalent to this embodied movement. For instance, and as we will
see throughout this book, connectionist modeling can easily be construed as synthetic simulation (Pfeifer
& Scheier, 1999, Chapter 5). Nevertheless, much of what is interesting about connectionist networks are
the representational properties that stand between “sensation” and “action” (Dawson, 1998).

6.1.2 Overview: Synthesis, Emergence, Analysis

The purpose of this chapter is to introduce the key characteristics of the synthetic approach as it

can be used in psychology. These characteristics can be summarized with the acronym SEA, which
stands for synthesis, emergence, and analysis. In my view, these are the three fundamental steps re-
quired for the synthetic approach to make contributions to psychology and to cognitive science.

In very general terms, synthetic psychology should proceed by carrying out these three steps in

succession. First, a set of basic building blocks is used to synthesize a model. Second, the performance
of the model is explored, with particular attention being paid to its emergent properties. Third, the emer-
gent properties are explained in a theory that accounts for them by appealing to internal mechanisms, to
the environment, or to an interaction between the two.

For our first exposure to these three steps, this chapter describes a class activity that I have used

in one of my graduate courses. This example as it stands is not particularly psychological – a characteris-
tic that is unfortunately true of many of the phenomena modeled by embodied cognitive science. Howev-
er, it provides a concrete example of the three components of SEA. In later chapters, we will use these
foundations to build synthetic models that seem more relevant to higher-order psychological processes.

6.2 BUILDING A THOUGHTLESS WALKER

It has been my experience that when you try to teach modeling, students really benefit from

hands-on work. So, when I was teaching a course on the synthetic approach in the fall of 2000, I thought
that it was important to spend at least some time having students actually construct a working model.
This was not merely to expose them to modeling per se. The activity that I had in mind was intended to
expose them to the realization that a phenomenon that they took for granted was actually quite compli-
cated.

One of the problems that I faced in doing this was that different students had enormous differ-

ences in their backgrounds of computer programming. This meant that the class activity couldn’t involve
hands-on computer simulation, because I was not really interested in spending a great deal of time teach-
ing programming as part of this course. My solution was to have students build a walking robot from a
particular kind of toy buildings set, K’NEX.

One week I brought two large containers of K’NEX materials into class, along with an assortment

of text aids. The class was asked to build a robot that could walk forward. The text aids were used to
provide inspiration, but I didn't give any specific instructions. The class was quite small (8 or 9 students),
and they spent the first little while organizing themselves into groups, exploring K’NEX, and thinking about
how they were going to approach this class problem.

By the end of class a week later, and only working during class time, the students had construct-

ed a set of modular components that could be used to create a two-legged system, a four-legged system,
or a six-legged system. Under certain conditions, described in more detail below, the students were suc-
cessful in creating a robot that could walk the length of the classroom.

In the sections below, I will describe the next-generation of the robot built in the style that was

created by the students. It represents a next-generation system only to the extent that I took the liberty of
making some minor improvements to their original model. The original robot, constructed under condi-
tions that weren't necessarily ideal, had a few flaws that needed to be corrected. Some of the flaws in-

 - 39 -

Minds And Machines © M.R.W. Dawson 12/02/2016

volved robot parts that were intended to be identical in each module, but were not. Some of the flaws
were structural problems that required solutions involving parts, such as elastics, that were not pure
K’NEX. The robot described below is built purely from K’NEX parts in the spirit of the robot that was con-
structed in class.

The sections below describe this robot as a project that could be built by the reader. It only men-

tions the parts and the properties of the final system. However, it is important to remember that when it
was designed, students made explicit decisions to build in one way, and not in another. This was be-
cause they had many more materials available to them than those that are mentioned below. The reader
of this section should keep in mind that other designs are easily possible, and might want to consider al-
ternative approaches to building the robot if they decide to try to replicate the efforts of this class. If the
reader is interesting in exploring this robot in more detail, pictorial instructions of how it was built, and vid-
eos of the behavior of different versions of this model, are available at the website that provides supple-
mentary material for this book (www.bcp.psych.ualberta.ca/~mike/Book2/).

6.2.1 A Class Project

 The purpose of this project is to build a robot that can walk at least a few steps forward inde-

pendently. It is not required to be able to turn, or to avoid obstacles. One goal of building the system is
to start to have some appreciation for some of the properties that are characteristics of walking systems.

6.2.2 Materials

The entire robot was constructed out of a large set of K’NEX building materials that my daughter

and son had accumulated over the years. K’NEX is a toy building system comprised of rods that can be
inserted into geometric connectors that hold the rods together to create larger structures. Rods and con-
nectors are made from plastic, and are coded-coded to indicate length or shape. While structures built
from K’NEX can be quite sturdy, there is a fair amount of “give" in these building materials. This turns out
to be advantageous in providing emergent walking behavior in the robot.

In addition to the rods and connectors, the robot-building students also had available to them

three identical motors that can be used to provide movement to K’NEX structures. These motors drive
plastic gears that can rotate a K’NEX rod inserted as an axle. One of the advantages of using such mo-
tors for this project is that they too have a little bit of “give” in them, which was important for getting the
robot to work. Having three of these motors was a luxury, as well as an indicator of how many raw mate-
rials the students had available. Usually K’NEX kits that use motors of this type only include one.

The only additional material required for building the robot was some literature that described a

number of different robot projects, none of which use K’NEX. As we will see below, one important prob-
lem the students needed to solve was how to convert the rotating motion of the motors into a stepping
action. They found one chapter in McComb (1997) that was particularly useful for providing a solution to
this problem.

6.3 STEP 1: SYNTHESIS

In adopting the synthetic approach, the first general step is to take a group of basic building

blocks and assemble them into a working system. This contrasts with the analytic approach because the
researcher does not start with a complete system, and decompose it into component parts or functions.

In the first phase of synthesizing the walking robot, the basic building blocks are the K’NEX parts.

In the later phase, a more abstract sense of building block is adopted. This is because you can create
larger walking systems by linking together smaller identical walking modules. In order to create these
higher-order building blocks, students had to make three important design decisions. These decisions
are described below.

 - 40 -

Minds And Machines © M.R.W. Dawson 12/02/2016

6.3.1 From Rotation To Stepping

In order to create a walking robot, the students decided that the fundamental engineering problem

to be solved was converting the rotation of an axel into a stepping motion. In making this decision, the
students also made some progress in terms of organizing their work on the whole robot. They had decid-
ed to convert each motor into a system that would cause two legs to step. They divided themselves into
three small groups of students, each working with one of the motors. When one group had some insight
into solving a particular design problem, they communicated it to the other two groups.

The primary inspiration for converting rotation into stepping came from Figure 16-15 in McComb

(1987). This figure demonstrated that if one attached a leg to the outside of a rotating wheel, and also
permitted the leg to rotate freely at the point of attachment, then the rotation of the wheel would result in
the leg being lifted up and pushed down in a stepping motion. The students exploited this design in creat-
ing the axle to be rotated by the K’NEX motor (for pictures, please visit the website). The axle was a red
rod. On one end of the rod, a white connector was attached sideways. At the other end of the rod, an-
other white connector was attached sideways, but on the opposite side of the rod. These two white con-
nectors represent wheels that would be rotated when the motor rotates the red rod. The white connectors
are placed on opposite sides of the rod so that the two legs moved by the motor would do so cooperative-
ly (i.e., one would be stepping in front of the other). A blue rod is placed through the middle of each white
rod, and a beige connector is attached to one end to keep it from falling out. When constructed in this
way, the blue rod can freely rotate in the white connector. If the leg is attached to the blue rod, then it is
possible to make it “step” when the red axle rotates.

6.3.2 Balance

A second design issue to be faced by the students was the nature of the legs that were to be at-

tached to the axles. The problem to be dealt with was this: the legs had to be constructed in such a way
that a two-legged module would stand, even if the motor was not turned on. This was a problem because
the “body” of the module – which was essentially the motor – was fairly heavy in relation to other compo-
nents, and the legs were mounted in the middle of this body. The feet at the end of the legs had to be
constructed so that the module would balance.

Balance was achieved by attaching a fairly large and wide “foot” to a red rod that served as a leg.

The foot was constructed from four white connectors and two yellow connectors held together very solidly
with white and green rods. The robot’s point of contact with the ground was the two yellow connectors.
The leg was attached to the axle by connecting firmly to the axle being moved by the motor. As a result,
it was possible for the leg to push upwards with enough force to lift the “body” of the module.

6.3.3 Leg Support

In order to create a successful stepping motion, it is not sufficient to connect the foot to the axle.

A support must also be provided to the top of the red leg, in order to prevent the entire leg from being ro-
tated around the axle and hitting the ground. In other words, the support must be used to restrain the leg
in such a way that it keeps pointing (roughly) up and down during movement.

In order to deal with this problem, the students designed a structure that was used to contain the

motor, and was also used to loosely constrain the top of the leg. This structure was essentially a body
that had a connector that the leg passed through, but was not directly attached to. This arrangement al-
lows the leg to move fairly freely in an up and down motion, but prevents the top of the leg from being
rotated downwards to interfere with any stepping movement. In other words, the legs step, they do not
rotate.

6.4 STEP 2: EMERGENCE

The first general step in synthetic psychology is to construct a working system. The second gen-

eral step is to watch it work, paying attention to surprising or emergent properties. As we will see in

 - 41 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Chapters 7 and 8, a practitioner of the synthetic approach expects that a system of simple components
will generate far more interesting behavior than would be expected, particularly when it is embedded in an
interesting environment.

What is an emergent property? One way to think about emergence is in terms of the line-

ar/nonlinear distinction that we explored when discussing models of data, mathematical models, and
computer simulations. In a linear system, the behavior of the whole system is exactly equal to the sum of
the behaviors of its parts. If one understands the behaviors of all of the parts of a linear system, then this
means that there should be no surprises when observing the behavior of the system as a whole. In con-
trast, in a system in which the components interact nonlinearly, then surprises can emerge. “The hall-
mark of emergence is this sense of much coming from little” (Holland, 1998, p. 2).

Holland (1998) points out that while emergence is a ubiquitous phenomenon in the natural world,

it is exceedingly complicated, and therefore defies definition. However, he argues that the scientific study
of emergence is in a position to take advantage of some essential characteristics. First, emergence
should be studied in systems that can be described as being governed by rules or laws. Second, an
emergent phenomenon should be a pattern that is both recognizable and recurring. Third, theories of
emergent phenomena will depend crucially upon modeling. Fourth, emergent phenomena will often be
seen in systems that are either adaptive or dynamic over time. Fifth, “emergence usually involves pat-
terns of interaction that persist despite a continual turnover in the constituents of the patterns” (p. 7).
These persistent patterns can be used as building blocks for larger systems. In other words, emergent
phenomena will often be observed in systems that are organized hierarchically.

The walking robot that was constructed by the class is exceedingly simple. Nevertheless, when

its behavior was observed and manipulated, it exhibited many of these fundamental properties of emer-
gence. In the sections below, we will consider observations made concerning three different versions of
the robot: a two-legged robot, a four-legged robot, and a six-legged robot.

6.4.1 Two-Legged System

The behavior of a two-legged system was interesting in some respects, but disappointing in oth-

ers. When the motor was turned on, the robot began to sway back and forth in a surprisingly life-like
fashion. The “body” of the system also rotated back and forth. If one was to call each yellow connector
at the base of the leg a “toe”, then the stepping behavior of this robot could be described as follows:
three “toes” were always in contact with the table. Two were on the leg on one side of the robot; the third
was the toe on the back of the other leg. In short, when the robot stepped, it raised the front “toe” of one
leg, and then it raised the front “toe” of the other leg.

All of this behavior was interesting, in the sense that it was quite a bit more complicated than the

students predicted prior to turning the robot on. However, with all of this swaying, rocking, and toe lifting,
one disappointing fact was obvious: the robot did not walk. It carried out all of this movement while stay-
ing in one place on the table. A video of this movement can be seen at the website for this book.

6.4.2 Four-Legged System

The next stage of exploring the walking behavior of the robot was to take four additional white

rods, and to connect two two-legged modules together to create a four-legged robot. When the modules
were connected together, care was taken to ensure that both motors were pointed in the same direction.
By convention, the rear of a module was the end where the motor switch, and the wire connecting the
motor to the battery case, was found.

K’NEX motors can be run in two different directions, clockwise and counter-clockwise, depending

upon the setting of the motor’s switch. In the first test of the four-legged robot, both motors were turned
on in the same direction. The behavior of the robot didn’t depend on whether this direction was clockwise
or counter-clockwise, and also was not affected by whether the motors were started at the same time or
not, or by the starting positions of the two legs.

 - 42 -

Minds And Machines © M.R.W. Dawson 12/02/2016

When the students drove the motors in the same direction, the robot as a whole began to sway

and to rotate in a very similar fashion to the two-legged system. If one were to watch only one side of the
robot, then one would typically see three “toes” in contact with the ground. Occasionally two “toes” would
be seen in contact with the ground – one from each foot. Sometimes all four “toes” in contact with the
ground. When these observations were made, the robot was not walking. All of its swaying movement
was being done on the spot.

Interestingly, every so often the movement of the two component modules would become unco-

ordinated. When this happened, the “give” in the K’NEX motor became important. The students would
hear a definite clicking sound as the gears of one of the motors jammed, and the rotation of one of the
axles would cease for a short period (a second or less). Then, the motor that had stopped would start
again, and at that moment the robot would lift one entire foot off the ground, and take a definite step for-
ward. The extent of this forward movement was about 1 or 2 centimeters. Unfortunately, when the next
step occurred, it was often in the opposite direction! So, when walking did occur, it was forward, then
backward, one labored step at a time.

In short, this first test of the four-legged system led to results that were essentially the same as

the results observed in the two-legged system: there was lots of robot movement, but essentially no walk-
ing. However, every now and again a definite step would emerge, suggesting that the robot’s design was
on the right track.

From observing the first test of this robot, it appeared that the coordination between the two leg

modules was critical. For the most part, the two modules were in step, and as a result the robot did not
walk. Walking only appeared when the stresses on the robot’s legs caused a disruption between the co-
ordination of the two legs.

This observation led to a simple manipulation that had dramatic results. If walking in this system

required that the two leg modules be out of synch, then perhaps it would walk better if the two motors
were run in opposite directions. At face value, this prediction is counterintuitive, because one would ex-
pect that if walking were to be achieved then the two sets of legs would have to be moving in the same
direction. However, the students could quickly test their hypothesis simply by setting the two motor
switches in opposite directions.

When this second test was conducted, the results were much more encouraging. At first, the ro-

bot motors protested loudly – angry clicks were heard from both. However, after a few moments, the
clicks were heard less frequently, and the robot began to walk forward. When it was walking optimally, it
would lift one rear foot completely off of the table’s surface, and at the same time lift the front foot on the
opposite side. It would then move about 2 cm. In some instances, the motors would lose this nice walk-
ing coordination, the stepping behavior would attenuate, and the robot would either slow down or stand
still. This only lasted for a moment though – when the robot was in this state, the motors would start click-
ing back and forth again, and then the robot would begin to step forward. Examples of the movements of
this robot are also available on the book website.

6.4.3 Six-Legged System

The final exploration of walking by the students involved studying the behavior of a six-legged ro-

bot. The students created this robot by connecting a third two-legged module to the four-legged robot.
Once again, care was taken to ensure that all three motors pointed in the same direction.

In the first test of the six-legged robot, the behavior of the system was very similar to that of the

four-legged robot. The motors would complain when they were first all started in the same direction. The
robot would begin to sway back and forth, and rotate a bit towards the left and right. Shortly thereafter,
the three different motors would be coordinated in a pattern in which all three legs on each side of the
robot moved in synch. In this configuration, the robot essentially swayed back and forth in one place, and

 - 43 -

Minds And Machines © M.R.W. Dawson 12/02/2016

the closest that it came to stepping would be raising only one “toe” of any of its legs off the table’s sur-
face.

On occasion, because the motors were running independently, this relatively stable configuration

was disrupted. One or more of the motors would click, the axle would momentarily stop, and suddenly
one of the robots legs would lift completely off the surface. A similar stepping motion would then be initi-
ated in one or both of the other modules, and the robot would take a fairly large step (in the order of 5 cm)
in one direction. Shortly afterwards, the system would again stabilize into the configuration in which the
legs on each side were in synch, and the machine swayed back and forth on the spot. As was the case
with the four-legged robot, when the next stepping action occurred, it was often in the direction opposite
to the last step taken.

The second experiment with this robot was conducted by trying to manipulate the coordination of

the three leg modules by altering the direction of the motors. In particular, the motor driving the middle
pair of legs was set to run in a direction opposite to that being run by the other two motors.

When the motors were set in these directions, the robot walked quite effectively, as is illustrated

on the book website. After an initial period of competition between the three motors, all three modules
coordinated themselves into an arrangement in which each module raised one “foot” entirely off the table
surface. In general, the three modules coordinated themselves in such a way that walking was achieved
by resting the weight of the robot on one triangle of “feet” while the second triangle of “feet” was stepped
forwards. Each triangle was defined by a front and rear leg on the same side of the robot, accompanied
by the middle leg on the other side of the robot.

6.4.4 Emergence And Surprise

Let us now briefly summarize the main results of this phase of working with the K’NEX robots.

One nice aspect of this demonstration project is that it provides an excellent example of emergence. By
themselves, none of the two-legged modules built by the students were capable of walking. However, if
two or three of these non-walking modules were coupled together, then walking was possible. It is clear
that the walking behavior emerged from an interaction between the modules.

A second point to be made from this demonstration concerns the notion of surprise. In particular,

when reliable walking behavior was observed in a robot, this was only achieved when the motors of adja-
cent two-legged modules were turning in opposite directions. This finding was counterintuitive, because
at the outset it was natural to expect that all of the motors needed to turn in the same direction to get the
machine stepping forwards. The robot project provides a very nice example of the possibility for surprise
in a synthetic project.

Nevertheless, demonstrating that the synthetic approach can generate surprise is a fairly trivial

result, and as such does not mark the end of the research program. “It is true that surprise, occasioned
by the antics of a rule-based system, is often a useful psychological guide, directing attention to emergent
phenomena. However, I do not look upon surprise as an essential element in staking out the territory”
(Holland, 1998, p. 5). The lasting value of surprise in the synthetic framework occurs when it directs at-
tention to emergent behaviors that can be explained by appealing to properties of system components.
For this reason, after a system has been synthesized, and after emergent phenomena have been ob-
served in its workings, the researcher must step back and analyze in an attempt to explain their creation.

6.5 STEP 3: ANALYSIS

One of the fundamental characteristics of the synthetic approach is the assembly of components

into a working system that exhibits surprising, emergent behavior. The class project that we have been
describing has provided a concrete example of this.

A second, less explicit, characteristic of much synthetic research is the assumption that it leads

more directly or more easily to explanations than does analytic research. Chapters 7 and 8 will provide

 - 44 -

Minds And Machines © M.R.W. Dawson 12/02/2016

more information about this assumption. For the time being, let it suffice to say that it is quite natural to
assume that if you build a system, and engineer it out of parts whose workings you understand, then you
should be in a position to explain the mechanisms from which surprising regularities emerge.

We will see that this assumption is not correct. In many of the examples that we will consider,

building a system, and observing surprises in it, is pretty easy. The difficult – and interesting – work starts
when an attempt is made to generate theories of regularities that emerge from what we synthesize. “Un-
derstanding the origin of these regularities, and relating them to one another, offers our best hope of
comprehending emergent phenomena in complex systems. The crucial step is to extract the regularities
from incidental and irrelevant details” (Holland, 1998, p. 4). A good deal of analysis is required to carry
this crucial step out.

The walking robots that we have been describing in this chapter are not particularly sophisticated

machines, and were not designed to provide deep insights into the nature of locomotion. Nevertheless, it
is instructive to analyze aspects of their behaviors, because even these simple machines reveal some
very interesting properties.

6.5.1 Emergence And The Thoughtless Walker

For a first pass at analyzing the walking robots, it is instructive to consider their behavior in terms

of the criteria for emergence that have been proposed by Holland (1998). One reason for doing this is
because it helps to support the claim that the walking behavior of the robots really is emergent. A second
reason for doing this is because it draws our attention to a number of different properties of these robots.
These properties demonstrate that even with these simple toy components, the behavior of the robots is
complicated and interesting.

6.5.1.1 Recognizable, Recurring Patterns

One of the criteria proposed by Holland (1998) as being necessary for emergence is the discov-

ery of recognizable and recurring patterns. Emergent behaviors can’t simply be those that are rare and
surprising; they have to be results that are replicable. Are the behaviors in our robots of this type? The
moment-by-moment behavior of all of the robots is quite complicated, and a detailed classification of the
behaviors would likely require a detailed, frame-by-frame analysis of video images of their performance.
However, even a casual observation of their movements suggests that there are two general states that
the robots “prefer” to be in.

The first state is one in which as many robot “toes” as possible are in contact with the ground. In

this state, the motors cause the robot to sway from side to side, and to turn back and forth, but the robot
does not step forward. Usually, when a foot moves, it only is a slight movement that causes only one of
its two “toes” to be raised off the ground. In multi-module robots, this state is associated with all of the
legs on the same side of the robot moving together. The two-legged robot is always in this state.

The second state is one in which a robot is actually walking forward. In this state, more than one

leg is lifted completely off the ground, usually at roughly the same time. As the robot steps forward, it still
sways and turns, but not to the degree seen in the other state. For the robot to be in this state, there
must be definite coordination between different two-leg modules. In particular, modules that are connect-
ed to each other are coordinated in a “diagonal” fashion: if one module is lifting the left leg when the robot
is in this state, then any attached modules will be lifting the right leg.

The robot is not only seen in these two states. However, other robot states appear to be quite

transitory. They occur for fairly brief periods of time as the robot changes from one of the above states to
the other. These transitions appear to be more stressful on a robot’s structure than either of the two
states described above. This claim is supported by the fact that it is during these transitions that the mo-
tors stop functioning properly, grinding their gears with a distinctive clicking sound, and failing to rotate
the red axle. In order to determine whether any of these transitory behaviors represent recurrent patterns
would require detailed analysis (e.g., of slow motion video) of the robot.

 - 45 -

Minds And Machines © M.R.W. Dawson 12/02/2016

When all of the motors are turning in the same direction, the robots are much more likely to be in

the swaying state than in the walking state. Every 15 or 20 seconds, there will be a brief transition into
the walking state (for one step), followed by a transition back into the swaying state. This situation is re-
versed when adjacent motors are turning in the opposite direction. In this case, the robots are much
more likely to be in the walking state, except that every 15 or 20 seconds there is a brief transition into the
swaying state, almost immediately followed by a transition back into the walking state.

6.5.1.2 Rule-Governed System

Holland (1998) suggests that a second criterion for the scientific study of emergence is that it oc-

curs in a rule-governed system. “Emergent phenomena also occur in domains for which we presently
have few accepted rules; ethical systems, the evolution of nations, and the spread of ideas come to mind”
(p. 3). Holland suggests that an understanding of emergence in these domains will have to wait until we
have a better understanding of the laws that govern them.

The robots that we have been describing are governed by laws, but not in the usual sense that

comes to mind in psychology or cognitive science. Usually, the term “rule-governed” in cognitive science
immediately brings to mind a system that is controlled by a computer program. Furthermore, the comput-
er program is usually thought be of a classical or symbolic type, such as the production system that was
discussed in Chapter 5. However, it is obvious that no such program is responsible for the behavior of
the robots. I call them thoughtless walkers because they have absolutely no capacity to use symbolic
representations to control their actions.

Instead, the robots are governed completely by the laws of physics. The motors are supplying ki-

netic energy that causes robot parts to move, and the movement of these parts generate forces against
the surface upon which robot rests. The surface reflects forces back through the robot, which results in
other emergent behaviors, such as the side-to-side swaying of the robot body. As we will see below, a
great deal of analytic research on the locomotion of multi-legged animals proceeds by analyzing the dis-
tribution of forces through the walking system.

Describing the robots as being governed by the laws of physics leads to an interesting specula-

tion that would require detailed physical analysis to validate. Each robot represents a physical system
that holds kinetic energy, and is subject to a variety of forces. We could imagine measuring a robot in
such a way that we could come up with a single number that represents its total stress or energy at any
given time. My suspicion is that the two main states of the robot that were described above represent
low-energy configurations. When a robot is in either of these two states, it is under the least amount of
stress that it can be in when its motors are running. When the physical situation changes – for instance,
when forces get redistributed because different motors are out of sequence – a robot moves to a higher
energy state. When it is in such a state, it attempts to distribute forces again in such a way that the over-
all energy is again reduced. This results in the transitory behavior, and the accompanying complaints
from one or more of the motors. From this perspective, the swaying state might represent the least ener-
gy state for the robot when its motors are running, because this state is the easiest to produce. The walk-
ing state might represent a higher energy state (which could explain why walking was unexpectedly hard
to produce). However, the energy of the walking state is still lower than any of the transition states.
When the motors are running in the opposite directions, the robot is unable to reach the ideal swaying
state, and instead has a preference for the next best configuration – walking.

6.5.1.3 Dynamic System

Holland (1998) proposes that emergent phenomena are to be expected when the laws governing

a system are invariant, but the system components governed by the laws are changing or dynamic. The
thoughtless walkers that we have been discussing are obviously dynamic systems, because they are built
from parts that are designed to move.

 - 46 -

Minds And Machines © M.R.W. Dawson 12/02/2016

However, these robots are also dynamic in a subtler and more interesting sense. We have al-
ready described the robots in terms of two general lower-energy states, and have pointed out that both of
these states depend upon a particular type of coordination between modules controlling different pairs of
legs. We have also pointed out that there is no central computer that runs a program that coordinates the
different modules. How, then, is coordination between leg modules possible?

The answer to this question is that different modules communicate to one another, but not in the

symbolic fashion that is typically thought of in psychology and cognitive science. A different kind of com-
munication is enabled by the dynamic nature of a robot’s parts, and of the forces at play through its struc-
ture. When two modules become uncoordinated (e.g., because they are rotating a slightly different
speeds), a robot’s balance is altered in such a way that one module can run easily, but another cannot.
In other words, changes in the physical configuration of the robot could be described as one module
communicating to another that it is becoming uncoordinated. This message is communicated by chang-
ing the forces in the robot in such a way that one of the motors actually stops for a moment, until forces
change again in some fashion that permits the motor to resume turning. In other words, even though
these robots are thoughtless walkers, they can still be described as information processors.

6.5.1.4 Adaptive System

“The possibilities for emergence are compounded when the elements of the system include some

capacity, however elementary, for adaptation or learning” (Holland, 1998. p. 5). The thoughtless nature of
the robots that we have been considering precludes most of the possibility for learning. While this is a
limitation of these robots (in terms of their generating theories about locomotion), such limitations are not
surprising. After all, the robots are simply toys that are being used in a demonstration to reveal some of
the general characteristics of the synthetic approach.

Nevertheless, if one were interested in exploring the properties of these robots in more detail,

then there is a possibility for adaptation that could be explored with more detailed analyses than those we
have reported above. It was mentioned earlier that one of the advantages of K’NEX was the “give” in
many of the components. Several of the parts of the robot structure are firm, but flexible. For example,
rods can bend, can rotate within the joint of a connector, and can also be rotated a bit in the joint, without
the overall structure breaking apart. It would be interesting to determine whether the physical structure of
a thoughtless walker changed, because of the forces that the robot is subject to, in such a way that a
physical configuration of a rod that was seen early in an experiment was never seen later. This might be
evident if there were fewer transition periods between lower-energy states after a robot had been operat-
ing for a while. If indeed forces acting upon the robot adjusted its physical structure in this fashion, then
this would be an example of elementary learning in a thoughtless system.

6.5.1.5 Persistent Patterns, Changing Components

Holland (1998) points out that emergent phenomena frequently exhibit a dynamic, hierarchical

organization. At one level of analysis, parts of a system might be changing very frequently. At a broader
level of analysis, though, the system might exhibit stable regularities. “A simple example is the standing
wave in front of a rock in a white-water river. The water molecules making up the wave change instant by
instant, but the wave persists as long as the rock is there and the water flows” (p. 7).

When the robots are successful in walking, they clearly exhibit this kind of hierarchical organiza-

tion. For example, walking in the six-legged robot can broadly be described as the successive placing of
a triangular configuration of legs onto the ground. However, the legs that make up this stable triangle
change from step to step. A more detailed analysis of a robot’s behavior would probably provide many
more examples of this. For instance, given all of the movement in a robot, and all of the “give” in its com-
ponents, it would not be surprising that a wide diversity of physical configurations of robot parts could all
be classified as a step.

6.5.2 Comparison To Biological Walking

 - 47 -

Minds And Machines © M.R.W. Dawson 12/02/2016

The previous section has shown that there are a number of interesting and surprising emergent
properties in the walking robots that we have constructed. This illustrates one of the main advantages of
the synthetic approach. We could have taken a complicated phenomenon and analyzed it into putative
component functions. Instead, we took a very simple set of building materials and a very general con-
struction goal and were able to create a system that delivered several properties that were not explicitly
intended.

To my mind, the robot example demonstrates another important advantage of the synthetic ap-

proach. By observing the regularities in the behavior of the working system, we started to learn important
facts about walking in general. In many cases, the synthetic approach will provide us with insights into
the problems that are being solved by the system is that we build, and these general insights will often be
more important than a specific account of how a particular system works. Synthetic models provide a
medium in which to explore phenomena. This medium can be so rich that one can learn a great deal by
exploring the properties of models for their own sake.

A complementary approach, though, is to consider of the system in the context of other types of

knowledge. For instance, when a model is being analyzed one fruitful approach is to relate its observe
properties to known properties of other systems. In the case of our current demonstration, we could at-
tempt to do this by relating characteristics of our walking robots to knowledge that other researchers have
collected in their study of animal locomotion.

6.5.2.1 Lifelike Motion

The claim that was made earlier about the appearance of the walking robots was that their

movement appears to be “lifelike". What exactly is meant by this claim? What kind of evidence can be
cited to support this position? Research on animal locomotion can provide some answers to these ques-
tions, and can also provide some guidance about what properties of the walking robots deserve our atten-
tion.

At first glance, we might be tempted to think of legs as being kind of wheel. If legs functioned ex-

actly like wheels, then movement would be uniform. However, analyses of the locomotion of many differ-
ent animals have shown quite clearly that movement is not uniform at all. Legs are not wheels; a different
metaphor is required to model actions like walking or running.

During a slow motion like walking, a better mechanical metaphor is an inverted pendulum (Dick-

inson et al., 2000). In this metaphor, the pendulum's cable becomes a rigid leg that is attached to a body
of mass. When the leg is used for walking, the mass is vaulted over the leg. In the first half of this
movement, kinetic energy is transformed into gravitational potential energy. In the second half of this
movement, when the body descends, this potential energy is partially recovered as kinetic energy. One
consequence of this cycling between kinetic and gravitational energy is that the body of the animal decel-
erates in the first half of the movement, and accelerates in the second half of the movement. During a
faster motion like running, the rigid leg of the inverted pendulum is better viewed as a spring, kinetic and
gravitational potential energies are stored as elastic energy, and the system bounces as if it were on a
Pogo stick cycling between breaking and propulsive phases. Again, the running system does not move
uniformly. Instead it accelerates and decelerates with every step. Interestingly, these two metaphors can
be applied to describe the locomotion of bipedal, quadrapedal, and polypedal organisms (Blickhan & Full,
1993).

One in respect in which the walking robots are lifelike is that their forward movement is not uni-

form. Even though the motors work by providing a uniform rotation of an axle, when his motion is con-
verted into a step, the legs work like pendulums. When legs are being lifted up, the robot’s forward
movement is very slow because the feet that are in contact with the ground are in the process of convert-
ing kinetic energy into gravitational potential energy. When the legs are being placed down, the robot
lunges ahead noticeably faster. This is because the center of mass over each supporting leg is descend-
ing and accelerating.

 - 48 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Animal locomotion research points to a second fashion in which the walking robots are lifelike.
We saw earlier that getting the robot to walk depended heavily upon leg coordination. For example, the
six-legged robot would only walk forward when its motors ran in such a way that the six legs were coordi-
nated to act like two sets of tripods. Walking was accomplished by having one tripod serve the function of
the rigid legs of an inverted pendulum, while the other tripod was moved ahead. This kind of leg coordi-
nation is commonly seen in the walking of the six-legged organisms such as insects (Dickinson et al.,
2000).

A third respect in which the walking of our robots was lifelike involves the many movements of

their bodies that were not at first glance directly related to walking per se. In particular, the bodies of all of
the robots swayed back and forth very noticeably, in the front of the robust rotated between the left and
right. Interestingly, these kinds of movements are becoming a more interest to researchers to analyze
animal locomotion. The legs of sprawled-posture animals, such as insects and crabs, generate substan-
tial lateral and the forces (Dickinson et al., 2000). These forces are orthogonal to the direction of motion.
Analyses of these forces suggest that elastic energy storage and recovery may occur within the horizontal
plane. “By pushing laterally, legs create a more robust gate that can be passively self-stabilizing as the
animal changes the, moves over uneven ground, or is not to skew by uneven terrain” (p. 101).

6.5.2.2 Control With No Brain

One of the predominant themes in the study of animal locomotion is the integration of many dif-

ferent systems, both neural and mechanical. “An integrative approach to locomotion focuses on the in-
teractions between the muscular, skeletal, nervous, respiratory, and circulatory systems ” (Dickinson et
al., 2000, p. 100). Researchers are not only interested in determining how each individual component of
locomotion system works, but also how all of the components function together as an integrated system.

The integration of motor, sensory, and control systems is also evident in behavior-based robotics.

Consider Genghis, a six-legged robot built in 1988 by roboticist Rodney Brooks (Brooks, 1989; reprinted
in Brooks, 1999). Two motors drive each leg, one for swinging it back and forth, the other for lifting it up
and down. A simple walk is achieved by manipulating the behavior of all of the motors in the robot, on the
basis of sensing different positional characteristics of its legs. For example, one reflex notices whenever
a leg is not down, and attempts to bring the leg down by turning one motor on in the appropriate fashion.
A second reflex notices if any one of the legs happens to move forward for some reason. When this is
detected, all of the legs will receive a series of messages that caused them to move backwards slightly.
Other reflexes will advance a leg forward when it is noticed that the leg is raised, and will raise legs under
appropriate conditions. The combination of these sensory measurements and motor signals lead to a
very robust emergent walking behavior in the robot.

We have already pointed out that no sensory control system has been built into our thoughtless

walkers. To the extent that there is control or coordination between different two-legged modules, this is
mediated completely by the transmission of physical forces through the robot structure.

Recent work by researchers on animal locomotion has explored the capabilities of such thought-

less systems. Kubow and Full (1999) simulated a walking cockroach in which there was no feedback
from the equivalent of neural reflexes. The only feedback in the model resulted from the musculoskeletal
properties of the cockroach legs that were included in the simulation. When walking was simulated, and
the forward movement of the model was perturbed by external forces, the model was self-stabilizing. De-
pending on the type of perturbation, the model was able to recover in one or more steps. “Essentially,
control algorithms can be embedded in the form of the model itself. Control results from information be-
ing transmitted through mechanical arrangements. Perturbations change the translation and/or rotation of
the body that consequently provide ‘mechanical feedback’ by altering legged moment arms” (p. 858).
This is exactly the kind of coordination that we encountered when examining the conditions under which
our robots were able to walk.

6.5.2.3 Limitations And Future Explorations

 - 49 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Animal walking can be very complicated. Locomotion is required to accomplish many different
goals, and each goal might be achieved by a completely different gait in the same animal. A cockroach
that walks slowly coordinates six legs in a fashion similar to the six leg and robot described earlier; when
fleeing at a speed of fifty body lengths per second the same cockroach runs on only two legs (Full & Tu,
1991). The ecological roles of different types of locomotion are also reflected in the structure and function
of different anatomical parts. “Forty percent of the body mass of the shrimp is devoted to the large, tasty
abdominal muscles that produce a powerful tale flick during rare, but critical, escape behaviors” (Dickin-
son et al., 2000, p. 102). Animals who move in the real world are subject to a bewildering variety of dif-
ferent forces. All of these factors contribute to the view that animal locomotion requires the integration of
multiple sensory, motor, and control systems.

In comparison to biological systems, the thoughtless walkers described in this chapter are very

simple. They are only designed to step forward. They cannot turn, change gait to achieve different goals,
or manipulate step size to deal with encountered obstacles. They do not have any neural or sensory con-
trol systems. Nevertheless, we have seen that even these exceedingly simple toy robots have many in-
teresting emergent properties that are relevant to the scientific study of animal locomotion. They illustrate
one of the main reasons that there is a growing interest in the synthetic approach: very simple compo-
nents can be used to build systems that generate a far richer set of properties than could have been pre-
dicted at the outset.

6.6 ISSUES CONCERNING SYNTHETIC PSYCHOLOGY

In this chapter, I have proposed a general approach for conducting synthetic psychology. This

approach can be represented with the acronym SEA that stands for synthesis, emergence and analysis.
In the first stage, a researcher will build a working system from known components. In the second stage,
a researcher will observe the actions of this system, looking for emergent phenomena. In the third stage,
a researcher will perform an analysis of the working system in an attempt to explain the emergent phe-
nomena by appealing to properties of the system, its environment, or the interaction between them. A
simplified example of this approach was illustrated by the construction, observation, and analysis of walk-
ing robots built from K’NEX parts.

The simplified nature of this example can be used to raise, but not adequately deal with, a few is-

sues related to the synthetic approach. Let us briefly mention these issues, and then confront them in
more detail in subsequent chapters.

One issue concerns the sequential nature of applying the steps in SEA. As portrayed in this

chapter, each step is done independently of the other, and there is a definite sequence of steps to be car-
ried out. This portrayal does not do justice to the problem-solving practices of my robot-building students,
and does not completely reflect how synthetic psychology is conducted in practice. In particular, in build-
ing the robots the students moved back and forth between synthesis, emergence, and analysis. They
would attempt to solve a problem in one fashion, observe the system to see if the problem was solved,
and if the problem remained, then they would analyze the situation to see if they could come up with an
alternative solution.

A second issue concerns the advantages of the synthetic approach. While this chapter has at-

tempted to illustrate how one might conduct a synthetic research program, it hasn’t made a strong case
for why this program would be conducted. Chapter 7 addresses this issue with an historical overview of
the synthetic reaction against analytic research. It will make the argument that the synthetic approach
does have many advantages. But it will also make the argument – hinted at by the final component of
SEA – that synthetic research cannot be performed without also performing analysis.

A third issue concerns the domain of “synthetic psychology” and its relation to embodied cognitive

science, including the reaction against the sense-think-act cycle. While the robots described in this chap-
ter have given an example of viewing walking synthetically, they certainly do not qualify as being psycho-
logical models. The rejection of the sense-think-act cycle is explicit in their thoughtless nature. But how
can such models be psychological? In Chapter 8, I am going to make a stronger argument that the syn-

 - 50 -

Minds And Machines © M.R.W. Dawson 12/02/2016

thetic approach can be conducted without rejecting the sense-think-act cycle. My position is that synthet-
ic models that have representational properties are the true products of synthetic psychology.

 - 51 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Chapter 7: Uphill Analysis, Downhill
Synthesis?

7.1 INTRODUCTION

The previous chapter used the construction, observation, and analysis of toy robots to provide a

concrete example of the three basic steps that are required in synthetic psychology. The first step is the
synthesis of a working system from a set of architectural components. The second step is the study of
this system at work, looking in particular for emergent properties. The third step is the analysis of these
properties, with the goal of explaining their origin. This general approach was given the acronym SEA, for
synthesis, emergence, and analysis.

The demonstration project that was presented in Chapter 6 provides a concrete example of these

three basic steps, but is not by its very nature a particularly good example of synthetic psychology. In
terms of advancing our introduction of synthetic psychology, the “thoughtless walkers” that we discussed
at best raise some important issues that need to be addressed in more detail. These issues were men-
tioned near the end of Chapter 6.

The purpose of the current chapter is to go beyond our toy robots to consider two related issues

in more detail. First, we are going to be concerned with the attraction of the synthetic approach. Why
might a researcher choose it instead of adopting the more common analytic approach? Second, we are
going to consider claims about the kind of theory that the synthetic approach will produce. Specifically,
one putative attraction of the synthetic approach is that theories that emerge from synthetic research are
considerably less complex than those that are generated from analytic research. The theme of this chap-
ter will be that the synthetic approach does offer an attractive perspective for explaining complex behav-
iors. However, it is not an approach that necessarily produces theories that are simpler than those that
come from analytic research. Indeed, synthetic research depends heavily upon analysis if its goal is to
explain, and not merely produce, emergent phenomena.

This chapter adopts an historical context to explore these issues concerning the relationship be-

tween synthetic and analytic traditions. Starting from an example from early research in cybernetics, the
chapter will introduce some of the pioneering work on autonomous robots from the early 1950s. Then,
the chapter will briefly describe a rebirth – of sorts – of this work in the early 1980s. In reviewing this re-
search, we will see several examples of simple devices that produce behavior that is both intricate and
interesting. But we will also become aware that even the researchers who constructed these devices did
not have an easy task in explaining their performance.

7.2 FROM HOMEOSTATS TO TORTOISES

In the early stages of the Second World War, it was realized that advances in aviation technology

needed to be met in kind by advances in anti-aircraft artillery. Specifically, the speed and maneuverability
of German aircraft were such that classical methods of aiming this artillery were obsolete. New tech-
niques for aiming – techniques that were capable of predicting the future position of a targeted plane, and
sending a projectile to this predicted position – had to be developed, and had to be built right into artillery
controlling mechanisms (Wiener, 1948).

One of the scientists who worked on this applied problem was Norbert Wiener (b. 1894, d. 1964),

who had received his PhD in mathematical philosophy from Harvard when he was only 18, studied at
Cambridge under Russell, and eventually became a professor in the mathematics department at MIT.
Wiener realized that feedback was a key factor in designing a mechanism for aiming anti-aircraft artillery.
For example, “when we desire a motion to follow a given pattern the difference between this pattern and
the actually performed motion is used as a new input to cause the part regulated to move in such a way
as to bring its motion closer to that given by the pattern” (Wiener, 1948, p. 6). Wiener also realized that

 - 52 -

Minds And Machines © M.R.W. Dawson 12/02/2016

processes like feedback were central to a core of problems involving communication, control, and statisti-
cal mechanics. He provided a unifying mathematical framework for studying these problems, and this
framework defined a new discipline that Wiener called cybernetics, which was derived from the Greek
word for “steersman” or “governor”. “In choosing this term, we wish to recognize that the first significant
paper on feedback mechanisms is an article on governors, which was published by Clerk Maxwell in
1868” (p. 11).

7.2.1 Feedback And Machines

A more definite understanding of feedback, and its relationship to synthetic psychology, begins

with a very general definition of a machine (Ashby, 1956). William Ross Ashby (b. 1903, d. 1972) was
one of the pioneering figures for the field of cybernetics, and was director of research at Barnwood House
Hospital in Gloucester, and later was the director of the Burden Neurological Institute in the Department
of Electrical Engineering at the University of Illinois, Urbana. For Ashby, a machine is simply a device
which, when given a particular input, generates a corresponding output. In other words, a machine is a
device that performs a transformation of an input signal to an output response. Figure 7-1b illustrates this
simple and general definition of a machine.

When a machine is defined in this way, then one can

easily imagine a situation in which two machines are coupled to-
gether. In the simplest case, this is accomplished by having the
output of one machine serve as the input to a second machine.
With this kind of coupling, the behavior of the second machine is
completely determined by the behavior of the first machine. For
example, in Figure 7-1a the behavior of machine M2 is com-
pletely determined by the behavior of machine M1. This
means that considering the machines separately does not real- ly
provide any additional insight into the function that transforms the
input into the output. We could replace the two machines with a
single machine (M3) that maintained the same input/output la-
tionship, as is shown in Figure 7-1b. We saw this kind of rela-
tionship earlier in the book when we discussed the linear na- ture
of regression equations, and noted that the behavior of the en-
tire regression equation was exactly equal to the sum of its
parts.

A more complicated relationship between machines occurs with a different kind of coupling. The

straightforward behavior of the two machines in Figure 7-1 occurred because the inputs of machine M1
were independent of the outputs of machine M2. If the output of M2 is fed backwards to serve as the new
input to M1, then much more complicated behavior will result. At one level of description, the “mechanical
feedback” that was described in our analyses of the thoughtless walkers in Chapter 6 is of this type: the
forces generated by the robot (machine M1) are transmitted to the surface (M2), which in turn transmits
forces back to the robot.

Descriptions of feedback need not be limited to pairs of

machines. Many more machines may be coupled together to cre-
ate a more complicated system. Of particular interest to Ashby was a
system of four different machines coupled together with feed- back,
as is shown in Figure 7-2. To foreshadow observations that we
will be making later in this chapter about whether synthetic theo-
ries are simple or not, Ashby (1956, p. 54) makes the following ob-
servation about a system of this complexity: “When there are only
two parts joined so that each affects the other, the properties of the
feedback give important and useful information about the prop- prop-
erties of the whole. But when the parts rise to even as few as four,
if every one affects the other three, then twenty circuits can be

Figure 7-1. Simple
coupling of two machines.

Figure 7-2. The
double-headed arrows in-
dicate mutual feedback

relationships in a system
of four different machines.

 - 53 -

Minds And Machines © M.R.W. Dawson 12/02/2016

traced through them; and knowing the properties of all the twenty circuits does not give complete infor-
mation about the system.”

7.3.1 Ashby’s Homeostat

Imagine if a researcher was interested in studying a system like the one illustrated in Figure 7-2.

If understanding its twenty component circuits cannot provide complete information about the system,
then how should the research proceed? Ashby (1960) provided a decidedly synthetic answer to this
question by constructing an interesting system that he called the homeostat to study the properties of
feedback amongst four mutually coupled machines.

7.3.1.1 Basic Design

The homeostat was a system of four identical components. The input to each component was an

electrical current, and the output of each component was also an electrical current. The purpose of each
component was to transform the input current into the output current. This was accomplished by using
the input current to change the position of a pivoted magnet mounted on the top of the component. In
essence, each magnet could rotate a needle back and forth. The needle was connected to a wire that
was dipped into a trough of water through which another constant electric current was passed. With this
physical arrangement, it was possible for the component to output an electrical current that was approxi-
mately proportional to the needle’s deviation from its central position. All things being equal, a large cur-
rent that was input to the component would cause a large deflection of the magnet (and needle), which in
turn would result in a proportionately large current being output from the component.

The four units were coupled together to create a system of the type that was drawn in Figure 7-2.

Specifically, the electrical current that was input to one unit was the sum of the electrical currents that was
output by each of the other three units, after each of these three currents was passed through a potenti-
ometer. The purpose of the potentiometer was to determine what fraction of an input current would be
passed on to deflect the magnet, and thus each potentiometer was analogous to a connection weight in a
PDP network. The result of this interconnectedness was a dynamic system that was subject to a great
deal of feedback. “As soon as the system is switched on, the magnets are moved by the currents from
the other units, but these movements change the currents, which modify the movements, and so on”
(Ashby, 1960, p. 102).

In order to dictate the influence of one unit upon another in the homeostat, one could set the re-

sistance value of each potentiometer by hand. However, Ashby (1960) used a different approach to allow
the homeostat to automatically manipulate its potentiometers. Each unit was equipped with 25-valued
uniselector or stepping switch. Each value that was entered in the uniselector was a potentiometer set-
ting that was assigned randomly. A unit’s uniselector was driven by the unit’s output via the deflected
needle. If the output current was below a pre-determined threshold level, the uniselector did not activate,
and the potentiometer value was unchanged. However, if the output current exceeded the threshold, the
uniselector activated, and advanced to change the potentiometer’s setting to the next stored random re-
sistance. With four units, and a 25-valued uniselector in each, there were 390,625 different combinations
of potentiometer settings that could be explored by the device.

In general, then, the homeostat was a device that monitored its own internal stability (i.e., the

amount of current being generated by each of its four component devices). If subjected to external forc-
es, such as an experimenter moving one of its four needles by hand, then this internal stability was dis-
rupted and the homeostat was moved into a higher energy, less stable state. When this happened, the
homeostat would modify the internal connections between its component units by advancing one or more
of its uniselectors to modify its potentiometer settings. The modified potentiometer settings enabled the
homeostat to return to a low energy, stable state. The homeostat was “like a fireside cat or dog which
only stirs when disturbed, and then methodically finds a comfortable position and goes to sleep again”
(Grey Walter, 1963, p. 123).

 - 54 -

Minds And Machines © M.R.W. Dawson 12/02/2016

7.3.1.2 Behavior Of The Homeostat

Ashby (1960) tested the homeostat was tested by placing some of its components under his di-

rect control, manipulating these components, and observing the changes in the system as a whole. For
example, in a simple situation only two of the four components might be tested. In this kind of study, the
feedback being studied was of the type M1 M2. The relation M1 M2 could be placed under the con-
trol of the experimenter by manipulating the potentiometer of M1 by hand instead of using its uniselector.
The reverse relationship M2 M1 was placed under machine control by allowing the uniselector of M2 to
control its potentiometer. After starting up the homeostat and allowing it to stabilize, Ashby manipulated
M1 to produce instability. The result was one or more advances by the uniselector of M2, which resulted
in stability being re-attained.

Even with this fairly simple pattern of feedback amongst four component devices, many surprising

emergent behaviors were observed. For example, in one interesting study Ashby (1960) demonstrated
that the system was capable of a simple kind of learning. In this experiment, it was decided that one ma-
chine (M3) was to be controlled by the experimenter as a method of “punishing” the homeostat for an in-
correct response. In particular, if M1’s needle was forced by hand to move in one direction, and the ho-
meostat did not respond by moving the needle of M2 to move in the opposite direction, then the experi-
menter would force the needle of M3 into an extreme position to introduce instability. On the first trial of
this study, when the needle of M1 was moved, the needle of M2 moved in the same direction. The home-
ostat was then punished, and uniselector-driven changes ensued. On the next trial, the same behavior
was observed and punished; several more uniselector-driven changes ensued. After these changes had
occurred, movement of M1’s needle resulted in the needle of M2 moving in the desired direction – the ho-
meostat had learned the correct response. “In general, then, we may identify the behavior of the animal
in ‘training’ with that of the ultrastable system adapting to another system of fixed characteristics. Ashby
went on to demonstrate that the homeostat was also capable of adapting to two different environments
that were alternated.

7.3.1.3 Implications

The homeostat counts, perhaps, as one of the earliest examples of the synthetic approach in ac-

tion. It was a fairly simple analog device, constructed from well-understood component machines. It was
wired up in such a way that complex feedback could be established among these components, and was
used to study the dynamic processes that resulted. It had the advantage of permitting these processes to
be studied at a time when a mathematical account of the device was not well established, and also at a
time when computer simulations of this kind of feedback were not really possible. It demonstrated emer-
gent behaviors, including interesting kinds of learning. Ashby (1960) was quite interested in drawing par-
allels between the behaviors of the homeostat and behaviors of the nervous system and entire organ-
isms, although he was also aware of many limitations in his machine.

The interesting behavior of the homeostat arises from two general sources. The first is the rich

possibilities of interactions between machines, as defined by the feedback relationships that were wired
into the device. The second comes from the relatively large number of internal states that could be
adopted by the machine when its uniselectors were used to modify potentiometer settings.

As a prelude to one theme that will be developed in more detail later in this chapter, the large

number of different internal states that are available to a working homeostat provides the machine with
many degrees of freedom with which to produce a low energy state. However, these same degrees of
freedom make it difficult for the experimenter to explain the specific mechanisms that the homeostat uses
to achieve this state. “A very curious and impressive fact about it, however, is that, although the machine
is man-made, the experimenter cannot tell at any moment exactly what the machine’s circuit is without
‘killing’ it and dissecting out the ‘nervous system’ – that is, switching off the current and tracing out the
wires to the relays” (Grey Walter, 1963, p. 124). In other words, it is much easier to produce interesting
behavior in the homeostat than it is to explain this behavior.

 - 55 -

Minds And Machines © M.R.W. Dawson 12/02/2016

7.3.2 Grey Walter’s Tortoises

Ashby’s (1960) homeostat could be interpreted as supporting the claim that the complexity of the

behavior of whole organisms largely emerges from a) a large number of internal components and from b)
the interactions between these components. In the late 1940s, William Grey Walter (b. 1910, d. 1977)
built some of the first autonomous robots to investigate a counter-claim (Grey Walter, 1950, 1951, 1963).
His research program “held promise of demonstrating, or at least testing the validity of, the theory that
multiplicity of units is not so much responsible for the elaboration of cerebral functions, as the richness of
their interconnection” (Grey Walter, 1963, p. 125). His goal was to use a very small number of compo-
nents to create robots that generated much more life-like behavior than that exhibited by Ashby’s homeo-
stat. Grey Walter was a neurophysiologist who conducted pure and applied research at a variety of Lon-
don hospitals from 1935 to 1939, and at the Burden Neurological Institute in Bristol from 1939 to 1970.
While our interest in his research is with his robotics work, he was also a pioneer in the use of the elec-
troencephalogram, and was the discoverer of theta and delta waves. His EEG research and his robotics
work are both described in his 1963 text The Living Brain.

7.3.2.1 Basic Design

Grey Walter (1963) whimsically gave his autonomous robots the biological classification Machina

speculatrix because of their propensity to explore the environment. (He gave Ashby’s (1960) homeostat
the classification Machina sopora, pointing out that if it were to be judged “entirely by its behavior, the
naturalist would classify it as a plant” (p. 124).) Because of their appearance, his robots were more gen-
erally called tortoises. A very small number of components (two miniature tubes, two relays, two conden-
sers, two motors, and two batteries) were used to create two sense reflexes. One reflex altered the be-
havior of the tortoise in response to light. The other reflex altered the behavior of the tortoise in response
to touch.

At a general level, a tortoise was a small, autonomous motorized tricycle. One motor was used to

rotate the two rear wheels forward. The other motor was used to steer the front wheel. The behavior of
these two motors was under the control of two different sensing devices. The first was a photoelectric cell
that was mounted on the front of the steering column, and which always pointed in the direction that the
front wheel pointed. The other was an electrical contact that served as a touch sensor. This contact was
closed whenever the transparent shell that surrounded the rest of the robot encountered an obstacle.

Of a tortoise’s two reflexes, the light-sensitive one was the more complex. In conditions of low

light or darkness, the machine was wired in such a way that its rear motor would propel the robot forward
while the steering motor slowly turned the front wheel. As a result, the machine could be described as
exploring its environment. The purpose of this exploration was to detect light -- when moderate light was
detected by the photoelectric cell, the steering motor stopped. As a result, the robot moved forward, ap-
proaching the source of the light. However, if the light source were too bright, then the steering motor
would be turned on again at twice the speed that was used during the robot’s exploration of the environ-
ment. As a result, “the creature abruptly sheers away and seeks a more gentle climate. If there is a sin-
gle light source, the machine circles around it in a complex path of advance and withdrawal” (Grey Wal-
ter, 1950, p. 44).

The touch reflex that was built into a tortoise was wired up in such a way that when it was activat-

ed, any signal from the photoelectric cell was ignored. When the tortoise’s shell encountered an obstacle,
an oscillating signal was generated that rhythmically caused both motors to run at full power, turn off, and
to run at full power again. As a result, “all stimuli are ignored and its gait is transformed into a succession
of butts, withdrawals and sidesteps until the interference is either pushed aside or circumvented. The
oscillations persist for about a second after the obstacle has been left behind; during this short memory of
frustration Elmer darts off and gives the danger area a wide berth” (Grey Walter, 1950, p. 45).

7.3.2.2 Behavior

 - 56 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Grey Walter (1950, 1963) built two tortoises, and named them Elsie and Elmer using the initials of
the terms that described them – “Electro Mechanical Robots, Light-Sensitive, with Internal and External
stability.” The question of interest to him was whether the intricate relationships between the small num-
ber of robot components, and the interactions between the robots and their environment, would be suffi-
cient to generate complicated and interesting behaviors. He attempted to answer this question by ob-
serving the actions of the robots, together and separately, in a number of different environments. He
mounted a light source on the robots, and recorded their behavior using time-lapse photography. As a
result, the trajectory of a tortoise was traced out on the photograph by the light. The behavior that he ob-
served was “remarkably unpredictable” (1950, p. 44).

For example, at the start of one experiment, the light was hidden from view by an obstacle. As a

result, Elsie began with its exploratory motion. As a result of this exploration, Elsie collided with the ob-
stacle, which produced the avoidance behavior. Because of the movements taken to avoid the obstacle,
the robot was able to detect the light. It approached the light, but circled it, because when it came too
close to the light it was too bright, and caused the robot to veer away. “Thus the machine can avoid the
fate of the moth in the candle” (Grey Walter, 1963, p. 128).

In a second experiment, Elsie was placed in an environment in which there were two lights, and
exhibited choice behavior. The robot started by being attracted to one of the two lights, and approached
it. However, when it moved too close to that light, it veered away. As a result of veering away, it detected
the second, “pleasantly” dimmer light, which it approached. Thus, the robot avoided the problem “of Buri-
dan’s ass, which starved to death, as some animals acting trophically in fact do, because two exactly
equal piles of hay were precisely the same distance away” (Grey Walter, 1963, p. 128).

In a third experiment, the robot encountered a mirror, and its behavior was driven by the com-

bined effects of its ability to detect its own reflected (and relatively dim) light source, and of its physical
contact with the mirror. The result was the so-called “mirror dance”. The robot “lingers before a mirror,
flickering, twittering and jigging like a clumsy Narcissus. The behavior of a creature thus engaged with its
own reflection is quite specific, and on a purely empirical basis, if it were observed in an animal, might be
accepted as evidence of some degree of self-awareness” (Grey Walter, 1963, pp. 128-129).

The electric components that were used to create the tortoises themselves led to an interesting

emergent behavior. In particular, the sensitivity to light was dependent upon the degree to which the bat-
tery of a tortoise was charged. When fully charged, a bright light would repel the robot. However, when
its battery was much weaker, the same bright light would attract the robot, because it would be recorded
as being of moderate intensity. This enabled Grey Walter to use lights to control the ability of a tortoise to
recharge itself. A hutch was built; if the robot entered the hutch its battery would be recharged. Inside
the hutch was a light. When a tortoise’s battery began to fail, the robot was attracted by the hutch light,
entered the hutch, and recharged. However, when the battery was fully recharged, the hutch light re-
pelled the robot, so that it left the hutch and began to explore its environment once again.

Grey Walter (1950, 1951, 1963) reported the results of many different kinds of experiments, in-

cluding some that involved a particularly complicated environment because it included two tortoises. He
also designed a later version of the machine, Machina docilis, which was capable of being classically
conditioned. It learned to be attracted to a high-pitched whistle. In general, the results of all of his exper-
iments demonstrated quite clearly that the complexity of the behavior of his robots far exceeded the com-
plexity of the components from which they were constructed.

7.3.2.2 Implications

From where does the complexity of behavior arise? Simon (1996) explored this question with his

famous parable of the ant. He imagined an ant walking along a beach, and that its trajectory along the
beach was traced. This trajectory might be thought of as being a very complicated function; explaining
the behavior of the ant was equivalent to explaining how the many twists and turns of this function arose.
One might be tempted to attribute the properties of this function to fairly complicated internal navigational
processes. Indeed, if one were to adopt an analytic approach, this kind of attribution would be expected.

 - 57 -

Minds And Machines © M.R.W. Dawson 12/02/2016

The trajectory would be taken as raw data, analyzed into key components, and the mechanisms that
generate these key components would be attributed to the ant. However, Simon pointed out that this
would likely lead to an incorrect theory. “Viewed as a geometric figure, the ant’s path is irregular, com-
plex, hard to describe. But its complexity is really a complexity in the surface of the beach, not a com-
plexity in the ant” (p. 51). In other words, fairly simple dispositions of the ant – following the scent of a
pheromone trail, turning in a particular direction when an obstacle is encountered – could lead to a very
complicated trajectory, if the environment being navigated through was complicated enough.

Grey Walter’s tortoises provide a robotic analog to the parable of the ant. The trajectories of their

movements are very complicated. However, this complexity is not reflected in the internal complexity of
the tortoise. The inner workings of Grey Walter’s robots were very simple and straightforward by design.
The complexity in the observed behavior must be rooted in the complexity of the interaction between a
simple robot and its environment. “So a two-element synthetic animal is enough to start with. The
strange richness provided by this particular sort of permutation introduces right away one of the aspects
of animal behavior – and human psychology – which M. speculatrix is designed to illustrate: the uncer-
tainty, randomness, free will or independence so strikingly absent in most well-designed machines” (Grey
Walter, 1950, p. 44). Again, feedback is a key – in this case feedback between the world and the ma-
chine.

Consider this issue from a different perspective, the analytic one that had to be taken by the “kids

in the hallway” who were discussed in Chapter 1. When I introduce synthetic psychology in lectures, I
often use Grey Walter’s tortoises as an introduction. However, when I do this, I describe the performance
of the robots first, presenting images of their movements as behavioral data. Students are asked to infer
the internal mechanisms of the machines on the basis of these images. Invariably, after analyzing the
data that I have presented to them, they propose a far more complicated theory – one that involves many
more internal properties – than is actually required. This is exactly the same situation that was observed
in our Chapter 1 examples. It would appear that psychology students – and psychologists – have a
strong tendency to ignore the parable of the ant, and prefer to locate the source of complicated behavior
within the organism, and not within its environment.

Pfeifer and Scheier (1999) call this the frame-of-reference problem. “We have to distinguish be-

tween the perspective of an observer looking at an agent and the perspective of the agent itself. In par-
ticular, descriptions of behavior from an observer’s perspective must not be taken as the internal mecha-
nisms underlying the described behavior” (p. 112). This is because Pfeifer and Scheier believe that the
behavior of a system cannot be explained by only appealing to internal mechanisms; an agent’s behavior
is always presumed by them to be the result of a system-environment interaction. “The complexity we
observe in a particular behavior does not always indicate accurately the complexity of the underlying
mechanisms.”

Here we see one of the strong appeals of adopting the synthetic approach. By building a system

and taking advantage of nonlinear interactions (such as feedback between components, and between a
system and its environment), relatively simple systems can surprise us, and generate far more complicat-
ed behavior than we might expect. By itself, this demonstrates the reality of the frame-of-reference prob-
lem. However, the further appeal of the synthetic approach comes from the belief that if we have con-
structed the simple system, then we should be in a very good position to propose a simpler explanation of
the complicated behavior. In particular, we should be in a better position than would be the case if we
started with the behavior, and attempted to analyze it in order to understand the workings an agent’s in-
ternal mechanisms. Later in this chapter I will argue that while this perspective is appealing, it is also very
deceptive and dangerous.

7.4 VEHICLES

Surprisingly and disappointingly, Grey Walter’s tortoises appear to have had a very short-lived

academic impact, and had essentially disappeared from the scene by the end of the 1950s. To my mind,
one of the most striking examples of the disappearance of the tortoises is that Grey Walter’s research
was not cited in the book that provides the renaissance of his theoretical perspective. In Vehicles, Valen-

 - 58 -

Minds And Machines © M.R.W. Dawson 12/02/2016

tino Braitenberg proposed a series of 14 different thought experiments (Braitenberg, 1984). Each of
these experiments involved conceptualizing a fairly simple machine, and considering how that machine
might behave in different environments. Some of these machines are reminiscent of Elmer and Elsie. As
Braitenberg’s book progresses, the hypothetical machines become more sophisticated, as does their
consequent behavior. One of the main themes of the book is one that is familiar from the current chapter:
simple machines can generate far more complicated behavior than one might expect. A second theme
pursued by Braitenberg is that his synthetic approach will lead to simpler explanations than those that
would be attained if vehicle behaviors were approached analytically.

7.4.1 Braitenberg’s General Approach

Valentino Braitenberg (b. 1926) is the emeritus director of the Max Planck Institute of Biological

Cybernetics, an emeritus professor at the Institute of Medical Psychology and Behavioral Neurobiology of
the Eberhard-Karls-University in Tübingen, Germany, and is the director of the cognitive science laborato-
ry at the University of Trento in Italy. Braitenberg is a leading researcher in cybernetics and neurosci-
ence, and the thought experiments that he presents in Vehicles are an attempt to understand some of the
characteristics of the brain by adopting the synthetic approach. The final chapter of the book “sketch a
few facts about animal brains that have inspired some of the properties of our vehicles, and their behavior
will then seem less gratuitous than it may have seemed up to this point” (Braitenberg, 1984, p. 95). In
general, Braitenberg takes an anatomical property of interest, reduces it to a very simple form, and con-
siders the behavior of a simple machine that incorporates it.

In this section, we will briefly explore Braitenberg’s (1984) approach by considering a couple of

the devices that he proposed. After we have introduced some of these machines, we will be in a better
position to seriously consider some of the pros and cons of adopting a synthetic research strategy.

7.4.2 Some Example Vehicles

7.4.2.1 Vehicle 1: Getting Around

Braitenberg (1984) constructed a deliberate evolutionary sequence that is traced from his early
vehicles to the later ones. His early machines are very simple, and are easily thought of as organisms
that swim around in water. The later, more sophisticated devices are better thought of as “little carts mov-
ing on hard surfaces” (p. 2).

His simplest vehicle is a swimming device that is best thought of as a cylinder or torpedo, with a

sensor at one end (the front) and a motor at the other. The foundational design principle for this vehicle is
the proportional relationship between the response of the sensor and the speed of the motor. As the
sensor detects more of whatever quality it is designed to detect, the motor increases its speed. As the
sensor detects less of this quality, the motor slows down. Under the assumption that this vehicle is mov-
ing in the real world, it will become under the influence of asymmetrical frictional influences. As a result, it
will not travel in a perfectly straight line, but will instead follow a complicated trajectory that is both difficult
to predict and to explain.

From the synthetic perspective used to create this vehicle, its overall behavior is very under-

standable. However, if faced with analyzing the behavior of the vehicle in the absence of any knowledge
about its internal structure, it is likely to be very complicated. On observing this machine, “it is restless,
you would say, and does not like warm water. But it is quite stupid, since it is not able to turn back to the
nice cold spot it overshot in its restlessness. Anyway, you would say, it is ALIVE, since you have never
seen a particle of dead matter move around quite like that” (Braitenberg, 1984, p.5).

7.4.2.2 More Advanced Vehicles

The next set of vehicles proposed by Braitenberg (1984) are similar in spirit to Vehicle 1 in that
they can be viewed as swimming devices propelled by motors whose speed is determined by the output
of sensors. However, for these devices, there are two motors, one on each side at the back of the vehi-

 - 59 -

Minds And Machines © M.R.W. Dawson 12/02/2016

cle. Each sensor drives its own motor. The two sensors are mounted on each side at the front of the ve-
hicle. Of interest is the anatomy of the connections between motors.

For instance, one vehicle might have excitatory connections (i.e., the same kind of sensor-motor

relationship described for Vehicle 1) between the sensor and the motor on the same side of the vehicle.
If the signal source being detected by the sensors is straight ahead of this vehicle, both motors will run at
equal speeds, and the vehicle will run into the source. However, if the source is to one side, then the
sensor nearer to the source will detect a stronger signal than will the sensor further from the source. As a
result, the two motors will run at different speeds, causing the vehicle to turn away from the source.
Braitenberg (1984) describes this vehicle as DISLIKING sources, becoming “restless in their vicinity and
tends to avoid them, escaping until it safely reaches a place where the influence of the source is scarcely
felt” (p. 9).

One could take the vehicle just described and cross its connections, so that the sensor on the

right drives the motor on the left, and the sensor on the left drives the motor on the right. With these
crossed connections, the sensor nearest the source drives the motor on the other side faster than the
other sensor will drive the motor nearer the source. If the source is directly in front of the source, the ve-
hicle will drive through it, as was the case for the previous vehicle. However, if the source is to one side
of it, then the vehicle will turn towards the source instead of away from it. Braitenberg (1984) designates
this vehicle as being AGGRESSIVE: “it, too, is excited by the presence of sources, but resolutely turns
toward them and hits them with high velocity, as if it wanted to destroy them.”

One common approach to studying the two types of vehicles that have just been described is to

actually construct them, for instance using Lego Mindstorms or Lego Dacta components. The advantage
of doing this is that their behavior is removed from the idealized domain of the thought experiment, and
becomes subject to real-world influences. These influences include differential forces of friction on differ-
ent robot parts, and the fact that no two presumably identical robot components will work in exactly the
same way. “This means that it is usually more difficult than it seems to get a consistent and reliable au-
tomatic response to a stimulus” (Webb, 1996, p. 94). If the goal is to design a robot that will move in a
straight line, then this is a serious problem. However, if the goal is to produce complex behavior from a
simple system, then these vagaries of the environment become advantages. By adopting the synthetic
approach “what seems like complex behavior in a robot can come from a surprisingly uncomplicated con-
trol algorithm” (p. 95).

The robots that were briefly described as being observed by the “kids in the hallway” in Chapter 1

were versions of the Braitenberg vehicles described in this subsection. These Lego Dacta machines
were constructed and programmed by my daughter Michele and myself. Each robot used one motor to
drive one rear wheel, and the speed of rotation of the wheel depended upon the output of a light sensor.
In one robot, the connections between sensors and motors were crossed, in the other they were not.
Videos of the behaviors of these robots are available at the website of supplementary material for this
book (www.bcp.psych.ualberta.ca/~mike/Book2/).

Braitenberg (1984) goes on to consider minor advances in the design of this kind of vehicle. For

instance, the sensors might be tuned to be maximally sensitive to a particular range of signal from a
source. When this is done, with crossed connections, the behavior of the vehicle mimics the photo-
tropism exhibited by Grey Walter’s tortoises. The connections between sensors and motors can be made
inhibitory, so that a motor slows down when the sensor detects more of the signal. Motors can be driven
by more than one sensor, each sensitive to a different kind of signal. In theory, one such vehicle would
be straightforward to build, but would exhibit extremely complex behavior: “It dislikes high temperature,
turns away from hot places, and at the same time seems to dislike light bulbs with even greater passion,
since it turns toward them and destroys them” (p. 12). Again we see that producing emergent properties
– where the whole of a system’s performance far exceeds the sum of its simple parts – are one of the key
goals of the synthetic approach.

7.4.2.3 Vehicle 6: Selection, The Impersonal Engineer

 - 60 -

Minds And Machines © M.R.W. Dawson 12/02/2016

When Braitenberg (1984) vehicles emerge from the sea to occupy the land, evolutionary ideas
take a decidedly different role in his book. Braitenberg imagines a collection of vehicles, all operating on
a table, a table that is surrounded by spare parts. A team of researchers also surrounds the table, and
the goal of this team is to build new vehicles. The way that this process works is that a researcher takes
one of the vehicles from the table, and uses it as a model for the creation of a copy from spare parts.
Then both the original and the copy are placed back on the table.

A further twist to this thought experiment is the notion that the copies are being made in a hurry,

and therefore the builders don’t have much time to check their work, or to test the adequacy of each copy.
As a result, some of the copies that are placed back on the table will not be identical to the original that
was used as a model. Many of these copies will be defective, and will therefore fall off the table to be
used as parts for later generations of copies. “But it is also possible that we will unwittingly introduce a
particularly shrewd variation into the pattern of connections, so that our copy will survive forever while the
original may turn out to be unfit for survival after all” (Braitenberg, 1984, p. 27). Braitenberg argues that
this is particularly likely if one vehicle is picked up and used as a model for one vehicle component, and a
different vehicle is picked up and used as a model for a different vehicle component when the copy is be-
ing constructed. Of course, if the lucky mutation results in a longer life span for the copy, then this vehicle
will be more likely to be picked up and used as the model for later generation systems.

7.4.2.4 Further Sophistications

Braitenberg (1984) proposes several additional modifications, and describes how they can be
used to develop more advanced vehicles. Some of these vehicles have spatially organized sensors that
permit them to detect the shapes of objects. Others have simple connectionist networks that enable them
to learn from experience. Still others have feedback loops that enable them to predict the future.

All of these sophistications have two things in common. First, they are all made possible through

the use of fairly straightforward materials and engineering. Second, when they are components of vehi-
cles that are placed in interesting environments, extremely complicated behaviors can emerge. “It is
pleasurable and easy to create little machines that do certain tricks. It is also quite easy to observe the full
repertoire of behavior of these machines -- even if it goes beyond what we had originally planned, as it
often does.”

7.5 SYNTHESIS AND EMERGENCE: SOME MODERN EXAMPLES

The historical examples that have been considered thus far in the chapter all point to two underly-

ing themes. First, it is definitely possible to construct informative models by building complete systems
from some set of assumed components, without the need of basing the model on extensive analyses of
existing data. In other words, if one looks back at the previous examples, then one striking feature that
should be noted is that neither the homeostat, the tortoises, nor the vehicles were models that were in-
tended to fit extant behavior. Second, when this synthetic approach is taken, it is almost always the case
that interactions between system components, and between these components and a complex environ-
ment, can produce surprising and interesting emergent behavior that usually exceeds the expectations of
the system designer.

The research that has been reviewed above has inspired a great many modern research pro-

grams. In order to reinforce these two themes, let us take a moment to briefly review three more modern
examples of complex behavior emerging (often unintentionally) from relatively simple systems that have
been created via the synthetic approach.

7.5.1 NETtalk

DECtalk is a program for converting text into audible speech (Hallahan, 1996), and is widely

viewed as the best commercially available product for this task. DECtalk consists of eight different pro-
cessing “threads”, each of which is concerned with a major stage of processing, ranging from buffering
text in an input memory to generating audio via a computer’s sound hardware. It does this by following a

 - 61 -

Minds And Machines © M.R.W. Dawson 12/02/2016

two-stage process. Of particular interest in the context of the current chapter is the letter-to-sound (LTS)
thread that converts sequences of ASCII text into sequences of phonemes. First, the LTS thread sepa-
rates the text stream into clauses, and normalizes the text by applying special processing rules to idio-
syncratic text entries (numbers, abbreviations, and so on). Second, the remaining unprocessed test
items are converted into phonemes in one of two ways. First, a word is looked up to see if it exists in a
pronunciation dictionary of common words. (If this first lookup fails, the word will be tested for an English
suffix. If the suffix is found, it will be removed, and the remaining word stem will be looked up in the dic-
tionary again.) Second, if the word is not found in that dictionary, then it is converted into speech by ap-
plying a set of phonological rules that decompose the text into a sequence of morphemes. The phonolog-
ical representation of the text that is generated by this two-stage process is then converted into audible
speech by applying a set of transition rules to it, and then applying digital speech synthesis. During this
stage of processing, the LTS thread will identify syllables in the morpheme sequences, and mark some of
them for additional stress to make the ultimate speech output as natural sounding as possible. Also, the
LTS thread will identify the context in which a particular phoneme is found (i.e., surrounding phonemes).
This is because the pronunciation of some speech sounds will change as a function of context. The LTS
thread has a series of rules that instantiate these context-dependent alterations.

While DECtalk exhibits outstanding performance, this is accomplished with considerable cost.

Hallahan (1996) notes that the program is the product of over 30 man-years of development, and consists
of around 160,000 lines of code. This large amount of code is required because there is a considerable
amount of specific knowledge that is built into the program. For instance, the LTS thread alone has more
than 1,500 rules of pronunciation. Even with this large number of rules, it still requires a dictionary of ex-
ceptional words that has over 15,000 entries. On older hardware, running DECtalk at settings that pro-
duced medium quality output resulted in its using 69% of a CPU’s processing resources. Producing the
highest quality output consumed 89% of the CPU’s resources. DECtalk has only become more portable
recently because of advances in CPU design.

NETtalk is a connectionist network that was intended to replace much of the LTS thread in

DECtalk. Rather than handcrafting a large number of rules, and a dictionary of exceptional words,
NETtalk was intended to be a fairly small program that learned to convert text into speech (Sejnowski &
Rosenberg, 1988). The network had 7 groups of 29 input units per group to represent text, 80 hidden
units, and 26 output units that represented phonemes for a total of 309 units and 18,629 weighted con-
nections. Text was moved through an input “window”, so that the network was trained to pronounce the
text in the middle of the “window”, while at the same time being aware of the text’s context (i.e., the text
on either side of the “window”, which had either just been pronounced or was to be pronounced next).
The network was trained on two different texts. One was phonetic transcription from the informal speech
of a child. The other was a set of over 20,000 different words from a dictionary. Training was accom-
plished using the generalized delta rule that will be discussed in detail in Chapter 11. By the time the
network had learned about 5000 words, its performance was nearly perfect, and its performance general-
ized quite well to words that it had not seen previously. Interestingly, the network was able to perform at
this high level without requiring a large separate lookup table as is used in DECtalk.

NETtalk was explicitly designed to exhibit some of the functionality of DECtalk. It was not intend-

ed to have any implications at all for psychology or cognitive science. However, during training, NETtalk’s
output was channeled into audio hardware. Sejnowski and Rosenberg (1988) noted, “during the early
stages of learning in NETtalk, the sounds produced by the network are uncannily similar to early speech
sounds in children” (p. 670). They use this surprising finding to hypothesize that NETtalk might have dis-
covered representations that are particularly efficient for use by a parallel networks, and that these repre-
sentations may be similar to those employed by humans. They go on to suggest that the developmental
regularities that have been observed in NETtalk and other networks (e.g., Elman et al., 1996; Rumelhart
& McClelland, 1986) “may be a general property of incremental learning in networks with distributed rep-
resentations” (p. 672). In other words, even though NETtalk was only intended as a particular feat of en-
gineering, its surprising emergent behavior suggested that it might shed light on some topics of psycho-
logical interest.

 - 62 -

Minds And Machines © M.R.W. Dawson 12/02/2016

7.5.2 Cricket Phonotaxis

A second example comes from the study of cricket phonotaxis. This section briefly reviews the

central points of Webb’s synthetic study of this phenomenon (Webb, 1996).

Phonotaxis, the ability to identify a particular sound and move towards it, is fundamental to a fe-

male cricket’s choosing of a mate. A male cricket will generate a song as a series of syllables produced
at a specific frequency and with a specific rhythm. A female cricket can use these properties to isolate
the song of a male cricket of her own species from any other sound. After selecting the song, the female
cricket will move towards the male producing it, even under conditions in which other males of the same
species are chirping at the same time. The mechanisms underlying cricket phonotaxis are not yet com-
pletely understood.

Sounds from the world provide external stimulation to a cricket’s eardrums, which are mounted on

its forelegs. Sound also travels inside the cricket’s body to the ears through a tracheal tube that connects
the two ears to each other and to openings on the cricket’s body called spinnacles. These internal and
external sounds travel different distances, and therefore arrive at the same ear at different times, resulting
in their being out of phase. The amount of phase shift depends upon the direction of the sound source.
In general, the cricket’s eardrum that is closer to the sound source will have higher amplitude of vibration.

What mechanisms are responsible for converting differences between eardrum vibration ampli-

tudes into movements in the direction of the detected sound? Each eardrum stimulates a neuron that
encodes amplitude. The larger the amplitude, the higher will be the spike train frequency of the neuron,
and the sooner will it start to respond.

There are two theories of how the responses of the two neurons are used to direct the cricket’s

locomotion. One popular theory is that the cricket turns in the direction of the side with the neuron that is
firing more frequently. However, this account would work for any sound, and thus requires postulating
additional neural mechanisms for picking out the song with the correct rhythm.

A second, simpler theory is that with each sound burst the cricket turns in the direction of the side

whose neuron begins to fire first. In other words, this theory ignores spike train frequency. This second
theory has the advantage that it does not require additional rhythm-detecting circuitry, because changes
in the rhythm of the detected song will naturally alter the onset of neural firing. However, it is not clear
that this simple theory is sufficient to account for the regularities of cricket phonotaxis.

Webb (1996) adopted the synthetic approach to evaluate the adequacy of this second theory.

She constructed a LEGO robot with specialized electronics that mimicked the functionality of the neural
circuits in the cricket’s auditory system. The robot had two wheels driving it from the rear, each rotated by
its own engine. When both motors were running, they pushed the robot forward. The robot was pro-
grammed to stop the engine of the side whose “ear circuit” reached threshold first. This resulted in the
robot turning in that side’s direction – with the aim of having it turn in the direction of the detected song.

The “ear circuitry” of the robot was optimally sensitive to a sound that had a specific frequency

and rhythm. Webb (1996) began to test the adequacy of the theory by placing it at one side of an arena,
and placing a speaker on the other side. She recorded the trajectory taken by the robot when sounds
were broadcast from the speaker. When the sound was of the optimal frequency and rhythm, Webb
found that the robot followed a zigzag path towards the speaker that was very similar to the trajectory
taken by a female cricket. When the properties of the sound deviated from the optimal, the phonotactic
behavior of the robot became far less successful. For example, when the syllable rate of the sound was
increased, the robot drove through the arena in predominately straight lines. When the syllable rate was
decreased, the robot followed a curved path towards the speaker, but rarely reached the speaker’s actual
location. These robot behaviors began to establish the adequacy of the second theory. “I discovered
afterward that real crickets, too, tend to take curved paths at slower rates while failing more completely for
faster rates. So the robot not only succeeds like a cricket but tends to fail like one too” (p. 98).

 - 63 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Female crickets will choose between songs generated by two different males of the same spe-
cies, usually moving to the louder of the two songs. Webb (1996) realized that she had not explicitly pro-
grammed this ability into her robot. Nevertheless, she decided to see what the robot would do in an are-
na in which two speakers were present, and in which the same sound was being played through both.
“To my surprise, the robot seemed to have no problem making up its mind (so to speak) and went almost
directly to one speaker or the other” (p. 99). This suggests that the simple theory of phonotaxis may not
only explain the general phenomenon of song isolation, but might also account for how a female cricket
chooses one mate over another. “Again it appears that it is the interaction of the robot’s uncomplicated
mechanisms with particular sound fields that produces this interesting – and useful – behavior.”

Webb (1996) used this experimental situation to generate a sound scenario that was completely

unnatural. She alternated the location of the sound’s generation between the two speakers in the arena.
Under these conditions, the robot becomes confused, and moves between the two sounds. Experiments
with actual crickets presented with this laboratory situation produced very similar results.

These kinds of results provide yet another demonstration of the advantages of the synthetic ap-

proach. Webb (1996) explicitly avoided building complicated capacities into her robot, and did not expect
that the robot’s behavior would be rich and varied. However, when this simple device was situated in the
appropriate environment, its performance exceeded her expectations. “It shows that a rather competent
and complex performance can come from a simple control mechanism, provided it interacts in the right
way with its environment” (p. 99).

7.5.3 Stigmergy And Group Behavior

If you visit the website for the Collective Robotic Intelligence Project (CRIP) at the University of

Alberta (www.cs.ualberta.ca/~kube/research.html), then you will have an opportunity to view some inter-
esting video footage of a small collection of autonomous robots engaged in very complicated group be-
havior. Six small, cylindrically shaped robots move in an arena. In the middle of the arena is a brightly lit
box. At the start of the video, four of the robots move directly to the box, while two others wander to one
side of the arena. Of the robots that reach the box first, three line up side by side against it, while the
fourth pauses behind this group, and then moves away. The three robots attempt to push the box, fail,
and then break formation. Two return to a different position on the box, and are then joined by one of the
other robots that had originally wandered off. When these three robots come in contact with the box, it
begins to slide and turn. The movement of the box causes the three robots to break formation, but soon
they return to push again. In a moment, the three other robots join them; the six robots jockey for position
near one corner of the box, and push it quite quickly into a corner of the arena that is brightly lit with an
overhead spotlight.

This video illustrates performance on a box transport task, which is one of the benchmark tests

used to study cooperative behavior in robots. For each robot, the goal of this task is to locate the brightly
lit box and to push it into a goal location, which is also brightly lit. Each robot is equipped with light sen-
sors that point forward (for locating the box) and upward (for locating the goal). Once the robot detects a
side of the box, it determines if the box is between the robot and the goal location. If it is, the robot push-
es against the box. If it is not, the robot attempts to find a different position against the box. In many
cases, this will result in the robot losing sight of the box, and having to search for it again. The robot can
also lose sight of the box if another robot comes between it and the box.

The box transport task is designed to assess cooperative behavior, because the box is weighted

so that at least two robots are required to move it. In order to succeed, the robots must position them-
selves along the box so that more than one of them push at the same time, and so that they are all push-
ing in a fairly consistent direction.

The astonishing thing about the behavior that can be seen in the website videos is that while it

seems to be highly effective and coordinated, it is accomplished by very simple mechanisms. Further-
more, the robots do not explicitly communicate with each other, and are not centrally controlled. These
robots are the culmination of several years of research that began with the study of core abilities in a

 - 64 -

Minds And Machines © M.R.W. Dawson 12/02/2016

group of software agents, and evolved into the performance of the physical robots that is illustrated on the
website.

Kube and Zhang (1994) used software agents to explore some properties of cooperative behavior

that were inspired from the study of social insects. They modeled the sensing and acting of a group of
robots totally in a software environment. The simulated robots were provided with three sensors (one for
the goal, one for obstacles, and one for other robots), two actuators (left and right wheel motors), and five
simple behaviors. The behaviors were constructed using the subsumption architecture of Brooks (e.g.,
1999). The default behavior is find, which causes the robot to move forward in a large arc. This behavior
can be suppressed when the robot detects another; in this case it will change its behavior to follow the
detected robot. If it gets too close to another robot while following, it will activate its slow behavior. If the
goal sensor becomes active, then the robot will initiate the goal behavior, which causes it to move to-
wards the goal. This behavior will only be stopped by initiating the avoid behavior, which occurs when the
robot detects that a collision with another robot is imminent. Note that none of these behaviors involve
communicating with other robots to coordinate their attack on a target. The simulation demonstrated the
collective box transport behavior of the type that was later produced in real robots that incorporated most
of these general behavioral principles (e.g., Kube & Bonabeau, 2000).

How does this cooperative behavior arise in robots that do not communicate directly with one an-

other? The answer to this question again depends upon realizing that the robots (simulated or real) are
situated in an environment that they are both sensing and acting upon. By changing the environment
(e.g., by pushing the box, or blocking the path of another robot), they change the environment that is
sensed by other robots, which in turn alters the behavior of the other robots. This indirect form of com-
munication – accomplishing by directly altering the environment, and therefore indirectly altering the be-
havior of agents in the environment – is called stigmergy. This term comes from combining the terms
stigma (wound from a pointed object) and ergon (work, product of labor) to produce a term whose mean-
ing is “stimulating product of labor” (Holland & Melhuish, 1999).

Stigmergy was a term coined by French zoologist Pierre-Paul Grassé to explain the nest building

behavior of termites (Theraulaz & Bonabeau, 1999). Grassé demonstrated that the termites themselves
do not coordinate or regulate their building behavior, but that this is instead controlled by the nest struc-
ture itself. The current state of part of the nest stimulates a termite to perform an activity that alters the
nest; the alteration in turn triggers a new behavior from either the same termite or from another. Stigmer-
gy also provides an account of the construction of the nests of paper wasps (e.g., Karsai, 1999), and of-
fers an alternative to older theories that attributed a fairly high degree of intelligence or higher-level rules
to these insects. Stigmergy is generally viewed as a fairly simple mechanism for producing complex and
coordinated performances from a group of agents, but has not been studied extensively. “The potential of
stigmergy is still largely untapped in the biology community, in which it originated” (Theraulaz & Bona-
beau, 1999 p. 113). Research on collective robotics, such as the box transport research cited above, or
studies by Holland and Melhuish (1999) on how robots can exploit stigmergy to sort different objects into
clusters, can be viewed as an attempt to increase our understanding of stigmergy, and to identify how it
can interact with other principles to organize useful, collective behaviors.

For the purpose of the present chapter, stigmergy is an example of the “law of downhill synthe-

sis”, which we will consider in more detail in the next section. From a robot designer’s point of view, an
individual robot is provided with a very basic set of sensorimotor abilities, and is not required to include
any facility for communicating directly with other agents. When placed in a complex environment – made
particularly complicated by the presence of more than one agent – the result is complex collective behav-
ior. Importantly, this behavior is completely emergent, because none of the capacities built into the robot
are explicitly designed to be social or interactive.

7.6 THE LAW OF UPHILL ANALYSIS AND DOWNHILL SYNTHESIS

 Brooks (2002) describes the behavior of one of his graduate students interacting with Cog, a

humanoid robot with a moving head and arm, and with camera eyes that saccade to objects of interest.
In this interaction, the student first held a whiteboard eraser and shook it. Then Cog would saccade to it,

 - 65 -

Minds And Machines © M.R.W. Dawson 12/02/2016

reach for it, and touch it. This sequence of events was then repeated, and it seemed clear that the two
were taking turns. However, when this interaction occurred, the capacity for taking turns had not yet been
programmed into Cog. The graduate student “had filled in the behavioral details so that the game of turn-
taking with the eraser worked out. But she had done it subconsciously. She had picked up on the dy-
namics of what Cog could do and embedded them in a more elaborate setting, and Cog had been able to
perform at a higher level than its design so far called for” (p. 92).

This anecdote illustrates one theme that we have seen in the historical and modern examples of

synthetic research that have been presented in this chapter: the generation of behavior that is more com-
plex than expected from a simple system embedded in an interesting environment. It also provides an
example that shows, even subconsciously, that humans may have a natural tendency to be overly gener-
ous in assigning complexity to the internal systems of agents that we see in the world, or with which we
might interact.

These two points are related to two complementary themes that have been argued to be central

characteristics of the synthetic approach (Braitenberg, 1984). The first theme is “downhill synthesis”,
which means that it is fairly straightforward to construct simple devices that, when they interact with the
environment, produce surprising and interesting emergent behaviors. This theme is evident in the exam-
ples that we have seen in this chapter, as well as when we discussed the “thoughtless walkers” in Chap-
ter 6.

The second theme is “uphill analysis”, which Braitenberg (1984) uses as an argument in favor of

the synthetic approach, and against an approach in which the behaviors of existing systems are ex-
plained via analysis. "It is much more difficult to start from the outside and try to guess internal structure
just form the observation of the data. [...] Analysis is more difficult than invention in the sense in which,
generally, induction takes more time to perform than deduction: in induction one has to search for the
way, whereas in deduction one follows a straightforward path. A psychological consequence of this is the
following: when we analyze a mechanisms, we tend to overestimate its complexity”. In other words, if the
goal of synthetic psychology is to explain how various behaviors arise, then Braitenberg is claiming that
the synthetic approach will lead to simpler theories than those arrived at by adopting the analytic perspec-
tive. Braitenberg feels strongly enough about this position to proclaim this “the law of uphill analysis and
downhill synthesis.”

One reason that the law of uphill analysis and downhill synthesis seems to be quite plausible is

our sense that if a researcher has constructed a system, then he or she should have an excellent under-
standing of its inner workings, and therefore should be in an excellent position to offer straightforward
mechanistic explanations of complex behavior. Given that the synthetic approach can produce rich and
surprising results, this seems to make it an extremely attractive alternative to the more traditional analytic
approach. However, it is important to realize that while the law of uphill analysis and downhill synthesis
can provide grounds for arguing that the synthetic approach is attractive, it cannot justify abandoning
analysis entirely. As a matter of fact, for synthetic psychology to succeed, synthesis and analysis must
both be combined in a research program.

7.6.1 From Demonstration To Explanation

Why is analysis a required component of the synthetic approach? To answer this question, let us

consider for a moment what the goals of a synthetic research program might be.

Brooks (1999, pp. 96-97) takes great pains to let us know what, in general, behavior-based robot-

ics and, more specifically, his subsumption architecture, is not. It is not connectionism, nor neural net-
works, nor production rules, nor a blackboard control architecture, nor even German philosophy. What
then is it?

It could be that behavior-based robotics merely demonstrates that complex behaviors frequently

emerge from simple systems. To this point, this chapter could be considered to be a short catalogue of
such demonstrations. However, of biologically inspired robots like the one used to study cricket phonotax-

 - 66 -

Minds And Machines © M.R.W. Dawson 12/02/2016

is, Webb (2000, p. 545) asks, “such examples of engineering can be attention grabbing, but what is their
value for biological science? In particular, beyond the ‘gimmick’ of resemblance to natural systems, is
any deeper understanding of how animals behave brought about by the building of such robot systems?”

The answer to questions like these depends first on determining whether the synthetic approach

to robotics is intended to be anything more than attention grabbing demonstrations. Even a cursory
glance at the literature would indicate that roboticists are interested in going beyond demonstrations, and
coming up with theories of intelligence. For example, Adams, Breazeal, Brooks, and Scasselati (2000, p.
28) note, “just as computer simulations of neural nets have been used to explore and refine models from
neuroscience, we can use humanoid robots to investigate and validate models from cognitive science and
behavioral science.” Webb (2000) argues that biologically inspired robots can be used to test existing
hypotheses, to alter assumptions about stimuli and responses when confronted with a real environment,
to enforce complete theories (and identify incomplete ones), and to produce novel hypotheses. Pfeifer
and Scheier (1999) propose that the goal of embodied cognitive science is to achieve a better under-
standing of intelligence. “The methodology of embodied cognitive science is synthetic, its goal is under-
standing by building” (p. 631). With these goals in mind, merely generating complicated behavior is not a
sufficient research program. The synthetic approach is in the business of explaining, and not just demon-
strating.

If the synthetic approach is to generate new explanations of intelligent behavior, then analysis is

going to be required. To see why this is so, imagine that a researcher is constructing autonomous sys-
tems according to a scheme similar to that described in Section 7.4.2.3, in which more successful sys-
tems are being selected for copying, and in which the copying process can introduce random mutations.
(This hypothetical example is not so far fetched, as it captures the spirit of how problems are solved by
genetic algorithms (e.g., Holland, 1992; Mitchell, 1996).) Imagine that after this process had been carried
out for a certain period of time, one of the constructed systems exhibited a surprising and complicated
behavior that was of considerable interest to psychologists. How would this system be used to contribute
to psychological theory?

Simply demonstrating the interesting behavior would be important, but would not be satisfactory

on its own. After all, a psychologists would already know of some other system that generates the behav-
ior (i.e., a person or an animal), and would only be interested in this new system if it shed some light on
how these other agents of interest worked. If the new system that demonstrated the behavior did not do
this, it would be actually be complicating the situation, because instead of having one unexplained system
(the person or animal), we would have two (the person/animal and the new autonomous system). As a
result, in order to contribute to psychological theory, there would be a very strong demand for the re-
searcher to explain the behavior of these new system – to say exactly how its inner mechanisms interact-
ed with each other and with the environment to produce the behavior, and how the absence of such inter-
actions resulted in the behavior not appearing in less successful systems.

In this particular hypothetical example, though, synthesis does not imply an easy route to under-

standing and explanation. The fact that the researcher constructed the system using selection implies
that explanation must depend upon a later stage of analysis. This is because the success of this particu-
lar system (and the failure of other similar systems) was due to some random mutation that affected its
internal mechanisms. This mutation was caused by the researcher, but not intentionally. To explain its
behavior, the researcher would have to take the system apart, examine its inner workings, and probably
take other systems apart as well to identify the differences between successful and unsuccessful sys-
tems. This later stage of analysis, while necessary, is likely to be difficult and intensive. Of vehicles cre-
ated by natural selection, as is the case in this hypothetical example, Braitenberg (1984) writes “we can
imagine that in most cases our analysis of brains in type 6 vehicles would fail altogether: the wiring that
produces their behavior may be so complicated and involved that we will never be able to isolate a simple
scheme” (p. 28).

Of course, synthetic researchers recognize that the analysis of their creations will be challenging.

Nevertheless, they also realize that such analysis is required to generate explanations. For example,
Pfeifer and Scheier (1999, p. 131) outline a ten-step research program for conducting experiments with

 - 67 -

Minds And Machines © M.R.W. Dawson 12/02/2016

agents. The last three steps of this program are purely analytic. They involve collecting data about the
agent’s behavior, as well as its internal states; the behavior is then described and analyzed statistically.
The ultimate goal of this research program is to “formulate explanations of the agent’s behavior”.

Webb (2000) provides an additional argument for the need for analysis in her assessment of how

biorobotics can contribute to biology. She notes that just because a robot generates the same behavior
as an animal, it is not appropriate to conclude that they two systems exploit the same control mecha-
nisms. This is because a standard realization in modeling is that the same behavior can be generated by,
in principle, an infinite number of different algorithms (See also Dawson, 1998, Chapters 5 and 6). As a
result, a great deal of analysis is required to determine whether the synthetic system and the modeled
animal are strongly equivalent. “Proper experimental evaluation is needed to determine fully the real
strengths or limitations of the implemented hypothesis. Behavior qualitatively similar to the animal in a
few trials, while encouraging, cannot be taken as confirmation, yet too few studies do more” (Webb, 2000,
p. 553).

7.6.2 Implications Of Braitenberg’s Law

According to Braitenberg’s (1984) law of uphill analysis and downhill synthesis, synthesis is much

easier than analysis, and is more likely to circumvent the frame-of-reference problem. In other words, the
synthetic approach should be capable of generating simpler theories than those that would be generated
by the analytic approach. However, we have just seen that synthetic researchers have the goal of gener-
ating explanations of intelligence and behavior, and because of this goal realize that analysis is a crucial
component of their research program. What then is really implied by the law of uphill analysis and down-
hill synthesis?

The law of uphill analysis and downhill synthesis is not a claim that analysis should be aban-

doned, but is instead a claim that the route to understanding and explanation should first involve perform-
ing synthesis, and then later conducting analysis. It is this combined approach – with an emphasis on
early synthesis -- that holds the promise of generating simpler theories than an approach that exclusively
involves analyzing the behavior of existing agents.

One reason for this promise is the fact that, as we have seen repeatedly, the synthetic approach

is an explicit attempt to make the most by using the least. Synthetic modelers usually attempt to design
fairly simple systems, in the hope that complex behaviors will emerge when they are situated in an envi-
ronment. A second reason for this promise is that even in cases when researchers may not know pre-
cisely how to explain emergent behavior, the fact that they have constructed the model should make
analysis easier, because they already have an accurate understanding of its main functional components,
and should therefore be in a position to target their analyses efficiently and appropriately.

7.6.3 Towards Synthetic Psychology

Almost all of the examples of synthetic research that we have considered to this point have in-

volved sensorimotor systems – in particular, robots of one sort or another. One question that needs to be
addressed is whether such systems exclusively define the domain of the synthetic approach. Can the
synthetic approach be applied to non-robotic systems? A second question that must be dealt with is
whether systems of the type that we have been considering, which are predominately anti-
representational, are of any interest to psychologists. Is synthetic psychology going to be reduced to
studying non-representational systems that act on the world, or can the synthetic approach be applied to
systems that use representations and have been of more interest to cognitive psychology and cognitive
science? These questions are addressed in the next chapter.

 - 68 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Chapter 8: Connectionism As Synthetic
Psychology

8.1 INTRODUCTION

In Chapter 6, we introduced the synthetic approach with the “thoughtless walker” examples. In

Chapter 7, we turned to a historical review of more serious research to examine why researchers might
be attracted to the synthetic approach. We saw that one of the main attractions was the possibility of
generating interesting and surprising behaviors from the interaction between a fairly simple system of
components and the environment in which this system was embedded.

One concern raised at the end of Chapter 6, and not addressed in Chapter 7, involved the rele-

vance of the synthetic approach to the study of psychological processes. In particular, the modern re-
naissance of the synthetic approach that was pioneered by such researchers as Ashby and Grey Walter
is strongly associated with the movements of behavior-based robotics (Brooks, 1999) and embodied cog-
nitive science (Pfeifer & Scheier, 1999). These research traditions are strongly anti-representational, and
are largely dedicated to removing the “think” component from the sense-think-act cycle. This is strongly
reminiscent of a failed tradition in experimental psychology, called behaviorism, that attempted to limit
psychological theory to observables (namely, stimuli and responses), and which viewed as unscientific
any theories that attempted to describe internal processes that mediated relationships between sensa-
tions and actions. I believe we can write a psychology, define it as Pillsbury, and never go back upon our
definition: never use the terms consciousness, mental states, mind, content, introspectively verifiable,
imagery, and the like. “I believe that we can do it in a few years without running into the absurd terminolo-
gy of Beer, Bethe, Von Uexküll, Nuel, and that of the so-called objective schools generally. It can be done
in terms of stimulus and response, in terms of habit formation, habit integrations and the like” (Watson,
1913).

Modern cognitive psychology emerged from a strong reaction against behaviorism’s anti-

representational stance (Leahey, 1987). In psychology, there is a long history of powerful theoretical and
empirical arguments against behaviorism, and as a result behaviorism is no longer an accepted position
(but see Leahey, 1987, pp. 461-463). The standard view in psychology is that many phenomena cannot
be adequately explained without appealing to mental representations. Given this situation, and given that
we have only considered the synthetic approach in the context of anti-representational research, this
leads to an obvious question: Is there anything in the synthetic approach that can be applied to the study
of representational processes?

The purpose of this chapter is to consider one version of the synthetic approach that can be ap-

plied representationally, and which as a result can truly be considered to be synthetic psychology. This
position will be supported in this chapter as follows: First, we will consider the properties of connectionist
simulations in the context of the synthetic approach. This will be done to argue that connectionism offers
one – though not the only – medium in which representational, synthetic research can be conducted.
Second, we will discuss one case study that has recently appeared in the literature (Dawson, Boechler, &
Valsangkar-Smyth, 2000). This case study examines how connectionist simulations can be used to in-
vestigate issues related to one “higher-order processing” topic: spatial cognition. We will then use this
case study as a motivator to step back and consider a variety of techniques for performing synthetic psy-
chology using connectionism.

8.2 BEYOND SENSORY REFLEXES

The complexity of the behaviors of all of the machines that were surveyed in Chapter 7 was root-

ed in a set of simple sensorimotor reflexes that were embedded in a complicated environment. For ex-
ample, the behavior of all robots that were discussed in the chapter was based upon simple routines in
which a particular sensation (e.g., a value detected by a light sensor, or a switch depressed on a touch

 - 69 -

Minds And Machines © M.R.W. Dawson 12/02/2016

sensor) was immediately converted into a particular response (e.g., a particular motor speed, or a change
in motor direction). The extent to which the behavior of these robots was complex, surprising, or interest-
ing was due to the interaction of these simple reflexes with the environments in which the robots were
placed.

The purpose of this section is to briefly consider the extent to which sensorimotor reflexes can be

relied upon to form the basis of synthetic psychology. First, some evidence supporting the existence of
visuomotor modules in humans will be described. This evidence indicates that sensorimotor reflexes
should be plausibly considered as a component of synthetic psychology. Second, the limitations of such
reflexes will also be considered. The claim that will be made is that synthetic psychology cannot rely ex-
clusively on such reflexes, and should therefore explore other foundations – some of which might be rep-
resentational.

8.2.1 Visuomotor modules

One of the most influential ideas that has been proposed in cognitive science is that of the modu-

larity of perceptual processing (Fodor, 1983). While “perception is smart like cognition in that it is typically
inferential, it is nevertheless dumb like reflexes in that it is typically encapsulated” (p. 2). A module is a
domain-specific perceptual system that solves a very particular problem, and is incapable of solving other
information processing problems. The operations performed by a module are rapid, mandatory, and run
to completion once they are initiated. Fodor argues that all of these characteristics are achieved by asso-
ciating each module with fixed neural architecture -- modularity is physically built into the brain. The cor-
ollary of this position is that general inferential processing, which is by definition is not modular, is not go-
ing to be associated with a fixed neural architecture. It is because of this that Fodor (p. 119) is not sur-
prised that we have a neuroscience of sensory systems, but that we do not have a neuroscience of
thought.

The modularity proposal is usually portrayed as being part of the “sense-think-act” cycle that de-

fines much of the status quo in cognitive science (Dawson, 1998, Chapter 7). Specifically, modules solve
many problems in early vision (sense). The output of these modules is then passed on to visual cognition
or higher-order cognition for inferential or semantic processing (think). The results of this higher-order
processing are then used to generate actions. However, this is not the only way in which modularity has
been incorporated into cognitive science.

In some of the earliest work on the neuroscience of vision, Lettvin, Maturana, McCulloch, and

Pitts (1959) identified neurons in the visual system of the frog that only responded to specific visual stimu-
li, and which in some sense were modular feature detectors. For instance, one type of cell appeared to
be a “bug detector”, because it only responded to a stimulus that could be described as a small, moving
black spot. However, such feature detectors in the frog do not appear to feed into a higher-order thinking
mechanism. Instead, the frog’s visual system appears to be organized into a system of “sense-act” or
visuomotor modules. Not only do these modules detect a specific visual stimulus, but they also generate
a specific motor response.

The existence of visuomotor modules in the frog was first demonstrated by Ingle (1973). In a

seminal experiment, Ingle surgically removed one hemisphere of the optic tectum of a frog. This lesion
produced a particular form of blindness in which the frog pursued prey presented to the eye that was
connected to the remaining tectum, but did not respond to prey presented to the eye that would have
been connected to the ablated tectum. The lesion did not affect the frog’s ability to avoid a stationary bar-
rier placed between it and its prey. Importantly, the amphibian brain is very plastic, and Ingle found that 6
to 8 months after surgery, the nerve fibers from the “bad eye” regenerated, and became connected to the
remaining optic tectum on the “wrong” side of the animal’s head. In this case, when a prey target was
presented to the “bad eye”, the frog was no longer blind to it, and attempted to catch it. However, be-
cause of the tectal rewiring, the animal’s responses were in the wrong direction. The frog always moved
toward a location that was mirror-symmetrical to the actual location of the target, and this incorrect re-
sponse was shown to be due to the topography of the regenerated nerve fibers. In other words, one role

 - 70 -

Minds And Machines © M.R.W. Dawson 12/02/2016

of the optic tectum in the frog is to mediate a visuomotor module that converts a visual sensation directly
into a motor response.

Perhaps surprisingly, studies of brain-injured patients have demonstrated that the human visual

system may also be organized into visuomotor modules (Goodale, 1988, 1995; Goodale & Humphrey,
1998). For instance, Goodale and his colleagues have studied one patient, DF, who suffered irreversible
brain damage as a result of carbon monoxide poisoning. One result of this brain damage was that DF’s
ability to recognize visual shapes or patterns was severely impaired. She “was unable to describe the
orientation and form of any visual contour, no matter how that contour was defined” (Goodale, 1995, p.
167). However, DF’s visuomotor abilities were not impaired at all. “Even though she cannot recognize a
familiar object on the basis of its visual form, she can grasp that object under visual control as accurately
and as proficiently as people with normal vision” (p. 169). Another patient, VK, had the exact opposite
pattern of dysfunction after a series of strokes. VK had normal form perception, but her visuomotor con-
trol – in particular, her ability to form her hand to grasp objects of different shapes – was severely im-
paired.

8.2.2 Reflexes Vs. Representations

The evidence that there exists, even in humans, modular systems that involve direct linkages be-

tween sensation and action is consistent with behavior-based robotics and embodied cognitive science.
Specifically, research in these fields is based upon the assumption that intelligence emerges situating a
system in the world, and is not a result of representational processing. The existence of visuomotor
modules is strongly suggestive of a human information processing architecture that is similar in many
ways to Brook’s (1989, 1999) subsumption architecture. However, even researchers of visuomotor mod-
ules in humans would agree that such reflexes are not the sole foundations of psychological processing.

For example, Goodale and Humphrey (1998) point out that “while there is certainly plenty of evi-

dence to suggest that visuomotor modularity of the kind found in the frog also exists in the mammalian
brain, the very complexity of day-to-day living in many mammals, particularly in higher primates, demands
much more flexible organization of the circuitry” (p. 184). They propose a reformulation of Ungerleider
and Mishkin’s (1982) proposal of two separate anatomical streams of visual processing. Ungerleider and
Mishkin proposed a ventral stream from primary visual cortex to inferotemporal cortex for the processing
of visual appearances, and a dorsal stream from primary visual cortex to posterior parietal cortex for the
processing of visual locations – the so-called what-where distinction. Goodale and Humphrey distinguish
these two streams in terms of the kinds of representations that they construct, and their purpose. The
dorsal stream computes representations of object locations and shapes in an egocentric frame of refer-
ence. These representations are components of visuomotor modules, and are used to control a variety of
movements (e.g., saccades, grasps, etc.). The ventral stream computes representations of object fea-
tures in an allocentric frame of reference. These representations become part of later semantic pro-
cessing.

Furthermore, the dorsal and ventral streams as described by Goodale and Humphrey (1998) are

not independent, but are required to interact with one another. For instance, “certain objects such as
tools demand that we grasp the object in a particular way so that we can use it properly. In such a case
both streams would have to interact fairly intimately in mediating the final output” (p. 203). The fact that
the two systems can interact is supported by theoretical arguments and anatomical evidence (DeYoe &
van Essen, 1988) that shows that they are far more interconnected than was originally proposed by Un-
gerleider and Mishkin (1982). These interactions are, of course, the source of the flexibility and control
that Goodale and Humphrey note is required by higher-order visual systems to deal with complicated en-
vironmental demands.

That stimulus-response reflexes are not sufficient to account for many higher-order psychological

phenomena is a theme that has dominated cognitivism’s replacement of behaviorism as the dominant
theoretical trend in experimental psychology. In the study of language, this theme was central to Chom-
sky’s (1959) critical review of Skinner (1957). Many of the modern advances in linguistics were the direct
result of Chomsky’s proposal that generative grammars provided the representational machinery that

 - 71 -

Minds And Machines © M.R.W. Dawson 12/02/2016

mediated regularities in language (Chomsky, 1965, 1995; Chomsky & Halle, 1991). Similar arguments
were made against purely associationist models of memory and thought (Anderson & Bower, 1973). For
example, Bever, Fodor, and Garrett (1968) formalized associationism as a finite state automaton, and
demonstrated that such a system was unable to deal with the clausal structure that typifies much of hu-
man thought and language. Paivio (1969, 1971) used the experimental methodologies of the verbal
learners to demonstrate that a representational construct – the imageability of concepts – was an enor-
mously powerful predictor of human memory. The famous critique of “old connectionism” by Minsky and
Papert (1988) could be considered proofs about the limitations of visual systems that do not include me-
diating representations. These examples, and many more, have lead to the status quo view that repre-
sentations are fundamental to cognition and perception (Dawson, 1998; Fodor, 1975; Jackendoff, 1992;
Marr, 1982; Pylyshyn, 1984).

Some robotics researchers also share this sentiment, although it must be remembered that be-

havior-based robotics was a reaction against their representational work (Brooks, 1999). Moravec (1999)
suggests that the type of situatedness that characterizes behavior-based robotics (for example, the sim-
ple reflexes that guided Grey Walter’s tortoises) probably provides an accurate account of insect intelli-
gence. However, at some point systems built from such components will have at best limited abilities. “It
had to be admitted that behavior-based robots did not accomplish complex goals any more reliably than
machines with more integrated controllers. Real insects illustrate the problem. The vast majority fails to
complete their life cycles, often doomed, like moths trapped by a streetlight, by severe cognitive limita-
tions. Only astronomical egg production ensures that enough offspring survive, by chance” (p. 46). In-
ternal representations are one obvious medium for surpassing such limitations.

Interestingly, arguments that representations provide an adaptive advantage for an organism, as

well as flexibility and control of processing, are both central to the philosophical views of Karl Popper.
Popper proposed an evolutionary theory in which organisms are constantly engaged in a process of prob-
lem solving, a process that Popper viewed as always being resolved through trial and error. “Error-
elimination may proceed either by the complete elimination of unsuccessful forms (the killing-off of unsuc-
cessful forms by natural selection) or by the (tentative) evolution of controls which modify or suppress
unsuccessful organs, or forms of behavior, or hypotheses” (Popper, 1979. p. 242). Popper viewed con-
sciousness as an evolved system of “plastic control”, a system that could be used to control behavior, but
which was also subject to changes via feedback. The purpose of representations was argued to supply
“controls which can eliminate errors without killing the organism; and it makes it possible, ultimately, for
our hypotheses to die in our stead” (p. 244).

In summary, the synthetic models developed in behavior-based robotics and embodied cognitive

science can be described as systems of sensorimotor reflexes or visuomotor modules which, when em-
bedded in a complicated environment, can generate surprising or interesting behavior. These models are
consistent with the anti-representational motivation of this research trend, namely, the elimination of the
“think” component of the “sense-think-act” cycle. These models are also consistent with evidence of the
existence of visuomotor modules in highly complex organisms, including humans. However, theoretical
and empirical arguments would suggest that not all psychological phenomena are equivalent to sen-
sorimotor reflexes. Some representational processes must exist as well, and it is these processes that
are of keen interest to psychologists. The question that this leads to is this: can the synthetic approach
be conducted in a way that provides the advantages that have been raised in previous chapters, but that
also provides insight into representational processing?

8.2.3 Synthesis And Representation

Of course, the answer to the question that was just raised is a resounding yes. There is nothing

in the synthetic approach per se that prevents one from constructing systems that use representations.
Describing a model as being synthetic or analytic is using a dimension that it is completely orthogonal to
the one used when describing a model as being representational or not. This is illustrated in Table 8-1,
which categorizes some examples of research programs in terms of these two different dimensions.

 Analytic Synthetic

 - 72 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Representational

Production system generated
from analysis of verbal proto-
cols
e.g. (Newell & Simon, 1972)

Multilayer connectionist network for
classifying patterns using abstract
features
e.g. (Dawson, Boechler, &
Valsangkar-Smyth, 2000)

Non-
Representational

Mathematical model of associa-
tive learning based upon analy-
sis of learning behavior of sim-
ple organisms
e.g. (Rescorla & Wagner, 1972)

Behavior-based robotics system con-
structed from a core of visuomotor
reflexes
e.g. (Brooks, 1989)

Table 8-1. Classification of some example research programs according to two separate
dimensions, analytic vs. synthetic and representational vs. non-representational.

The placing of most of the research examples in Table 8-1 should be clear from discussions that

we have had in preceding chapters. For example, production system research is designated as being
both analytic and representational. It is analytic because production systems are almost always derived
from an intensive analysis of the verbal protocols of human problem solvers (Ericsson & Simon, 1984;
Newell & Simon, 1972). It is representational in the sense that production systems define a set of definite
rules that detect, and modify, data structures that are stored in a working memory. Indeed, production
systems are one of the prototypical examples of the power of symbolic representations in classical cogni-
tive science (Newell, 1980, 1990).

Behavior-based robotics is designated as being both synthetic and non-representational. As we

have seen in Chapter 7, it is explicitly synthetic in the sense that researchers build robots from fairly sim-
ple subsystems, and then examine the interesting kinds of behaviors that emerge when the robots are
situated in an environment (Pfeifer & Scheier, 1999). It is also an attempt to be as anti-representational
as possible. “In particular I have advocated situatedness, embodiment, and highly reactive architectures
with no reasoning systems, no manipulable representations, no symbols, and totally decentralized com-
putation” (Brooks, 1999, p. 170). One of the foundational assumptions of behavior-based robotics is that if
a system can sense its environment, then it should be unnecessary for the system to build an internal
model of the world.

Mathematical models of associative learning, such as the Rescorla-Wagner model (Rescorla &

Wagner, 1972), are designated as being both analytic and non-representational. Such models are de-
scribed as being analytic because they are usually based upon an analysis of behavioral regularities (see
Chapters 3 and 4). They are described as being non-representational because such models do not ap-
peal to representational content to explain behavior, and frequently model direct relationships between
stimuli and responses.

8.3 CONNECTIONISM, SYNTHESIS, AND REPRESENTATION

Connectionism was placed in the final cell of table 8-1. In my view, modern multi-layer PDP net-

works permit research that is both synthetic and representational, and therefore offers one plausible ave-
nue for conducting synthetic psychology. The following subsections will elaborate on why connectionism
can be viewed in this way. Specifically, we will briefly discuss connectionism in the context of the three
hallmarks of the synthetic approach: synthesis, emergence, and analysis.

8.3.1 Connectionism And Synthesis

In adopting the synthetic approach, a researcher is committed to identifying a basic set of building

blocks. Each of these building blocks defines a primitive element. The set of all of the available primi-
tives defines an entire architecture. For a cognitive scientist, an architecture dictates “what operations are
primitive, how memory is organized and accessed, what sequences are allowed, what limitations exist on
the passing of arguments and on the capacities of various buffers, and so on. Specifying the functional
architecture of a system is like providing a manual that defines some particular programming language”

 - 73 -

Minds And Machines © M.R.W. Dawson 12/02/2016

(Pylyshyn, 1984, p. 92). The goal of synthetic research is to see what variety of systems can be con-
structed from a particular architecture.

In cognitive science, an architecture is usually a kind of programming language. However, this is

not a necessary property. In some cases, there may not be any programming environment at all. For
example, in building our “thoughtless walkers” in Chapter 6, the architecture that we restricted ourselves
to was a set of K’NEX rods, connectors, and motors. In other cases, an architecture might involve a
combination of hardware and software elements. This kind of combined architecture is typical of research
in embodied cognitive science (Pfeifer & Scheier, 1999).

The architecture is a foundational idea in cognitive science, and therefore it is not surprising that

many different research programs revolve around proposals for the architecture of cognition. In some
cases, researchers present a particular architecture as a candidate proposal for the “language of
thought”. For instance, Newell and Simon (1972) made very strong claims that production systems de-
fined the functional architecture of the mind. Dawson (1998, p. 170) provides (an incomplete) table of
proposed cognitive architectures that lists 24 different examples. In other cases, theoretical and empirical
debates in cognitive science revolve around whether particular properties are part of the architecture or
not. For example, in the 1970s and 80s the imagery debate was about whether the visual properties of
mental images were built directly into the architecture (Block, 1981). A more recent debate concerns
whether the architecture of mind is analogous to the architecture of a digital computer (Bechtel & Abra-
hamsen, 1991; Churchland, Koch, & Sejnowski, 1990; Clark, 1989, 1993; Fodor & Pylyshyn, 1988; Py-
lyshyn, 1991; Smolensky, 1988), and has spawned a new architectural proposal, connectionism (McClel-
land & Rumelhart, 1986; Rumelhart & McClelland, 1986).

Parallel distributed processing (PDP) models, or connectionism, are based on general assump-

tions about the kind of information processing carried out by the brain. First, it is assumed that the primi-
tives for this type of information processing are individual neurons. Second, it is assumed that the pattern
of connections between neurons is analogous to the program in a conventional computer, because these
connections define the causal interactions between neurons (Smolensky, 1988). Third, it is assumed be-
cause the brain is composed a set of primitive units that operate in parallel, and because representations
are distributed across a wide array of neurons and synapses, the kind of information processing carried
out by the brain must be quite different from that to found in a digital computer. “The analogy between
the brain and a serial digital computer is an exceedingly poor one in most salient respects, and the fail-
ures of similarity between digital computers and nervous systems are striking” (Churchland et al., 1990, p.
47).

PDP models represent the embodiment of these general assumptions in a computer simulation

environment that permits the construction of networks that can solve problems in an incredibly diverse set
of domains (Dawson, 1998). Essentially, the building blocks of PDP models represent abstract mathe-
matical descriptions of the kind of information processing that neurons do. This functional approach ig-
nores many of the biological properties of neurons, and attempts to simplify information processing as
much as possible. We will consider the building blocks of connectionism in more detail in the remaining
chapters of this book.

With respect to synthesis, connectionist research typically proceeds as follows: First, a research-

er identifies a problem of interest, and then translates this problem into some form that can be presented
to a connectionist network. Second, the researcher selects a general connectionist architecture, which
involves choosing the kind of processing unit, the possible pattern of connectivity, and the learning rule.
Third, a network is taught the problem. This usually involves making some additional choices specific to
the learning algorithm – choices about how many hidden units to use, how to present the patterns, how
often to update the weights, and about the values of a number of parameters that determine how learning
proceeds (e.g., the learning rate, the criterion for stopping learning). If all goes according to plan, at the
end of the third step the research will have constructed a network that is capable of solving a particular
problem. The next subsection illustrates this aspect of connectionist research by describing an example
network that was trained to make judgments about the distances between cities on a map of Alberta
(Dawson, Boechler, & Valsangkar-Smyth, 2000).

 - 74 -

Minds And Machines © M.R.W. Dawson 12/02/2016

8.3.2 Connectionism And Synthesis: An Example

8.3.2.1 Metric Representations Of Space

Our everyday interactions with the visual and spatial world are grounded in the essential experi-

ence that space is metric. Mathematically speaking, a space is metric if relationships between locations
or points in the space conform to three different principles (Blumenthal, 1953). The first is the minimality
principle. According to this principle, the shortest distance in the space is between a point x and itself.
The second is the symmetry principle. According to this principle, the distance in the space between two
points x and y is equal to the distance between points y and x. The third is the triangle inequality. Ac-
cording to this principle, the shortest distance in the space between two points y and x is a straight line.

One recurring theme in the study of cognition, perception, and action is that intelligent agents

have internalized the metric properties of the space in which they find themselves situated. As a result,
the mental representations used by these agents are thought by some researchers to have metric proper-
ties in their own right. The paragraphs below briefly introduce three different examples of such proposals:
similarity spaces, mental images, and cognitive maps.

Similarity is one of the most important theoretical constructs in cognitive psychology (Medin,

Goldstone, & Gentner, 1993). The notion of similarity is central to theories of learning, perception, rea-
soning, and metaphor comprehension. One of the goals of cognitive psychology has been to determine
the mental representations that enable similarity relationships to affect this wide range of psychological
phenomena. One proposal that received a great deal of attention in the 1970s was that concepts were
represented as points in a multidimensional space, where the dimensions of the space stood for either
simple or complicated featural properties (Romney, Shepard, & Nerlove, 1972; Shepard, Romney, & Ner-
love, 1972). In this kind of representation, the similarity between two different concepts was reflected in
the distance between their locations in the multidimensional space. Researchers conducted a number of
different studies in which ratings of concepts were used to position a set of concepts in the metric space.
This empirically derived space was then used to predict behavior on a variety of different tasks, including
analogical reasoning (Rumelhart & Abrahamsen, 1973) and judgments of the aptness of metaphor (Tou-
rangeau & Sternberg, 1981; Tourangeau & Sternberg, 1982). Importantly, one of the main assumptions
underlying the similarity space proposal was that this space was metric.

On the basis of this assumption, one would expect that the metric properties of the space would

be reflected in the behaviors that were governed by the space. For example, if a subject used the similar-
ity space to rate the similarity between two concepts A and B, then one would expect these ratings to be
symmetric: the similarity between A and B should be the same as the similarity between B and A, be-
cause the distance between A and B in the similarity space is presumed to be symmetric.

A second example of a proposed representation that preserves the metric properties of space is

mental imagery. Mental imagery is a visual experience that is usually elicited when people solve
visuospatial problems. Not only does mental imagery provide a visual or pictorial experience, but mental
images give the sense of being manipulated in a spatial manner -- for instance, by being scanned, rotat-
ed, or zoomed in to (Kosslyn, 1980). Early behavioral studies of the manipulation of mental images have
provided data that suggest that they are indeed spatial in nature. For example, many studies recorded
the reaction times of subjects as they used mental images to perform some task, and found, for instance,
that latencies increased linearly as a function of increases in the distance that an image had to be
scanned or of increases in the amount that an image had to be rotated (Kosslyn, 1980; Shepard &
Cooper, 1982).

More recent research has turned to cognitive neuroscience in an attempt to explore the represen-

tations responsible for mental imagery. Kosslyn and others have used a variety of modern brain imaging
techniques to show that when people generate mental images, they use many of the same brain areas
that are also used to mediate visual perception (Farah, Weisberg, Monheit, & Peronnet, 1989; Kosslyn,
1994; Kosslyn et al., 1999; Kosslyn, Thompson, & Alpert, 1997; Kosslyn, Thompson, Kim, & Alpert, 1995;

 - 75 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Thompson, Kosslyn, Sukel, & Alpert, 2001). In particular, mental imagery elicits activity in the primary
visual cortex, a brain area that is organized topographically. Kosslyn has used this kind of evidence to
propose an information processing system that is responsible for the generation and manipulation of im-
ages. He argues that mental images are patterns of activity in a visual buffer that is a spatially organized
structure in the occipital lobe.

A third example of a proposed representation that preserves the metric properties of space is the

cognitive map. Beginning with Tolman’s (1932, 1948) proposal that the spatial abilities of the rat were
mediated by cognitive maps, representations that preserve the metric properties of space have been fun-
damentally important to the study of how humans and animals navigate (Kitchin, 1994). Behavioral stud-
ies have demonstrated that animal representations of space do indeed appear to preserve a good deal of
its metric nature (for introductions, see Cheng & Spetch, 1998; Gallistel, 1990, Chap. 6). Many research-
ers are now concerned with identifying the biological substrates that encode metric space. Single-cell
recordings of neurons in the hippocampus of a freely moving animal have provided compelling biological
evidence that one function of the hippocampus is to instantiate a metric cognitive map (O'Keefe & Nadel,
1978). In particular, neuroscientists have discovered place cells in the hippocampus that respond only
when a rat’s head is in a particular location in the environment (O'Keefe & Nadel, 1978). These place
cells can be driven by visual information (e.g., by the presence of objects or landmarks in the environ-
ment), and appear to be sensitive to some of the metric attributes of space. For example, O'Keefe and
Burgess (1996) found evidence that the receptive field of a place cell can be described as the sum of two
or more Gaussian tuning curves sensitive to the distance between an animal and a wall in the environ-
ment.

8.3.2.2 Are Spatial Representations Metric?

While research on each of these three proposals for spatial representations has provided evi-

dence that the metric properties of space can be internalized, this evidence is not univocal. With respect
to similarity spaces, Tversky and his colleagues conducted a number of experiments that demonstrated
that similarity judgments were not metric, because in different situations it could be shown that these
judgments were not always symmetric, did not always conform to the minimality principle, and did not al-
ways conform to the triangle inequality (Tversky, 1977; Tversky & Gati, 1982).

With respect to mental imagery, it has been shown that by manipulating the tacit beliefs of sub-

jects (Bannon, 1980), or by altering the complexity of the image being used (Pylyshyn, 1979), the linear
relationship between reaction time and image properties could be eradicated. These findings were used
to argue that our experience of mental images is based upon more primitive and non-spatial representa-
tional components (Pylyshyn, 1980, 1981, 1984). Even the evidence from neuroscience is not without
controversy. In a detailed review of the literature, Mellet, Petit, Mazoyer, Denis, and Tzourio, (1998) cite
several studies that have found that some mental imagery tasks do not produce activity in primary visual
cortex.

With respect to cognitive maps, it has been argued that place cell circuitry by itself does not pro-

vide a cognitive map that can be considered to be metric in the mathematical sense. First, place cells are
not organized topographically; the arrangement of place cells in the hippocampus is not isomorphic to the
arrangements of locations in an external space (Burgess, Recce, & O'Keefe, 1995; McNaughton et al.,
1996). Second, it has been argued that place cell receptive fields are at best locally metric (Touretzky,
Wan, & Redish, 1994), and that as a result a good deal of spatial information (e.g., information about
bearing) cannot be derived from place cell activity. Some researchers have argued that place cells make
up only a part of the cognitive map, and that the neural representation of metric space requires the coor-
dination of a number of different subsystems (McNaughton et al., 1996; Redish & Touretzky, 1999;
Touretzky et al., 1994).

8.3.2.3 A Synthetic Approach To Spatial Representation

The three examples that were briefly reviewed above all involve proposals for metric spatial rep-

resentations that mediate spatial behavior. However, in each example it was shown that such proposals

 - 76 -

Minds And Machines © M.R.W. Dawson 12/02/2016

are not without controversy. In some instances, behavior that is presumably guided by the representation
can violate the metric properties of space. In other instances, inspections of the representational or neu-
ral structures that mediate spatial behavior or experience reveal regularities that are inconsistent with the
notion that the underlying structure is metric in nature.

One reason that such inconsistencies emerge may be because these representational proposals

were the product of an analytic research strategy. Cognitive psychologists typically develop theories
about underlying representations by decomposing complex behavior into more basic functions (Cummins,
1983; Dawson, 1998). While this approach, called functional analysis, has been extremely successful, it
can be dangerous to use. One problem with it that we saw in Chapter 7 is that it can lead to theories that
are more complicated than necessary, because the decomposition can fail to partition behavior appropri-
ately into three different categories (behavior caused by the organism, behavior elicited by a complex en-
vironment, and behavior that emerges at the interface between an agent and its environment) (Braiten-
berg, 1984; Simon, 1996). A second problem is that the decomposition is theory-driven, and as a result
can miss regularities that are real, but not intuitively obvious. “The tendency will be to break different ca-
pacities down into different constituent processes. As a result, explanations that are given of the capabili-
ties in question will rest on a false and artificial theory, one that is, in effect, engineered to account for da-
ta but that is not a realistic model of human neuropsychology” Rollins (2001).

 The synthetic approach is one alternative to functional analysis. Dawson, Boechler and
Valsangkar-Smyth (2000) decided to explore the notion of spatial representations synthetically by building
a PDP network that could make judgments that preserved the metric properties of space. Could a simple
network learn to make such judgments? If so, then what kind of internal representation would it use?
Would the representation be metric or non-metric?

8.3.2.3.1 Defining The Problem

 As was noted earlier, the first step in synthesizing a connectionist network is to choose a problem
of interest, and to translate this problem into a form that could be dealt with by a PDP model. Dawson,
Boechler and Valsangkar-Smyth (2000) wanted to create a network that could perform a behavior that
was complicated enough to be of psychological interest, and which also preserved the metric properties
of space. The task that they selected was a ratings task, in which a network was presented a pair of cit-
ies, and had to rate the distance between the two cities on a scale from 0 to 10. This kind of task is of
psychological interest, because it is often used to collect distance-like data from human subjects (Shep-
ard, 1972). By basing the ratings on distances measured between cities on a map, one can also ensure
that a system that can make such judgments is preserving the metric properties of space as well.

Dawson, Boechler and Valsangkar-Smyth (2000) chose thirteen different locations in the province
of Alberta. They took all possible pairs from this set to create a set of 169 different stimuli, each of which
could be described as the question “On a scale from 0 to 10, how far is City 1 from City 2?” The desired
ratings for each stimulus were created as follows. First, from a map of Alberta they determined the short-
est distance in kilometers between each pair of locations. Second, they then converted these distances
into ratings. If a stimulus involved rating the distance from one place to itself, the rating was assigned a
value of 0. Otherwise, if the distance was less than 100 kilometers, then it was assigned a value of 1; if
the distance was between 100 and 199 kilometers, then it was assigned a value of 2; if the distance was
between 200 and 299 kilometers, then it was assigned a value of 3; and so on up to a maximum value of
10 which was assigned to distances of 900 kilometers or more.

These ratings were designed to preserve the metric properties of the map of Alberta. To confirm
that a system that could generate the ratings must have, in some sense, internalized the map of Alberta,
Dawson, Boechler and Valsangkar-Smyth (2000) analyzed the ratings with a statistical technique called
multidimensional scaling (MDS). MDS is designed to take proximity information as input, and to then
convert this information into a geometric configuration of points from which the proximities can be derived
(Kruskal & Wish, 1978). For example, if one were to give MDS a table of distances between cities (e.g., a
table commonly found on a roadmap), MDS would produce a map with each city situated in the correct

 - 77 -

Minds And Machines © M.R.W. Dawson 12/02/2016

location. When the ratings data is analyzed using MDS, it generates a plot in which each of the 13 cities
are located very near the position in which they would be found if one examined a road map of Alberta.

8.3.2.3.2 Choosing The Network Architecture

The second step in synthesizing a connectionist network is to choose a particular architecture,

and to train this architecture to solve the problem of interest. Part of this step involves making fairly gen-
eral architectural choices. Dawson, Boechler and Valsangkar-Smyth (2000) decided to train a feedfor-
ward network to solve this spatial judgment task. The first layer of this network was a set of 13 different
input units. The input units used a very simple unary notation to represent pairs of places to be com-
pared. Each input unit represented one of the thirteen place names. Pairs of places were presented as
stimuli by turning two of the input units on (that is, by activating them with a value of 1). For example, to
ask the network to rate the distance between Banff and Calgary, the first input unit would be turned on
(representing Banff), as would the second input unit (representing Calgary). All of the other input units
would be turned off (that is, were activated with a value of 0). This unary representational scheme was
chosen because it contains absolutely no information about the location of the different places on a map
of Alberta. In other words, the input units themselves did not provide any metric information that the net-
work could use to perform the ratings task.

Ten output units were used to represent the network’s rating of the distance between the two

place names presented as input. To represent a rating of 0, the network was trained to turn all of its out-
put units off. To represent any other rating, the network was trained to turn on one, and only one, of its
output units. Each of these output units represented one of the ratings from 1 to 10. For example, if the
network turned output unit 5 on, this indicated that it was making a distance rating of 5.

The middle layer of the spatial judgment network was a set of six hidden units. Dawson, Boechler

and Valsangkar-Smyth (2000) selected this number of hidden units because pilot simulations had shown
that this was the smallest number of hidden units that could be used by the network to discover a map-
ping from input to output. When fewer than six hidden units were used, the network was never able to
completely learn the task.

In addition to making decisions about the input representation, the output representation, and the

number of hidden units, Dawson, Boechler and Valsangkar-Smyth (2000) had to make specific decisions
about the properties of the hidden and output units, and about how the network was to be trained. They
decided that the hidden and output units should all be value units, which are described in more detail in
Chapters 10 and 11. A value unit uses a particular type of Gaussian activation function to convert net
input into internal activity that ranges between 0 and 1. Such units are tuned to respond to only a narrow
range of net inputs. Value units were used because one of the primary goals of the research was to in-
terpret the internal representations discovered by the network. As will be discussed in Chapter 12, a
number of different studies have demonstrated that networks of value units permit their internal structure
to be interpreted in great detail.

8.3.2.3.3 Training The Network

The final step in synthesizing a connectionist network is to actually carry out the training, and cre-

ate a network that is capable of generating the correct response for every pattern in the training set.
Dawson, Boechler and Valsangkar-Smyth (2000) were able to train their network to make the correct spa-
tial judgment for every pattern in the training set. With this successful training, the issues of emergence
and analysis became central to their study.

8.3.3 Connectionism And Emergence: A Prelude

 - 78 -

Minds And Machines © M.R.W. Dawson 12/02/2016

In the robot examples of Chapters 6 and 7, after a robot was synthesized, the next step was to
place it in an environment and observe its behavior. The point of this observation was to identify interest-
ing and surprising actions that emerged from the interaction between the robot and its world. Connection-
ist networks can surprise us, but not exactly in this way.

According to Hanson and Olson (1991, p. 332), “the neural network revolution has happened.

We are living in the aftermath.” At the time when the neural network revolution was in full swing, it was
important to demonstrate that PDP models were capable of dealing with domains that were prototypically
symbolic. I tell my students that this practice can be called “Gee Whiz connectionism”, because its main
goal was to allow researchers to exclaim “Gee whiz – PDP networks can do x, so x can be done without
explicit rules.” Classical researchers did take note of such results, acknowledging that it was surprising
that models built from such simple components were capable of providing accounts of complex phenom-
ena (Fodor & Pylyshyn, 1988).

However, in the aftermath of the neural network revolution, there really is no role for Gee Whiz

connectionism. As is discussed in slightly more detail below, modern analyses have demonstrated con-
clusively that a broad variety of PDP architectures have the same computational power as the architec-
tures that have been incorporated into symbolic accounts of cognition (Dawson, 1998). What this means
is that a connectionist network can learn to perform any task that can be accomplished by a classical
model. In the heyday of Gee Whiz connectionism, the mere demonstration that a network could do
something of interest to classical cognitive science was by itself an emergent phenomenon of considera-
ble interest. Now, with a better understanding of connectionist power, it is expected that networks can
perform these tasks. As a result, the fact that a network can learn a task is no longer an emergent phe-
nomenon of any interest to researchers.

Where, then, does emergence enter a synthetic psychology that uses PDP models? The answer

to this question is that it is neither interesting nor surprising to demonstrate that a network can learn a
task of interest. However, it can be extremely interesting, surprising, and informative to determine what
regularities the network exploits. What kinds of regularities in the input patterns has the network discov-
ered? How does it represent these regularities? How are these regularities combined to govern the re-
sponse of the network? In many instances, the answers to these questions can reveal properties of prob-
lems, and schemes for representing these properties, that were completely unexpected. In short, this
means that before connectionist modelers can take advantage of the emergent properties of a PDP net-
work that is being used as paradigm for synthetic psychology, the modelers must analyze the internal
structure of the networks that they train. In Chapter 12, we consider in detail several different approaches
to interpreting connectionist networks.

8.3.4 Connectionism And Analysis

In most cases, the identification of interesting emergent properties in a modern PDP network re-

quires a detailed analysis of the internal structure of a trained network. In particular, after a network has
learned to solve some problem of interest, a researcher will take the network apart and examine the
properties of the internal representations that it has developed. In many cases, it is expected that this
kind of analysis will reveal that the network has discovered interesting and surprising regularities in the
problem. These surprises are one of the main ways in which connectionist simulations can push re-
search in new directions.

However, if the analysis of connectionist representations is to provide a vehicle for synthetic psy-

chology, then there are two general criticisms that have to be faced first. The first criticism is the general
view that the kinds of representations that one will find in PDP networks are not the kinds of representa-
tions that will provide accounts of psychological phenomena. The second criticism is that even if these
representations were of potential interest, they are nearly impossible to uncover in a trained network. We
will consider each of these points below.

8.3.4.1 Connectionism And Representation

 - 79 -

Minds And Machines © M.R.W. Dawson 12/02/2016

One major debate in cognitive science concerns potential differences (and similarities) between
symbolic models and connectionist networks (Dawson, 1998). For example, it has been argued that, in
contrast to symbolic theories, PDP networks are subsymbolic (Smolensky, 1988). To say that a network
is subsymbolic is to say that the activation values of its individual hidden units do not represent interpret-
able features that could be represented as individual symbols. Instead, each hidden unit is viewed as
indicating the presence of a microfeature. Individually, a microfeature is unintelligible, because its “inter-
pretation” depends crucially upon its context (i.e., the set of other microfeatures which are simultaneously
present (Clark, 1993)). However, a collection of microfeatures represented by a number of different hid-
den units can represent a concept that could be represented by a symbol in a classical model.

One consequence of the proposal that PDP networks use subsymbolic representations is further

proposal that they process information in a completely different way than one would find in a symbolic
model such as a production system. “Subsymbols are not operated upon by symbol manipulation: they
participate in numerical – not symbolic – computation” (Smolensky, 1988). The kinds of numerical opera-
tions that are carried out are formal descriptions of the kind of energy minimization that we used to char-
acterize the “thoughtless walkers” in Chapter 6. For example, Smolensky puts forth a “connectionist dy-
namical system hypothesis” as a proposed account of connectionist information processing. According to
this hypothesis, at any state in time a connectionist network can be described as a vector of numbers,
with each number representing the state of activity of a processing unit. In some instances, such as an
account of learning, the vector might also include the values of a network’s weights. The system is dy-
namic, in the sense that this vector changes over time. Differential equations precisely describe such
changes, which in most cases can be thought of as defining a trajectory in some multidimensional space
through which the system travels to minimize some energy or cost value.

The claims that PDP networks represent and process information in completely different ways

than symbolic models has led to strong criticisms about their role in cognitive science and psychology.
Specifically, some researchers have made strong arguments that the kinds of (nonsymbolic) representa-
tions that are found in connectionist models are not adequate to account for many of the regularities of
human cognition (Fodor & McLaughlin, 1990; Fodor & Pylyshyn, 1988). In particular, Fodor and Pylyshyn
argue that connectionist information processing does not involve a combinatorial syntax and semantics,
and does not involve processes that are sensitive to constituent structure. They go on to argue that con-
nectionist information processing shares many of the properties (and limitations) of the associationist the-
ories that cognitivism reacted against in the 1950s (see also Bechtel, 1985). In short, their position is that
connectionism doesn’t provide the kind of representational account that psychology needs. “The problem
with connectionist models is that all the reasons for thinking that they might be true are reasons for think-
ing that they couldn’t be psychology” (Fodor & Pylyshyn, 1988, p. 66).

There are both theoretical and empirical reasons to believe that this dismissal of connectionism is

premature. The symbolic paradigm in cognitive science is based upon the assumption that whatever the
architecture of cognition is, it must have the computational power of a universal Turing machine (UTM)
(Dawson, 1998). It would appear that connectionist networks also have this level of computational power.
In some of the earliest work on neural networks, McCulloch and Pitts (1943) examined finite networks
whose components could perform simple logical operations like AND, OR, and NOT. They were able to
prove that such systems could compute any function that required a finite number of these operations.
From this perspective, the network was only a finite state automaton (see also Hopcroft & Ullman, 1979;
Minsky, 1972). However, McCulloch and Pitts went on to show that a UTM could be constructed from
such a network, by providing the network the means to move along, sense, and rewrite an external "tape"
or memory. "To psychology, however defined, specification of the net would contribute all that could be
achieved in that field" (McCulloch & Pitts, 1943/1988, p. 25). It has already been noted that more recent
results have validated and extended this pioneering research.

Empirical evidence also supports the view that the distinction between connectionist and classical

models is fairly blurred. For example, in one study Dawson, Medler, and Berkeley (1997) my students
trained a network of value units on a logic problem developed by Bechtel and Abrahamsen (1991). When
they analyzed the internal structure of the network, they found evidence for network states that repre-
sented standard rules of logic. A second study provided even stronger evidence of the representational

 - 80 -

Minds And Machines © M.R.W. Dawson 12/02/2016

equivalence of the two types of models. Dawson, Medler et al. (2000) were able to translate a symbolic
theory directly into a connectionist network using a technique called extra-output learning.

8.3.4.2 Connectionism And Bonini’s Paradox

It would appear, then, that examining the internal representations of PDP networks is an appro-

priate activity for synthetic psychology. Unfortunately, connectionist researchers freely admit that it is ex-
tremely difficult to determine how their networks accomplish the tasks that they have been taught. There
are a number of reasons that PDP networks are difficult to understand as algorithms, and are thus
plagued by what we called Bonini’s paradox in Chapter 2.

First, general learning procedures can train networks that are extremely large; their sheer size

and complexity makes them difficult to interpret. For example, Seidenberg and McClelland's (1989) net-
work for computing a mapping between graphemic and phonemic word representations uses 400 input
units, up to 400 hidden units, and 460 output units. Determining how such a large network computes a
particular function is an intimidating task. This is particularly true because in many PDP networks, it is
very difficult to consider the role that one processing unit plays independent from the role of the other
processing units to which it is connected (see also Farah, 1994).

Second, most PDP networks incorporate nonlinear activation functions. This nonlinearity makes

these models more powerful than those that only incorporate linear activation functions (e.g. Jordan,
1986), but it also results requires particularly complex descriptions of their behavior. Indeed, some re-
searchers choose to ignore the nonlinearities in a network, substituting a simplified (and often highly inac-
curate) qualitative account of how it works (e.g., Moorhead, Haig, & Clement, 1989).

Third, connectionist architectures offer (too) many degrees of freedom. One learning rule can

create many different networks -- for instance, containing different numbers of hidden units – that can
each compute the same function. Each of these systems can therefore be described as a different algo-
rithm for computing that function. One does not have any a priori knowledge of which of these possible
algorithms might be the most plausible as a psychological theory of the phenomenon being studied.

8.3.4.3 Interpreting Connectionist Networks

Difficulties in understanding how a particular connectionist network accomplishes the task that it

has been trained to perform has raised serious doubts about the ability of connectionists to provide fruitful
theories about cognitive processing (e.g., McCloskey, 1991). Because of the problems of network inter-
pretation, McCloskey (1991) suggested “connectionist networks should not be viewed as theories of hu-
man cognitive functions, or as simulations of theories, or even as demonstrations of specific theoretical
points” (p. 387). Fortunately, connectionist researchers are up to this kind of challenge. Several different
approaches to interpreting the algorithmic structure of PDP networks have been described in the litera-
ture. They are discussed in more detail in Chapter 12. In short, network interpretation is both necessary
and possible.

8.3.5 Connectionism And Analysis: An Example

To provide an example of connectionism and analysis, let us return to the spatial judgment net-

work of Dawson, Boechler and Valsangkar-Smyth (2000). After they were able to successfully construct
the network, their interest turned to the kinds of internal representations used by the network to generate
its metric behavior. In what way do the hidden units of this network represent the metric structure of a
two-dimensional map of Alberta? Have the hidden units developed a metric representation of space? Or
have the hidden units instead developed some complex nonmetric representation from which metric be-
havior can be derived?

8.3.5.1 Relating The Map Of Alberta To Hidden Unit Connection Weights

 - 81 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Dawson, Boechler and Valsangkar-Smyth (2000) began by exploring the possibility that the net-
work might have developed internal representations similar in nature to those that have been attributed to
cells in the hippocampus. For example, consider the possibility that each hidden unit occupies a position
in the map of Alberta, and uses its connection weights to represent the distances from the hidden unit to
each of the Albertan cities. If this hypothesis is correct, then one should be able to find a position for
each hidden unit on the map of Alberta such that there is a substantial correlation between the unit’s con-
nection weights and the distances from each city to the hidden unit location.

Dawson, Boechler and Valsangkar-Smyth (2000) used the Solver tool in Microsoft Excel to move

each hidden unit to a latitude and longitude on the map of Alberta. The spreadsheet that they designed
computed the distance between the (current) position of the hidden unit and each of the 13 Albertan cit-
ies. The spreadsheet then computed the correlation between these 13 distances and the 13 connection
weights feeding into the hidden unit. The Solver tool in the spreadsheet then changed the position of the
hidden unit, finally stopping when it identified the position on the map that produced the highest correla-
tion between map distances and connection weights. There was a very strong relationship between dis-
tances and connection weights, with the absolute values of the correlations ranging from 0.48 to 0.88. In
other words, after this analysis was performed, Dawson, Boechler and Valsangkar-Smyth were able to
create a map that not only contained the 13 cities, but which also contained the hidden units from their
network.

8.3.5.2 Relating Connection Weights To Hidden Unit MDS Spaces

Dawson, Boechler and Valsangkar-Smyth's (2000) first analysis indicated that each hidden unit

could be viewed as occupying a position on the map of Alberta, and that its connection weights were re-
lated to distances between the hidden unit and the 13 cities on the map. However, while the correlation
between map distances and connection weights were substantial, they were not as strong as might be
expected. They noted that one problem with the first analysis was that it imposes our notion of the space
in question (i.e., the map of Alberta) onto the behavior of the hidden units. It does not permit the possibil-
ity that the hidden units are spatial, but the space to which they are sensitive is quite different from the
space used to create the map. There are at least two reasons to expect that the hidden units have a dis-
torted representation of the map.

The first reason is theoretical. If connection weights leading into a hidden unit represent distance,

then these distances are dramatically transformed by the Gaussian activation function of the hidden unit
when connection weight signals are converted into hidden unit activity. This kind of transformation would
be equivalent to a distortion of the map of Alberta.

The second reason is empirical. For any input pattern, a hidden unit’s activity can be viewed as

being analogous to that hidden unit’s rating of the distance between cities. If we examine hidden unit ac-
tivity to various pairs of cities, then we can see that the hidden unit’s “ratings” do not seem particularly
accurate. Consider, for example, hidden unit 2. When the network is asked to rate the distance between
Red Deer and Jasper, this unit generates an activation value of 0.69. On the map of Alberta, the distance
between Jasper and Red Deer is 413 km. However, nearly identical behavior is produced in the unit by
two other cities, Edmonton and Lloydminster, which are much closer together on the map (251 km).
When these two cities are presented to the network an activation of 0.71is produced in hidden unit 2.

If the hidden units are spatial in nature, but are dealing with a space that is quite different from the

one that we might expect, then how should their behavior be analyzed? One approach would be to con-
sider each hidden unit as being a subject in a distance rating experiment. For each stimulus, the rating
generated by the hidden unit is the hidden unit’s activity. If all of these ratings are taken and organized
them into tables, then MDS can be applied to this data. This analysis determines the structure of the
space that underlies the hidden units behavior, which can then be related to the connection weights that
feed into each unit.

Dawson, Boechler and Valsangkar-Smyth (2000) performed this analysis on the 13 X 13 “activity

matrix” for each hidden unit, in which each row and each column corresponded to an Albertan city, and

 - 82 -

Minds And Machines © M.R.W. Dawson 12/02/2016

each matrix entry aij was the hidden unit’s activation value when the network was asked to rate the dis-
tance between city i and city j. They found that a two-dimensional plot provided a nearly perfect account
of the activity matrix of each hidden unit. They then repeated the Solver analysis that was reported above.
However, instead of using the map of Alberta, for each hidden unit they used the coordinates of the cities
obtained from the MDS analysis of the unit’s activity matrix. With these analyses, for each hidden unit
they found a location in the MDS space that produced a near perfect correlation between distances and
connection weights.

8.3.5.3 Coarse Coding From Hidden Unit Activations To Distance Ratings

Up to this point, we have seen evidence that the spatial judgment network developed a spatial

representation of map locations, in which the weights that fed into a hidden unit encoded information
about the distance between the hidden unit’s position in a two dimensional space and city locations in the
same space. However, we have not yet discussed how the network exploits the features detected by the
hidden units to produce the desired ratings as output.

We saw earlier that an individual unit’s responses to different stimuli were not necessarily accu-

rate. For instance, when presented two cities that were relatively close together, a unit might generate
internal activity very similar in value to that generated when presented two other cities that were much
further apart. To verify this claim quantitatively, Dawson, Boechler and Valsangkar-Smyth (2000) took the
activity of each hidden unit and correlated it with the desired rating for the input patterns. For units H0
through H5, these correlations were –0.32, 0.04, 0.04, -0.10, 0,04, and 0.16. It would appear that the ac-
tivities of individual hidden units were at best weakly related to the desired distance ratings. How is it pos-
sible for such inaccurate responses to result in accurate outputs from the network?

The answer to this question is that the hidden unit activations in the network are a form of repre-

sentation called coarse coding. In general, coarse coding means that an individual processor is sensitive
to a broad range of features, or at least to a broad range of values of an individual feature (e.g., Church-
land & Sejnowski, 1992). As a result, individual processors are not particularly useful or accurate feature
detectors. However, if different processors have overlapping sensitivities, then their outputs can be
pooled, which can result in a highly useful and accurate representation of a specific feature. Indeed, the
pooling of activities of coarse-coded neurons is the generally accepted account of hyperacuity, in which
the accuracy of a perceptual system is substantially greater than the accuracy of any of its individual
components (e.g., Churchland & Sejnowski, 1992).

The coarse coding that is used in the spatial judgment network can be thought of as follows:

Each hidden unit occupies a different position on the map of Alberta. When presented a pair of cities,
each unit generates an activation value that reflects a rough estimate of the combined distance from the
two cities to the hidden unit. While each hidden unit by itself generates only a rough estimate, when all
six hidden units are considered at the same time, a much more accurate estimate of the distance be-
tween the two cities is possible. To demonstrate this, Dawson, Boechler and Valsangkar-Smyth (2000)
used regression to predict the distance rating (an integer ranging from 0 to 10) from the activations gen-
erated in 6 of the hidden units by each of the 169 stimuli that were presented to the network during train-
ing. The regression equation produced an R2 of 0.71. In other words, a linear combination of the hidden
unit activities can by itself account for over 70% of the variance of the distance ratings. After being
trained to solve the problem, the network, in virtue of the nonlinear transformations performed by the
Gaussian activation functions of its output units, can combine the hidden unit activities to account for
100% of the distance ratings.

8.3.6 Connectionism And Emergence: An Example

Several different analyses of the internal structure of the spatial judgment network were reported

above, and all of these analyses converged on one general finding: the hidden units of the network de-
veloped metric representations of space. First, two-dimensional MDS analyses accounted for almost all
of the variance in the activation matrix that was created for each hidden unit. Second, if one assumed
that each hidden unit occupied a location on the map of Alberta, one could find a location for each hidden

 - 83 -

Minds And Machines © M.R.W. Dawson 12/02/2016

unit that produced a high correlation between the connection weights feeding into the hidden unit and the
distances on the map between cities and the position of the hidden unit. Third, if one replaced the map of
Alberta with a customized two-dimensional space for each hidden unit (a space revealed by the MDS
analyses), near perfect correlations between connection weights and distances in the space were re-
vealed.

With these analyses completed, we can now return to the issue of connectionism, analysis, and

emergence. Specifically, now that a spatial judgment network has been synthesized, and now that its
internal structure has been thoroughly analyzed, what are the implications of this simulation? Dawson,
Boechler and Valsangkar-Smyth (2000) discussed two general insights that were provided by their re-
search. The first had to do with a controversy about how the hippocampus represents space. The sec-
ond had to do with the relationship between metric representations and nonmetric behaviors. These two
issues are discussed in the sections that follow.

8.3.6.1 Implications For The Hippocampal Cognitive Map

The strong interest that neuroscientists have taken in the study of spatial behavior and cognitive

maps can largely be traced back to the discovery of place cells in the hippocampus (O'Keefe & Dostrov-
sky, 1971). The properties of place cells have been used as evidence for the neural basis of a cognitive
map in the hippocampus (O'Keefe & Nadel, 1978). This map was argued to be a Euclidean description of
the environment based on an allocentric frame of reference. In other words, locations in this map were
defined in terms of the world, and not in terms of a coordinate system based upon (and moving with) the
animal. Additional support for this proposal came from the fact that lesions to the hippocampus produce
deficits in a variety of spatial tasks (for an introduction, see Sherry & Healy, 1998). Furthermore, robots
that use a representational scheme based upon the properties of place cells can navigate successfully in
their environment, indicating that the place cell architecture is a plausible proposal for a cognitive map
(Burgess, Donnett, Jeffery, & O'Keefe, 1999).

One common analogy used by researchers is that a cognitive map is like a graphical map

(Kitchin, 1994). “This does not mean that there must be a region in the brain onto which the environment
is physically mapped, but rather that there will be a correspondence between input-output behaviors of
the storage and retrieval functions of the two representations” (p. 4). The aforementioned properties of
place cells would appear to support this analogy. One might plausibly expect that the cognitive map is a
two-dimensional array in which each location in the map (i.e., each place in the external world) is associ-
ated with the firing of a particular place cell.

However, anatomical evidence does not support this analogy. First, there does not appear to be

any regular topographic organization of place cells relative to either their positions within the hippocam-
pus or to the positions of their receptive fields with respect to the environment (Burgess et al., 1995;
McNaughton et al., 1996). Second, place cell receptive fields are at best locally metric (Touretzky et al.,
1994). This is because one cannot recover information about bearing from place cell representations,
and one cannot measure the distance between points that are more than about a dozen body lengths
apart because of a lack of place cell receptive field overlap. Some researchers now propose that the
metric properties of the cognitive map emerge from the coordination of place cells with cells that deliver
other kinds of spatial information, such as head direction cells which fire when an animal’s head is point-
ed in a particular direction, regardless of the animal’s location in space (McNaughton et al., 1996; Redish
& Touretzky, 1999; Touretzky et al., 1994).

Dawson, Boechler and Valsangkar-Smyth (2000) observed that the hidden units in the spatial

judgment network also appear to be subject to the same limitations that have brought into question the
ability of place cells to provide a metric representation of space. First, because the hidden units were all
connected to all of the input units, the network had no definite topographic organization. Second, each
hidden unit appeared to be at best locally metric. While the input connections were correlated with dis-
tances on the map, the responses of individual hidden units did not provide an accurate spatial account of
the map. Nevertheless, the fact that the network could be trained to accurately generate the ratings indi-
cated that the responses of these locally metric, inaccurate processors represented accurate spatial in-

 - 84 -

Minds And Machines © M.R.W. Dawson 12/02/2016

formation about the entire map of Alberta. This was possible because the network did not base its output
on the behavior of a single hidden unit. Instead, it relied on coarse coding, and generated its response on
the basis of the activities of all six hidden units considered simultaneously.

Dawson, Boechler and Valsangkar-Smyth (2000) noted that one implication of this coarse coding

is that spatial relationships amongst locations in Alberta can be captured by a representational scheme
that is not isomorphic to a graphical map. In particular, if one views the hidden units as being analogous
to place cells, then the network demonstrates that spatial relationships among 13 different landmarks can
be represented by a system which assigns place cells to only 6 different map locations.

The reason that this is possible is because the representational scheme discovered by the net-

work is allocentric, but in a fashion that might not be immediately expected. Taken literally, the term allo-
centric means “centered on another”, but there are at least four distinct kinds of representations for which
this would be true (Grush, 2000). In two of these, the locations of objects are either specified with respect
to one object in the environment (an object-centered reference frame) or with respect to a position in the
environment at which no object is located (a virtual or neutral point of view). The representation used in
the PDP network is allocentric in this latter sense, because the positions of cities are represented relative
to the positions of hidden units, and the hidden units are not positioned at city locations. However, the
network representation extends this notion of allocentric, because city locations are not encoded with re-
spect to a single virtual location, but instead with respect to a set of six different virtual positions, all of
which have to be considered at the same time to accurately retrieve spatial information from the network
(i.e., to judge the distance between cities). Dawson, Boechler and Valsangkar-Smyth (2000) called this a
coarse allocentric code.

The major hypothesis about the hippocampus that was suggested by the spatial judgment net-

work is that place cells also implement a coarse allocentric code. As a result, the place cells need not be
organized topographically, because they don’t represent the environment in the same way as a graphical
map. Instead, locations of landmarks in the environment could be represented as a pattern of activity
distributed over a number of different place cells. If this were the case, then in spite of their individual
limitations, coarse coding of place cell activities could be used to represent a detailed cognitive map with-
out necessarily being coordinated with other neural subsystems. In other words, Dawson, Boechler and
Valsangkar-Smyth's (2000) discovery of coarse allocentric coding in their network provides one plausible
manner in which the spatial abilities of the hippocampus can be reconciled with its non-maplike organiza-
tion.

8.3.6.1 Coarse Allocentric Coding And Nonmetric Judgments

The spatial nature of the network’s internal representations is perhaps not surprising, given that

the network was trained to internalize a metric space. However, as was noted earlier in this chapter,
there does exist a tension between the metric properties of a representation and the properties of the be-
havior that the representation mediates. Specifically, is it possible for a metric representation to mediate
nonmetric behavior?

This issue is important, because the discovery that human similarity judgments were nonmetric

had a severe impact on proposals about the representations that mediated this behavior. Tversky and his
colleagues conducted a number of experiments that demonstrated that similarity judgments were not met-
ric, because in different situations it could be shown that these judgments were not always symmetric, did
not always conform to the minimality principle, and did not always conform to the triangle inequality
(Tversky, 1977; Tversky & Gati, 1982). As a result, many researchers completely abandoned the notion
of the similarity space, and instead moved to feature based comparison models that could easily handle
nonmetric regularities. This was in spite of the fact that it is possible to elaborate a perfectly metric repre-
sentational space in such a way that it can be used to mediate nonmetric judgments. For example,
Krumhansl (1978, 1982) demonstrated that if one took a metric space and augmented the kind of opera-
tions that were applied to it one could easily account for asymmetric similarity judgments.

 - 85 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Dawson, Boechler and Valsangkar-Smyth's (2000) discovery of the coarse allocentric code was
exciting because it raised the possibility of a metric representation that might be flexible enough to medi-
ate spatial judgments that were not completely metric. In other words, they were interested in the possi-
bility that coarse allocentric coding could support nonmetric judgments without the need for additional
rules or processes.

One of the reasons for the rise in the popularity of connectionist networks over symbol-based

models is that network models degrade gracefully and are damage resistant (McClelland, Rumelhart, &
Hinton, 1986). To say that a network degrades gracefully is to say that as noise is added to its inputs, its
output responses become poorer, but it does not stop responding (Dawson, 1998). The model deals as
best it can with less than perfect signals. To say that a network is damage resistant is to say that as
noise is added to its internal structure (e.g., by damaging connections or by ablating hidden units), its
output responses become poorer, but it still functions as well as it can. Traditional symbol-based models
do not degrade gracefully, and are not damage resistant.

The damage resistance and graceful degradation of PDP networks is due to the redundancy of

their internal representations when they employ coarse coding. One further advantage that this kind of
representation can provide, which is related to graceful degradation, is generalization. When presented
with a new stimulus – one that the network was never trained on – a network often can generate a plausi-
ble response, taking advantage of the similarity between the new stimulus and old stimuli, and the fact
that such similarity can be easily exploited in redundant representations. In fact, if too many hidden units
are used, and if these units start to pay attention to specific stimuli, then generalization will be poorer.
This is one aspect of what is called “the three bears” problem (Seidenberg & McClelland, 1989).

In a second simulation, Dawson, Boechler and Valsangkar-Smyth (2000) were concerned with a

different type of generalization – the generalization of representation type from one problem to another.
Specifically, imagine if the spatial judgment network’s task was changed in such a way that the distance
ratings violated one of the metric properties of space. Could allocentric coarse coding still be used to rep-
resent a solution to the problem? Or would a change in task result in a completely different representa-
tional approach?

The problem that Dawson, Boechler and Valsangkar-Smyth (2000) trained a network to solve in

the second simulation was a distance estimation task that was identical to the one that we have described
above, with the exception that the network was trained to make different judgments when asked to judge
the distance between a city and itself. In the first simulation, such judgments obeyed the minimality prin-
ciple of metric space, and the network was trained to make a judgment of 0 when presented such stimuli.
In the second simulation, the minimality principle was violated. Instead of making a judgment of 0 when
rating the distance of a city to itself, the network was trained to make a rating of 0, 1, or 2 depending upon
the city.

When the minimality constraint was violated in this way, Dawson, Boechler and Valsangkar-

Smyth (2000) found that the ratings task became more difficult. In particular, the problem could not be
solved when the network had six hidden units. An additional hidden unit was required. In spite of the
task being more difficult, though, there was no evidence that the network created a qualitatively different
representation to solve the problem. Dawson, Boechler and Valsangkar analyzed this second network in
the same fashion that they used to analyze the first network, and which was described above. They
found that the second network used allocentric coarse coding to make distance judgments. Each hidden
unit could be considered as occupying a position on the map of Alberta, and the weights feeding into
each unit were correlated with the distances between the hidden units and the Albertan cities. The re-
sponses of individual hidden units provided relatively inaccurate sensitivity to distance information. How-
ever, when the responses of all seven hidden units were pooled, very accurate distance judgments were
possible. Finally, and most importantly, there was no evidence that any one of the hidden units had a
special role in making the subset of judgments that defined the violation of the minimality principle.

In particular, one possibility that Dawson, Boechler and Valsangkar-Smyth (2000) considered was

that six of the hidden units in the new network were performing the same function as were the six in the

 - 86 -

Minds And Machines © M.R.W. Dawson 12/02/2016

first network, and that the seventh hidden unit was a special purpose unit designed to deal with the non-
metric judgments taken from the diagonal of the new ratings matrix. This was not the case – all seven
hidden units could be described in the same general way, all seven could be positioned on a map of Al-
berta, and all seven were involved in coarse allocentric coding.

8.3.6.3 Implications

Earlier in this chapter, we briefly considered three different research areas related to spatial cog-

nition: similarity spaces, mental imagery, and cognitive maps. For each of these areas, it was argued that
there existed a tension between behavioral regularities and representational properties. For example,
consider the relationship between similarity judgments (which are strongly related to the distance judg-
ments used in the current study) and representational proposals. In the beginning, similarity judgments
were assumed to obey the metric properties of space, and as a result researchers proposed that these
judgments were mediated by a metric spatial representation (Romney et al., 1972; Shepard et al., 1972).
However, later research revealed that the judgments that subjects made were not always metric. What
were the representational implications due to these behavioral observations?

One alternative was to completely abandon metric spatial representations, and to adopt represen-

tations that were less structured. For example, some researchers replaced the similarity space with a
proposal in which concepts were represented as sets of features, and nonmetric behavioral regularities
emerged from the procedures used to compare feature sets (Malgady & Johnson, 1976; Ortony, 1979;
Tversky, 1977; Tversky & Gati, 1982). This approach has the advantage of being able to account for
nonmetric behavioral regularities. However, it has disadvantages as well. The ability to fit nonmetric be-
havior emerges from manipulating constants in feature comparison equations. These constants provide
additional degrees of freedom that must be fit from study to study to predict human judgments. Because
of these additional degrees of freedom, this kind of theory is less powerful -- less constrained -- than the
similarity space that it replaced (Pylyshyn, 1984).

A second alternative was to modify the similarity space proposal in such a way that this metric

space could mediate nonmetric behaviors. For instance, Krumhansl (1978, 1982) modified the similarity
space by including new rules that measured the density of points in the space, where density reflected
the number of neighbors that were close to a point in the space. Krumhansl included density calculations
in addition to distance in the rules that were used to compare different points in the space. The inclusion
of density permitted nonmetric judgments to emerge from the space. This approach has the advantage of
maintaining some of the attractive properties of the similarity space. However, the density calculations
also introduce new degrees of freedom that reduce the explanatory power of theory.

A third example is provided by the synthetic approach taken by Dawson, Boechler and

Valsangkar-Smyth (2000). A model based on relatively simple building blocks, with few underlying repre-
sentational hypotheses, was trained to generate metric spatial judgments. Once the model had been
synthesized, they took great pains to analyze its internal structure. The result was the discovery of a par-
ticular kind of representation, allocentric coarse coding, that would not have been an obvious proposal
had our starting point been the analysis of behavior. A second study demonstrated that this kind of rep-
resentation was also capable of mediating spatial judgments that violated the minimality principle of met-
ric space. In other words, the synthetic approach utilized by Dawson, Boechler and Valsangkar-Smyth
(2000) has shown how a connectionist representation can account for both metric and nonmetric regulari-
ties.

8.4 SUMMARY AND CONCLUSIONS

In Chapters 6 and 7, the synthetic approach was illustrated with examples that used robots, toy

and otherwise. Much of this research, which is now known as behavior-based robotics and embodied
cognitive science, is aimed at challenging the assumption that cognition and intelligence is based upon
mental representations. While it is of considerable interest that many complicated behaviors can be pro-
duced by systems that only exploit visuomotor reflexes, many domains of cognitive science and psychol-
ogy are still likely to need to appeal to representations. One question addressed in this chapter was

 - 87 -

Minds And Machines © M.R.W. Dawson 12/02/2016

whether the synthetic approach could be employed in a fashion that still permitted representations to be
explored.

It was argued in this chapter that PDP models offered one plausible method for conducting psy-

chological research that was both synthetic and representational. The synthetic component of this kind of
research involves using components defined by a connectionist architecture to construct a network capa-
ble of solving some problem of interest. Once the network has been constructed, its internal structure is
analyzed in detail. The purpose of this analysis is to discover the regularities in the training patterns that
are used by the network to solve the problem, as well as the manner in which these regularities are rep-
resented in the network’s connections. Once this analysis is complete, it is expected that the discovered
regularities and representations will lead to unexpected insights into the problem. In other words, in a
connectionist synthetic psychology emergence will follow analysis.

This chapter also presented one case study in synthetic psychology, the spatial judgment network

of Dawson, Boechler and Valsangkar-Smyth (2000). One reason for choosing this example was to show
that fairly simple components could be used to construct a system capable of performing a task of psy-
chological interest. A second reason for this example was to illustrate an instance of “representational
emergence”. When the spatial judgment network was originally created, the only general issue in mind
was building a PDP system that could respond as if it had internalized a spatial map. We were interested
in identifying how such a map was internalized, but had no pet theory about its structure. At the end of
the analysis, when we had identified the coarse allocentric coding in the hidden units, we found that we
had something to say about spatial representation in the hippocampus and about the ability to generate
judgments that were nonmetric. These insights were surprising to us, and demonstrate some of the pow-
er that can emerge from adopting a synthetic paradigm.

We have now come to the end of the first phase of this book. We have discussed different types

of models, and have contrasted analytic and synthetic approaches. We have ended with a case study
that shows how connectionism can contribute to synthetic psychology. In the remaining chapters, we will
step back a bit and consider some of the basic properties of connectionism as an example medium in
which synthetic psychology can be conducted. In Chapters 9, 10, and 11 we consider three different
“building blocks” for this enterprise, and show how these building blocks can be used to create networks
of interest to psychologists. In Chapter 12, we consider in detail three different approaches that can be
used to analyze the representations that can be discovered in networks built from these general compo-
nents.

 - 88 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Chapter 9: Building Associations

The first part of this book developed an argument that synthetic psychology was one approach

that could be fruitfully explored in the study of mind. In very general terms, the aim of synthetic psycholo-
gy is to build mental phenomena from the bottom up. A synthetic psychologist could proceed by propos-
ing some basic “building blocks” to be used, and then by seeing what kinds of interesting and surprising
phenomena could be created when these basic components are combined. Some researchers have ar-
gued that the synthetic approach promises to provide theories of mental phenomena that are simpler than
those that can be produced by applying more traditional analytic methodologies.

The purpose of the current chapter is to begin our exploration of synthetic psychology by examin-

ing a proposal for a set of “building blocks”. In this chapter, we will describe one key building block for
connectionist models: the storing of an association between two patterns by modifying a set of connection
weights. We will see that a memory system that is created from this key component has some interesting
properties. But we will also see that there are many stimulus-response pairings that cannot be encoded
in this kind of system. As a result, additional building blocks must be proposed. These additional building
blocks will be introduced in Chapters 10 and 11.

This chapter proceeds as follows. First, it presents a brief historical overview of associationism.

This is culminates in an account of William James’ theory of association, which is used to motivate a more
modern account of associative mechanisms. Second, it introduces this modern account by describing the
properties of a particular connectionist network, called a distributed associative memory. This account
defines the properties of processing units, modifiable connections, and the general operations used to
train the network and to retrieve associations that have been stored in it. Third, the chapter describes a
particular learning rule for this type of connectionist network, the Hebb rule. Mathematical analyses and
the results of computer simulations are used to show the advantages and disadvantages of this learning
rule. Fourth, a second training procedure, the delta rule, is defined in an attempt to overcome some of
the problems that were uncovered with Hebb-style learning. The chapter ends with some brief reflections
about how one might use a computer simulation of a distributed associative memory to explore some is-
sues that have arisen in the modern study of association and learning.

9.1 FROM ASSOCIATIONISM TO CONNECTIONISM

In 1921, Howard Warren published A history of the association psychology, which traced associa-

tionism from Aristotle’s reflections on memory (B.C. 382 – 322) to the psychological theories proposed by
Herbert Spencer and George Henry Lewes in the 1870s. As far as Warren was concerned, association
psychology in its most focused form ended at this time: “The association psychology culminated with
Bain, Spencer, and Lewes. The evolution doctrine of the two last writers affords a wider scope to the play
of association; but at the same time it opens the door to other factors, which have tended to lessen the
importance of association in the eyes of the empirical investigator” (Warren, 1921, p. 16). Accordingly,
Warren organized his history by considering four different periods of thought that ended with the work of a
select group of 19th century thinkers.

In this section of the chapter, I will provide a highly selective history of associationism, and I will

organize this history by adopting Warren's (1921) method of considering different periods of thought.
However, we will be parting company with Warren in two important ways. First, we will consider some
aspects of associationism that persisted beyond the era of Bain. In particular, we will examine the asso-
ciationism of William James, a psychologist whose contributions are only briefly considered by Warren.
Second, we will use James’ thoughts about associationism as a springboard to very modern association-
ist models in cognitive science. In particular, we will see that James laid the foundation for a particular
type of connectionist model, called a distributed associative memory. Contrary to what Warren’s history
implies, associationism has survived, and even flourished, into the new millennium.

 - 89 -

Minds And Machines © M.R.W. Dawson 12/02/2016

9.1.1 Philosophical considerations

A very long line of philosophers and psychologists are responsible for the development of associ-

ationism. They studied associations empirically, through introspection. One of the main observations that
introspection revealed was that there existed sequences of thought which were experienced during think-
ing. Associationism grew out of the attempt to provide lawful accounts of these sequences of thought.

9.1.1.1 Aristotelian Contributions

The earliest detailed introspective account of such sequences of thought can be found in the writ-

ings of Aristotle. In his short essay De memoria et reminiscentia, Aristotle provided an account of
memory that “is fuller than that to be found in the best-known British empiricists” (Sorabji, 1972, p. 1). In
the early part of this essay, Aristotle argued that the contents of memory are essentially visual images
that resemble the things being memorized. “For it is clear that one must think of the affection, which is
produced by means of perception in the soul and in that part of the body which contains the soul, as be-
ing like a sort of picture, the having of which we say is memory. For the change that occurs marks in a
sort of imprint, as it were, of the sense-image, as people do who seal things with signet rings” (p. 50).

Later in the essay, Aristotle turned to the process of recollecting thoughts that have been remem-

bered. His account of recollection has all of the elements of the association psychology from the 19th cen-
tury. He focused upon the sequence of thought: “Acts of recollection happen because one change is of a
nature to occur after another” (Sorabji, 1972, p.54). A particular sequence of images occurs because ei-
ther this sequence is a natural consequence of the images, or because (through repetition) the sequence
has been learned by habit. Recall of a particular memory, then, is achieved by cuing that memory with
the appropriate prior images. “Whenever we recollect, then, we undergo one of the earlier changes, until
we undergo the one after which the change in question habitually occurs.”

For Aristotle, recollection by initiating a sequence of mental images was not a haphazard pro-

cess. The first image in the sequence could be selected in such a way that the desired image would be
recollected fairly easily, by taking advantage of possible relationships between the starting image and the
image to be recalled. Aristotle considered three different kinds of relationships between the starting im-
age and its successor: similarity, opposition, and (temporal) contiguity: "And this is exactly why we hunt
for the successor, starting in our thoughts from the present or from something else, and from something
similar, or opposite, or neighboring. By this means recollection occurs" (Sorabji, 1972, p. 54).

In Aristotle's account of recollection, we see three characteristics that recur in all the later theories

that defined the association psychology. First, there is the (introspective) observation that thought occurs
in sequences. Second, there is a claim about the nature of the mental entities that make up this se-
quence (e.g., mental images). Third, there is a claim about lawful relationships between these entities,
such that when one comes to mind, this relationship will lead to the recollection of the next component of
the sequence. These relationships are generally considered to be laws of association, and Aristotle's
proposal of three such laws (which in later theories would be called the law of similarity, the law of con-
trast, and the law of contiguity or the law of habit) is completely consistent with proposals made centuries
later.

Later researchers accepted the main points of Aristotle's associationism with only minor qualifica-

tions. For instance James (1890, p. 594) wrote, "Aristotle seems to have caught both the facts and the
principle of explanation; but he did not expand his views." However, Aristotle's observations on memory
were essentially ignored (perhaps because they were not understood – see (Warren, 1921, p.28) -- for
many centuries. Advances in associationism did not occur until the 17th century.

9.1.1.2 17th Century Associationism In Philosophy

One prominent feature of Aristotle’s treatment of associationism was that he only applied the laws

of association to one domain of experience, that of memory. This feature was preserved through the
middle ages. “The many commentators on Aristotle during the middle ages took up the passage on recol-

 - 90 -

Minds And Machines © M.R.W. Dawson 12/02/2016

lection which has been quoted. They discussed an amplified it, as they did every saying of the master,
but without throwing any new light on association” (Warren, 1921, p. 30). One reason for this very long
period of dormancy was the fact that departures from Aristotle were akin to heresy: “Any freshness or
originality was frowned upon; the only advances came from new interpretations – and these too often
were misinterpretations” (p. 30).

This situation began to change in the 17th century with the philosophical writings of Thomas

Hobbes (b. 1588 – d. 1679). Hobbes was particularly important for setting the stage to broaden the im-
port of association, by applying it to thought processes in general, and not just to memory in particular.
He presented three separate themes that permeated the writings of those that followed him. First, he dis-
tinguished sense (or sensations) from memory; memory was viewed as mental images of what was
sensed. Second, he noted that images are experienced in succession, and argued for the need to ex-
plain this succession. Third, he attempted to use principles of association to explain sequences of
thought.

Hobbes’ work on this third issue was not particularly successful, but his work inspired later phi-

losophers who had greater success than did he. “The British thinkers who followed him developed their
systems of psychology along the lines that he marked out; the notion of association, which he did little
more than outline, became more and more prominent as the analysis was perfected” (Warren, 1921, p.
33).

The most important philosopher who followed Hobbes in this era was John Locke (b. 1632 – d.

1704). Locke coined the phrase “association of ideas”, which first appeared as a chapter title in the fourth
edition (1700) of An essay concerning human understanding. Locke’s fame as a philosopher came late
in his life; the first edition of this book was published in 1690 when he was 57 years old. However, this
fame and influence was long lasting, and his chapter on association launched British empiricism.

Locke’s work was a reaction against the nativism espoused in the philosophy of Descartes, and

was primarily concerned with establishing experience as the foundation of all thought. Following Hobbes,
Locke distinguished between ideas of sensation and ideas of reflection. He was particularly interested in
the composition of simple ideas into more complex ideas, as well as the sequence of appearance of ide-
as. One reason for this interest was because these connections (from simple to complex, or from one
idea to the next in a sequence) did not seem to necessarily reflect a natural order. Instead, Locke real-
ized that these connections were due to experience. “There is another connexion of ideas wholly owing
to chance or custom: ideas that in themselves are not at all of kin, come to be so united in some men’s
minds that it is very hard to separate them, they always keep in company, and the one no sooner at any
time comes into the understanding but its associate appears with it; and if they are more than two that are
thus united, the whole gang, always inseparable, show themselves together” (Locke, 1977, p. 219).

Interestingly, while Locke anticipated the law of frequency that was later endorsed by J. S. Mill,

and alluded to association by contiguity and by similarity, he did not explore specific associative laws.
One reason for this may be that his primary goal was to argue for the existence of ideas formed by asso-
ciation; this was more important to him than an analysis of associative mechanisms. A second reason
may be because Locke was not in a position to offer any strong arguments in favor of any particular
causal process underlying association. After describing association as being responsible for a keyboard
player retrieving a long sequence of finger movements during a performance, Locke noted “whether the
natural cause of these ideas, as well as that regular dancing of his fingers, be the motion of his animal
spirits, I will not determine, how probable soever, by this instance, it appears to be so” (Locke, 1977, p.
220).

It is clear that the primary result of 17th century philosophy’s analysis of association was to renew

scholarly interest in this topic, and to set the stage for more technical advances that would come later.
Issues that were pioneered by Aristotle once again became central concerns to philosophers, and did so
in a context that permitted Aristotle’s views to be criticized and modified.

 - 91 -

Minds And Machines © M.R.W. Dawson 12/02/2016

9.1.1.3 18th Century Philosophy And Associationism

Locke’s immediate philosophical successor was the Bishop of Cloyne, George Berkeley (b. 1685

– d. 1753). Berkeley was primarily important for transforming the problem of knowledge from one that
was essentially philosophical to one that was more consistent with the strong psychological overtones
that marked theories of association that developed later. Like Hobbes and Locke, Berkeley divided men-
tal content into ideas of sensation and into ideas of imagination, and was primarily interested in account-
ing for the natural succession of ideas. He reiterated Aristotle’s law of contiguity, and extended it to ac-
count for associations involving different modes of sensation. “From a frequently perceived connection,
the immediate perception of ideas by one sense suggests to the mind others, perhaps belonging to an-
other sense, which are wont to be connected with them” (Warren, 1921, p. 41). In other words, Berkeley
– unlike Locke -- was one of the first philosophers after Aristotle to develop an account of “modes of as-
sociation”, which described the laws that determined how associations came to be.

A more detailed and elaborate theory of modes of association was to be found in the work of phi-

losopher David Hume (b. 1711 – d. 1776). Hume, like his predecessors, began by dividing experience
into impressions and ideas, and viewed the latter as being weaker or less vivid copies of the former. He
then turned to consider principles that explained the connection between successive ideas.

In his original treatment, Hume, who was likely unaware of similar ideas put forth by Aristotle,

proposed three different laws of association: resemblance, contiguity in time or place, and cause or effect.
“That these principles serve to connect ideas will not, I believe, be much doubted. A picture naturally
leads our thoughts to the original; the mention of one apartment in a building naturally introduces an en-
quiry or discourse concerning the others; and if we think of a wound, we can scarcely forbear reflecting on
the pain which follows it” (Hume, 1952, p. 23). Later, Hume argued that association by cause or effect
could not be distinguished from association by contiguity, and thus settled on two associative laws: conti-
guity and resemblance (or similarity).

Hume’s work on association was monumentally influential, but did have one shortcoming, in that

Hume did not attempt to use his laws of association to account for all mental phenomena. This was not
attempted until the treatment of association offered by David Hartley (b. 1705 – d. 1757). Hartley was not
only able to show the broader implications of Hume’s theory, but also provided one of the earliest exam-
ples of an attempt to root association in terms of brain function. Hartley constructed a theory of vibrations
that attempted to draw a close correspondence between mental associations and neural activity. Hartley
saw contiguity as the primary source of associations, and ignored Hume’s law of resemblance. He also
anticipated the associationism of J.S. Mill by recognizing repetition as a source of association, or at least
as a factor that could affect the strength of an association.

9.1.1.4 19th Century Philosophy And Associationism

The 19th century marked a period in which associationism evolved from a topic that was primarily

philosophical into one that was predominately psychological. In 1829, James Mill (b. 1773 – d. 1836)
published his Analysis of the human mind. The third chapter of this psychological text was on associa-
tionism. Many of the ideas put forth in this chapter were familiar: Mill divided mentality into sensations
and ideas, where ideas were once again proposed as being copies or traces of sensations. Mill observed
that sensations occur either simultaneously or in successive order, and that ideas presented themselves
in the same sequence as did the sensations that they copied. His associationism, like those of the phi-
losophers that we have already seen, attempted to account for the succession of ideas.

The 19th century was also an era in which writers assumed the fundamental notions of associa-

tionism as a given, and turned to fleshing out the details. For Mill, the only law of association was conti-
guity. He explicitly denied Hume’s laws of cause or effect and resemblance. Mill also emphasized the
importance of individual associations varying in strength. For Mill, association was essentially a mechani-
cal process by which complex ideas were created by associating simpler ideas together. Because of his
mechanical metaphor, emergence played no role in Mill’s associationism. For Mill, a complex idea was

 - 92 -

Minds And Machines © M.R.W. Dawson 12/02/2016

no more than the sum of its components, and if one understood these, then one should be able to com-
pletely understand the larger idea that they comprised.

Mill’s ideas were challenged and modified by his own son, John Stuart Mill (b. 1806 – d. 1873).

John Stuart Mill argued that ideas were indistinguishable from sensations, and were not just less vivid
copies. He then posited a completely different set of associative laws, which included a reintroduction of
Hume’s law of similarity: “The first is that similar ideas tend to excite one another. The second is that
when two impressions have been frequently experienced (or even though of) either simultaneously or in
immediate succession, then whenever one of these impressions or the idea of it recurs, it tends to excite
the idea of the other. The third law is that greater intensity in either or both of the impressions is equiva-
lent, in rendering them excitable by one another, to a greater frequency of conjunction” (Warren, 1921, p.
96).

One of John Stuart Mill’s most interesting departures from his father’s associationism was replac-

ing a mechanistic account of complex ideas with an account that was described as a “mental chemistry”.
In this mental chemistry, when complex ideas were created via association, the resulting whole was more
than just the sum of its parts. As a result, the laws governing the whole (e.g., successions to other ideas)
could not be predicted by knowing the laws governing the simpler ideas that served as parts. In other
words, John Stuart Mill proposed an associationism that endorsed an early form of emergence.

The associationism of Alexander Bain (b. 1818 – d. 1903) is, in many respects, a refinement of

John Stuart Mill’s. Bain invoked four different laws of association, and attempted to reduce all intellectual
processes to these laws. One of these laws was the law of contiguity, which has been present in every
theory of association that we have reviewed. A second was the law of similarity, which was revived from
Hume by both Bain and J.S. Mill after being banished by James Mill. The third was the law of compound
association: “Past actions, sensations, thoughts, or emotions are recalled more easily, either through con-
tiguity or similarity, with more than one present object or impression” (Warren, 1921, pp. 107-108). This
law was an important precursor to William James’ treatment of associations between patterns, which we
will consider in more detail shortly. The fourth was the law of constructive imagination: “By means of as-
sociation the mind has the power to form new combinations or aggregates, different from any that have
been presented to it in the course of experience” (p. 109). This law represents an important psychologi-
cal contribution of Bain, in that he was attempting to explain creative thought in terms of associative prin-
ciples.

9.1.2 Psychology, Associationism, and Connectionism

Bain represents a bridge between philosophical and psychological treatments of association.

Bain stood “exactly at a corner in the development of psychology, with philosophical psychology stretch-
ing out behind, and experimental physiological psychology lying ahead in a new direction. The psycholo-
gists of the twentieth century can read much of Bain with hearty approval; perhaps John Locke could
have done the same” (Boring, 1950, p. 240). In this section, we will consider some of the key develop-
ments of the psychological associationism that was inspired by Bain’s work. However, this review will be
extremely selective, because we will use it to motivate a discussion of a very particular kind of connec-
tionist network.

9.1.2.1 19th Century Contributions Of William James

The pioneer of the “New Psychology” in North America was William James (b. 1842 – d. 1910).

James created the first demonstrational psychology laboratory in North America, and in 1890 published a
profoundly influential psychology text in two volumes, The Principles Of Psychology. “The key to his in-
fluence lies…in his personality, his clarity of vision, and his remarkable felicity in literary style” (Boring,
1950, p. 509).

James’ treatment of association is found in Chapter 14 of The Principles Of Psychology. He was

in particular concerned about the fact that philosophical associationism had not made any serious pro-
posals concerning the causal mechanisms that instantiated modes of association. For example, he offers

 - 93 -

Minds And Machines © M.R.W. Dawson 12/02/2016

the following assessment of Bain: “His pages are painstaking and instructive from a descriptive point of
view; though, after my own attempt to deal with the subject causally, I can hardly award to them any pro-
found explanatory value” (James, 1890, p. 601).

James was of the opinion that explanatory accounts had eluded previous associationists because

of a fatal flaw in their approach. This flaw was the assumption that associations were made between
mental contents (e.g., the images, reflections, or ideas that had been proposed by most of James’ prede-
cessors as being copies or traces of sensations). James argued that if association was a mechanical
process, then it must apply to objects and not ideas; he then proposed a particularly psychological theory
by arguing that the objects being associated were brain states: “Association, so far as the word stands for
an effect, is between THINGS THOUGHT OF – it is THNGS, not ideas, which are associated in the mind.
We ought to talk of the association of objects, not of the association of ideas. And so far as association
stands for a cause, it is between processes in the brain – it is these which, by being associated in certain
ways, determine what successive objects shall be thought” (James, 1890, p. 554).

In terms of viewing association as an effect, James’ theory was not a radical departure from oth-

ers that we have considered in this chapter. First, he was primarily concerned with providing an account
of the succession of thoughts. Second, his theory attempted to explain this succession via associative
law. For James, the only explanatory mode of association was contiguity, which he called the law of hab-
it. While he admitted that other factors could be described as affecting association (similarity, vividness,
recency, emotional congruity), he attempted to show how all of these could be explained in terms of con-
tiguity.

James was able to reduce other laws of association to the law of contiguity when he departed

from the traditional view of association as an effect, and replaced it with the view of association as a
cause. There are several central elements to his physiological account of association. First, James rec-
ognized that one idea or event could be represented in the brain as a pattern of activity across a set of
more than one neuron. Second, he expressed his law of habit in terms of a process that affected the
ease of transit of a nerve-current through a tract: “The psychological law of objects thought of through
their previous contiguity in thought or experience would thus be an effect, within the mind, of the physical
fact that nerve-currents propagate themselves easiest through those tracts of conduction which have
been already most in use” (James, 1890, p. 563). Third, he viewed the succession of thoughts that one
experiences as due to the fact that activity in one brain state (i.e., some set of neurons) leads to activity in
some different brain state that had previously been associated with the first. “When two elementary
brain-processes have been active together or in immediate succession, one of them, on reoccurring,
tends to propagate its excitement into the other” (p. 566). Finally, James was predominately concerned
with predicting which subsequent brain state would be activated by a prior brain state, given that one idea
might be associated with a number of different ideas, other at different times or in different ways. James
attempted to explain this kind of variation by realizing that any given neuron would be receiving signals
from a number of other neurons, and that its degree of activation would depend on an entire pattern of
input, and not upon an association with a single incoming signal. “The amount of activity at any given
point in the brain-cortex is the sum of the tendencies of all other points to discharge into it, such tenden-
cies being proportionate (1) to the number of times the excitement of each other point may have accom-
panied that of the point in question; (2) to the intensity of such excitements; and (3) to the absence of any
rival point functionally disconnected with the first point, into which the discharges might be diverted” (p.
567).

The main physiological points of James’ theory of association are summarized in Figure 9-1,

which is analogous to his own Figure 40 in his chapter on association (James, 1890) (p. 570). The figure
represents two ideas, one (A) being the last act of a dinner party, the other (B) being walking home
through the frosty night. Each of these ideas is represented in the brain as a pattern of activity in a set of
neurons. A is represented by activity in neurons a, b, c, d, and e; B is represented by neurons l, m, n, o,
and p. The association is made between A and B because A preceded B in the course of an evening. As
a result, the neurons representing A were active immediately prior to the activity of the neurons represent-
ing B, and the tracts connecting the neurons (represented as the lines in Figure 9-1) were modified ac-
cording to the law of habit. The ability of A’s later activity to lead to the thought of B, is due to these modi-

 - 94 -

Minds And Machines © M.R.W. Dawson 12/02/2016

fied connections between the two sets of neurons. “The thought of A must awaken that of B, because a,
b, c, d, e, will each and all discharge into l through the paths by which their original discharge took place.
Similarly they will discharge into m, n, o, and p; and these latter tracts will also each reinforce the other’s
action because, in the experience B, they have already vibrated in unison” (p. 569).

9.1.2.2 The Paired Associate Task

The type of association envisioned

by James, and illustrated in Figure 9-1,
leads to one methodological topic that will
be central to the simulations that will be in-
troduced later in the chapter. In James’ ex-
ample, associative memory is viewed as
having two different functional stages. The
first is learning, in which an association be-
tween two ideas is stored. As we saw in the
previous section, this occurs when two ideas
(an input pattern and an output pattern) oc-
cur either simultaneously or in close succes-
sion to one another. As a result of this co-
occurrence, the connections between the
neurons representing both patterns are
modified to permit easier transmission of
“nerve-currents”. The second stage is re-
call. During this stage, only one of the two
previous ideas is presented as input. When
its underlying neural processes become ac-
tive, they serve to activate those associated
with the other idea (output), bringing it to
mind.

This two-stage account of associa-

tion was used to develop a particular para-
digm used to study human memory called the paired associate task. This method of examining memory
presents stimuli in a fashion similar to what would be the case if someone were learning the vocabulary of
a foreign language (Kintsch, 1970). Subjects learn a list of stimulus-response pairs. Sometimes this
learned via the “study-test method”. With this method, subjects are presented both members of the pair
at the same time, and attempt to remember the association between the two. In the test phase of this
method, subjects are only presented the stimulus, and must attempt to recall the associated response on
their own. The paired-associate learning task was used with great success to study the issue of whether
learning was all-or-none or was instead due to an increment in continuously varying response strength.

Mary Whiton Calkins (b. 1863 – d. 1930) was among the first generation of women to enter psy-

chology (Furumoto, 1980). In 1896, she published a paper in Psychological Review that provided the first
description of the paired associate task. There is no doubt that she was inspired to invent this technique
by considering ways in which James’ theory of association could be put to the test in an experimental la-
boratory.

9.1.2.3 20th Century Models Of Distributed Memory

After the cognitive revolution in the second half of the 20th century, many researchers turned to

using computer simulations to study human memory processes. In this section of the chapter, we will be
interested in simulations that share two general characteristics. First, they are designed to perform the
paired associate task, and are generally trained using some variation of the study-test method. Second,
they are closely related to the kind of associative memory envisaged by James, and which was illustrated
in Figure 9-1.

Figure 9-1. An associative
memory in the spirit of James. See text

for details on how this systems was theo-
rized to work.

 - 95 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Some of the earliest research on parallel systems was concerned with the development of dis-

tributed memories capable of learning associations between pairs of input patterns (e.g. Steinbuch, 1961;
Taylor, 1956), or of learning to associate an input pattern with a categorizing response (e.g., Rosenblatt,
1962; Selfridge, 1956; Widrow & Hoff, 1960). The basic structure of this kind of connectionist network,
which has come to be called the standard pattern associator (McClelland, 1986), is essentially identical to
James’ memory that was illustrated in Figure 9-1.

As will be detailed below, the standard pattern associator is constructed from the processing units

and modifiable connections defined in the PDP architecture. It consists of two sets of processing units;
one is typically called the input set (corresponding to the units in A in Figure 9-1), the other the output set
(i.e., the units in B in Figure 9-1). During a learning stage, the activation states of the input processing
units are used to represent a cue pattern and the activation states of the output processing units are used
to represent a to-be-recalled pattern. The connection weights are then modified to store the association
between the two patterns. The standard pattern associator is called a distributed memory because this
association is stored throughout all the connections in the network, and because one set of connections
can store several different associations. During the recall stage, a cue pattern is presented to the net-
work by activating the input units. This causes signals to be sent through the connections in the network.
These signals, in accord with James’ theory, activate the output processors. If the memory is functioning
properly, then the pattern of activation in the output units will be the pattern that was originally associated
with the cue pattern.

9.2 BUILDING AN ASSOCIATIVE MEMORY

Up to this point in the chapter, we have reviewed a history of associationism that has culminated

in the standard pattern associator. The remainder of this chapter is intended to provide a technical ac-
count of this kind of memory system.

9.2.1 Defining the problem

The purpose of the computer simulation is to build a memory system that is capable of storing

associations between pairs of items. During a learning phase, the system will be presented pairs of stim-
uli. For each pair, it will determine how they are to be associated together, and store this association in
memory. During a recall phase, the system will be presented with only one member of a pair. Using this
member as a cue, it will use its memory to attempt to recall the other member of the pair to the best of its
ability. In order to create a system that will behave in this fashion, we will construct a very simple connec-
tionist network. The network will consist of an input “bank” of processing units, an output bank of pro-
cessing units, and a set of modifiable connections between these two banks. The basic design of the
network was illustrated in Figure 9-1. As we will see, several independent associations can be stored in
the same set of connection weights.

9.2.2 The Network Architecture

9.2.2.1 Processing Units

Ultimately, both the input units and the output units can be considered as sets of numbers, with

each number representing a property of an individual unit (e.g., its internal level of activity), and with the
entire set of numbers representing a pattern across a whole bank of units (e.g., the pattern of activity of
the bank of input units). It will be useful to represent these sets of numbers as vectors, because linear
algebra provides an extremely compact and useful notation for exploring the properties of distributed as-
sociative memories and of other connectionist networks.

For example, we might represent the activity of input unit 1 with the numerical value a1, the activi-

ty of input unit 2 with the numerical value a2, and so on. The set of activities for all of the input units could
be represented as the vector a, whose first entry would be the value a1, whose second entry would be the
value a2, and so on. By convention, when we talk about the vector a, we will assume that it is a column

 - 96 -

Minds And Machines © M.R.W. Dawson 12/02/2016

vector. This means that when all of the values of the vector are listed out, they are strung out vertically in
a column, as is shown in Figure 9-2. In some cases, the operations of linear algebra assume that a vec-
tor is a row vector, which means that when its values are listed out, they are strung out horizontally in a
row, as is also shown in Figure 9-3. The operation that converts a column vector into a row vector is
called transposition. Because of this, if we were to indicate that a vector was a row vector, then we would
do so with a notation that included a superscript “T”, to explicitly indicate that the vector had been trans-
posed. For instance, if vector a is a column vector of unit activities, then vector aT would be a row vector
of the same numerical activities.

In order to represent the properties of banks

of units as vectors, we need to define some equations
that dictate what numerical values should be inserted
into the vectors. Any processing unit in a connection-
ist network can be described using three different
mathematical equations. The first equation is the net
input function, which describes how a processing unit
computes the total signal coming into it from other
processors in the network. The second equation is
the activation function, which determines how a pro-
cessing unit converts this input signal into a number
that represents its internal level of activity. The third
equation is the output function, which defines how a
processor’s internal level of activity is converted into a
numerical signal that can be sent through connections
to other processors in the network. When these three
equations are used to describe the processors used in
our memory network, it will become apparent that they

are particularly simple.

In the distributed associative memory network that we are constructing, the activity values of the

input units are always set by the programmer, who simply turns each input unit on to the desired level of
activity (i.e., the level of activity that represents information about one member of the to-be-associated
pairs of patterns). For the sake of consistency with later chapters, we will describe this in terms of a net
input function. Specifically, the net input for input unit i (neti) is equal to the environmental stimulation for
that input unit (ei):

neti = ei Equation 9-1

The input processors in the distributed associative memory are particularly simple because after

their net input is computed, its value is used as the value of the processor’s internal activity and as the
value that the processor outputs to the output units. Mathematically speaking, the activation function and
the output function for the input units are both identity functions. That is, the internal activity of input unit i
(ai) is defined as:

ai = neti Equation 9-2

Similarly, the activity that input unit i sends to other units (oi) is defined as:

oi = ai Equation 9-3

During the learning phase, the output units are treated exactly as are the input units. That is, the

programmer sets their activity values to represent the other member of the to-be-associated pair. Be-
cause of this, during learning, the output units can be described using exactly the same equations that
were used to describe the input units (i.e., Equations 9-1, 9-2, and 9-3). During the recall phase, the out-
put units have their net input determined by signals that are sent from the input units, and therefore re-
quire a slightly more elaborate net input equation.

Figure 9-2. The inner product (see
Equation 9-5) of the row vector aT and the
column vector a is a single number, which
is the sum of the products of the entries of

the two vectors.

 - 97 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Imagine a very simple network in which there are 8 different input units, and only 1 output unit.

Each of the input units is linked to the output unit by a connection. Each connection is weighted, where a
connection weight is simply some numerical value. When a numerical signal is sent through a connec-
tion, the connection scales the signal by multiplying it by the value of its connection weight. Let us repre-
sent the weight of the connection between input unit 1 and the output unit as w1, between input unit 2 and
the output unit as w2, and so on. During recall in this simple network, each of the input units will be send-
ing a signal to the output unit. Input unit 1 will be sending the signal o1, input unit 2 will be sending the
signal o2, and so on. The signal o1 will be multiplied by the weight value w1 before it reaches the output
unit. So part of the signal that reaches the output unit will be the value o1w1. Following the same logic for
the other input units, the output unit will also be receiving the signal o2w2, o3w3, and so on. In other
words, the total signal for the output unit – its net input – will be:

 net1 = o1w1 +o2w2 + o3w3 + … + o8w8

= oiwi Equation 9-4

Linear algebra can be used to make this equation more compact. (For an excellent introduction

to linear algebra that is framed in the context of connectionist networks, the reader is referred to Jordan,
1986). Let us take the signals being output by the input units and represent them as the row vector o,
and let us take the set of connection weights between the input units and the output units and represent
them as the column vector w. These two vectors can be combined using an operation called the inner
product or the dot product (see Figure 9-2). The result of this operation is a single number (net1, repre-
senting the net input for output unit 1) whose value is defined in Equation 9-4 – in fact, Equation 9-4
shows how an inner product is to be computed. In the notation of linear algebra, the inner product that
defines the net input for the output unit is:

net1 = oT w Equation 9-5

 One way to remember that the result of an inner product like Equation 9-5 is a single number is

to note the number of rows in the first component (oT is a row vector, and therefore has only one row) and
to note the number of columns in the second component (w is a column vector, and therefore has only
one column). The result of the operation will have the same number of rows as the first component, and
the same number of columns as the second component. In other words, the result of an inner product will
be a single number – a vector with only one row and only one column.

The inner product described in Equation 9-5 defines the net input for a single output unit. We will

see in later chapters that the inner product is a standard net input function for all of the processors in
more sophisticated connectionist networks.

9.2.2.2 Modifiable Connections

In the previous section, when we defined the net input function for a single output unit during re-

call, we represented the set of connection weights from a bank of input units to the output unit as a vec-
tor. Our goal in designing the distributive associative memory is to have a system that uses more than
one output unit, so that it can recall a complete pattern of activity. It stands to reason that we would need
to represent the connection weights for this more complicated memory with a set of weight vectors, with
each vector in the set holding the connection weights associated with one of the output units.

In linear algebra, this set of vectors would be represented as a single entity called a matrix. If our

memory had n input units, and m output units, then all of the connection weights between the input and
output processors would be represented by one weight matrix, W, which would have n rows and m col-
umns. Each entry in this matrix, wij, would contain a number representing the weight of the connection
from input unit i to output unit j.

By representing all of the connection weights with the matrix W, we can take advantage of linear

algebra to create a very compact mathematical description of how weights are modified, and we can also

 - 98 -

Minds And Machines © M.R.W. Dawson 12/02/2016

define very simple equations that describe how information stored in this matrix can be retrieved when the
memory system is presented with a cue. When the distributed associative memory stores associations
between patterns, it does so by modifying the strengths of its connection weights. This is done in two
steps.

First, the memory computes changes in weights that are required to represent the association be-

tween the pair of patterns presented to it during a learning trial. Later in this chapter we will discuss two
different equations that could be used to compute the desired weight changes. In this first step, all of the
desired weight changes are stored in the matrix t+1, where the subscript t+1 indicates the learning trial
during which the changes have been computed. This matrix has the same number of rows and columns
as does matrix W, and each entry ij in this matrix represents the value by which the connection weight
between input unit i and output unit j should be changed.

Second, the memory uses the matrix t+1 to change the existing connection weights. Let us use

the subscript t to represent the network’s connection weights at a particular trial of learning. Using the
current weights, represented in the matrix Wt, and the desired weight changes, stored in the matrix t+1,

the goal is to compute the new values of weights, which will be stored in the matrix Wt+1. This is done by
computing the sum of the matrices that represent the current weights and the desired weight changes:
Wt+1 = Wt + t+1. Every value wij at row i and column j of the new weight matrix is simply equal to the sum
of the value wij in matrix Wt and of the value ij in matrix t+1.

With this notation, learning can be described as a series of matrix additions. Imagine that prior to

learning, our memory system is truly a “blank slate”, because all of its connection weights are equal to
zero. The null matrix, 0, is the special matrix that has every value in it equal to zero. So at time 0, before
learning as started, we could declare that W0 = 0. At learning trial 1, the new weights (W1) are equal to
the old weights (the null matrix) plus the desired weight changes (1). At learning trial 2, the new weights
(W2) are equal to the old weights (W1) plus the desired weight changes (2). As can be seen from Table
9-1, this kind of learning can continue for as many trials as is desired. Furthermore, Table 9-1 demon-
strates that at any point in time after learning has begun, the memory’s connection weights are essentially
the sum of a series of matrices each of which contains the weight changes that are desired to store an
association between a pair of stimuli.

Trial

(t+1)
Equation Describing Weight Values

0 W0 = 0
1 W1 = W0 + 1 = 0 + 1 = 1
2 W2 = W1 + 2 = (1)+ 2
3 W3 = W2 + 3 = (1 + 2) + 3
4 W4 = W3 + 4 = (1 + 2 + 3) + 4

Table 9-1. Associative learning described a series of matrix additions.

9.2.2.3 The Retrieval Operation

 - 99 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Before introducing a specific equation for

calculating the association between pairs of stim-
uli, let us assume that we have a distributed
memory that has already undergone some train- ing,
and therefore has a pre-existing set of connec- tion
weights that are represented in the matrix W. What
we would like to do is to present a vector of ac- tivity
to the input units of this memory that will be used
as a cue to retrieve some information, which will also
be represented as a vector of activity in the
memory’s output units. To define this kind of re-
trieval mathematically, let the column vector c rep-
resent the cue pattern, and let the column vector r rep-
resent the recalled pattern. In linear algebra, the
equation for recall from the distributed associa- tive
memory is:

r = Wc Equation 9-6

In other words, if one takes the matrix of weights that
have been produced by learning, and uses this ma-
trix to premultiply the cue pattern’s vector, the result
will be a column vector that holds the recalled pat-
tern.

For those unfamiliar with linear algebra, let us

briefly examine the logic of Equation 9-6. When re-
trieving information from the distributed associa- tive
memory, the input units are activated, and send sig-
nals through weighted connections to the output units.
The output units use these signals to compute their
net input, which is also equal to their activation and
to their output, as indicated in Equations 9-2 and 9-3. We saw earlier that the net input for a single output
unit was the inner product between a vector of weights and a vector of activities. It stands to reason,
then, that in order to compute the net input for several different output units, we will have to compute a
series of different inner products.

The notation in Equation 9-6 represents performing a series of inner products. Each entry in the

recall vector r is the inner product between the cue vector and one of the rows of the weight matrix. For
example, the second entry in r is equal to the inner product between the second row of W and the column
vector c (see Figure 9-4A). Similarly, the third entry in r is the inner product between the third row of W
and the vector c (see Figure 9-4B). This operation is consistent with the rule of thumb that we intro-
duced earlier when discussing the inner product. The matrix W will have m rows, and the vector c has 1
column. So, we expect the result of Equation 9-6 to be a vector with m rows and 1 column – in other
words, a column vector of the same size as c.

9.2.2.4 Hebb-Style Learning

Up to this point, we have described how vectors are used to represent properties of processing

units, how matrices are used to represent connection weights, how linear algebra provides a mathemati-
cal operation that uses a cue vector to retrieve a recall vector from a matrix of existing weights, and how
associative learning can be described in generic terms as a series of sums of matrices. The only remain-
ing piece of information required for a complete description of a distributed associative memory is a spe-
cific equation that defines how the desired weight changes are to be computed and stored in the matrix
t+1. In this section, we will introduce one simple and historically important learning rule, called the Hebb

Figure 9-4. Recall as the
premultiplication of a column vector by

a matrix. (A) The second entry of the
recall vector is the inner product of the

second row of the matrix with the vector
(see grey). (B) Similar logic defines the

third entry of the recall vector.

 - 100 -

Minds And Machines © M.R.W. Dawson 12/02/2016

rule. Later in this chapter, we will explore the Hebb rule’s advantages and disadvantages, and use its
disadvantages to motivate a second learning rule.

Donald Hebb (1904-1985) was one of the most influential figures in psychology (Klein, 1999).

Hebb’s seminal contribution to psychology was his book The Organization of Behavior: A Neuropsycho-
logical Theory (Hebb, 1949). At the time that this book was published, physiological psychology was in
decline because of the popularity of behaviorism. Hebb’s book reversed this trend by attempting to ex-
plain behavior by appealing to properties of the nervous system. The book “wielded a kind of magic in
the years after its appearance. It attracted many brilliant scientists into psychology, made McGill Univer-
sity a North American Mecca for scientists interested in brain mechanisms of behavior, led to many im-
portant discoveries, and steered contemporary psychology onto a more fruitful path” (Klein, 1999, p. 2).

One of the central ideas that made Hebb's (1949) work so influential was the notion of a cell as-

sembly. “The general idea is an old one, that any two cells or systems of cells that are repeatedly active
at the same time will tend to become ‘associated’, so that activity in one facilitates activity in the other” (p.
70). The result of this kind of process is the creation of coordinated systems, or assemblies, of cells that
act in sympathy with one another. Activity in one of the cells would lead to activity in the other cells that
were part of the assembly. Hebb emphasized the utility of this kind of biological construct for explaining a
variety of perceptual and motivational phenomena.

A crucial component of cell assembly theory was an account of how assemblies came into exist-

ence. Hebb (1949) is perhaps most famous for his statement of a principle of synaptic change for the
creation of cell assemblies: “When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased” (p. 62). Hebb believed that the
mechanism underlying the change in the strength of the synapse between the two neurons was an in-
crease in the area of contact between the two, but such hypotheses could not be tested at the time his
work was published. Advances in neuroscience have led to a discovery of a phenomenon, called long-
term potentiation, that is often cited as a biologically plausible instantiation of Hebb’s theory (e.g., Brown,
1990; Martinez & Derrick, 1996).

In the late 1950s, the advent of digital computers enabled researchers to use simulations to ex-

plore the advantages and disadvantages of Hebb's (1949) theory of synaptic change. In one famous
study, Rochester, Holland, Haibt, and Duda (1956) simulated a network of 69 simple neurons, with each
neuron connected to 10 others. Rochester et al. updated connection weights using a modified version of
Hebb’s proposal. While the general spirit of the proposal was maintained, when weights were updated,
they were normalized to prevent them from growing out of bounds. What this meant was that if the
strength of one connection were increased, then the strength of other connections would be decreased at
the same time. As well, Rochester et al. introduced the notion of “neural fatigue”, which meant that one of
their simulated neurons was less likely to fire if it had recently been active. After running this simulation,
Rochester et al. examined the connection weights that emerged in an attempt to identify whatever cell
assemblies had emerged. They found no evidence for the existence of cell assemblies in their simula-
tion, and concluded that Hebb’s theory as stated was not sufficient for their production.

Rochester et al. (1956) developed a second simulation using an unpublished modification of

Hebb’s theory that was proposed by Milner, and which later appeared in Psychological Review (Milner,
1957). In Hebb’s original theory, and in Rochester et al.’s first simulation, there were no inhibitory con-
nections. All of the connection weights (and all of the neural signals) in the simulation were positive and
excitatory. Milner’s proposal was to include inhibitory connections in the theory, under the assumption
that there would be excitatory connections within a cell assembly, but activity in one cell assembly would
tend to decrease activity in other cell assemblies via inhibitory signals. This proposal – endorsed by
Hebb in a revision of his original theory (Hebb, 1959) – led to a simulation that did produce evidence of
the emergence of cell assemblies.

In modern connectionist simulations, the goal of Hebb-style learning is not specifically to create

cell assemblies, but is instead to create associations between patterns of activity, so that later when one

 - 101 -

Minds And Machines © M.R.W. Dawson 12/02/2016

pattern of activity is presented, the other pattern will be recalled. In other words, modern Hebb-style
learning is one approach to defining “association by contiguity” or “the law of habit”. Nevertheless, inhibi-
tion is an important component of this type of learning, and is included in a distributed associative
memory in two different ways.

First, and consistent with proposals described above, connections between processing units can

either be excitatory (i.e., have a positive connection weight) or be inhibitory (i.e., have a negative connec-
tion weight). Second, and deviating from research in the 1950s, processing units can themselves be
sending a signal that is excitatory (i.e., positive processing unit activity) or inhibitory (i.e., negative pro-
cessing unit activity). In many respects, these assumptions violate Hebb’s attempt to develop a biologi-
cally plausible account of behavior. For instance, in the version of the distributed associative memory
that we will develop below, at one moment a processing unit (or connection) can be excitatory, but at an-
other moment the same unit (or connection) can be inhibitory. This kind of proposal is biologically im-
plausible (Crick & Asanuma, 1986). However, it leads to a very simple mathematical description of Hebb-
style learning, as we will see shortly.

As was noted above, Hebb's (1949) basic idea about learning was that if an input neuron and an

output neuron were both active at the same time, then the synapse between them should be strength-
ened. “The assumption, in brief, is that a growth process accompanying synaptic activity makes the syn-
apse more readily traversed” (p. 60). The logic of this proposal was that with the strengthening of the
synapse, in situations in which the input neuron became active, there would be an increased likelihood of
the output neuron becoming active as well. This is because the output neuron would receive increased
stimulation (via the reinforced synapse) from the input neuron.

In modern variations of Hebb-style learning, particularly those based upon the assumption that

processor activity can be either inhibitory or excitatory, the goal of connection weight changes is not to
increase the likelihood of activity in an output unit. Rather, the goal is to change the weight in such a way
that the relationship between input and output unit activities is enhanced. In other words, if at some
learning trial an input unit is in one state x, and the output unit is in some other state y, then the connec-
tion weight should be changed so that later if the input unit returns to state x, then its signal through the
connection should increase the likelihood of recreating state y in the output unit.

Hebb's (1949) view of learning is an example of enhancing one aspect of this relationship. To

place his original proposal in the more modern context of a connectionist network, it was assumed that if
an input unit and an output unit were both excited (positive activity), then the weight of the connection
between them should be made more excitatory (i.e., more positive). Later, if the input unit exhibits posi-
tive activity, this would lead to a more positive signal (the positive activity multiplied by the more excitatory
connection weight) being sent to the output unit, which would increase the net input to the output unit, and
which would in turn increase the likelihood that the output unit would also exhibit positive activity.

Importantly, connection weights can be changed to enhance other relationships between input

and output unit activities. For example, consider the situation where both an input unit and an output unit
were inhibited (negative activity). To increase the probability that this pattern would occur later, one
would again make the weight of the connection between them more excitatory. Later, if the input unit ex-
hibits negative activity, this would lead to a more negative signal (the negative activity multiplied by the
more excitatory connection weight) being sent to the output unit, which would decrease the net input to
the output unit. As a result, the output unit would be more likely to assume negative activity. Similarly,
imagine the situation in which the input unit was inhibited, but the output unit was excited. To increase
the probability that this pattern would occur later, one would make the weight of the connection between
the two units more inhibitory. Later, if the input unit exhibits negative activity, this would lead to a more
positive signal (the negative activity multiplied by the more inhibitory connection weight) being sent to the
output unit, which would increase the net input to the output unit. As a result, the output unit would be
more likely to assume positive activity. Similar logic would dictate that if the input unit was excited and the
output unit was inhibited at the same time, then the connection between them should again be made
more inhibitory. Table 9-2 summarizes the desired direction of weight changes given the possible states
of connected input and output units.

 - 102 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Activity Of Input Unit Activity Of Output Unit Direction Of Desired Weight Change

Positive Positive Positive
Negative Negative Positive
Negative Positive Negative
Positive Negative Negative
Table 9-2. The direction of weight changes that will enhance the relationship be-

tween patterns of input and output unit activities.

What remains is to convert the qualitative account of desired weight changes that is given in Ta-

ble 9-2 into a quantitative equation that will generate numbers that can be used to fill in the values of the
matrix t+1 during learning. An examination of the table provides a clear indication of the kind of mathe-
matical operation to use. Note that if one were to take the value (i.e., the mathematical sign) of each of
the first two columns and multiply them together, then the result would be the value in the third column of
the table. In modern Hebb-style learning, the basic assumption is that the desired weight change for the
connection between input unit i and output unit j is equal to the product of the activities of the two units:

ij = ai ai Equation 9-7

Equation 9-7 has two main advantages. First, under the assumption that unit activities can have

negative or positive values, this equation creates weight changes of the desired sign according to Table
9-2. Second, this equation generates weight changes that reflect the relative amount of activity in both
units. Imagine that the two processing units were both exhibiting positive activities, but that the two activi-
ties were very weak (e.g., values of, say, 0.05). It would seem plausible in this situation to not make a
very large change to the connection weight. Equation 9-7 accomplishes this. For example, when two
fractional positive values are multiplied together, as would be the case in our imagined situation, the re-
sulting connection weight change is positive, but is also very small. Conversely, if both processing units
were exhibiting very large activities, then it stands to reason that the connection between them should be
changed a great deal. Again, Equation 9-7 automatically accomplishes this.

One minor modification to Equation 9-7 permits the exploration or manipulation of a richer notion

of learning. One can imagine some situations in which a system is capable of learning a great deal, and
other situations in which a system is less capable of learning. For instance, my kids are more likely to
learn things in school when they are rested than when they are tired. In Hebb-style learning, such general
effects can be modeled by using a learning rate, which is a constant used to scale the result of Equation
9-7 up. Traditionally, the Greek letter represents the learning rate. When is small or fractional, the
desired weight changes will be small, which is analogous to the situation in which a tired child is trying to
learn. When is large, the desired weight changes will be amplified, which is analogous to the situation
in which a rested child is trying to learn. This is all accomplished by multiplying the desired weight
changes by the learning rate, as is indicated in Equation 9-8:

ij = (ai ai) Equation 9-8

To bring this discussion to a close, Equation 9-

8 defines how Hebb-style learning can be used to
compute the desired change for a single weight in the
distributed associative memory. Linear algebra pro-
vides a very compact notation for defining every entry
in the matrix t+1. Remember the rule of thumb that
claimed that the result of combining two vectors to-
gether had as many rows as the first vector in the
combination, and had as many columns as the second
vector. We used this rule of thumb to predict that
when the inner product was computed (e.g., Equation
9-5) the result would be a number (i.e., a vector with

Figure 9-5. Using the outer prod-
uct to define the desired weight changes
in accordance with Hebb-style learning.

 - 103 -

Minds And Machines © M.R.W. Dawson 12/02/2016

one row and one column. Imagine we had two vectors, c and d, and combined them in the reverse order
than that used in Equation 9-5. In other words, what if they were multiplied together in an expression in
which the transposed vector was the second component, instead of being the first: d cT? Using our rule
of thumb, we would not predict that we would get a single number. Instead, we would predict that the
result of this equation would be a full matrix with as many rows as were in vector d, and as many columns
as were in cT. This matrix-producing operation is called the outer product (Figure 9-5).

The outer product is used to define how all of the desired weight changes for the distributed as-

sociative memory are to be calculated. Imagine that vector d represents some pattern of activity that has
been presented to the output units of the memory, and that vector c represents some pattern of activity
that has been presented to the input units of the memory. The desired weight changes are defined as:

t+1 = (d cT) Equation 9-9

The calculation of the outer product is illustrated in Figure 9-5. Every entry ij in the matrix t+1 is

equal to the value ci multiplied by the value dj. This is the outer product. The result of this operation is
then scaled by the learning rate, by multiplying it by the learning rate constant .

9.2.3 Behavior Of The Distributed Associative Memory

9.2.3.1 Computational Account Of The Model

Dawson (1998) has argued that one of the key approaches taken by cognitive scientists to ex-

plain an information processing system is computational. In adopting the computational approach, one
formally defines some characteristics of interest in a system (i.e., in some mathematical or logical nota-
tion). Then one uses formal operations to explore the properties of the system, typically by constructing
mathematical or logical proofs.

One of the reasons that linear algebra was used to define the properties of the distributed associ-

ative memory in the previous sections was because it permits us to examine the system computationally.
In particular, we can quickly manipulate the memory system’s equations to generate proofs about its abil-
ity to function. We can also use the equations to determine whether there are some general situations in
which it will fail to operate as intended.

As the first step in the computational analysis of a distributed associative memory governed by

Hebb-style learning, let us make some simplifying assumptions. First, let us assume during learning that
 has a value of 1. Because of this, it will be omitted from the learning equations. This is only being done
to simplify the equations.

The second assumption involves the properties of the to-be-learned vectors that will be used in

the equations below. Let us imagine that there are four of these vectors: a, b, c, and d. We will assume
that this set of vectors is orthonormal. At a general level, what this assumption means is that each of
these vectors has a length of 1.00, and is completely uncorrelated with the other three vectors in the set.
Mathematically, this assumption involves assuming certain properties are true of the inner products of the
vectors in this set. In particular, it is assumed that if one takes the inner product of a vector with itself, the
result will be equal to 1. However, if the inner product is taken between a vector and a different member
of the set, the result will be equal to 0. For example, this assumption means that aT a = 1, but that aT
b = 0, aT c = 0, and aT d = 0. The importance of this second assumption will be apparent shortly.

Now let us define a simple learning sequence in which the distributed associative memory first

learns the association between a and b by computing the outer product b aT and then learns the asso-
ciation between c and d by computing the outer product d cT. This process of learning is detailed in
Table 9-3, which is essentially the same as Table 9-1 with a few more specific details added because of
our knowledge of which vectors are being learned at each trial:

 - 104 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Trial (t+1) Operation Equation Describing Weight Values
0 Start with the 0 matrix W0 = 0
1 Associate a with b W1 = W0 + 1

 = 0 + (b aT)
 = (b aT)

2 Associate c with d W2 = W1 + 2

 = (b aT)+ 2

 = (b aT)+ (d cT)
Table 9-2. Learning two pairs of vectors

Now that the distributed memory has learned two different associations, we can use linear alge-

bra to predict its ability to recall remembered information. In this example, information is retrieved from
the memory system is achieved by presenting either vector a or vector c as a cue and using the retrieval
operation that was defined in Equation 9-6. If recall is correct, then when the vector a is presented as a
cue, the vector b should be retrieved; when c is the cue, d should be retrieved. Table 9-3 provides the
mathematical details about recall from the memory. It takes Equation 9-6, and replaces the weight matrix
with the more detailed expression for the weights that was provided in Table 9-2. It then works the cue
vector into the parentheses. When this is done, two inner products are revealed. Because of our as-
sumption that the set of vectors is orthonormal, one of the inner products works out to 0, canceling out a
vector. The other inner product works out to 1. As a result, correct recall is achieved.

Cue Recall Equation Comments

a r = W2a
 = ((b aT)+ (d cT))a
 = b aT a + d cT a
 = b (aT a) + d (cT a)
 = b(1) + d(0)
 = b

Equation 9-6
Expand W2 from Table 9-2
Move vector a into the parentheses
Identify the inner products with parentheses
Compute inner products (orthonormal assumption)
b is correctly recalled

c r = W2c
 = ((b aT)+ (d cT))c
 = b aT c + d cT c
 = b (aT c) + d (cT c)
 = b(0) + d(1)
 = d

Equation 9-6
Expand W2 from Table 9-2
Move vector c into the parentheses
Identify the inner products with parentheses
Compute inner products (orthonormal assumption)
d is correctly recalled

Table 9-3. Correct recall of different associations from the same memory.

The equations that we have just been manipulating in Tables 9-2 and 9-3 make two important

points. First, they have shown that when we make a particular assumption about the relationships be-
tween the patterns being associated, Hebb-style learning works. Furthermore, they show that this is ac-
complished with a single set of connections between processing units. The weight matrix W2 is a single
entity, but from Table 9-3 it is clear that it holds information about the associations between a and b and
between c and d. Second, these equations demonstrate a computational analysis (Dawson, 1998) of this
kind of memory system. We have been able to use mathematics to demonstrate correct learning and
recall; we did not need to program a simulation of this system to investigate these properties.

Computational analyses can also be used to demonstrate some of the problems with Hebb-style

learning. The assumption that the set of to-be-associated vectors is orthonormal is extremely strong.
What it amounts to is the claim that there can be absolutely no correlation between different patterns at
all. If we were to be learning associations between entities in the world, then this assumption would be
very limiting. For instance, in many cases we would expect there to be similarities or correlations be-
tween these objects. Indeed, one would expect – as did many of the associationists – that such correla-
tions would be an important aid to memory.

 - 105 -

Minds And Machines © M.R.W. Dawson 12/02/2016

To examine the effect of correlation on Hebb-style learning, let us make a slight modification to
our orthonormality assumption. We will again be interested in learning associations between four differ-
ent vectors, a, b, c, and d. We will assume once again that the inner product of any of these vectors with
itself will result in a value of 1. We will also assume that a, b, and d are uncorrelated, so that the inner
product of one of these vectors with one of the other two in this group of three will result in a value of 0.
All of these assumptions were used in our previous analyses. Our change in assumptions will involve
vector c. We will assume that this vector is still not correlated with vectors b or d, but that it does have a
strong correlation with vector a. In particular, we will assume that the inner product of c with a is equal to
½.

Table 9-4 provides the equations for recall with our change in assumption about the relationship

between c and a. In this case, because these two vectors are correlated, their inner product does not
equal 0, and as a result does not completely cancel out part of the recall equation. As a result, there is
noise or error added to the recall. Instead of recalling b when presented a as a cue, the memory recalls b
plus some added noise: b + ½d. Instead of recalling d when presented c as a cue, the memory recalls d
plus some added noise: d + ½b. The amount of noise that is evident in the recall is exactly equal to the
correlation between c and a. If this correlation were to increase, then the amount of noise in the recalled
vectors would also increase. If this correlation were to decrease, then the amount of noise in the recalled
vectors would also decrease. It is only when this correlation is equal to 0 that there is no noise and recall
is perfect.

T

he line-
ar alge-
bra that

we
have

just re-
viewed

has
shown

that
Hebb-

style
learning

of associations has problems when the to-be-associated patterns are correlated with one another. This
provides one strong suggestion that a different approach to learning associations should be considered if
one is interested in training a distributed associative memory. In the next section, we will explore Hebb-
style learning with a computer simulation in an attempt to identify some further problems. Later, these
problems will lead to a reformulation of the rule that we use to modify connections in the memory system.

9.2.3.2 Observing The Behavior

The preceding sections have provided a mathematical description of a distributed associative

memory, a formal definition of one method for storing associations in this memory, and mathematical
proofs that show situations in which this memory works perfectly, as well as circumstances in which this
memory does not function as well as desired. In this section, we will examine this same memory and
learning rule, but instead of working with the system computationally, we will work with it algorithmically
by observing the performance of a computer simulation.

Given the mathematical understanding of the memory that we have already achieved, one might

wonder about the need for creating a computer simulation. However, a working computer simulation can
quickly shed some light on practical issues that are not explicitly addressed in mathematical proofs. How
fast is this type of learning when the memory is simulated on a digital computer? How is performance
affected when the size of the memory grows? How does the learning rate affect performance? “Behavior

Cue Recall Equation Comments
a r = W2a

 = ((b aT)+ (d cT))a
 = b aT a + d cT a
 = b (aT a) + d (cT a)
 = b(1) + d(½)
 b

Equation 9-6
Expand W2 from Table 9-2
Move vector a into the parentheses
Identify the inner products with parentheses
Compute inner products
b is not correctly recalled!

c r = W2c
 = ((b aT)+ (d cT))c
 = b aT c + d cT c
 = b (aT c) + d (cT c)
 = b(½) + d(1)
 d

Equation 9-6
Expand W2 from Table 9-2
Move vector c into the parentheses
Identify the inner products with parentheses
Compute inner products
d is not correctly recalled!

Table 9-4. Incorrect recall due to correlation between c and a.

 - 106 -

Minds And Machines © M.R.W. Dawson 12/02/2016

is sometimes explainable in retrospect, but it is necessary to do the numerical experiments to see if ideas
are actually workable, or if unforeseen problems appear. They often do. As only one example, there are
a number of learning rules that can be proved to work mathematically. Unfortunately, when simulations
are done, learning times are found to be enormous, totally outside the boundaries of practicality. Or the
results are immensely sensitive to noise, or error, or to values of particular parameters” (Anderson &
Rosenfeld, 1988, p. 65).

We have developed a simulation tool that was programmed in Visual Basic 6.0 as an instructional

tool to be used to explore a distributed associative memory. This software is available, free of charge,
from the website that provides supplementary material for this book:
http://www.bcp.psych.ualberta/~mike/book2/. This software comes with a number of example files that
can be used to examine the advantages and disadvantages of distributed associative memories, and will
save the results in a variety of formats (text files, Microsoft Excel spreadsheets) for later exploration and
analysis. The reader can also use the instructions to create their own training sets in a format that can be
read by the network.

One can use this software to empirically verify the computational claims that were made earlier.

For instance, in two of the example training sets that are provided with the software, eight different paired
associates are created from an orthonormal set of vectors. If these stimuli are presented 10 times to a
distributed associative memory, associated using the Hebb rule, with a learning rate of 0.1, the network
will be able to perform perfect recall for each stimulus. However, if correlations exist between two or
more of the vectors used to create the stimuli, then the total network error will never reach zero no matter
what the learning rate is, or how many stimulus presentations are made.

An examination of the weight matrix that is produced when the memory learns associations be-

tween vectors that are variable (e.g., whose values are a complex mix of negative and positive fractional
values) indicates that the system is creating representations that are indeed distributed. We know from
the recall performance of the network that these weights are storing information about eight different as-
sociations. However, in looking at these weights, we do not see any evidence that these associations are
stored locally. For instance, it does not appear that one row of the weight matrix stores information about
one association, and that another row stores information about a different association. All of the weights
have been affected by training, and information about all eight associations is distributed throughout the
entire weight matrix. If the structure of this network was to be interpreted, mere inspection would not do
the job.

The software can also be used to reveal a different problem with Hebb learning. Imagine training

the memory with a set of orthonormal patterns, with a learning rate of 0.1. Learning is evident early in
training, because the sum of squared network error – computed over all outputs and all patterns – steadi-
ly decreases, reaching a value of 0 by the 10th epoch. However, additional training beyond this point ac-
tually causes error to increase with each epoch. Our general sense about learning is that this shouldn’t be
happening. We would normally expect that more learning should result in better performance. So, if
learning is operating the way that we would expect, then SSE should not increase. This unfortunate find-
ing is due to the fact that Hebb learning modifies weights after each stimulus presentation, even when the
weights should not be changed. In other words, Hebb learning does not use any feedback about the er-
rors that the network is making. If it did, then this would prevent it from making unnecessary changes to
its weights, and from undoing the learning that it has already accomplished.

9.3 BEYOND THE LIMITATIONS OF HEBB LEARNING

9.3.1 The Limitations Of Hebb Learning

There are three general reasons that the Hebb learning rule has enjoyed a great deal of populari-

ty amongst researchers who are interested in developing theories of associative memory. First, we saw
in the historical review of associationism that one of the constants from one theory to the next was the
inclusion of the law of contiguity. The Hebb rule is an elegant statement of this fundamental mode of as-
sociation. Second, in modern cognitive science there is an increasing desire to relate properties of func-

 - 107 -

Minds And Machines © M.R.W. Dawson 12/02/2016

tional theories to neural mechanisms (Dawson, 1998). The Hebb rule is one of the few biologically plau-
sible learning rules. Many researchers have taken pains to point out the similarities between Hebb’s ac-
count of learning and the biological mechanisms that govern long-term potentiation in the brain (Brown,
1990; Cotman, Monaghan, & Ganong, 1988; Martinez & Derrick, 1996). Third, even when memory sys-
tems trained by Hebb-style learning rules make mistakes, these mistakes are interesting, because in
many cases they are analogous to the kinds of errors that one finds in human experiments on associative
learning (Eich, 1982; Murdock, 1982, 1997).

In spite of these attractions, the theoretical and empirical evidence that we have collected earlier

in this chapter points to some severe limitations of a distributed associative memory that is trained by the
Hebb rule. First, the memory only works well when the stimuli being associated are completely uncorre-
lated. As soon as the orthonormality assumption is violated, one cannot guarantee that the memory will
recall the correct response when given a cue. Second, the Hebb rule is not sensitive to the performance
of the memory system. This means that the Hebb rule will modify network connections even in situations
where these modifications are not required because perfect recall has been achieved.

9.3.2 Overcoming The Limitations

The combination of these problems with Hebb learning and the general attractiveness of this

learning rule suggests that we should attempt to explore some ways in which the rule can be improved
without throwing away many of its attractive properties. The purpose of this section is to describe such a
refinement, and to define a new rule called the delta rule. We will see that the delta rule ultimately relies
on association by contiguity, and therefore maintains many of the essential properties of the Hebb rule.
However, the delta rule is explicitly designed to teach a network by providing it feedback about the kinds
of errors that it makes. As a result, the delta rule provides one approach to overcoming some of the limi-
tations of Hebb learning that we have already encountered.

9.3.2.1 Supervised Learning

In connectionist research, a common distinction is made between unsupervised learning and su-

pervised learning. In unsupervised learning, a network modifies its connection weights in an attempt to
remember regularities that it has discovered in its environment. However, it never receives any infor-
mation about what some programmer might think are desirable regularities. It therefore also never re-
ceives any feedback about whether its responses are correct or incorrect. In this regard, Hebb learning is
an example of unsupervised learning. The fact that Hebb learning does not take into account errors that
are being made by a network accounts for problems like the increase in network SSE that was discussed
above.

In supervised learning, the goal of learning is for a network to generate a set of responses that

are desired by a programmer (or a teacher). When the network generates a response to a stimulus, this
observed response is compared to a desired response, which is often called the target response. Typi-
cally, one compares these two responses by subtracting the observed response (0) from the target re-
sponse (T) for each output unit in the network. That is, the error for output unit i (i) is:

I = Ti - Oi Equation 9-10

One of the advantages of supervised learning is that learning is only driven by mistakes. This

implies two different things. First, if no mistake is made, then no learning will occur, because no learning
is required. Second, the degree of learning should be proportional to the degree of error. If a system
makes a very large error, then there should be very large changes to its connection weights. However, if
a system makes a very small error, then there should be a correspondingly small change to its connection
weights. If we could replace the Hebb rule with a supervised learning rule that operated in this fashion,
then we would definitely be in a position to solve one of the problems with Hebb learning that we have
already identified. To be more specific, if our distributed associative memory was supervised when it
learned, then once total SSE had dropped to 0, no more connection weight changes would occur.

 - 108 -

Minds And Machines © M.R.W. Dawson 12/02/2016

The question is how to reformulate the Hebb rule in such a way that it can be converted from an
unsupervised learning rule to a supervised learning rule. As a first pass at the logic of this reformulation,
consider Table 9-5, which is a variation of Table 9-2. The purpose of Table 9-5 is to consider the activity
in a single input unit, treating it for the sake of simplicity as being merely positive or negative. This input
unit is connected to a single output unit, and the error for this unit has been calculated according to equa-
tion 9-10 after some pattern has been presented to the network. Again, for simplicity’s sake, we consider
the result of this calculation to be a value that is positive, negative, or equal to zero. The table lays out
the possible combinations of input values and error values in order to make clear what would need to
happen to the weight of the connection between the two units in order to reduce the error that was pro-
duced the next time that the pattern was presented to the network.

Activity Of
Input Unit

T - O Implication Operation To
 Reduce Error

Direction Of Desired
Weight Change

Positive Positive T > O O Positive
Positive Negative T < O O Negative
Positive Zero T = O None Zero
Negative Positive T > O O Negative
Negative Negative T < O O Positive
Negative Zero T = O None Zero

Table 9-5. The logic of weight changes during supervised learning. T represents the
target value for an output unit, and O represents the observed value for the output

unit. See text for further details.

For example, consider the first three rows of the table, for which the input unit has been activated

with some positive value. In the first case, the error value is positive. This means that the target activity
is greater than the observed activity. In order to reduce error, this means that the observed activity must
be increased. For this pattern, this could be accomplished by making the connection weight more posi-
tive, because this would amplify the positive signal being sent by the input unit. In the second case, the
target activity is smaller than the observed activity, which means that the observed activity has to be
made smaller to reduce error. This would be accomplished by making the connection weight more nega-
tive, because this would attenuate the positive signal being sent by the input unit. In the third case, the
target activity is equal to the observed activity, which indicates that no change should be made at all to
the connection weight.

Similar logic can be followed for the remaining three rows in the table. However, because in

these instances the input unit activity is negative, the change to the connection weight will be opposite in
direction to the changes that were just described. In the first case, the connection weight must be made
more negative in order to amplify (i.e., make more positive) the negative signal being sent by the input
unit. In the second case, the connection weight must be made more positive in order to attenuate (i.e.,
make more negative) the negative signal coming from the input unit. Of course, in the third case there
again would be no change made to the connection weight because there is zero error being generated by
the output unit.

Earlier in this chapter, we motivated the rule for Hebb-style learning by observing that if we multi-

plied the first two columns of Table 9-2 together, the result would be the third column. A similar situation
now arises in our discussion of supervised learning. If one were to take the first two columns of Table 9-5
and multiply them together, the result would be the last column of the table, which indicates the direction
of weight change to make in order to reduce error. This inspires the following learning rule for a single
connection between input unit i and output unit j:

ij = ai (Tj - ai) Equation 9-11

where ij is the desired weight change, is the ai activity of the input unit, Tj is the target activity for the out-
put unit, and ai is the observed activity in the output unit.

 - 109 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Equation 9-11 has two very nice properties that suggest that it is an excellent choice for a super-
vised learning rule for connections in a distributed associative memory. First, the equation changes the
weight in the direction that is required to reduce error, because the equation is consistent with the logic
that we worked through when discussing Table 9-5. Second, it is sensitive to amount of error. If the val-
ue of Tj - ai is large, then the change in the weight will be large. If the value is small, then the change in
the weight will be small. If the value is zero, then – crucially – there will be no change in weight. This
equation places a natural brake on the learning process, solving one of the problems that we identified
with the Hebb rule.

9.3.2.2 The Delta Rule

The final step in defining a supervised learning rule for the distributed associative memory is to

take Equation 9-11 and modify it by including a learning rate, and by expressing it in terms of linear alge-
bra so that we can use one equation to define the changes for all the weights in a network that consists of
multiple input and output units. When we defined the Hebb rule, we used the outer product of two vectors
– scaled by a learning rate – to define the matrix of weight changes t+1. We can also follow this proce-
dure for defining our supervised learning rule, which is called the delta rule. Let us assume that vector cT
represents some pattern of activity that has been presented to the input units of the memory. Let us also
assume that the vector t (for target) defines the vector that should be correctly recalled from the memory
when c is used as the cue in Equation 9-6. Let vector o (for observed) be the actual activity that is gen-
erated in the output units when c is the cue. The desired weight changes, scaled by the learning rate ,
are defined as:

t+1 = ((t - o) cT) Equation 9-12

The expression t – o in Equation 9-12 is the difference between two vectors. The result of this

operation will be another vector, with the same number of entries that would be found in either vector t or
vector o. Let us name this third vector , to represent the fact that it is a vector of error values. Con-
sistent with our definition of error in Equation 9-10, each entry i in this vector is equal to the value (ti – oi).
With this definition of the error vector, we can rewrite Equation 9-12 as:

t+1 = (cT) Equation 9-13

Equation 9-13 is important in that it makes very explicit the relationship between the delta rule

and the Hebb rule. If you compare it to Equation 9-9, you will see that the two learning rules are very sim-
ilar. The delta rule essentially involves Hebb learning, but this learning is not carried out until after a cou-
ple of preliminary steps have been taken. First, a cue vector is presented to the existing memory to see
what vector would be recalled from the memory if no weight changes were made at all. Second, an error
vector is computed by subtracting this observed recall vector from the target vector. Third, Hebb learning
is performed, but the association that is learned is between the cue vector and the error vector. The point
of doing this – as was explained in our discussion of Table 9-5 – is to only make changes in weights that
are necessary to reduce error. If the error vector is full of zeroes, then no weight changes will be made
when Equation 9-13 (or 9-12) is applied.

9.3.2.3 The Power Of The Delta Rule

In this section, we are going to briefly examine the performance of the delta rule, and compare it

to the performance of Hebb learning, by repeating the four simulation experiments that were described
earlier. It is also possible to compare the two rules by doing a computational analysis of the delta rule,
and comparing the conclusions drawn from that analysis to those that we drew after working through the
proofs about the abilities of Hebb learning. While this isn’t done in the current chapter, mathematical ex-
aminations of the delta rule are available in the literature. Stone (1986) provides a particularly good
treatment.

 - 110 -

Minds And Machines © M.R.W. Dawson 12/02/2016

When the delta rule is used to train the distributed memory on the associations between patterns
constructed from an orthonormal set of patterns, using the same learning rate as was used with the Hebb
rule, the network will converge to a solution. However, it usually takes longer than is observed with the
Hebb rule. However, if training is continued, the delta rule continues to improve performance. In other
words, this particular memory system is performing in a fashion that is in more accordance with our intui-
tions: when the memory has more repetitions on the paired associates, its performance improves. Fur-
thermore, performance does not get worse with additional training!

If one plots network SSE as a function of epochs when the delta rule is used, then one sees an

important emergent property. Network SSE decreases exponentially, with a great deal of learning occur-
ring early in training, but with learning slowing down as training proceeds. This is to be expected because
the amount of learning depends upon the amount of error that the network is making (see Equation 9-12).
As the network learns more, its error is reduced, and as a result learning slows down. We saw this pat-
tern earlier in Chapter 4 when we discussed mathematical models of learning in general, and the
Rescorla-Wagner learning rule (Rescorla & Wagner, 1972) in particular. One of the important findings
that demonstrated a strong relationship between connectionism and mathematical models in psychology
was a proof that showed that learning rules like the delta rule are indeed equivalent to the Rescorla-
Wagner rule (Sutton & Barto, 1981).

One of the interesting and important properties of the delta rule is that it is more powerful than

Hebb learning. Because the rule works explicitly to reduce output unit error, it turns out that there are
some associations that can be stored in a network using the delta rule, but which cannot be stored if the
network is trained using the Hebb rule. For instance, we created a set of linear independent vectors were
to use to define patterns to be associated. Linearly independent vectors are correlated with one another,
but you cannot express one of these vectors as a weighted sum of any of the other vectors in a set.
When the Hebb rule is used to train a network to associate vectors of this type, perfect learning never
occurs. However, when this set of associations is trained using the delta rule, the network is able to learn
the problem. In one simulation, after 775 iterations network SSE has dropped below 0.01, and the train-
ing was stopped. With this small level of total error, network performance is near perfect for all eight
stimulus-response pairs.

How is it possible for the delta rule to come up with a set of connection weights that can store

these eight associates, while this was not possible when the Hebb rule was used to train the network?
One empirical clue to this additional power comes from examining the connection weights in the network
at the end of training. For simpler problems (i.e., learning associations involving orthonormal vectors), the
matrices of connection weights that resulted were symmetric, and the same set of weights is produced by
either learning rule. In a symmetric matrix the value in cell wij is the same as the value found in cell wji.
For linearly independent vectors, though, the delta rule produces a weight matrix that is not symmetric at
all. The ability of the delta rule to create a set of connection weights that are not symmetric means that it
can store a wider range of associations than can be learned via the Hebb rule. This is because the Hebb
rule is constrained to always produce a symmetric set of connection weights.

This is not to say that the delta rule is all-powerful, however. Computational analyses of this rule

have demonstrated that it permits associations to be learned when some correlations exist between vec-
tors, but it is unable to learn associations when other correlations exist. In particular, the delta rule is not
capable of correctly recalling associations when the training set is linearly dependent. We ran one simu-
lation of this for 20,000 epochs. However, after all of this training, the network had not converged upon a
solution. By the end of the first 1000 sweeps of training, total error had dropped to about 0.544. Further
training did not lead to any noticeable improvement. (However, further training also did not lead to the
network performing any poorer, which demonstrates again one advantage of the delta rule over the Hebb
rule.)

9.4 ASSOCIATIVE MEMORY AND SYNTHETIC PSYCHOLOGY

The primary goal of describing the distributed associative memory in this chapter was to introduce

some basic notions about connectionist models. We will see in the chapters that follow that many ad-

 - 111 -

Minds And Machines © M.R.W. Dawson 12/02/2016

vances in connectionist architectures can be described as elaborations of some of the concepts that were
introduced in this chapter. However, it is important to realize that distributed associative memories are
interesting in their own light, and can be used to synthetically explore some issues in the psychology of
learning and memory.

One key area of research is the study of associative learning in animals. Throughout the history

of this topic, the underlying assumption has been that the discovery of elementary associative laws that
govern animal learning can be used to aid in the understanding of more complex types of learning and
cognition observed in humans. However, the current state of this field would suggest that these associa-
tive laws are complex, and a surprising variety of theories have been proposed in recent years. For ex-
ample, it is frequently argued that there are a number of regularities in learning that cannot be explained
by the Rescorla-Wagner model (Miller, Barnet, & Grahame, 1995). Because of this, many different mod-
els have been proposed in an attempt to either broaden the scope of the Rescorla-Wagner model, or to
replace it with a theory that has been derived from an alternative framework (for reviews see Pearce &
Bouton, 2001; Wasserman & Miller, 1997). “Other cognitive processes such as attention, memory, and
information processing are now being invoked to help explain the facts of associative learning. The next
several years of research will be exciting ones, as neuroscientists and cognitive scientists join experi-
mental psychologists in an interdisciplinary attack on the challenging problems of associative learning and
behavior change” (Wasserman & Miller, 1997, p. 598).

With respect to this interdisciplinary research program, distributed associative memories may

provide an interesting environment in which new ideas about associative learning can be explored. For
instance, we noted earlier that the delta rule has been proven to be formally equivalent to the Rescorla-
Wagner rule (Sutton & Barto, 1981). Presumably, this implies that it too suffers from the same limitations
that have been motivating new theories about associative learning in animals. Can these new theories be
implemented in the contiguity-based scheme that we have been developing in this framework? Can at-
tentional modulations be added to a distributed associative memory by manipulating stimulus encodings,
and then applying something like the delta rule?

There has also been a considerable amount of interest in using models like the one that has been

introduced in this chapter to account for a number of different regularities in human memory (Anderson,
Silverstein, Ritz, & Jones, 1977; Eich, 1982; Hinton & Anderson, 1981; Murdock, 1982, 1985; Pike, 1984).
One reason for this interest has been the fact that when distributed memories make errors, these errors
are systematic, and can be related back to the kinds of errors that are made by human subjects in asso-
ciative memory experiments. For example, we saw earlier that under certain conditions a distributed as-
sociative memory will generate responses that represent “blends” of different memories. Memory models
of this type also exhibit emergent behaviors that suggest that they provide an excellent environment in
which human associative memory can be explored. “Current connectionist models have been successful
in accounting for a range of basic phenomena such as the effect of contingency on associative learning,
as well as more complex effects such as enhanced responding to an unseen prototype pattern and partial
memory for the training items” (Shanks, 1995, p. 151).

Interestingly, one of the primary attractions of distributed associative memories has been the fact

that they offer theories that appear to be more biologically plausible than their competitors (Hinton & An-
derson, 1981; Shanks, 1997). Indeed, many researchers have recently been interested in taking net-
works like the ones that have been described in this chapter, or more sophisticated networks, and using
these simulations to study neural mechanisms of learning and memory (Brown, 1990; Cotman et al.,
1988; Foster, Ainsworth, Faratin, & Shapiro, 1997; Gluck & Myers, 1997; Lynch, 1986; Martinez & Der-
rick, 1996).

The reason for this interest has been the discovery of a particular neural phenomenon, called

long-term potentiation. Long-term potentiation is the long-lasting increase of synaptic efficiency that oc-
curs when two connected neurons are active (or nearing activity) at roughly the same time. This increase
in efficiency appears to be related to the properties of a particular receptor mechanism, the NMDA recep-
tor. It also appears to be related behaviorally to memory and spatial learning mediated by the hippocam-
pus, because chemicals that block NMDA receptors disrupt these behaviors. In short, the biochemical

 - 112 -

Minds And Machines © M.R.W. Dawson 12/02/2016

study of long-term potentiation appears to be revealing the mechanisms that underlie the kind of neural
changes that motivated theories of association by both James (1890) and Hebb (1949).

However, with this increased understanding of long-term potentiation, and with an emerging and

detailed understanding of neural mechanisms, there has also been an increased need to propose more
sophisticated models of synaptic change. Brown et al. (1990) note that there have been anywhere from
50 to 100 theories of this type, and proceed to review only a subset of these. They classify them as being
Hebbian algorithms, generalized Hebbian algorithms, and global control algorithms. Again, one question
to ask is how might this more sophisticated rules be incorporated into the models that have been de-
scribed in the current chapter. Do these rules result in solving some problems that were not solved by the
delta rule? If implemented, do these rules lead to behavioral results that are more or less consistent with
the performance of human subjects in memory experiments?

One theme that seems to be emerging in even this cursory glance at the current state of research

related to distributed associative memories is that, while interesting, the versions of the networks that
were described in this chapter are not as powerful as would seem to be required to keep up with advanc-
es in the field. What general approach could be used to increase the power of these networks? In the
next two chapters, we will consider two very basic – but critical – modifications. In Chapter 10, we will
consider some of the implications of changing the activation function from being linear (as is the case in
Equation 9-2) to being nonlinear. In Chapter 11, we will consider how the use of a nonlinear activation
function permits even more power through the use of additional layers of processing units separating
network input from network output.

Chapter 10: Making Decisions

 In the most general sense, a psychological theory attempts to explain the relationship between

stimuli and responses. One psychological theory differs from another in terms of the “machinery” that it
proposes for converting inputs into outputs. For example, behaviorism argued that environmental stimuli
alone could dictate behavioral responses, and did not propose any additional intervening causal varia-
bles. In contrast, cognitivism argued that environmental stimuli were transformed into numerous interven-
ing representational states, and that behavioral responses were dictated by these intermediate represen-
tations. As a result, for a cognitivist, behavior did not directly depend upon the environment.

As we will to see in more detail below, the main source of the weakness in a distributed associa-

tive memory is analogous to the difference between behaviorist theory and cognitivist theory. In particu-
lar, a simple distributed associative memory attempts to represent association as a direct link between
stimulus and response. While some interesting relationships can be modeled in this way, these relation-
ships are still quite simple. More complicated relationships cannot be captured unless intervening pro-
cessing units, used to transform input patterns into intermediate representational states, are added to the
associative memory.

10.1 THE LIMITS OF LINEARITY

10.1.1 A Chain Of Distributed Memories

Connectionist models are often described as being neuronally inspired. What this means is that

connectionist theorists often look to properties of the brain in order to discover new methods for pro-
cessing information.

One brain property that is critical for the search for additional power in an associative memory is

that cortical tissue is organized into different layers of interconnected neurons. Human neocortex, which
is the neural basis for most of our complex cognitive and perceptual processing, can be viewed as a thin
sheet of tissue that is arranged into six different layers (labeled with the Roman numeral I through VI).

 - 113 -

Minds And Machines © M.R.W. Dawson 12/02/2016

The fourth layer in this arrangement is itself characterized as being organized into three different sublay-
ers (Iva, Ivb, and Ivc) (Kuffler, Nicholls, & Martin, 1984). For the most part, neural processes run up and
down through these layers at right angles to the cortical surface. Each layer can be characterized as hav-
ing neurons that have different functional properties. For instance, in visual cortex, neurons whose recep-
tive fields lead them to be classified as simple cells are found in Layer IV, and project to complex cells in
Layers II and III. These complex cells in turn provide the major output to other cortical areas, as well as
into Layer V of visual cortex. The projections of one layer into another are consistent with a functional
account of how a complicated receptive field for a neuron can be constructed by combining simpler re-
ceptive fields from neurons that are located in a more peripheral layer. This kind of hierarchical construc-
tion of the ability to detect complexity provides one rational for incorporating multiple layers of processors
into a distributed associative memory.

The layering of the neocortex provides one obvious approach to improving a distributed associa-

tive memory. Instead of having direct connections between input units and output units, we could include
one or more layers of intermediate processing units. The functional role of these intermediate layers of
“hidden” units would be to transform the pattern of activity in the input units. For instance, hidden units
might detect complex features that characterize important properties of input patterns, just as complex
cells detect have complicated receptive fields in virtue of their ability to combine the inputs of cells that
have simpler receptive fields. Perhaps the identification of more complex features would in turn permit
the distributed associative memory to store more complicated associations, and possibly enable the
memory to store arbitrary associations between inputs and outputs.

A first pass at adding layers of processors to a distributed associative memory can be based on

the linear algebra that we already have seen in Chapter 9. Imagine a distributed associative memory that
consists three different layers of processing units: a layer of input units (whose activity can be represent-
ed by the vector i), an intermediate layer of “hidden” units (represented by the vector h), and a layer of
output units (represented by the vector o). Let us assume that some learning has already occurred in this
memory, so that associations between at least one input pattern and one output pattern have been stored
in this memory. This information would be stored in a matrix X of weights representing connection
strengths between the input units and the hidden units, and in a second matrix Y of weights representing
connection strengths between the hidden units and the output units.

Recall from this memory would proceed as follows. First, a cue pattern would be used to set the

values of the input units. This in turn would cause a signal to be sent through the first layer of connection
weights to produce a vector of activities in the hidden units. This second vector of hidden unit activity, h,
would serve as an intermediate cue pattern that would serve as an input signal to the second set of con-
nection weights. This signal would produce activity in the output units (the vector o), which would repre-
sent the network’s response to the original cue pattern. Mathematically, this sequence of recall opera-
tions would be written as follows:

o = Y(Xi) = Yh Equation 10-1

This equation is equal to a chain consisting of two applications of the recall equation that was de-

fined in the previous chapter.

10.1.2 Removing The Links Of The Chain

However, a closer look at equation 10-1 will show that the sequence of recall operations that it

represents does not increase the power of this two-layer memory system beyond that which would be
found in a single-layer distributed associative memory. One important operation in linear algebra is multi-
plying two matrices together. For example, one could multiply some matrix Y and some matrix X together
to produce a third matrix, which we can represent as matrix P (for “product”). Each entry in row i and col-
umn j of matrix P is equal to the inner product between row i of matrix Y and column j of matrix X (for de-
tails see Jordan, 1986).

 - 114 -

Minds And Machines © M.R.W. Dawson 12/02/2016

In Equation 10-1, the parentheses represent that our emphasis on an initial operation, which is to
send an input vector through matrix X to create a cue vector c. However, we could rearrange the paren-
theses in this equation to emphasize a different initial operation, which is the matrix multiplication of the
two sets of connection weights, as is shown in Equation 10-2:

o = (YX)i = Pi = Yh = Y(Xi) Equation 10-2

What this second equation shows is that we could take the two sets of connection weights, X and

Y, and multiply them together to create a new matrix P. The recall operation defined earlier in Equation
10-1 is mathematically identical to sending input vector i as a signal through matrix P. In other words,
linear algebra is showing us that we can replace our two-layer distributed associative memory with a dif-
ferent memory that uses only one set of connection weights – just as we saw in Chapter 9 – and which
would generate exactly the same responses as our two-layer system. This proves that we are not adding
any power to the distributed associative memory with our second set of connection weights. Our two-
layer distributed associative memory is mathematically equivalent to a single-layer memory, and is there-
fore subject to exactly the same limitations. “For linear systems at least, the distinction between two-layer
systems and one-layer systems is more apparent than real. The two systems are identical in the sense
that they compute the same function. Of course, they may have different internal dynamics and therefore
take different amounts of time to compute their outputs” (Jordan, 1986, p. 397).

10.2 A FUNDAMENTAL NONLINEARITY

10.2.1 The Need For Nonlinearity

Equation 10-2 proved that a two-layer distributed associative memory could be collapsed into a

single-layer network with identical computational power. Why is this collapse possible? In Chapter 3 of
this book, we encountered some of the properties of linear systems, and argued that linearity is responsi-
ble for the fact that some psychological models fail to surprise us. We saw that in a linear system the be-
havior of the whole system is equal exactly to the combined behaviors of the system’s components. It is
exactly this notion of linearity that is responsible for the collapse of the two-layer system into a single-
layer memory. The linear nature of the distributed associative memory is reflected in the operations –
written in linear algebra -- described in Equation 10-2. In order to prevent the collapse of a linear chain of
operations into a single operation that reflects the total effects of all the links in the chain, some sort of
nonlinearity has to be introduced. In the next section we consider one neuronally inspired candidate for
this nonlinearity.

10.2.2 The All-Or-None Law

How do neurons process information? Very generally, neurons begin to process information by

detecting inputs that stimulate, and travel through, their dendrites. These inputs are weak electrical sig-
nals, called graded potentials, whose quality deteriorates as they travel towards the body or soma of the
neuron. However, if enough of these weak graded potentials arrive at the soma at the same time, then
their cumulative effect disrupts the resting electrical state of the neuron. This results in a massive depo-
larization of the membrane of the neuron's axon, called an action potential, which travels along the axon
to eventually stimulate some other neuron.

A crucial property of the action potential is that it is an all-or-none phenomenon. While the grad-

ed potentials that travel through dendrites gradually decrease in intensity over time and distance, the de-
polarization that defines an action potential does not. An action potential is an electrical signal of con-
stant intensity. The fact that neurons generate action potentials of fixed intensity is one of the fundamen-
tal discoveries of neuroscience, and has been called the all-or-none law. “The all-or-none law guarantees
that once an action potential is generated it is always full size, minimizing the possibility that information
will be lost along the way” (Levitan & Kaczmarek, 1991, p. 43).

In Chapter 9, the activity in an output unit was exactly equal to its net input. When net input was

small, output activity was small. When net input was medium, output activity was medium. When net in-

 - 115 -

Minds And Machines © M.R.W. Dawson 12/02/2016

put was large, output activity was large. This was because the relationship between net input and output
unit activity was linear. In contrast, if we had a neuron as an output unit, then there would not be a linear
relationship between net input and activity. When net input was small, activity would be small in the
sense that no action potential would be generated. However, as net input gradually changed from being
small to medium, activity would not change -- the output unit would still fail to generate an action potential.
It is only in the case that the net input became sufficiently large then action potential would be generated.

Figure 10-1 illustrates the difference between the relationship between net input and activity for

the standard output unit of a distributed associative memory (Figure 10-1a) and for a neuron of the type
that was described above (Figure 10-1b). In the former case, the linear relationship between net input
and activity is evident as a straight line drawn on the graph. In the latter case, the relationship is nonline-
ar and discontinuous. For a wide range of small net inputs, activity is equal to zero. When net input be-
comes sufficiently large, activity is suddenly jumps to a value of one. However, activity remains at one for
a wide range of large net inputs. This represents the nonlinearity that is consistent with the all-or-none
law.

In 1943, McCulloch and Pitts published a pio-

neering article entitled in the Bulletin of Mathematical
Biophysics. The purpose of this manuscript was to pro-
vide a mathematical account of the basic information
processing carried out by neuron. McCulloch and Pitts
ignored the detailed biology of neural function, and in-
stead described neurons very abstractly as devices that
made true or false logical assertions about input infor-
mation. The logical description of neurons was made
possible by recognizing the binary nature of the action
potential. "The all-or-none law of nervous activity is suf-
ficient to ensure that the activity of any neuron may be
represented as a proposition. Physiological relations
existing among nervous activities correspond, of course,
to relations among the propositions; and the utility of the
representation depends upon the identity of these rela-
tions with those of the logical propositions. To each re-
action of any neuron there is a corresponding assertion
of a simple proposition." (McCulloch & Pitts, 1988, p.
21).

McCulloch and Pitts fleshed out this insight by

designing sixteen different kinds of logical neurons, each
one asserting the truth or falsehood of a logical opera-

tion performed on two input variables. They were able to show that a network comprised of many of
these neurons arranged in a systematic fashion had enormous computational power. For instance, they
were able to prove that they could construct a network that was equivalent in power to a universal Turing
machine. “Thus in psychology, introspective, behavioristic or physiological, the fundamental relations are
those of two-valued logic” (p. 38).

While the architecture designed by McCulloch and Pitts was both enormously powerful, it did suf-

fer from one major drawback. A McCulloch-Pitts network was not adaptive: in order to create a working
network, one had to program it by choosing and “wiring” together all of the processors by hand. A McCul-
loch-Pitts network was built; it was not taught. Later, other researchers developed networks that included
a nonlinear activation function to instantiate the all-or-none law, and to ensure that network outputs could
be assigned a logical interpretation. However, these networks differed from those designed by McCulloch
and Pitts in that their connection weights were modified by a learning rule. One such architecture was the
perceptron proposed by Rosenblatt (1962).

Figure 10-1.
Illustrations of activation functions.

(A) A linear function. (B) Threshold function.
(C) Logistic function. (D) Gaussian function.

 - 116 -

Minds And Machines © M.R.W. Dawson 12/02/2016

10.3 BUILDING A PERCEPTRON: A NONLINEAR ASSOCIATIVE MEMORY

Rosenblatt’s (1962) perceptron was designed to be a model of brain function. "By ‘brain model’

we shall mean any theoretical system which attempts to explain the psychological functioning of a brain in
terms of known laws of physics and mathematics, and known facts of neuroanatomy and physiology" (p.
3). Rosenblatt realized that there were two different kinds of brain model that could be developed.

The first kind of model was called monotypic. In developing a monotypic model, a researcher is

primarily interested in creating a device capable of carrying out an input/output mapping. As a result, the
researcher's first step is to define the desired mapping as accurately as possible. Then, a system is con-
structed to compute this mapping, usually under the constraint that the components of the system should
be analogous to biological components. For Rosenblatt, a McCulloch-Pitts network was the prototypical
example of a monotypic model.

The second kind of model was called genotypic. In a monotypic model, the properties of all of the

components and the properties of their interconnections are all specified in advance in order to compute a
single pre-specified function as accurately as possible. This is not the case for the genotypic model. In
the genotypic model, the properties of the components might be specified in advance, but the organiza-
tion of these components into a system was not. Instead, general principles were applied to the model in
order to evolve its organization. As a result, instead of producing a single model capable of computing a
single function, the genotypic approach was capable of generating a number of different models, each
with their own unique organization, but all capable of solving the same problem. "The genotypic ap-
proach, then, is concerned with the properties of systems which conform to designated laws of organiza-
tion, rather then with the logical function realized by a particular system" (Rosenblatt, 1962, p. 20). The
perceptron was Rosenblatt's example of the genotypic model.

It is interesting to note the Rosenblatt's (1962) distinction between monotypic and genotypic

models bear some resemblance to the distinction between analytic and synthetic models that has been a
theme of the current book. “In the monotypic approach, the functional properties are generally postulated
as a starting point. In the genotypic approach, they are the end-objective of analysis, and the physical
system itself (or the statistical properties of the class of systems) constitutes the starting point” (p.20).
Because of this difference, and because of the fact that the perceptron is viewed as being genotypic, the
perceptron was thought of as a medium in which one could explore issues concerning types of organiza-
tion, hypothetical memory mechanisms, and biological models. "The model is not a terminal result, but a
starting point for exploratory analysis of its behavior" (p. 28). The sections that follow describe the com-
ponents of a perceptron, and some general principles that can be used to organize these components
into a system capable of performing some task of interest.

10.3.1 From Distributed Associative Memory To The Perceptron

The perceptron is very similar to the distributed associated memory. It too consists of a bank of

input units, a bank of one or more output units, and a set of modifiable connections that link every input
unit to every output unit. A learning rule is used to modify the connection weights in order to train the
perceptron to create an association between an input pattern and an output pattern. The only crucial dif-
ference between the two architectures is the fact that the output units in a perceptron use a nonlinear ac-
tivation function. As was discussed earlier, the purpose of the nonlinear activation function is to model
the all-or-none law governing the generation of action potentials.

The nonlinear activation function in the output units of a perceptron leads to a slight difference in

interpreting the kind of task that a perceptron should be trained to perform. The output units of a percep-
tron are trained to generate a response that will be interpreted as being either on or off. This means that
the output units can be assigned a logical interpretation, in the sense of McCulloch and Pitts. As a result,
while a perceptron can be viewed as a kind of associative memory, the kinds of associations that it learns
to make will usually be interpreted in a different fashion than were the associations that were described in
the previous chapter. The logical nature of an output unit’s activity means that a perceptron is usually
described as a device that makes decisions – it classifies input patterns. The nonlinear activation func-

 - 117 -

Minds And Machines © M.R.W. Dawson 12/02/2016

tion in perceptron is used to assign input patterns to a particular category, where this assignment is all or
none.

For example, consider a simple kind of problem called the majority problem. In a majority prob-

lem, a perceptron would have N input units, and a single output unit. If the majority of the input units were
turned on, then the output unit of the perceptron would be trained to turn on to those patterns. If less than
the majority of the input units were turned on, then the output unit of the perceptron would be trained to
turn off. Imagine that N was equal to 5. In this case, whenever three, four, or five of the input units were
activated, then the perceptron would be trained to turn on. If zero, one, or two of the input units were ac-
tivated, then the perceptron would be trained to turn off. Thus while it is perfectly legitimate to view the
perceptron as learning to associate one kind of response with some inputs, and a different kind of re-
sponse with others, more specifically we can say that the perceptron has learned to decide that some
patterns have the majority of their input units turned on, while others do not. Our account of the percep-
tron as a pattern classifier is almost completely due to the fact that it uses a nonlinear activation function
that is binary in nature.

10.3.2 The Perceptron’s Architecture

10.3.2.1 Processing Units

The input units in a perceptron are identical in nature to the input units for the distributed associa-

tive memory that was described in Chapter 9. The input units are used to represent patterns that are to
be presented as stimuli to the perceptron. The activities of the input units can either be binary or continu-
ous, depending on the desired interpretation of what each input unit represents. Input unit activities can
be used to represent features that are either very simple ore very complicated, depending on the problem
to be presented to the network. As an example of a simple input, an input unit could be turned on or off to
represent whether some simple stimulus was present or absent in the environment. This is the kind of
representation that is used below when perceptrons are related to serious of animal learning.

The output units in a perceptron represent an elaboration of the output units in a distributed asso-

ciative memory. The two are identical with respect to their net input function. The output units in a per-
ceptron calculate their net input by summing the signal being sent by each input unit after the signal has
been scaled by a connection weight. Mathematically, this can be described as computing the inner prod-
uct of a vector that represents the input pattern and a vector that represents the weights of the connec-
tions between each input unit and the output unit. The difference between the output units in the two dif-
ferent kinds of networks is with respect to the activation function that is used to convert net input into in-
ternal activity. In the distributed associative memory, output activity was made equal to net input, which
established a linear relationship between the two. In the perceptron, net input is "squashed" into the
range between 0 and 1 by passing it into a nonlinear activation function. In the current chapter, we will
consider three different kinds of nonlinear activation functions to be used in the output units of a percep-
tron.

The first nonlinear activation function to consider was used by Rosenblatt (1962), and is called

the step function. The step function represents a nonlinear and discontinuous description of the all-or-
none law governing the action potential. Let some output unit j have some threshold value j. If the net
input is less than this value, then the unit’s activity will be equal to 0. If the net input is equal to or greater
than j, then the unit’s activity will be equal to 1. A graph of the step function was presented earlier in
Figure 10-1b.

The second nonlinear activation function to consider is one that is quite commonly used in mod-

ern connectionist networks. It represents a continuous approximation of the step function. A continuous
approximation of the step function is an important tool in connectionism because it permits calculus to be
used to derive more powerful learning rules, as we will see below.

The approximation of the step function that we will be using is the logistic equation. When

graphed, the logistic equation is a sigmoid-shaped line that reaches an asymptote of 0 as net input ap-

 - 118 -

Minds And Machines © M.R.W. Dawson 12/02/2016

proaches negative infinity, and reaches an asymptote of 1 as net input approaches positive infinity. A
graph of this function was presented earlier in Figure 10-1c. The logistic equation that we will be using is
written as follows:

f(neti) = 1 / (1 + exp (-neti + j)) Equation 10-3

 In this equation, f(neti) is the activation being calculated for output unit i, neti is the net input for that out-
put unit, and j is called the bias of the output unit. When the net input to the logistic equation is equal to
the bias (i.e., equal to j), the activity that is generated is equal to 0.5. Because of this, it is typical to con-
sider the bias of the logistic activation function as being analogous to the threshold of the step function.

Both the step function and the logistic equation are attempts to model the all-or-none law govern-
ing the generation of action potentials. Ballard (1986) has used the term integration device to describe
neurons whose activation as a function of net input is sigmoid in nature. He points out that cells that be-
have in this fashion are commonly found in the oculomotor system of the mammalian brain. However,
Ballard has also observed that not all neurons respond in a sigmoid fashion to net input. For instance,
cone cells in the retina are tuned to particular ranges of light wavelength. Such a neuron will generate a
strong response to a wavelength that has a value that falls in a narrow intermediate range. If the wave-
length is too short to fall in this range, then the cone cell will not respond. Such behavior would also be
expected of an integration device. However, unlike an integration device, if the wavelength is too long to
fall in this range, then the cone cell will also not respond. Ballard calls neurons that behave like this value
units. The activation function for a value unit, when plotted against net input, is bell shaped as is illustrat-
ed in Figure 10-1d.

The third nonlinear activation function that we will be considering for a perceptron is the bell

shaped function that is characteristic of a value unit. Don Schopflocher and myself first described net-
works of value units in 1992, and networks of value units have been central to my research since that
time. The particular equation that we use to describe the activation of a value unit is the Gaussian equa-
tion:

G(neti) = exp (-(neti - j)

2) Equation 10-4

In this equation, G(neti) is the activation being calculated for output unit i, neti is the net input for that out-
put unit, and is the mean of the Gaussian. When the net input to the Gaussian equation is equal to the
mean (i.e., equal to j), the activity that is generated is equal to 1.0. As a result, j can be thought of as
being similar to the bias of the logistic or the threshold of the step function.

10.3.2.2 Modifiable Connections

In a perceptron, input units are connected to output units by connections that have modifiable

weights. These modifiable connections are identical in nature to those that were described for the distrib-
uted associative memory in Chapter 9. An input unit sends a numerical signal through a connection. The
connection takes the signal and multiplies it by the connection weight before the signal reaches the output
unit at the other end of the connection. If the connection is weak, then the absolute value of the connec-
tion weight will be near zero. As the connection grows stronger, the absolute value of the connection
weight will grow larger. If the connection weight is positive, then the connection is excitatory. If the con-
nection weight is negative, then the connection is inhibitory. Associations between input patterns and
output unit responses are stored as a set of connection weights. A learning rule, which will be described
in more detail below, is used to modify connection weights in order to create these associations.

10.3.2.3 Decision: The Retrieval Operation

Once associations have been stored in the connection weights of a perceptron, one can present

a cue stimulus to the perceptron in order to retrieve information from it. As was discussed above, the
nonlinear – or decisive -- nature of the perceptron's output means that information retrieval is usually not

 - 119 -

Minds And Machines © M.R.W. Dawson 12/02/2016

viewed as a memory operation, but is instead interpreted as a classification operation. Regardless of the
interpretation, the response of the perceptron is computed as follows: First, the cue pattern is used to ac-
tivate the input units. Second, the activity from the input units is sent through the connections of the per-
ceptron, and is modified by the connection weights at the same time. Third, each output unit in the per-
ceptron calculates its net input. Fourth, each output unit in the perceptron passes its net input into a non-
linear activation function to calculate unit activity. The activity that is computed for each output unit repre-
sents the perceptron’s response to the stimulus that was presented.

10.3.3 Learning With Nonlinearity

How are connection weights modified in a memory system that uses nonlinear activation func-

tions? In the sections that follow, we will consider three different learning rules. Each of these learning
rules is associated with one of the three activation functions that were described above. While there are
important technical differences between each of these learning rules, it will be apparent that they all share
a general format. Each learning rule defines a change in a connection weight as being the product of
three different numbers: a learning rate, the activity of the unit at the input end of the connection, and the
error of the unit at the output end of the connection.

10.3.3.1 Rosenblatt’s Learning Rule

The first learning rule that we will consider is a rule that Rosenblatt used to train perceptrons that

used the step function to activate the output units. The logic of this learning rule is that connection weight
modifications are contingent upon network performance. Let us define the error of some output unit j as
the value (tj – aj), where tj is the desired or target value of the output, and aj is the actual activity that the
output unit generates. In calculating (tj – aj) there are three possible outcomes. First, the value of (tj – aj)
could be equal to 0. In this case, the output unit has generated the correct response to an input pattern
and no connection weight changes are required. Second, the value of (tj – aj) could be equal to 1. In this
case, the output unit has generated an error by turning off when it was desired that the unit actually turn
on. In order to deal with this situation, it is necessary to increase the net input to the output unit. This
could be accomplished by increasing the size of the connection weights. Third, the value of (tj – aj) could
be equal to -1. In this case, the output unit has made an error by turning on when it should have turned
off. The remedy for this problem would be to decrease the unit’s net input by subtracting from the values
of the connection weights.

An examination of the three possible values for error, and of the resulting change that these val-

ues imply for connection weights, indicates that the delta rule that was described in Chapter 9 could be
used as a learning rule for a perceptron based upon the step function. The value of the error term (tj – aj)
provides the direction of change required in the connection weights in order to reduce error if error oc-
curs. In other words, Rosenblatt's learning rule for a perceptron is identical to the delta rule that we have
already seen. Mathematically, the desired change to the weight connecting input unit i to output unit j can
be expressed as:

wij = (tj – aj) ai Equation 10-5

In equation 10-5, is a learning rate that will ordinarily range between 0 and1, (tj – aj) is the error calcu-
lated for output unit j, under the assumption that aj is calculated using the step function, and ai is the activ-
ity of input unit i.

An output unit that uses the step function can be described as a classifier that makes a single
straight cut through a pattern space. Each input pattern is represented as a point in that pattern space,
with the position of each point being defined by the activity of each input unit. The input unit activities are
used to define coordinates in the pattern space. Patterns that fall on one side of the cut the output unit
makes will result in the output unit turning off. Patterns that fall on the other side of the cut will result in
the output unit turning on. When a perceptron’s weights are trained using equation 10-5, the result is that
the cut through pattern space made by the output unit is rotated. However, to solve some problems we
also need to be able to translate this cut through space instead of just rotating it. In order to translate the

 - 120 -

Minds And Machines © M.R.W. Dawson 12/02/2016

cut, we need to be able to modify the threshold j of the output unit. This can easily be done by assuming
that the threshold is the value of the connection weight that comes from an additional input unit that is
always on. With this interpretation, the desired change in the threshold j of some output unit j can be
defined as:

j = (tj – aj) 1 Equation 10-6

The delta rule, when applied to a perceptron, is very powerful. Rosenblatt used it to derive his

famous perceptron convergence theorem. This theorem proved that if a solution to a pattern classifica-
tion problem could be represented in the connection weights of a perceptron, then the delta rule was
guaranteed to find a set of connection weights that solved the problem. For our purposes, the fact that
the delta rule can be used to train a perceptron also provides additional evidence about the similarity be-
tween perceptrons and distributed associative memories.

10.3.3.2 The Gradient Descent Rule

Imagine being at the southwest corner of Sir Winston Churchill Square in Edmonton. This square

is a small downtown park that is a city block wide and long. If I wanted to meet someone at the northeast
corner of the square, the shortest route to the meeting place would be for me to walk in a straight line di-
agonally through the park, from the southwest to the northeast. However, this isn’t the only route that
could be taken. Perhaps, for some unknown reason, I feel compelled to remain on the city sidewalks.
Because of this compulsion, I could reach the meeting place by walking one block north, and then one
block east. I could also go to my destination by walking one block east, and then one block north. How-
ever, by restricting myself to moving in only certain directions, both of these routes are longer than the
one that I would have taken had I permitted myself to walk through the park. A slave to my compulsion, I
arrive at my desired destination, but I take longer than was necessary.

Rosenblatt (1962) proved that the delta rule is guaranteed to find a solution to a pattern classifica-

tion problem, provided that it is possible for the solution to be represented in a perceptron’s weights.
However, this does not mean that this rule is the most efficient one to use. In fact, the delta rule is re-
stricted in a manner that is very similar to my example of walking around the park instead of through it.

The potential inefficiency of the delta rule becomes evident when we think about what weight

changes that it permits during learning. Imagine that the input units of some perceptron are only activat-
ed with values of 0 or 1 for some problem of interest, and that the output units of this perceptron employ
the step function. If this perceptron is trained with the delta rule, then this means that when a weight is
changed, it will only be changed in one of two ways. One change would be to add the value of the learn-
ing rate to the weight, while the other change would be to subtract from the weight. No other changes
are possible, given the equations that were provided in Section 10.3.3.1.

The problem with this is that in some cases, the shortest route to a desired destination – that is,

the fastest way to learn to perfectly classify the input patterns – might be if the weights were changed in a
“diagonal” direction, by a value of ½ , or ¼ , or some other value. However, speeding up learning in
this way is not possible because the delta rule restricts us to moving in a “city block” direction of .

In order to have greater flexibility in the way in which weights are to be changed, the first thing

that we need is to have greater flexibility in assigning activation values to our output units. The step func-
tion is the primary source of restriction on the delta rule, because when an output unit can only take on
one of two possible activation values, this in turn restricts the possible values for unit error. To remove
this source of restriction, we can approximate the step function with a continuous function, such as the
logistic equation that was described earlier. Because of its continuous nature, an output unit that uses
the logistic can generate an activity value that can be any real number in the range between 0 and 1. In
turn, this means that when output unit error is measured by the expression (tj – aj), it will not be restricted
to returning values of –1, 0, or 1. Instead, output unit error will be any real number in the range between

 - 121 -

Minds And Machines © M.R.W. Dawson 12/02/2016

–1 and 1. The fact that our error values fall in a continuous range is what provides us with the opportunity
to optimize the rate of learning by moving weights in a “diagonal” direction.

However, the flexibility to change weights in a continuous range, instead of in just two directions,

presents a different problem. With all of the possible values that are now available to modify a weight at
any given time, which value is the best one to use? Which weight change will reduce output error by the
largest amount? The continuous nature of the logistic activation function provides us with an opportunity
to use calculus to answer this question.

Rumelhart, Hinton, and Williams (1986) defined the total error for a network with logistic output

units as the sum of squared error, E, where the squared error is totaled over every output unit and every
pattern in the training set:

E = ½ (tjp – ajp)

2 Equation 10-7

In this equation, tjp represents the target activity for output unit j when it is presented pattern p, and ajp rep-
resents the observed activity for output unit j when it is presented pattern p. The first summation sign is
performed over the total number of patterns in the training set, and the second summation sign is per-
formed over the total number of output units in the perceptron.

With network error defined as above, and with a continuous activation function, Rumelhart, Hin-
ton, and Williams (1986) were in a position to use calculus to determine how a weight should be altered in
order to decrease error. They derived equations that determined how a change in a weight changed the
net input to an output unit, how the resulting change in net input affected the output unit’s activity, and
how altering the output unit’s activity affected error as defined in Equation 10-7. They then used these
equations to define how to change a weight, when a given pattern has been presented, in order to have
the maximum effect of learning. This definition was a new statement of the error for an output unit j,
which we will represent as j. They found that the fastest way to decrease network error was to take the
error that was used in the delta rule, and to multiply this error by the first derivative of the logistic equa-
tion, f’(netj). The first derivative of the logistic equation is equal to the value aj (1 – aj). So, the new equa-
tion for output unit error was:

j = (tj – aj) f’(netj) = (tj – aj) aj (1 – aj) Equation 10-8

A new learning rule for a perceptron that uses the logistic activation function can be defined by

inserting the error term from Equation 10-8 into the delta rule equation. This results in what we will call
the gradient descent rule for training a perceptron:

wij = j ai = (tj – aj) aj (1 – aj) ai Equation 10-9

As was the case with the delta rule, the bias of the logistic can also be modified by the learning

rule. To do this, the bias is treated as if it were equal to the weight of a connection between the output
unit and an additional input unit that is always activated with a value of 1 for every training pattern in the
training set. With this assumption, the gradient descent rule for modifying bias can be stated as:

j = j 1 = (tj – aj) aj (1 – aj) 1 Equation 10-10

What is the purpose of multiplying the output unit’s error value by the derivative of the activation

function before modifying the weight? At any point in time during learning, a perceptron can be repre-
sented as a single point or location on a surface. The coordinates of the location are given by the current
values of all of the perceptron’s weights (and of its bias). Each point on this surface has a height, which
is equal to the value of total network error. One can think about learning as a process that moves the
perceptron along this error surface, always seeking a minimum error value. Every time that the percep-
tron changes its connection weights, it takes a step “downhill” on the error surface, moving to a location
that has lower height (i.e., a lower error value). The size of the step that is taken is determined by the
size of the learning rate. The direction in which the step is taken is dictated by the error calculated for an

 - 122 -

Minds And Machines © M.R.W. Dawson 12/02/2016

output unit. In order to minimize total network error as quickly as possible, it is desirable that at each step
the perceptron move in the direction that is the steepest “downhill”. The first derivative of the activation
function is the part of the equation that determines the direction from the current location on the space
that has the steepest downhill slope. By multiplying output unit error by the derivative, the network is per-
mitted to take the shortest “diagonal” path along the error surface. This is why Equation 10-9 is called a
gradient descent rule – it results in the perceptron navigating a gradient surface by moving, step by step,
in the steepest downhill direction. This is also why the gradient descent rule is more flexible than the del-
ta rule.

10.3.3.3 Perceptrons And Linear Nonseparability

We saw earlier that Rosenblatt’s (1962) perceptron convergence theorem was a proof that the

delta rule was guaranteed to find the set of weights required for a perceptron to solve a problem, provided
that the problem was one that could be represented in a perceptron’s weights. What this implies is that
there must be some problems that a perceptron cannot solve, no matter how much training it receives.
What sorts of problems are these? What are the formal limitations of a perceptron?

In Section 10.3.3.1, the delta rule was described as a technique for changing the position of a cut

through a pattern space that separated different groups of input patterns. In this pattern space, each pat-
tern is represented as a point whose coordinates are determined by the activity of each input unit. The
perceptron can be described as a system that makes a single, straight cut through this space to separate
the patterns that turn the output unit off from the patterns that turn the output unit on. When an input pat-
tern falls on one side of the cut, its net input to the output unit is below threshold. When an input pattern
falls on the other side of the cut, its net input to the output unit is above threshold. When a perceptron’s
weights are changed, the position of the cut is rotated around in the space, and when its threshold is
changed, the position of the cut is translated through the space. Learning, then, is a process by which
the perceptron finds where it should make a cut through the pattern space to solve a desired problem.

When the output unit of a perceptron employs the logistic equation, a similar story can be told.

Because the logistic function is a continuous approximation of the step function, it too can be described
as an equation that is used to make a single straight cut through the pattern space to separate one class
of patterns from another. Weight changes rotate the cut, and changes in bias translate the cut.

As a result of this description, it can be said that a perceptron that uses either the step function or

the logistic function can only represent solutions to problems for which all of the “off” patterns can be sep-
arated from all of the “on” patterns by a single straight cut through a pattern space. If a problem can be
solved in this fashion, then it is called linearly separable. Perceptrons are formally limited to solving line-
arly separable problems.

 This is not to say that the set of linearly separable problems is either small or uninteresting. For

instance, consider the domain of two-valued logic that McCulloch and Pitts (1988) argued provided the
core of any psychological theory. Imagine having a perceptron for dealing with this logical domain. It will
have one output unit, used to represent whether some logical relationship is either true or false. It will
also have two input units, used to represent the truth or falsehood of two different input variables (x and
y). In this situation, there are four possible input patterns (x and y both false, x true and y false, x false
and y true, x and y both true) that are represented in the four columns on the left of Table 10-1. In this
situation, there are also 16 possible patterns of response made by the output unit to the four input pat-
terns, ranging from turning off to all four to turning on to all four. These possibilities are represented in
the bottom 16 rows of Table 10-1. The pattern of responses in each of these rows defines a truth table
for a particular logical relationship between two variables. Of all of these possible logical relationships, 14
are linearly separable, and as a result can be learned by a perceptron (Quinlan, 1991, p. 17). This indi-
cates that perceptrons have a high degree of logical power.

Inputs Pattern 1 Pattern 2 Pattern 3 Pattern 4

X 0 0 1 1
Y 0 1 0 1

 - 123 -

Minds And Machines © M.R.W. Dawson 12/02/2016

 Output 1 Output 2 Output 3 Output 4
Contradiction 0 0 0 0

~x ~y 1 0 0 0
~x y 0 1 0 0

~x 1 1 0 0
x ~y 0 0 1 0

~y 1 0 1 0
x y 0 1 1 0

~(x y) 1 1 1 0
x y 0 0 0 1

~(x y) 1 0 0 1
Y 0 1 0 1

x y 1 1 0 1
X 0 0 1 1

y x 1 0 1 1
x y 0 1 1 1

Tautology 1 1 1 1
10-1. Logical operations on two input variables.

However, this logical power is not complete. There are two logical relations in this table that are

not linearly separable, and as a result cannot be realized as primitive operations by a perceptron. The
first is the exclusive-or (XOR) relationship x y, which amounts the statement in English “x or else y”. For XOR,
the output unit must turn on when only one input unit is activated, and must turn off when either both input units are
off, or when both input units are on. The second is the identity function that is the negation of XOR, and is represent-
ed as ~(x y). In English it can be stated as “both or else neither”. It is the opposite of XOR, in the sense that the
output unit must turn on when either both input units are off, or when both input units are on, but must turn off when
only one input unit has been activated.

Why is a relationship like XOR not linearly separable? One way to answer this question is to try

to design a perceptron to compute XOR, and see why it fails. When computing XOR, if both input units
are off, the output unit must turn off. To accomplish this, we need to set the threshold of the output unit
high enough above zero to ensure that the output unit will not turn on to the net input of zero. This is be-
cause net input of zero will be produced when both input units are off, regardless of what the connection
weights are. So, for a first step, let us set the output unit’s threshold equal to 0.5.

For two of the input patterns of the XOR problem, only one of the two input units is on, and the

output unit is required to turn on to each of these patterns. This can be accomplished in our second de-
sign step by keeping the output unit’s threshold at 0.5, and by setting both of the connection weights
equal to +1. Under these conditions, when only one of the input units is activated, the net input to the
output unit will be equal to 1. Because this is greater than the threshold of 0.5, the output unit will gener-
ate an activity of 1 when only one input unit is turned on.

With a threshold of 0.5, and two weights of +1, the output unit will generate the correct response

for three of XOR’s possible input patterns. However, this configuration will not permit a correct response
to the fourth. For the fourth pattern, in which both input units are turned on, the net input will be even
stronger – equal to 2 – and as a result will be even further above threshold than was the case for the two
patterns that involve activating only one input unit. As a result, the output unit will turn on. However, this
is an incorrect response, because the output unit is required to turn off to this pattern.

This last scenario provides one sense about why XOR is not a linearly separable problem. It

shows that a single cut – represented in this case by a single threshold – is not sufficient to separate the
“off” patterns from the “on” patterns. The threshold of 0.5 separates the two patterns in which only one
input unit is on from the one pattern in which both inputs are off. However, it does not separate them
from the one pattern in which both inputs are on. In order to do this, a second cut would be required,
which is why the problem is not linearly separable. For instance, if we could define a unit that had two

 - 124 -

Minds And Machines © M.R.W. Dawson 12/02/2016

thresholds, and that would only turn on to net inputs that were between the two thresholds, then the XOR
problem could be solved. A second threshold equal to 1.5 would suffice to deal with XOR. However, a
second threshold is not a possibility when the output units of a perceptron use either the step function or
the logistic function.

The inability of perceptrons to represent solutions to linearly nonseparable problems was a se-

vere blow to research on artificial neural networks. Minsky and Papert (1988) provided a detailed math-
ematical analysis of what perceptrons could and could not do in the late 1960s. They were able to prove
that a number of discriminations that could easily be made by humans, such as detecting whether a figure
was connected or not, were linearly nonseparable, and were therefore beyond the ken of perceptron sim-
ulations. This led to a dramatic decrease in interest in this type of modeling. Artificial neural networks did
not regain widespread popularity until the mind 1980s, when learning rules for training more complex ar-
chitectures, were discovered.

10.3.3.4 The Dawson-Schopflocher Learning Rule

The standard approach to dealing with linearly nonseparable problems such as XOR is to adopt a

more complicated architecture that includes layers of processors. The idea in using this architecture is
that intermediate processing units can detect patterns in the input that can be used to modify or “gate” the
direct effects of the inputs on the output unit. “Of the 16 possible logical functions of neurons with two
inputs, two functions cannot be calculated by any one neuron. They are the exclusion ‘or’, ‘A or else B’,
and ‘both or else neither’ – the ‘if and only if’ of logic. Both limitations point to a third possibility in the in-
teraction of neurons, and both are easily explained if impulses from one source can gate those from an-
other so as to prevent their reaching the output neuron” (McCulloch, 1988, p. 12). The basic properties of
so-called multilayer perceptrons are dealt with in detail in the next chapter.

 A less standard approach is to modify the activation function of the perceptron, and to replace the
step function or the logistic function with a function that can be described in qualitative terms as having
two different thresholds, and which leads to an “on” response when the net input falls between the two
thresholds. This was the architectural move made by Dawson and Schopflocher (1992) when they de-
veloped a rule for the training of networks of value units. In a perceptron that uses value units, the output
units will employ an activation function like the Gaussian that was defined in Equation 10-4. Because this
function is “tuned” or “bell shaped”, as was illustrated in Figure 10-1, it can be thought of as providing an
output unit with two functions, and as a result should be capable of solving a problem like XOR.

How would one train a perceptron whose output units are value units? The first plausible ap-
proach would be to adopt the gradient descent rule. To do this, one would define a new error term by
taking Equation 10-8 and replacing the first derivative of the logistic (f’(netj)) with the first derivative of the
Gaussian (G’(netj)), which is equal to -2(netj)G(netj) = -2(netj) (exp(-(neti - j)

2)). However, Dawson
and Schopflocher found that when they did this, learning was very inconsistent. In some cases, training
proceeded very quickly. However, in the majority of cases, the network did not learn to solve the prob-
lem. Instead, its connection weights were changed in such a way that the network learned to turn off to
all of the training patterns by moving all of the net inputs into one of the tails of the Gaussian function.

To correct this problem, Dawson and Schopflocher (1992) elaborated the equation for total net-

work error by adding a heuristic component to Equation 10-7. This heuristic component was designed to
keep some of the net inputs in the middle of the Gaussian function. It was a statement that asserted that
when the desired activation value for output unit j was 1, the error term should include an attempt to min-
imize the difference between the net input to the unit netj and the unit’s mean j. Their elaborated ex-
pression for total network error was:

E = ½ (tpj – apj)

2 + ½ tpj (netpj - j)
2 Equation 10-11

After defining this elaborated error term, Dawson and Schopflocher (1992) used calculus to de-

termine what kind of weight change was required to decrease total network error. As was the case for the
derivation of the gradient descent rule, this resulted in a new expression for output unit error to be includ-

 - 125 -

Minds And Machines © M.R.W. Dawson 12/02/2016

ed in an expression that was similar to the delta rule. However, because their elaborated error expres-
sion had two components, Dawson and Schopflocher found that the error for an output value unit also
had two components.

The first component was identical to the expression in the gradient descent rule that defined the

term pj, with the exception that it used the first derivative of the Gaussian instead of the logistic:

pj = (tpj – apj) G’(net pj) = (tpj – apj) (-2(netpj) (exp(-(netpj - pj)

2))) Equation 10-12

The second component was represented with the term j, and was the part of output unit error

that was related to the heuristic information that Dawson and Schopflocher (1992) added to the equation
for total network error. The equation for this error term was:

pj = tpj (netpj - j) Equation 10-13

The complete expression for an output unit’s error was found to be the difference between these

two expressions of error, and Dawson and Schopflocher discovered that a learning rule for a network of
value units was defined by a gradient descent rule that used this more complex measure of output unit
error:

wij = (j - j)ai Equation 10-14

Similarly, Dawson and Schopflocher (1992) that the mean of an output unit’s Gaussian could also

be trained. This was done by assuming that the value j was the weight from an additional input unit that
was always turned on. This assumption results in a learning expression very similar to the ones that were
provided earlier for training the threshold of a step function or the bias of a logistic function:

 = (j - j) Equation 10-15

In summary, Dawson and Schopflocher (1992) demonstrated that a perceptron with output units

that used the Gaussian activation function could be trained with a variant of the gradient descent rule that
was derived for integration devices. The learning rule that they developed differed from the more tradi-
tional gradient descent rule in only two ways. First, it used the first derivative of the Gaussian equation.
Second, it used an elaborated expression for output unit error, which included a heuristic component that
is not found in the traditional gradient descent rule.

There are both advantages and disadvantages associated with using value units as the outputs in

a perceptron. On the one hand, this kind of perceptron is capable of solving some linearly nonseparable
problems. For instance, it can solve XOR, and can also detect connectedness in the figures that Minsky
and Papert (1988, p. 13) used to examine the limitations of more traditional perceptrons. As well, Daw-
son and Schopflocher (1992) also found that their learning rule led to very fast learning for a number of
benchmark problems.

On the other hand, a perceptron constructed from value units is also subject to limitations. When

the activation function is the Gaussian defined in Equation 10-4, there is a very narrow gap between the
two thresholds that can be assigned. In other words, while this Gaussian makes two parallel cuts through
a pattern space, these two cuts are very close together. Because of this, it cannot solve all of the logic
problems in Table 10-1 (at least when the inputs to the problems are encoded with 0 and 1). For exam-
ple, it cannot solve x y because it cannot arrange its two cuts so that all three “on” patterns for this problem fall
between them. As a result, there is still a need for the multilayer architectures that will be described in the next chap-
ter.

10.3.3.5 Exploring The Three Learning Rules

The website of supplementary material (www.bcp.psych.ualberta.ca/~mike/Book2) for this book

provides a program called “Rosenblatt”. This program can be used to train perceptrons using any of the

 - 126 -

Minds And Machines © M.R.W. Dawson 12/02/2016

three learning rules that were described above. The program also comes with a number of example train-
ing files, including ones for all of the logic problems from Table 10-1. The reader is invited to use this
program to explore the relative merits and limitations of these three different kinds of perceptrons. Some
suggestions for exploring the properties of perceptrons are included in the manual that describes how to
use the program, which is also available at that website.

10.4 THE PSYCHOLOGY OF PERCEPTRONS

Modern cognitive science has very little interest in the perceptron. Primarily, this is because per-

ceptrons are generally restricted to solving linearly separable problems, although we saw above that this
could be circumvented to a certain degree by adopting a Gaussian activation function. This restriction
means that perceptrons are inappropriate models for a wide range of cognitive phenomena, because per-
ceptrons are not powerful enough to capture them. Nevertheless, there is some mileage to be gained by
considering the kinds of contributions perceptrons could make to some areas of cognitive science or psy-
chology. This is consistent with the general perspective on synthetic psychology that I would like to
communicate to my students. When you have a set of building blocks, no matter how small that set is, it
can still be fruitful to ask what can be done with it. At this point in the chapter, we are armed with two
basic connectionist building blocks. The first is the storing of associations in modifiable connection
weights. The second is the use of nonlinear activation functions in output units. In the sections that fol-
low, we will see that the perceptron can use these two building blocks to make some interesting contribu-
tions to a modern debate in the study of discrimination learning.

10.4.1 Supervised Learning And Classical Conditioning

In Chapter 4, we were introduced to the notion of classical conditioning. At the start of a classical

conditioning experiment, a conditioned stimulus (CS) will not elicit a desired response. However, if it is
repeatedly paired with an unconditional stimulus (US) it does elicit the desired response without the need
of training, then eventually the conditioned stimulus will become capable of eliciting the response as well.
One account of classical conditioning considers the product of learning to be a stronger association be-
tween the conditioned stimulus and the response.

With a little imagination, one can see how classical conditioning could be represented in a per-

ceptron. Each input unit of the perceptron can be used to represent the presence or absence of a par-
ticular conditioned stimulus. If the stimulus is present, then its input unit will be turned on. Otherwise, the
input unit will be turned off. The response that is being conditioned must be the activity of the output unit
of the perceptron; this response will either be present or absent. (All of the networks that we will consider
below will have only one output unit.) The pairing of a conditioned stimulus with an unconditioned stimu-
lus is represented by using target values to train the perceptron to make desired responses. The results
of learning are the changes of weights in the perceptron, which represent changes in association between
conditioned stimuli and the response.

By thinking about a perceptron in this way, and placing it in the context of classical conditioning,

we can begin to see that there may be important relationships between the learning rules used to train
perceptrons and the regularities that govern associative learning in humans and animals. As a matter of
fact, by drawing the parallel between perceptrons and classical conditioning, Sutton and Barto (1981)
were able to prove that there is a formal equivalence between the delta rule and the Rescorla-Wagner
learning rule that was discussed earlier in Chapter 4. In short, a rule that can be used to train a percep-
tron must be viewed as a plausible theory of classical conditioning. Furthermore, one can use a percep-
tron as a simulation in order to explore potential empirical relationships between perceptron learning and
animal learning.

10.4.2 The Patterning Problem

10.4.2.1 Patterning Problems In Classical Conditioning

 - 127 -

Minds And Machines © M.R.W. Dawson 12/02/2016

One example of the kind of learning that could be accomplished by a perceptron is called discrim-
ination learning. In discrimination learning, an animal is trained to make a response to one stimulus, and
to not make the response to a different stimulus. This learning requires that the animal discriminate be-
tween the two different stimuli. For example, an animal might be presented two different sounds, such as
a pure tone (stimulus A) and white noise (stimulus B), and the trained to press a bar when stimulus A is
heard, but not when stimulus B is heard. For learning theorists, this kind of training would be represented
as [A+, B-]. This kind of training could be accomplished in a perceptron as follows: first, the perceptron
would have two input units, one to represent the presence or absence of stimulus A, the other to repre-
sent the presence or absence of stimulus B. Second, a learning rule would be used to train the percep-
tron to turn on to stimulus A, and to turn off to stimulus B.

Discrimination learning is of interest to modern researchers because it can be used to study how

animals learn to respond to combinations of stimuli. One learning paradigm that focuses upon stimulus
combinations is the patterning experiment. In a patterning experiment, an animal learns to respond in
one fashion to a single stimulus, and to respond in the opposite fashion when stimuli are combined. In
positive patterning, the animal is trained not to respond to single stimuli and to respond to their conjunc-
tion [A-, B-, AB+]. In negative patterning, the animal is trained to respond to single stimuli, and not to re-
spond to their conjunction [A+, B+, AB-].

The basic perceptron model of classical conditioning that is illustrated in

Figure 10-2a represents one possible theory of patterning, called the configural approach. “According to
this view, subjects represent compound stimuli holistically and as being different from but similar to their
components” (Delamater, Sosa, & Katz, 1999, p. 98). The basic perceptron model is configural in the
sense that the net input to the output unit is a holistic representation that would have to distinguish com-
pound stimuli from their components. However, the fact that this particular type of theory can be ex-
pressed in the form of a perceptron is not advantageous. Modern learning theorists usually begin by
pointing out that a theory that can be expressed in this way, such as the Rescorla-Wagner model, is not
powerful enough to account for negative patterning. The reason for making this claim is that learning
theorists equate negative patterning with the XOR problem, which we have already seen cannot be
solved by a perceptron that uses a step function or a logistic function in its output unit. “This is not a prob-
lem that is unique to this particular theory. There has been other attempts to develop a single layer learn-
ing networks, and it has long been appreciated that they are unable to solve negative patterning discrimi-
nations, or, as it is more generally known, the exclusive-or problem” (Pearce, 1997, p. 131).

Because of this limitation, learning theorists who are interested in connectionism adopt two differ-
ent approaches to elaborating the configural model that is illustrated in Figure 10-2a. The first is the ele-
mental approach, in which an additional input unit is used to represent the presence of conjoined stimuli.
This is shown in Figure 10-2b. The logic of this approach is that there is something unique in the conjunc-
tion of stimuli, and this uniqueness can serve by itself as an additional conditioned stimulus or cue. The

Figure 10-2. Three examples of network models of conditioning paradigms. (A) A
configural model. (B) An elemental model. (C) A multi-layered model.

 - 128 -

Minds And Machines © M.R.W. Dawson 12/02/2016

second is what I will call the multilayer approach. “According to this approach, it is assumed that condi-
tioned stimulus representations change during conditioning, and that configural and/or elemental solu-
tions develop according to the nature of the task” (Delamater, Sosa, & Katz, 1999, p. 98). One example of
a multilayer approach would be to add hidden units to the perceptron, as is shown in Figure 10-2c. Such
a system “assumes that these ‘unique cues’ or ‘configural stimuli’ are not present from the outset of train-
ing but rather are themselves the product of learning.”

Unfortunately, there is a serious flaw in the argument that a perceptron is incapable of handling

negative patterning, and that as a result a model of the form of Figure 10-2a is not appropriate for study-
ing this kind of learning. If negative patterning is defined as responding in particular ways to three differ-
ent stimulus conditions, as is represented in the expression [A+, B+, AB-], then negative patterning is not
identical to XOR. As a matter of fact, learning to respond [A+, B+, AB-] turns out to be a linearly separa-
ble problem whose solution can be represented by any of the perceptron types that we have described in
this chapter.

The reason for this is that the expression [A+, B+, AB-] does not include a fourth stimulus condi-

tion, in which the animal learns not to respond when neither stimulus is present. When learning theorists
say that a perceptron cannot learn negative patterning, they really intend to define negative patterning as
[~A~B-, A~B+, ~AB+, AB-], where ~A represents the absence of A, and ~B represent the absence of B.
Importantly, this is not a minor semantic point. This is because when connectionist models are used to
explore negative patterning, the network is not trained to not respond in a null condition in which no condi-
tioned stimuli are presented. The connectionist models are instead trained on patterns that corresponds
to the traditional definition of negative patterning, that is [A+, B+, AB-]. Because of this, learning theorists
are exploring negative patterning with connectionist networks that are more powerful than necessary. To
demonstrate this, let us consider a recent experiment that adopted the multilayer approach, and then let
us demonstrate that a variety of simpler perceptrons could have also been exploited quite usefully.

10.4.2.2 A Multilayer Account Of Negative Patterning

Delamater, Sosa, and Katz (1999) reported an interesting study in which an attempt was made to

relate the learning of a PDP network to the kind of learning observed in an experiment involving animals.
The general focus of this study was learning to respond to combinations of stimuli. In particular, the study
was interested in determining how pre-training to discriminate between stimuli affected later learning in
positive and negative patterning paradigms.

Delamater, Sosa and Katz (1999) were in particular interested in exploring the properties of a

configural model of patterning in which configural representations emerged because of learning. As a
result, they explored patterning using a multilayer PDP network of the type illustrated in Figure 10-2c.
Their particular network had six different input units. Four of these were used to encode the presence of
four different stimuli (A, B, C, or D). The other two were used to represent stimulus type. Both stimuli A
and B were of type X. So, whenever either of these two stimuli was presented to the network, the input
unit representing type X was also turned on. Similarly, stimuli C and D were of type Y; this was repre-
sented by also activating the sixth input unit whenever C or D was presented to the network. The network
also had one output unit and four intermediate or ‘hidden’ units; all of these units employed the logistic
activation function.

Delamater, Sosa and Katz (1999) used this type of network because they wanted to explore the

effect on patterning of representations that emerged in the intermediate layers of processors during a pre-
training period. In the first phase of their experiment, the network was trained, using four different input
patterns, to make discriminations between the four different individual stimuli (AX+, BX-, CY+, DY-). In
other words, it was reinforced (i.e., trained to activate) to stimuli A and C, and not reinforced (i.e., trained
to turn off) to stimuli B and D. With this pattern of responding, the network was discriminating, because it
was generating different responses to the two X-type stimuli, as well as to the two Y-type stimuli. Once a
network had learned to make these discriminations, it was placed in one of four different post-training
conditions, each of which involved training the network with three different input patterns.

 - 129 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Two of these conditions required the network to undergo a period of positive patterning. In one,
this positive patterning involved the stimuli that had been previously reinforced in the pre-training (AX-,
CY-, AXCY+). In the other, positive patterning was based on the stimuli that had not been previously re-
inforced (BX-, DY-, BXDY+). Delamater, Sosa and Katz (1999) found that learning in the first condition
was much faster than learning in the second condition, which indicated that previous reinforcement creat-
ed internal representations that aided later positive patterning.

The other two post-training conditions in their study involved negative patterning. In one, the

negative patterning was based on the previously reinforced stimuli (AX+, CY+, AXCY-). In the other, it
was based on the stimuli that had not been previously reinforced (BX+, DY+, BXDY-). Delamater, Sosa
and Katz (1999) found that learning in the first condition was slower than learning in the second, which
demonstrated that previous reinforcement created internal representations that hindered later negative
patterning.

What was particularly interesting about the Delamater, Sosa and Katz (1999) study was that after

examining the performance of their networks, they proceeded to conduct a parallel animal learning study
to determine whether pre-training affected animal patterning in the same way that it affected network pat-
terning. In a pre-training phase, Sprague-Dawley rats learned to discriminate between two different
sounds (tone vs. white noise) and between two different visual stimuli (steady light vs. flashing light). The
rats then underwent a post-training patterning phase, in which they were placed in either a negative or a
positive patterning paradigm, which involved either the stimuli that had been reinforced in the pre-training
phase or the stimuli that had not been reinforced.

Interestingly, the results of the Delamater, Sosa and Katz (1999) animal study were quite different

from the predictions made on the basis of the performance of their PDP network. First, for the rats there
was strong evidence that previous reinforcement of stimuli aided negative patterning – a result that was
completely opposite to the prediction made by the network. Second, there was at best weak evidence
that previous reinforcement aided positive patterning. “The present data suggest that if changes in the
internal representations of stimuli occur throughout training, they do not do so in the manner anticipated
by the standard multi-layered network” (p. 108).

10.4.3.3 Perceptrons And Patterning

Why are the results of Delamater, Sosa and Katz’s (1999) network markedly different from the re-

sults of their animal study? One possible answer to this question is that the multilayer network that they
used was far too powerful for the patterning problems that they studied. As was noted earlier, learning
theorists assume that perceptron-like systems are incapable of learning patterning problems because
these problems are assumed to be linearly nonseparable. However, the patterning problems used by
Delamater, Sosa and Katz (e.g., AX+, CY+, AXCY-), are not linearly separable, and can in fact be learned
by a perceptron. As a result, any one of the hidden units in their network was capable of learning the pre-
training patterns, as well as any of the four post-training patterning problems. Is it possible that a simpler
network – a perceptron – could generate results that were more similar to those observed in the animal
learning experiment? To explore this question, and to demonstrate the adequacy of perceptrons pattern-
ing (as defined by learning theorists), we replicated the network portion of the Delamater, Sosa and Katz
study. However, instead of using a multilayer approach, we used a number of different perceptrons.
These networks were used to study predictions from both the configural type of model illustrated in Figure
10-2a, and the elemental type of model illustrated in Figure 10-2b.

For the configural models, we presented stimuli to the perceptrons using the same coding

scheme that was employed by Delamater, Sosa and Katz (1999). There were six input units, four for rep-
resenting the presence or absence of four different stimuli (A, B, C, D), and two for representing stimulus
type (X, Y).

For the elemental models, we adopted an encoding scheme of the type described by Pearce

(1997, p. ??). This scheme used the same six input units that were used in the configural representation,
plus an additional two units that were used to represent the two possible “unique cues” provided by com-

 - 130 -

Minds And Machines © M.R.W. Dawson 12/02/2016

binations of stimuli in the patterning experiment. One of these units represented the cue AXCY, while the
other represented the cue BXDY. When combined stimuli were presented to the networks during pattern-
ing, five of the eight input units were turned on – four representing the individual stimuli and their type,
and the fifth representing the unique configural cue. For instance, when AXCY was the stimulus being
presented, the units for A, X, C, Y, and AXCY were all turned on; the units for B, D, and BXDY were
turned off. When individual stimuli were presented, only two units were turned on – the one representing
the stimulus, and the other representing the stimulus’ type.

We conducted our experiment as follows: First, we trained a network until it converged on the

pre-training task that was used by Delamater, Sosa and Katz (1999). The training was conducted using
the default options that are available with the Rosenblatt perceptron program, and usually was completed
after 140 to 150 training epochs. Second, the network was then trained without resetting its weights on
one of Delamater, Sosa and Katz’s post-training patterning experiments. We trained ten different net-
works in each of the four post-training conditions that were described earlier, and computed the average
number of sweeps for a perceptron to converge on this second task as our dependent measure.

In our first study, we used the gradient descent rule to train a perceptron whose output unit was

defined by the logistic activation function. For the configural encoding, such a perceptron is equivalent to
one of the hidden units in the Delamater, Sosa and Katz (1999) network. Table 10-2 presents the aver-
age results of this experiment for both types of stimulus encoding. There are a number of conclusions
that can be drawn from this table. First, the patterning problems used by Delamater, Sosa and Katz to
train their multi-layered network were obviously not linearly separable, because they can all be learned by
a perceptron. Second, the elemental encoding leads to much faster learning, in general, than does the
configural encoding. This is not surprising, because when configural encoding is used, the network has
to develop an internal representation that distinguishes single stimuli from combined stimuli, while a
unique cue for this is already available to the networks in the elemental encoding conditions. Third, re-
gardless of the type of encoding that was used, previous reinforcement helped positive patterning, and
hindered negative patterning. This pattern is identical to what Delamater, Sosa and Katz (1999) observed
in their multi-layered network, but is quite different from the pattern that they observed in their animal
studies.

 Elemental Encoding Configural Encoding

Positive
Patterning

Negative
Patterning

Positive
Patterning

Negative
Patterning

Previously Reinforced 226.1 287.8 656.3 837.1
Not Previously Rein-

forced
292.7 226.1 829.8 656.8

Table 10-2. Average number of epochs for pre-trained perceptrons to converge to solu-
tions of patterning problems. Each cell represents an average of 10 different simulations.

Why does previous reinforcement aid positive patterning, and hinder negative patterning? One

way to answer this question is to examine the total sum of squared error of the network on a patterning
task, before any training on the second task has begun. This will provide an indication about what state
the network is in after the pre-training has been completed. Table 10-3 presents network SSE on the pat-
terning task for all of the conditions in the first simulation study. This table shows, for both versions of
problem encoding, that previous reinforcement leads to higher initial error for the positive patterning task,
but not for the negative patterning task.
Similarly, negative patterning begins with higher error in the condition that uses stimuli that were not pre-
viously reinforced in comparison with positive patterning. That the conditions that begin with higher de-
grees of error lead to faster training on the patterning problem might seem counterintuitive, but is perfectly
consistent with the gradient descent learning rule. Equation 10-9 indicates that one of the elements that
drive weight changes is network error, and when error is higher, more learning will occur. Thus it is per-
fectly reasonable to find that the patterning training that begins with a higher degree of error will also be
associated with faster learning.

Gradient Descent Error Elemental Encoding Configural Encoding

 - 131 -

Minds And Machines © M.R.W. Dawson 12/02/2016

 Positive
Patterning

Negative
Patterning

Positive
Patterning

Negative
Patterning

Previously Reinforced 1.62 0.99 1.62 1.00
Not Previously Rein-

forced
0.99 1.62 1.00 1.62

10-3. Average sum of squared error for pre-trained perceptrons on patterning problems
before training on the patterning problems has begun. Each cell represents an average of

10 different simulations.

What produces the pattern of errors provided in Table 10-3? Let us take one perceptron trained

with the configural encoding as a test case. After 140 sweeps of pre-training (i.e., after each of the four
training patterns was presented 140 times), the network had learned to generate a response of 0.9 to two
of the stimuli (AX, CY) and to produce a response of 0.1 to the other two (BX, DY) to be consistent with
the desired pattern of responses (i.e., AX+, BX-, CY+, DY-). The network structure that resulted from this
training was quite straightforward. First, the bias of the output unit was near zero (-0.06). Second, the
weights from the input units representing stimuli were fairly large, with absolute values over 2. For the
two stimuli to which the network was to respond to (A, C), the weights were 2.22 and 2.23 respectively.
For the two stimuli to which the network was not to respond to (B, D), the weights were both equal to –
2.18. Third, the two input units used to code stimulus type (X, Y) both had near zero weights equal to
0.04. This indicates that these two units provided redundant information that was not required by the per-
ceptron to learn the pre-training discrimination.

This pattern of connectivity leads directly to the errors that were presented in Table 10-3. For ex-

ample, consider positive patterning. After the pre-training, when the network is then given the positive
patterning stimuli that involve stimuli that were not reinforced (BX-, DY-, BXDY+), the network already
responds correctly to the first two patterns (responses to both were equal to 0.1). For the third pattern,
which involves turning input units B and D both on, a much stronger negative signal is sent to the output
unit, which leads to an even smaller response (0.01). Thus almost all of the error for this condition in Ta-
ble 10-3 is due to turning off BXDY, which is a response opposite to that which was desired. In contrast,
when the network is given the positive patterning task involving stimuli that were previously reinforced
(AX-, CY-, AXCY+), more errors will be made. Because of the pre-training, the network has learned to
turn on to AX and CY, which is the incorrect response to both of these patterns. However, for the third
pattern both A and C are turned. This produces a larger net input because of the perceptron’s positive
connection weights, and the network generates its strongest response to this pattern (0.99), which is cor-
rect. Therefore for this cell in Table 10-3, almost all of the squared error reflects incorrect responses to
the individual stimuli.

Now consider the errors produced by this perceptron for the two negative patterning conditions.

When given the patterns involving stimuli that have already been reinforced (AX+, CY+, AXCY-), the net-
work has already learned to respond correctly to the first two patterns. It generates an even stronger “on”
response (0.99) to the third pattern, because it uses two input units that have very positive connection
weights. This is incorrect, and is responsible for almost all of the squared error seen in the corresponding
cell in Table 10-3. When presented patterns involving stimuli that have not been previously reinforced
(BX+, DY+, BXDY-), the network has learned to make incorrect responses (equal to 0.1) to the first two
stimuli. However, because the third is a compound stimulus that involves sending signals through two
strongly negative weights, the output unit generates a very weak response of 0.01, which is correct. Thus
almost all of the error in the corresponding cell of Table 10-3 is due to incorrect responding to the individ-
ual stimuli.

 Interestingly, exactly the same story could be told to explain the pattern of errors found for the

perceptron that used elemental encoding to represent the input patterns. This is because when one of
these perceptrons is given the pre-training task, the six connection weights that it shares with a configu-
ral-encoding perceptron are nearly identical in weight. Furthermore, the two additional connection
weights associated with the two units that represent unique compound stimuli (AXBY and BXDY) have
nearly zero weights. For instance, in one network, the weights for these two additional input units were –
0.091 and 0.062 respectively. In other words, the information provided by the elemental encoding of the

 - 132 -

Minds And Machines © M.R.W. Dawson 12/02/2016

pre-training patterns is redundant with other information in the training set, and is not used by the net-
work.

In accounting for the errors in Table 10-3, we saw that in some instances a network’s response

was more extreme (a stronger “on” or “off”) to a compound stimulus than to either of the individual stimuli
that make up the compound. This is analogous to an effect called summation that is found in animal
learning experiments. For example, Delamater, Sosa and Katz (1999) found that after pre-training, ani-
mals placed in a negative patterning condition started off by generating stronger responses to compound
stimuli than to individual stimuli. Finding evidence of summation in perceptrons using either type of stimu-
lus encoding is interesting, because it is generally assumed that summation can easily be explained by
elemental theories, but not by configural theories. One of our contributions to this topic in animal learning
that comes from using perceptron models of patterning is that configural encoding can elicit summation.

Summation can also be used to motivate the use of other perceptrons to model patterning. One

account of summation due to pre-training that was also explored experimentally by Delamater, Sosa, and
Katz (1999) was that “reinforced stimuli are processed more effectively than non-reinforced stimuli” (p.
109). Differential processing of “on” and “off” stimuli can be explored in a perceptron by using the Gauss-
ian activation function. This is because when this activation function is employed, “on” patterns carry
more information than “off” patterns, where information is measured using standard mathematical models
of information. This difference in the amount of information is because only a very narrow range of net
inputs can be used to turn a value unit “on”, while a very large range of net inputs can be used to turn it
“off”. This is different than the sigmoid, because for an integration device, the range of net inputs that can
be used to turn the unit “off” is equal to the range that can be used to turn it “on”.

With this reasoning in mind, the second simulation experiment that was conducted was identical

to the first, with the exception that the perceptrons used a value unit as their output processor, and were
trained using the Dawson-Schopflocher learning rule. The training parameters that were used were the
default values that are set by the Rosenblatt program when this learning rule is selected. For positive
patterning, previously reinforced stimuli led to convergence in an average of 50.3 epochs, while not previ-
ously reinforced stimuli led to convergence in an average of 28.1 epochs. For negative patterning, the
reinforcement conditions led to near identical results (55.4 and 54.7 epochs respectively). As was the
case in the previous simulation study, the connection weights revealed that there was no essential differ-
ence between the networks trained with configural encoding and those trained with elemental encoding.
As a result, only the configural encoding results are reported. However, to keep these results as compa-
rable as possible to those found by Delamater, Sosa and Katz (1999), input units representing stimulus
types X and Y were still included.

These results provide some interesting findings relative to those that were presented in Table 10-
2. First, learning in all four patterning conditions was much faster. This is not surprising, given that Daw-
son and Schopflocher (1992) reported that their learning rule led to faster learning for a wide range of
problems in comparison to standard gradient descent methods. Second, the pattern of results is quite
different. For this perceptron, pre-training had very little effect on negative patterning. However, the pre-
training produced much faster learning in positive conditioning when the stimuli were not previously rein-
forced, in comparison to the condition in which stimuli had been previously reinforced. Third, while this
pattern of results is quite different than those found in Table 10-2, it is still markedly at odds with the re-
sults obtained by Delamater, Sosa and Katz (1999) in their animal experiments. The same can be said
for this type of perceptron when elemental coding is used, for it produces results that are nearly identical
to those in Table 10-2.

The simulation studies reported to this point in the chapter have shown that patterning problems

defined by learning theorists such as Delamater, Sosa, and Katz (1999), are linearly separable, and can
be handled by a perceptron. However, they have also shown that the kind of learning demonstrated by
these perceptrons does not resemble the kind of learning demonstrated by animals placed in patterning
paradigms. Why is this the case?

 - 133 -

Minds And Machines © M.R.W. Dawson 12/02/2016

The logic of the simulation studies was to take the training sets that Delamater, Sosa, and Katz
(1999) used, and to show that perceptrons could handle them. An equally plausible approach would be
to take training sets that they didn’t actually use, but intended to use. We saw earlier that learning theo-
rists assume that patterning problems are not linearly separable, because they are equivalent to logical
problems like XOR. One further simulation study that could be conducted would be to add a null training
pattern to the pre-training and to each of the post-training problem sets. This null pattern would be de-
fined by turning all of the input units off (indicating that no stimuli were present at all). The networks
would then be trained to turn off to this null pattern. The addition of this null stimulus to each of the four
patterning conditions would convert them from being linearly separable problems to being linearly non-
separable, which is already assumed learning theorists to be the case. The addition of the null stimulus
to all five training sets would ensure that the network behaves the way that animals behave – that is, the
network will learn not to respond in the absence of any stimuli at all.

Typically, the addition of a training pattern to make a problem logically equivalent to XOR takes it

beyond the ability of the perceptron, and into the realm of the multi-layered networks that will be de-
scribed in the next chapter. However, we saw earlier that a perceptron that uses a value unit to generate
responses is capable of representing a solution to XOR. So, in the final simulation study, such a percep-
tron was run in a version of the Delamater, Sosa, and Katz (1999) that included a null pattern in each of
the five training sets. As was the case in the previous simulation, this network was trained using the de-
fault settings that the Rosenblatt program provides for the Dawson-Schopflocher training rule. The re-
sults of this final simulation are as follows. For positive patterning, previously reinforced stimuli con-
verged after an average of 51.3 epochs, while stimuli that were not previously reinforced converged after
an average of 50.7 epochs. For negative patterning, previously reinforced stimuli converged after an av-
erage of only 2.3 epochs, while stimuli that were not previously reinforced converged after an average of
22.5 epochs.

The results of the final simulation are qualitatively very similar to results obtained by Delamater,

Sosa and Katz (1999) in their animal experiments. They found a very weak effect of previous reinforce-
ment on positive patterning; for some blocks of training, they found no statistically significant effects of
previous reinforcement. There is no statistical difference between the two positive patterning conditions
in the final simulation. Delamater, Sosa, and Katz also found that previous reinforcement strongly facili-
tated negative patterning, in comparison to negative patterning that involved stimuli that were not previ-
ously reinforced. This effect too is evident in this final set of results.

10.4.3.4 Summary And Implications

We have seen in the previous sections that while learning theorists assume that patterning is log-

ically equivalent to XOR, their operationalization of patterning is not. Because the “null pattern” is usually
excluded from the definition of patterning, it is not linearly separable, and can be modeled using percep-
trons. This was demonstrated above by showing that the six-hidden unit network used by Delamater,
Sosa, and Katz (1999) in one simulation study could be replaced by a number of different perceptron ar-
chitectures. These perceptron simulations demonstrated that summation could also be found in a config-
ural theory of patterning, and suggest that perceptrons offer an interesting medium in which to make con-
tributions to theories about patterning.

Of course, for the linearly separable version of the patterning problem, none of the perceptrons

that were described above generated results that were similar to those observed by Delamater, Sosa,
and Katz (1999) in their animal experiments. However, neither did the multi-layered network that they
used! In a final simulation, the patterning problems were operationalized in a format that ensured that
they were logically equivalent to XOR. When this experiment was conducted on a network that used a
Gaussian activation function in its output unit, the results looked much closer to those found in the animal
experiments.

What are the implications of the simulations that are described above? On the one hand, if ani-

mal learning theorists wish to operationalize patterning by excluding the “null pattern”, then they should
acknowledge that patterning can be performed by perceptrons, and they should avoid trying to model pat-

 - 134 -

Minds And Machines © M.R.W. Dawson 12/02/2016

terning using networks that are far more complicated than necessary. On the other hand, if the linear
nonseparability of patterning is a critical feature, then learning theorists should make sure that they opera-
tionalize patterning in a nonseparable format when they conduct their simulations and generate their the-
ories. Perhaps the Delamater, Sosa, and Katz (1999) network would have generated results more similar
to the animal data had it been also been trained with a “null pattern” in its training sets.

10.5 THE NEED FOR LAYERS

In spite of these interesting results, it must be acknowledged that perceptrons are indeed limited

in power. As a result, if we want to use connectionism as a technique in which to explore complex phe-
nomena in synthetic psychology, then we must move to more powerful architectures. Our final building
block to consider is the one that we failed to realize earlier – the creation of networks that have multiple
layers of connections. However, now that we are armed with the nonlinear activation functions that have
been introduced in the current chapter, we are in a position to successfully create multi-layer networks.

 - 135 -

Minds And Machines © M.R.W. Dawson 02/12/2016

Chapter 11: Sequences of Decisions

 The previous two chapters have introduced two of the major building blocks of a connectionist

synthetic psychology. The first was storing associations in the weights of connections between pro-
cessing units. The second was using nonlinear activation functions in processing units, which provided
them the ability to make the kinds of decisions that could be described in two-valued logic. The purpose
of the current chapter is to introduce a third major building block – the use of multiple layers of processing
units to create a chain of decisions that link input patterns to output responses.

11.1 THE LOGIC OF LAYERS

In many respects, perceptrons and multilayered perceptrons share a number of properties. Both

have a layer of input units that are used to receive stimulus patterns from the environment. Both have a
layer of output units that employ nonlinear activation functions, and which are usually used to generate a
response that can be interpreted as a classification of a presented pattern. Both use learning rules to
store associations between input and output patterns by modifying connection weights. The one crucial
difference between the two kinds of networks involves what happens to the signals from the input units
before they reach the layer of output units. In a perceptron, the signal is not modified at all, because
there are direct connections between input and output units. In contrast, in a multilayered perceptron the
signal from the input units is modified by at least one layer of intermediate or “hidden” units before reach-
ing the output units.

The addition of hidden units provides connectionist networks with incredible power, at least in

principle. In Chapter 10, we saw that perceptrons were subject to definite computational limitations. For
instance, none of the perceptrons that we described were able to represent the correct responses to all of
the logic problems that were presented in Table 10-1. In contrast, multilayered networks have been
proven to be capable of representing any computable mapping between inputs and outputs. Lippmann
(1987) was able to show that a network with two layers of hidden units could carve arbitrarily shaped de-
cision regions in a pattern space, and therefore could be considered an arbitrary pattern classifier. Sev-
eral researchers have proven that networks with a single layer of hidden units can approximate any con-
tinuous function, over a finite range, to an arbitrary degree of precision (e.g., Cybenko, 1989; Hornik,
Stinchcombe & White, 1989). Finally, there exist both old (McCulloch & Pitts, 1943) and modern (e.g.,
Siegelmann, 1999) proofs that multilayered networks have the same computational power as a universal
Turing machine. It is clear that the addition of intermediate processing units provides networks with a
formidable increase in computational power. Why is this the case? What is it that hidden units do?

11.1.1 Hidden Units Detect Higher-Order Features

To consider one fashion in which hidden units can extend the computational power of a network,

let us return to one logic problem that provides difficulty for a traditional perceptron. In the Exclusive Or
(XOR) problem, a network that has one output unit and two input units is presented one of four different
problems. It must learn to turn its output unit off to two of these patterns ([0,0] and [1,1]) and to turn its
output unit on to the other two ([0,1] and [1,0]). We saw in Chapter 10 that a traditional perceptron could
not represent a solution to this problem, because the problem is not linearly separable. To solve XOR,
two cuts must be made in the pattern space that contains the four different patterns. One of these cuts
separates [0,0] from the two patterns that cause the network to turn on. The other separates [1,1] from
these same two patterns. Because in a traditional perceptron the output unit can make only a single cut
in the pattern space, it cannot learn to correctly respond to all four of these patterns.

How might we make this problem linearly separable? One approach would be to elaborate the

input patterns, by adding a third input (Rumelhart, Hinton, & Williams, 1986b). This third input would pull
the four patterns apart in a three-dimensional pattern space, and would make them linearly separable.
One sensible approach to creating a third input would base it on a feature computed from the two “true”
inputs. For example, we could make the third feature the logical AND of the two input units, which would

 - 136 -

Minds And Machines © M.R.W. Dawson 12/02/2016

only be true of the fourth pattern, because AND is only true when both of its inputs are also true. This
would mean that our four input patterns would become [0,0,0], [0,1,0], [1,0,0], and [1,1,1], where the first
two values are the original inputs, and the third is the AND of these inputs. A perceptron could learn to
respond to these four patterns correctly, because they are linearly separable.

Of course, it would be much easier if we could design a network architecture that could figure out

on its own what kind of additional features are necessary to convert a linearly nonseparable problem into
one that is linearly separable. One reason for this is that it may be difficult, in advance, to determine what
additional features are needed. A second reason for this is because if we are interested in using net-
works to provide us with insights about complex phenomena, then it is better to let the network discover
regularities entirely on its own, instead of depending upon our guidance.

For the XOR problem, one kind of architecture that could

learn to elaborate the inputs on its own is illustrated in Figure 11-
1a. It has two input units that are directly connected to a sin-
gle output unit, which is equivalent to the traditional percep- tron
architecture. It differs from a perceptron by having an addi- tional
hidden unit. This hidden unit receives input from the two input
units, activates to their combined signal, and then passes this
activation on to the output unit. Imagine that when this archi- tec-
ture was trained, this hidden unit learned to compute AND. Be-
cause of this, it would not turn on to the first three patterns of XOR
([0,0], [0,1], and [1,0]). So, for these first three patterns, the net-
work would in essence be behaving like a traditional percep- tron,
and could use the direct connections between inputs and out-
put to learn to turn off to the first pattern, and on to the sec- ond
two. For the pattern [1,1], the AND-detecting hidden unit
would activate. If this hidden unit had a strong inhibitory con-
nection to the output unit, then it could use its activity to send a
signal that would turn the output unit off, regardless of the other
(excitatory) signals that the output unit would be receiving from the two input units. In other words, the
network in Figure 11-1a is capable of representing a solution to XOR.

The Figure 11-1a network provides us with one example of the role of a hidden unit in a multi-

layered network. One function that such units can serve is to detect more complex features that depend
on some or all of the input units. These features can in turn be used to modify the response of the output
units. One way in which these additional features increase the overall power of the network is by expand-
ing the pattern space. In the XOR example, detecting the AND property would add a third dimension to
the pattern space, and would arrange the four patterns in this space in such a way that they were linearly
separable.

11.1.2 Hidden Units Transform Pattern Spaces

The network illustrated in Figure 11-1a is not the only multilayered network that is capable of rep-

resenting a solution to XOR. A second architecture that can solve this problem is illustrated in Figure 11-
1b. This kind of network is more removed from the traditional perceptron than was the network in Figure
11-1a, and typifies the kind of multilayered network that is almost always employed in modern connec-
tionist simulations. One of its key features is that it does not have direct connections between the input
and output units. Instead, the signals from the input units are only sent to the hidden units. The hidden
units process these signals, activate in a particular fashion, and are the only units responsible for sending
signals on to the output unit.

How could these two hidden units solve XOR? If both of the units use the logistic activation func-

tion, then each of these hidden units is by itself equivalent to a traditional perceptron, and cannot solve
XOR alone. However, the two hidden units could solve different parts of the XOR problem. The output
unit could then combine the two partial solutions to solve the whole XOR unit.

Figure 11-1. Two multi-
layer perceptrons for XOR.

There are direct connections
between input and output units

in A, but not in B.

 - 137 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Consider the first hidden unit. Imagine that it learned to turn off to three of the patterns: [0,0],

[1,1], and [0,1], and that it only turned on to the pattern [1,0]. This would mean that is had learned to per-
form the logical operation x ~y. Now imagine that the other hidden unit had learned to perform the
complementary operation ~x y, by turning on to the pattern [0,1], and turning off to the other three pat-
terns.

By having these two hidden units perform these two logical operations on the input patterns, they

transform or “morph” the pattern space. When the input units deliver [0,0] to the hidden units, they in turn
deliver the pattern [0,0] to the output unit, because both hidden units will turn off. When the input units
deliver [0,1] or [1,0] to the hidden units, the hidden units will also deliver [0,1] or [1,0] to the output unit.
However, when the input units deliver [1,1], the hidden units transform this into a different pattern that is
passed on to the output unit: [0,0]! In other words, the hidden units have essentially folded the pattern
space, so that the input pattern [1,1] becomes the pattern [0,0]. The output unit only has to learn to deal
with three patterns (off to [0,0], on to [0,1] or [1,0]), and so the hidden units have reshaped the pattern
space to convert XOR into a linearly separable problem.

This example demonstrates another interpretation of how hidden units increase the power of an

artificial neural network. Hidden units can transform the pattern space, moving input patterns to different
positions in the transformed space. This transformation can be performed in such a way that a problem
that is linearly nonseparable in the pattern space defined by the input units becomes linearly separable in
the new space defined by the output units.

It is important to note that both of the interpretations of the role of hidden units are essentially the

same. For instance, while it is perfectly appropriate to describe the two hidden units in Figure 11-1b as
transforming the input pattern space, it is also appropriate to describe them as computing more complex
features from the input values (i.e., as computing x ~y and ~x y). Depending on the particular net-
work of interest, one approach to explaining what hidden units do might be easier to formulate than the
other.

11.2 TRAINING MULTILAYERED NETWORKS

Since 1943, it has been known that multilayered networks are far more powerful than percep-

trons; McCulloch and Pitts proved that a multilayered network could be equivalent in power to a universal
Turing machine. Why, then, were far simpler networks of such interest to researchers in the late 1950s
and early 1960s? Why did Rosenblatt (1962) bother to investigate perceptrons, given that more powerful
networks had been developed decades earlier?

The reason that simpler networks were explored is that there is a difference between building a

powerful network and training a powerful network. Multilayered McCulloch-Pitts networks had been de-
veloped, but had to be hand wired. Researchers were unable to train such networks. Learning rules like
those developed by Rosenblatt (1962) emerged as researchers explored ways in which associations
could be stored in the connection weights of networks that used nonlinear activation functions. However,
while these rules could be used to train perceptrons, they were unable to train the connection weights in a
multilayered network. Indeed, after Minsky and Papert (1988) published the first edition of their critique of
perceptron research in 1969, interest in artificial neural networks waned dramatically (e.g., Medler, 1998).
It was not until the mid 1980s that there was a resurgence of interest in connectionist research. This was
almost completely due to the discovery of new, more powerful, learning rules that were capable of training
all of the weights in a multilayered network.

11.2.1 The Credit Assignment Problem

What is so difficult about training a multilayered network? To demonstrate the difficulty, let us

take the network illustrated in Figure 11-1b, and let us imagine training it to solve XOR using the gradient
descent rule that was discussed in the previous chapter.

 - 138 -

Minds And Machines © M.R.W. Dawson 12/02/2016

To begin this training, we initialize the weights and biases of the networks to random values. We
then select one of the XOR patterns, and present it to the input units. This results in a net input being
computed by both hidden units, which each use the logistic activation function to compute their activity.
These activation values are then sent through the next layer of connections to create the net input for the
output unit, which then uses the logistic activation function to compute a level of activity. The activity pro-
duced by the output unit is the network’s response to this first pattern, which can be compared to the de-
sired response. This comparison allows us to compute the error for the output unit. After we have se-
lected some value for the learning rate , we can compute the desired weight change for the two connec-
tions leading into the output unit. Using the gradient descent rule from Equation 10-9, the weight changes
become the learning rate multiplied by the output unit’s error (scaled by the first derivative) multiplied by
the activation value of a hidden unit. Equation 10-10 can be used to modify the bias of the output unit.
Up to this point, everything seems to be going quite smoothly, and there does not appear to be any rea-
son that the learning rules from Chapter 10 cannot be used to train this network.

Unfortunately, this optimistic outlook changes when we consider the next necessary step in train-

ing our network: modifying the connection weights between the hidden units and the input units. Accord-
ing to the learning rules that were described last chapter, these weights will be changed by using the tri-
ple product of a learning rate, a hidden unit error, and an input unit activity. However, we only have two
of these values -- the learning rate and the input unit activity. We are missing a necessary ingredient,
hidden unit error.

Why are we missing this value? For the output unit, we know how to define error, because it is

equal to the difference between the actual response of the output unit and the desired response. We do
not have a similar error term for a hidden unit, because we do not know what the desired responses for
each hidden unit should be. Indeed, the whole idea of training a multilayered network on a problem of
interest is because we are looking for emergent properties in the hidden layers. We would like the net-
work to surprise by finding a novel or interesting representation that can be used to solve the problem.
Because we are looking for surprises here, we have no a priori method of defining hidden unit error.

The absence of hidden unit error is related to the credit assignment problem (Minsky, 1963). “In

playing a complex game such as chess or checkers, or in writing a computer program, one has a definite
success criterion–the game is won or lost. But in the course of play, each ultimate success (or failure) is
associated with a vast number of internal decisions. If the run is successful, how can we assign credit for
the success among the multitude of decisions?” The version of this problem that faced neural network
researchers prior to the 1980s was that they could not assign the appropriate “credit” to each hidden unit
for its contribution to output unit error. In connectionist networks, the inability to assign such credit trans-
lated into an inability to train any the weights that feed into a layer of hidden units.

11.2.2 Error Backpropagation

Connectionism was reborn in the mid 1980s for two reasons. First, many researchers were dis-

satisfied with the state of classical in cognitive science. These researchers believed that classical re-
search had failed to deliver its promised advances, because discrete rules and representations were not
thought to be appropriate for modeling many cognitive phenomena. Second, accompanying their dissat-
isfaction were significant advances in connectionist learning algorithms. In particular, a solution to the
credit assignment problem was discovered, giving researchers the ability to train multilayered networks.

Rumelhart, Hinton, and Williams (1986) were able to solve the credit assignment problem after

they decided to use the logistic equation to approximate the step function that was used in older connec-
tionist architectures such as McCulloch-Pitts networks and perceptrons. We saw in Chapter 10 that this
allowed them to use calculus to determine how to change the weights that fed into a network’s output
units. Their learning rule was similar to the delta rule, in that any weight change was defined as the triple
product of a learning rate, the error of the unit at the output end of the connection, and the activity of the
unit at the input end of the connection. Their advance over the delta rule was a refined definition of out-
put unit error, which could be used to accelerate learning. The error for any output unit i, represented by

 - 139 -

Minds And Machines © M.R.W. Dawson 12/02/2016

the term j, was defined in Equation 10-8 as the desired activity of the output unit minus the actual activity
of the output unit, scaled by the derivative of the logistic:

j = (tj – aj) f’(netj) = (tj – aj) aj (1 – aj) Equation 11-1

Rumelhart, Hinton, and Williams (1986) also used calculus to determine how network error could

be altered by changes in a hidden unit’s weight. In essence, their equations defined hidden unit error.
They discovered that the error for any hidden unit was the sum of the error for each output unit (i.e., error
as defined in Equation 11-1) scaled by the connection weight between each output unit and the hidden
unit. This summed error was then scaled by the derivative computed for the hidden unit’s activation func-
tion. To be more precise, let us define the error for hidden unit x, which we will represent as x. Let the
weight between this hidden unit and output unit i be represented as wxi. The total error for the hidden unit
is defined in Equation 11-2, where the sum is taken over the total number of output units connected to the
hidden unit:

x = (wxi i) f’(netj) = (wxi i) aj (1 – aj) Equation 11-2

What this equation indicated was that the error for any hidden unit in a multiple-layer network

could be considered as a signal that was sent to the hidden unit from the output units. The raw signal
from each output unit was its error. This raw signal was then scaled by the weight between the output
unit and the hidden unit, and the hidden unit’s error was the “net input” of this error signal – the inner
product of the vector of output unit errors and the vector of weights from the output units to the hidden
unit. Because this error term could easily be viewed as a signal being sent backwards from the output
units to the hidden units, the learning rule that was developed by Rumelhart, Hinton, and Williams (1986)
became known as the “error backpropagation” rule.

11.2.3 The Generalized Delta Rule

With hidden unit error defined as in Equation 11-2, Rumelhart, Hinton, and Williams (1986) were

in a position to modify all of the weights in a multilayered network. In their algorithm, every weight was
changed by adding to it a value that was the product of a learning rate, an error term, and an activation
value, as was the case in the delta rule that we first saw in Chapter 9. Because of this, the error back-
propagation rule is also known as the generalized delta rule.

 For any pattern, the generalized delta rule involves two phases of processing. The first phase is
the forward propagation of the signal. The input units are activated with some stimulus pattern, which
causes activation to arise first in the network’s hidden units, and then in the network’s output units. This
observed activation is compared to the desired activation, and an error value is computed for every output
unit (i.e., the difference between the desired and the observed activations).

 The second phase of processing in the generalized delta rule is the backward propagation of er-
ror. This involves a number of different steps. First, the output unit error terms are multiplied by the de-
rivative of the logistic equation. Second, the weights of the connection weights are modified according to
Equation 11-3, where wij is the weight of the connection between output unit i and hidden unit j, j is the
error for output unit i, and ai is the activation of hidden unit j to the pattern that was presented:

wij = j ai Equation 11-3

Note that this equation is identical to Equation 10-9, and only differs from it in the assumption that the
connection weight is between an output unit and a hidden unit. In other words, the connection weights
feeding into the output units in a multilayered network are trained in exactly the same fashion as was de-
scribed in Chapter 10.

Once the output unit weights have been modified, the third step in error backpropagation can be
performed. In this step, hidden unit errors are calculated using Equation 11-2. In other words, each out-

 - 140 -

Minds And Machines © M.R.W. Dawson 12/02/2016

put unit sends its error term through the modified connection weights, whose weights are used to scale
these error signals. Each hidden unit adds up these incoming, weighted, error signals to determine what
its own error should be.

The fourth step in this phase of the generalized delta rule is to modify the weights that feed into

the hidden units. This is also accomplished via Equation 11-3, using the appropriate activation value, and
using hidden unit error instead of output unit error. In most typical networks, this means that the input unit
activities will be used. However, in some networks, there is more than one layer of hidden units. One of
the advantages of the generalized delta rule is that the equations that have been described above can be
iterated through more than one hidden unit layer. In this case, the errors that have been calculated for
one layer of hidden units can be propagated backwards to the next, after the connection weights between
them have been modified. This process continues until all of the connection weights in the network have
been modified. Then, the next pattern is presented to the network, and the two phases of the generalized
delta rule are repeated.

The paragraphs above have described how the generalized delta rule is applied to the connection

weights in a network. Of course, once a unit’s error term has been calculated, the bias of that unit can be
modified as well. This is done in exactly the same fashion as was described in the previous chapter, by
applying Equation 10-10. This is the case whether the unit is an output unit or a hidden unit.

11.2.4 The Dawson-Schopflocher Rule

Dawson and Schopflocher (1992) modified the generalized delta rule to train networks of value

units. In Chapter 10, we saw that the training of perceptrons that used value units required two main
changes to the gradient descent rule. First, an elaborated definition of overall network error is required.
Second, the derivative of the Gaussian had to be substituted into any equation that ordinarily used the
derivative of the logistic, because value units us the Gaussian activation function.

Provided that these changes are also used for multilayered networks, Dawson and

Schopflocher’s (1992) method for training networks of value units is exactly the same as the generalized
delta rule. In their learning rule, output unit errors are calculated (using their elaborated definition of er-
ror), and weights and biases are changed, in exactly the same fashion that was described in Chapter 10.
Hidden unit errors can then be calculated in exactly the same fashion that was used in the generalized
delta rule (i.e., Equation 11-2), with the exception that the error term is scaled by the derivative of the
Gaussian equation. Hidden unit weights can then be modified using Equation 11-3. In other words, the
only difference between the two learning rules is the definition of output unit error. This permits training
hybrid multilayer perceptrons that contain both integration devices and value units.

Dawson and Schopflocher (1992) demonstrated that networks of value units had many ad-

vantages over networks of integration devices by studying a set of benchmark pattern recognition prob-
lems. In general, networks of value units learned to solve these problems significantly faster, and re-
quired fewer hidden units to classify patterns. These two advantages are due to the use of the elaborated
error term and to the fact that value units carve two “cuts” through a pattern space, instead of just one. In
the next chapter, we will also see that networks of value units also have emergent properties that en-
hance the process of network analysis.

However, networks of value units do not have universal advantages over networks of integration

devices. As a result, all the different kinds of networks that can be trained with variations of the general-
ized delta rule should be viewed as available tools in a toolbox, and a researcher should explore the ar-
chitecture of a multilayer network to determine what kind of network is best for the problem at hand.

11.2.5 Exploring Learning In Multilayered Networks

The website of supplementary material (www.bcp.psych.ualberta.ca/~mike/Book2) for this book

provides a program called “Rumelhart”. This program can be used to train multilayer using either of the
learning rules that were described above. The program also permits the training of hybrid networks, in

 - 141 -

Minds And Machines © M.R.W. Dawson 12/02/2016

which one layer of processing units are integration devices, and another layer of processors are value
units. Furthermore, the program permits the user to decide whether or not to include direction connec-
tions between input and output units. The program also comes with a number of example training files,
including ones for all of the case studies that are introduced below. The reader is invited to use this pro-
gram to explore the relative merits and limitations of the different kinds of multilayer perceptrons.

11.3 A SIMPLE CASE STUDY: EXCLUSIVE OR

There are many different learning rules available for training multilayer networks. Furthermore,

there is a vast array of different activation functions that are also in use (e.g., Duch & Jankowski, 1999).
The purpose of this chapter is not to provide an exhaustive introduction to training multilayer perceptrons;
the reader interested in more extensive treatments of this type has other resources to explore (e.g., De
Wilde, 1997; Hagan, Demuth, & Beale, 1996; Kasabov, 1996; Ripley, 1996; Rojas, 1996; Shepard, 1997).
Instead, this chapter introduces multilayer perceptrons as a plausible medium for exploring synthetic psy-
chology. The remainder of this chapter attempts to accomplish this goal by describing some example
simulations. To begin, let us return to XOR.

11.3.1 Using Hidden Units To Detect Additional Features

In our first XOR simulation using multilayer perceptrons, we decided to use a network of integra-

tion devices that had only one hidden unit, as well as direct connections between its two input units and
its one output unit. In other words, this network had the appearance of the one illustrated in Figure 11-1a,
and both its output unit and its hidden unit used the logistic activation function.

When we trained this network, all of the connection weights were initialized by randomly selecting

numbers from the range –0.1 to +0.1. Unit biases were initialized at 0.0. The network was then trained
using the generalized delta rule, with a learning rate of 0.9. The order of pattern presentation was ran-
domized every epoch. This means that prior to training the network, the order of the four stimulus pat-
terns was randomized. Then each pattern was presented once in this random order, and connection
weights and biases were updated with each presentation. Once each of the patterns had been present-
ed, the order of the patterns was randomized again prior to the next epoch of training.

The network converged to a solution to the XOR problem after 1197 epochs – that is, after each

of the four training patterns had been trained 1197 times. At this time, the network generated a “hit” to
each pattern when it was presented. At the start of training, the minimum squared error for defining a “hit”
was set at the value of 0.01. This means that when the network converged, the output unit generated an
activation value of 0.9 or higher for the two patterns whose desired response was 1, and it generated an
activation value of 0.1 or lower for the two patterns whose desired response was 0. The total squared
error for the network (summing over all of the training patterns) after it converged was 0.031.

After this training, the network had the following structure: The bias of the output unit was –3.13,

and the bias of the hidden unit was –2.68. The connection weight from the hidden unit to the output unit
was 10.45. The connection weights from each of the input units to the output unit were both equal to –
4.76, and the weights from each of the input units to the hidden unit were both equal to 6.57.

How does a network with this structure solve XOR? Let us start by considering the hidden unit. It

generates an activation of 0.98 to all of the patterns except the one in which both input units are off. To
this latter pattern, it generates a response of 0.06. Thus, it would appear that this unit is detecting the x
y relationship that was defined earlier in Table 10-1. How does the network convert the ability to compute
OR into the more sophisticated ability to compute XOR? It does so via the combination of the input unit
signals and the hidden unit signal when the output unit computes its net input.

To be more precise, consider the first pattern [0, 0]. This pattern fails to generate a response in

the hidden unit, and sends no signal to the output unit. As a result, the output unit’s net input is zero, and
it (correctly) fails to respond. Now, consider either pattern in which one input unit is on, and the other is
off. Either of these patterns will activate the hidden unit, which in turn will send a signal with a value over

 - 142 -

Minds And Machines © M.R.W. Dawson 12/02/2016

10 to the output unit. The one input unit that is on, however, will also send an inhibitory signal of nearly –
5 to the output unit. So, the net input of the output unit to either of these patterns will be about equal to 5,
which is high enough to (correctly) turn the output unit on to either of these two patterns. Finally, consider
the pattern [1, 1]. This pattern causes the hidden unit to send a signal of 10 to the output unit. However,
because both of the input units are sending inhibitory signals of nearly –5 to the output unit at the same
time, the signal from the hidden unit is essentially canceled, and the output unit (correctly) fails to turn on.
In short, negative signals from the two input units, combined with a hidden unit that detects an additional
feature, permits this multilayer perceptron to compute XOR.

One reason that this network is interesting is because it is completely different from the hypothet-

ical network that was described in section 11.1.1 that solved XOR by detecting the AND feature with its
single hidden unit. Clearly, there is more than one way for a network of this general type to detect addi-
tional features to solve this problem. Training a number of different networks, with different random
starts, would lead to the discovery of a number of different solutions to the problem. Networks are capa-
ble of discovering solutions to problems that can be unanticipated by researchers. These surprises will
provide the core discoveries for synthetic psychologists who use connectionist networks.

11.3.2 Using Hidden Units To Transform The Pattern Space

In our second simulation, we used a network with the architecture illustrated in Figure 11-1b. The

network used two hidden units and one output unit, all of which were integration devices. There were no
direct connections between the input and output units in this study. The network was trained using exact-
ly the same settings that were used in Section 11.3.1. It converged to a solution after 1218 epochs, with
a total squared error of 0.032.

At the end of training, the network had the following structure: The bias of the output unit was

equal to –3.01, the bias of hidden unit 1 was –2.19, and the bias of hidden unit 2 was –4.78. The connec-
tion weight from hidden unit 1 to the output unit was 6.70, and the connection weight from hidden unit 2 to
the output unit was –7.11. The connection weights from the input units to hidden unit 1 were 5.95 and
5.91; the weights from the input units to hidden unit 2 were 3.18 and 3.17.

How does this network structure solve XOR? First, let us consider an interpretation of the role of

each hidden unit. Hidden unit 1 was an x y detector, responding in the same fashion as the hidden unit
in the previous network: generating a near 0 response to [0, 0] and a near 1 response to the other three
patterns. In contrast, hidden unit 2 was an x y detector, only generating a high degree of activity to the
pattern [1, 1], and generating very weak activity to the other three patterns.

These two detectors can be used to solve XOR by folding the pattern space. For the pattern [0,

0], both hidden units are off, resulting in a near zero net input for the output unit, which results in it cor-
rectly turning off. For the pattern [0, 1] and the pattern [1, 0], hidden unit 1 responds, but hidden unit 2
does not. As a result, the output unit receives a strong excitatory signal from the hidden unit that is on,
and correctly activates. For the final pattern [1, 1], both of the hidden units are activated. The excitatory
signal sent by hidden unit 1 to the output unit is nullified by a stronger inhibitory signal that is sent to the
output unit by hidden unit 2. As a result, the output unit does not turn on. The competition between the
two activated hidden units has caused the stimulus [1, 1] to generate a similar output unit signal to that
which is generated by the pattern [0, 0], which is equivalent to folding the pattern space so that both of
these points occupy the same position.

Again, as we saw in section 11.3.1, the features that the network has used to fold the pattern

space are quite different from the features that were discussed for the hypothetical network that was dis-
cussed earlier in this chapter. There is obviously more than one way in which the XOR pattern space can
be transformed to become linearly separable, which highlights the need for network analysis and interpre-
tation.

11.4 A SECOND CASE STUDY: CLASSIFYING MUSICAL CHORDS

 - 143 -

Minds And Machines © M.R.W. Dawson 12/02/2016

We saw earlier that, in principle, multilayer perceptrons have the computational power of univer-
sal Turing machines. Because of this, they certainly have the capability of dealing with problems that are
far more complicated – and psychologically relevant -- than XOR. Indeed, we have already seen one ex-
ample of this in Chapter 8 when a multilayer perceptron was trained to internalize a spatial map of the
province of Alberta. Connectionist models are attractive because you can train a network to solve any
pattern recognition problem of interest, provided that you can formulate some coding scheme that can be
presented to a network. This section provides one example of this.

11.4.1 Defining The Problem

Imagine a small piano keyboard consisting of only 24 keys, black and white. The first twelve keys

of this mini-piano represent the following notes: A, A, B, C, C, D, D, E, F, F, G, and G. In this pat-
tern, every note paired with the symbol corresponds to a black key on the keyboard, and all of the other
notes correspond to white keys. (For the sake of simplicity, we only use the symbol in this example,
and pretend that we cannot represent black keys with the symbol, such as representing the note A as
B.) Moving from the left to right in this pattern, each note is a semitone higher than the note on its left.
The thirteenth key on this keyboard plays another A that is an octave higher than the A that started the
keyboard. From this thirteenth key to the last (twenty-fourth) key on the piano, the pattern of notes is re-
peated. So, while there are 24 different keys on this keyboard, they are only associated with 12 different
note names, and each note is repeated an octave higher than its first instance. Each of these 12 different
notes can serve as the starting note, or root, of a major scale. For instance, we could have a scale in the
key of A-major that starts on the root A, a scale in the key of A-major that starts on the root A, and so
on, up to the key of G-major.

For any scale that we choose, there exists a basic harmonic structure. Harmony is the combina-

tion two or more notes into a compound in which all of the notes are played at the same time. To our
ears, some of these combinations are dissonant – they simply don’t sound right. Others, however, are
consonant, and are the basis of Western music (Jourdain, 1997).

For example, let us consider the C-major scale. One important, consonant, harmonic combina-

tion for this scale is the major chord that can be built upon its root, which is C. The most common version
of this chord is the C-major triad. This is the set of notes C, E, and G that are the first, third and fifth notes
in the C-major scale. We could convert this into a four-note chord (a tetrachord) by adding the C that is
an octave higher than the root note of this triad (i.e., by using the notes C, E, G, and C). On our key-
board, we could play this chord by finding the lowest C on it, and then play it along with the other three
notes that make up this chord. We will call this the root position of the chord. However, we could play
this chord in other ways too. For instance, we could start with the lowest E on the keyboard, and play the
notes E, G, C, and E, where the last E is an octave higher than the first. In this version of the chord, the
same notes are being played, but they are arranged in a different order. This order is called the first in-
version of C-major. We could also start with the lowest G that we can find on the keyboard, and play the
notes G, C, E, and G. This is called the second inversion of the chord.

All of the chords that could be created from the above description are major. With a slight

change, any major chord can be converted into a different kind of chord, called a minor chord that is as-
sociated with a minor scale. To convert a major chord into a minor chord, first take the major chord in
root position. Then, take the second note in the chord, and lower it by a semitone. For instance, the C-
major chord (C, E, G, and C) can be converted into the c-minor chord (C, D, G, and C) by lowering the E
by a semitone to the note D. As was the case for the major chords, we can write minor chords in first-
and second-inversions as well. The first inversion of c-minor is D, G, C, and D, and the second inver-
sion of c-minor is G, C, D, and G.

Other harmonic patterns are available as well. For example, every major scale is associated with

a dominant chord. A dominant chord is created as follows: First, take a major scale of interest. Let us
choose C-major as our example. Second, find the fifth note in this major scale, which is known as the
dominant. The dominant of C-major is the note G. Third, build a major triad that has this dominant note

 - 144 -

Minds And Machines © M.R.W. Dawson 12/02/2016

as its root. The major triad for G is G, B, and D. Finally, add a fourth note that is three semitones (i.e.,
three piano keys on our keyboard) higher than the highest note in this triad. In our example, the note F is
three semitones higher than D. So, the dominant chord for the key of C-major is the four note pattern G,
B, D, and F.

As was the case with the major and minor chords, you can arrange the same notes into different

orders to produce various inversions of dominant sevenths. To do this, you take the lowest note of one
pattern, and move it an octave higher to become the highest note of the inverted pattern. Following this
rule, for the dominant chord of C-major, the first inversion is B, D, F, and G; the second inversion is D, F,
G, and B; the third inversion is F, G, B, and D. On our keyboard, we are able to take one of these pat-
terns (i.e., the root, first-, second-, or third-inversion) and repeat it, so that one version is a full octave
higher than the other. In other words, we are able to play five different versions of any dominant chord on
our 24-key piano.

Each major scale has its own dominant chord. Similarly, each minor scale has its own tetrachord

that is called diminished. The diminished chord for a minor scale is created as follows: First, take a minor
scale of interest. Let us choose c-minor as our example. Second, take the note that is a semitone lower
than the root of this scale. The note C is a semitone lower than C, which is the root of c-minor. From
this selected note, add a second note that is three semitones (three piano keys) higher; then add a third
that is six semitones higher; finally add a fourth note that is nine semitones higher. For c-minor, the four
notes selected according to this procedure are C, D, F, and A.

This pattern is the diminished chord of this minor scale. As was the case for dominant chords, we

can create different inversions of a diminished chord. For the diminished chord of c-minor, the first in-
version is D, F, A, and C; the second inversion is F, A, C, and D; the third inversion is A, C, D, and
F. When we “fit” the diminished chords onto our mini-piano, we will be able to find room to repeat one of
these patterns a full octave higher. So, for any minor key, we can play five different versions of its dimin-
ished chord on our imaginary keyboard.

All of the harmonic structures that have been described above are crucial elements to musical

understanding and performance. For instance, I am currently learning to play the piano. As part of my
training in musical theory, I have to learn how to classify any of these chord structures when they are pre-
sented in written form – identifying the type of chord (e.g., dominant seventh), the key that the chord is
associated with (e.g., C-major), and the pattern of the chord (e.g., second inversion). As part of my tech-
nical training, I have to learn how to play all of these chords for a wide variety of keys with both hands.
As part of my ear training, I have to learn to recognize the difference in sound between a major chord, a
minor chord, a dominant seventh, and a diminished seventh. All of these are fairly complicated and chal-
lenging tasks – as my piano teacher, Marg Tompkins, is painfully aware from hearing me perform! From
the perspective of cognitive science, any challenging task that can be accomplished by humans is a task
worthy of further exploration. This leads to the following question: would it be possible to train a network
to identify the different kinds of chords that could be “played” on our imaginary keyboard?

All that stands in the way of answering these questions is translating the information that was

provided above into a training set that can be presented to a network. There are a number of different
ways of doing this. The following paragraphs describe one straightforward encoding that we used to de-
velop a network capable of recognizing the four different types of tetrachords, and also suggest some
possible alternatives.

First, consider the encoding of the network’s responses. Ultimately, we want a trained network to

be capable of distinguishing between four different kinds of chords – major, minor, dominant, and dimin-
ished. We built a network with four output units, each of which was associated with one of the four chord
types. The network is trained to turn the correct output unit on when presented a representation of the
chord. Other approaches would be interesting to explore, too. For example, because we want the net-
work to make four different responses, we really only require two output units, which are capable of rep-
resenting four different states ([0, 0] for major, [0, 1] for dominant, [1, 0] for minor, and [1, 1] for dimin-

 - 145 -

Minds And Machines © M.R.W. Dawson 12/02/2016

ished). It would be interesting to see whether changing the representation of the network’s responses
affected its internal representations of chord structures. For instance, in the two-output unit encoding that
was just suggested, the desired value of the first output unit reflects the fact that dominant chords are re-
lated to major scales, and that diminished chords are related to minor scales.

Second, consider how to encode the stimuli that are to be presented to the network. We adopted

a very simple, local, encoding by providing the network with 24 different input units, each one represent-
ing a different key on our mini-piano. A “note” was presented to the network by turning the unit associat-
ed with its key on, indicating that the key was pressed down. For any of the stimuli that were presented
to the network, four input units were turned on, and all of the others were turned off. Again, there are al-
ternative encodings that are more sophisticated, and it would be very interesting to explore how these
might affect network performance and structure. For instance, any sound that would be generated by a
single key of our mini-piano would be a sine wave of a particular amplitude and frequency, and would al-
so produce resonant vibrations in other piano components. This would result in other sine waves, of
higher frequencies and diminishing amplitudes, being added to our primary sine wave (Jourdain, 1997).
We could represent a stimulus by having different input units correspond to different sine wave frequen-
cies, and by using input values to represent the amplitude.

Once an encoding for network inputs and outputs has been chosen, all that remains is to create a

training set. We created a training set based on the 12 different notes that formed the basis for the first
octave of our mini-piano. For each of these 12 notes, we began by treating it as the root of a major scale.
We then created three different major chords for this scale (root position, first-inversion, second inver-
sion). We also created five different dominants for this scale (root position, first inversion, second inver-
sion, third inversion, and one of these four chords repeated an octave higher, depending on how the
chords could be fit onto the mini-piano). In other words, for each of the 12 possible major key signatures,
we created three different major chords and five different dominants, resulting in 96 different patterns.

We then took each of the twelve notes again, but treated them as the root of a minor scale. For

each of these, we created three different minor chords (root position, first-inversion, second inversion).
We also created five different diminished chords (root position, first inversion, second inversion, third in-
version, and one of these four chords repeated an octave higher, depending on how the chords could be
fit onto the mini-piano). This resulted in another 96 different training patterns, for a total of 192 training
patterns in the training set. All of the stimuli that we defined were tetrachords (instead of triads), so that
the network could not use the number of activated input units as a cue to distinguish a major or minor
triad from a dominant or a diminished, which are always defined with four notes. The network was then
trained to recognize what type of chord was being presented, regardless of the key that the chord was
based on, or of how the chord was inverted.

11.4.2 Classifying Chords With A Network

In our use of the Rumelhart program to train a network to classify musical chords, we decided to

make all of the output and hidden processors value units. The network was trained with a learning rate of
0.01. The connection weight values were randomly selected from between –0.1 and +0.1, and the biases
of all the units were initialized to a value of 0. As was the case for the XOR networks described earlier,
the minimum squared error to define a “hit” was 0.01. A network that used four hidden units converged to
a solution – hits on every training pattern – after 11,643 epochs. The order of pattern presentation was
randomized after every epoch. When the network converged, its total sum of squared error was 0.101,
which is quite small, considering that this value is summed over 192 different training patterns.

The network that was produced by this training is quite a bit more complicated than the XOR net-

works that were described above. One cannot simply look at the connection weights to determine how it
functions, because with 24 input units, 4 hidden units, and 192 training patterns, there is far too much da-
ta to process. A proper interpretation of this network is delayed until Chapter 12. However, there are
some core characteristics of this network that might suggest specific avenues that could be explored
when the network’s structure was investigated.

 - 146 -

Minds And Machines © M.R.W. Dawson 12/02/2016

For example, one wonders if there is any significance to the fact that four hidden units were re-
quired by this network to classify the chords. In this training set, the number four is important in more
than one way. First, there are four different types of chords. Is it possible that the different hidden units
are each capturing a characteristic of one of these chords? Second, four notes define each chord. Per-
haps each hidden unit detects the position of a note on a key, and uses this information to help the net-
work to cope with the different inversion. A detailed investigation of such possibilities would require us to
examine the responses of the hidden units to different kinds of patterns, the relative values of the connec-
tion weights that feed into the hidden units, as well as of the weights that feed into the output units. One
of the goals of analyzing such properties would be to discover how the network represented the musical
characteristics that defined each type of chord. Is this representation surprising or interesting? Is it pos-
sible that people use this representation too? Does the representation reveal anything surprising about
the mathematical relationships between different kinds of chords or scales? Once answers to these kind
of representational questions are hunted down, one would be in a position to explore whether or not the
network’s representations change when a different input and/or output encoding is employed.

11.5 A THIRD CASE STUDY: FROM CONNECTIONISM TO SELECTIONISM

Since its birth in the mid 1950s, cognitive science has been guided by the digital computer meta-

phor, and has developed functionalist theories that have largely (and deliberately) ignored the neural ba-
ses of mental phenomena (Calvin, 1996; Clark, 1989; Edelman, 1992). More recently, a strong reaction
against this practice has produced two biologically inspired theories of cognition, instructionism and selec-
tionism. While both of these approaches have emerged as challengers to classical cognitive science,
they have also been placed in an unfortunate competition with each other. There is a general view that
instructionist and selectionist theories are mutually incompatible (Edelman, 1987; Piattelli-Palmarini,
1989). Below, with the goal of providing another example of how multilayered networks might contribute
to synthetic psychology, some computer simulations are described to demonstrate that this is not neces-
sarily the case. These simulations show that that it might be possible to incorporate the main ideas of
selectionism into an instructionist framework.

11.5.1 Instructionist Versus Selectionist Theories

Instructionist theories view cognition as the ultimate product of neuronal growth. In its most ex-

treme form, the developing brain is viewed as initially being a tabula rasa (Pinker, 2002). As the result of
interactions with an environment, neural structure emerges via the growth and/or strengthening of neu-
rons and synapses. “Many neuroscientists equate learning with the forming of associations, and look for
an associative bond in the physiology of neurons and synapses, ignoring other kinds of computation that
might implement learning in the brain” (p. 21).

Connectionist networks can easily be cast as examples of instructionism. Prior to training, con-

nections among processing units are essentially structureless, because initial connection weights are
usually small and random. During training, connection weights grow in size, structure is "written" by the
environment into the network, and the network develops into a system capable of computing a specific
function. “The connectionists, of course, do not believe in a blank slate, but they do believe in the closest
mechanistic equivalent, a general-purpose learning device” (Pinker, 2002, p. 78).

Instructionist theories have both advantages and disadvantages. On the one hand, they have

been highly formalized, and through this formalization have been explored in detail using computer simu-
lation methods and also have been linked to well-established theories of pattern recognition and machine
learning (e.g., Pao, 1989; Ripley, 1996). On the other hand, this formalization may have been purchased
at the expense of their biological relevance. Many neuroscientists have raised serious questions about
the neural plausibility of instructionist theories like PDP networks (e.g., Calvin, 1996; Douglas & Martin,
1991).

In contrast to instructionism, selectionist theories of cognition deny that the brain is a structure-

less tabula rasa. Instead, selectionists assume that the initial stages of brain development involve the
generation of a large and varied amount of structure. This structure provides a preexisting repertoire of

 - 147 -

Minds And Machines © M.R.W. Dawson 12/02/2016

responses to be elicited by the environment. The interaction between the environment and preexisting
structure selects some structures as being more appropriate than others, and this in turn modifies the un-
derlying neural architecture. "After initial selection, certain cell groups in the repertoire have a higher
probability than others of being selected by a similar or identical signal pattern" (Edelman & Mountcastle,
1978, p. 60).

Selectionist theories are inspired by immunology (e.g., Cziko, 1995). In response to an infection,

biological systems produce enormous amounts of antibodies. Any antibody can be considered as a spe-
cific three-dimensional label whose shape binds with the shape of an antigen. Once labeled in this fash-
ion, the antigen becomes a target of other mechanisms that will destroy it. Importantly, antibodies can be
produced to completely novel artificial substances. This suggests that there is no limit to the range of dif-
ferent antibodies than an organism can create. How is this possible?

One theory was instructionist in nature (Cziko, 1995). Antigens were assumed to serve as physi-

cal templates that could be used to create corresponding antibodies because of direct contact with the
immune system. However, this theory encountered many difficulties. For example, because of the rapid
immune response to an infection, antibodies will quickly outnumber antigens. This seems impossible if
antigens are to serve as templates for antibody construction. Furthermore, the immune system has a
memory – it will respond more quickly and effectively to an infection that it has faced before than to a
novel infection.

Jerne (1967) provided an alternative selectionist theory of the immune response. According to

his theory, an animal initially possesses a relatively small number of individual antibodies, but within this
small number there is an incredible diversity of different antibody types. Essentially, the animal starts with
a repertoire of antibodies that is capable of dealing with any possible future infection. When an infection
is encountered, a particular (pre-existing) antibody will bind to the antigen. When this binding occurs, the
antibody produces a large number of copies of itself. “It follows that an animal cannot be stimulated to
make specific antibodies, unless it has already made antibodies of this specificity before the antigen ar-
rives. It can thus be concluded that antibody formation is a selective process and that instructive theories
of antibody formation are wrong” (p. 201).

Jerne (1967) first drew the link between selection in immunology and neural adaptation. “Looking

back into the history of biology, it appears that wherever a phenomenon resembles learning, an instruc-
tive theory was first proposed to account for the underlying mechanisms. In every case, this was later
replaced by a selective theory. […] Antibody formation that was thought to be based on instruction by the
antigen is now found to result from the selection of already existing patterns. It thus remains to be asked
if learning by the central nervous system might not also be a selective process; i.e., perhaps learning is
not learning either” (p. 204). Piattelli-Palmarini (1989, p. 2) provides a more modern example of agree-
ment with this sentiment: “I, for one, see no advantage in the preservation of the term learning. We agree
with those who maintain that we would gain in clarity if the scientific use of the term were simply discon-
tinued.”

Selectionist theories also have both advantages and disadvantages. On the one hand, selection-

ist theories maintain a high degree of biological plausibility. For instance, they appear to be extremely
consistent with measurements of neural development. Several researchers have observed that in the
first year of human life there is a dramatic increase in both the number of neurons and in synaptic density,
but that this is followed by a longer period of time in which both of these factors demonstrate substantial
declines (see Sporns & Tononi, 1994). This is predicted by selectionist theories in which early neuronal
growth provides a large repertoire of neural circuits that is later pruned by environmental exposure.

On the other hand, the strong biological nature of selectionist theories has worked against their

formalization. While computer simulations have been used to study some selectionist predictions (e.g.,
Edelman, 1987, 1988, 1989, 1992), they have not successfully modeled some of the higher-order phe-
nomena that PDP models have been used to study. As a result, selectionist theories have not had a
strong impact on cognitive science. In their acknowledgement that selectionist theories have not taken

 - 148 -

Minds And Machines © M.R.W. Dawson 12/02/2016

advantage of possible modeling strategies, Changeux and Dehaene (1993, p. 384) point out that "the
crucial issue remains to find a learning rule coherent with such a Darwinian picture."

Our hypothesis was that the learning rule being sought by selectionist researchers might in fact

be the kind of rule that has already been established in instructionist models. Specifically, there is no
reason in principle why procedures used to train PDP models, such as the generalized delta rule, cannot
be used in a selectionist paradigm. My students and I began to wonder what would happen with connec-
tionist learning if we provided a network with more hidden units that it needed to solve a problem, and if
we initialized the connection weights with values that were much more structured than is traditionally the
case. We adopted a synthetic approach to explore these musings.

11.5.2 A Connectionist Formulation Of Selectionism

Our research began by considering what would have to be done in order for a learning rule to al-

ter a PDP network in accordance with selectionist assumptions. For selectionism to work, systems must
possess a great deal of initial structure that can be selected as needed by environmental pressures. If a
connectionist network was a) provided many more hidden units than would ordinarily be required, and b)
provided initial connection weights they were not near-zero, but instead were much larger, and exhibited
high variability, then it might be possible to use a rule like the generalized delta rule to select useful,
preexisting processing units from a pre-structured network.

In the experiments that we report below, one of our independent variables concerned the distribu-

tion from which connection weights were randomly sampled prior to the training of the network. This ma-
nipulation was used to insert initial structure into the PDP networks prior to training. In the control condi-
tion, all of the weights were initialized by randomly sampling values from a rectangular distribution that
ranged from -1 to +1. Structure was added to initial weights by changing the variability (but not the mean)
of this distribution. This was accomplished by inserting a "gap" in the distribution. In one experimental
condition, this gap resulted in weights being selected from the range -2 to -1, and +1 to +2, but not from
the range -1 to +1. In a second experimental condition, this gap resulted in weights being selected from
the range -3 to -2, and +2 to +3, but not from the range -2 to +2. The rationale underlying these condi-
tions was that structure would be supplied to the network by ensuring that all weights began at values that
were much more extreme than in the control condition. Furthermore, the larger the “gap” in the distribu-
tion from which weights were selected, the higher the variability of the weights. High variability is often
used as an index of a high degree of structure in such statistical techniques as factor analysis (e.g., Kai-
ser, 1958).

Our second independent variable was the number of hidden units available in the network prior to

training. In one condition, there were as many hidden units as there were input units. For all of the prob-
lems that we studied, this would be a sufficient number of units for a network to represent a solution. In a
second condition, there were twice as many hidden units as there were input units. In a third condition,
there were three times as many hidden units as there were input units. The basic idea behind these ma-
nipulations was to increase the repertoire of hidden unit responses prior to training. As the number of
hidden units is increased, so does the potential number of different internal responses to stimulus pat-
terns. This is particularly true when this manipulation is combined with one in which the initial connection
weights are highly structured.

Our basic assumption was that in networks in which initial connection weights were highly struc-

tured, and in which there was a large number of preexisting hidden units, the application of the general-
ized delta rule would essentially serve as a selectionist mechanism. In other words, rather than "growing"
a network for solving the task -- which is the instructionist view of PDP modeling -- the learning rule would
select the appropriate hidden units from the large number that were available. One consequence of this
should be a dramatic increase in learning speed. However, this should only occur under the appropriate
combination of the two independent variables. Our first simulations attempted to determine whether this
interaction between independent variables would appear.

 - 149 -

Minds And Machines © M.R.W. Dawson 12/02/2016

11.5.3 A Case Study: The Parity Problem

11.5.3.1 Defining The Problem

The first experiment was designed to test whether the selectionist approach to PDP networks

would provide any benefits for the learning of a particularly difficult pattern recognition problem, the parity
problem. In the parity problem, a network has a single output unit, and it has N input units. Each input
unit is a bit that can either be on or off. The network is trained to detect whether an odd number of its
input bits are active. If this is the case, then the network turns its output unit on. If even numbers of input
units are active, then the network turns its output unit off.

The parity problem is an extremely difficult benchmark for a PDP network. This is because pat-

terns that are very near one another in the pattern space require the network to make opposite respons-
es. For example, in the 5-bit parity problem the points representing the patterns [1, 0, 0, 1, 1] and [1, 0, 0,
1, 0] would be very near to one another in five-dimensional pattern space, because there is only one dif-
ference between them (the last bit). However, this tiny difference in the patterns makes a big difference
in a network’s response, because it must identify the first pattern as having odd parity, and it must identify
the second pattern as not having odd parity. Because nearest neighbors require opposite responses, a
network must partition a pattern space into a complex set of decision regions in order to solve the parity
problem.

As a result, when processors in PDP networks use the logistic activation function, at least N hid-

den units are required to represent the solution to an N-bit parity problem. In practice, as N reaches the
value of 7 or 8, we have found that this minimal network has a great deal of difficulty converging (see also
Tesauro & Janssens, 1988). We were interested in whether the performance of a standard network on
this difficult problem could be improved by training it from a selectionist perspective.

11.5.3.2 Manipulating The Number Of Hidden Units

Each network had one output unit, which was trained to activate when an odd parity problem was

presented to the input units, and to fail to activate when an even parity problem was presented to the in-
put units. The output unit was a value unit that used the Gaussian activation function.

Three different versions of the parity problem were examined. In the 5-parity problem, the net-

work had 5 input units, and the training set consisted of all of the 32 binary patterns that could be repre-
sented by these units. In the 7-parity problem the network had 7 input units and a training set of 128 pos-
sible binary inputs. In the 9-parity problem, the network had 9 input units and a training set of 512 possi-
ble binary inputs. For each version of the parity problem, three different sizes of networks were trained.
One had the same number of hidden units as there were input units. A second had twice as many hidden
units as there were input units. A third had three times as many hidden units as there were input units. In
all of these different conditions, all of the hidden units were value units.

11.5.3.3 Manipulating The Initial Structure Of Connection Weights

For each network trained on a parity problem, three different starting conditions were examined.

The first was a "low structure" condition. In this condition, all of the connection weights in the network
were initialized by randomly sampling from the range -1 to +1. The second was a "medium structure"
condition. In this condition, all of the connection weights were initialised by randomly sampling from the
range -2 to -1 and 1 to 2. The third was a "high structure" condition. In this condition, all of the connection
weights were initialised by randomly sampling from the range -3 to -2 and 2 to 3. In all three of these
conditions, the bias of each processing unit was initialised with a value of 0. With this structure manipula-
tion, the mean of the sampling distribution was held constant, but the variance of the distribution was in-
creased. In general, as structure increased because of changes in the sampling distribution, the initial
weights in the to-be-trained network were more extreme.

 - 150 -

Minds And Machines © M.R.W. Dawson 12/02/2016

11.5.3.4 Training The Networks

This experiment had a 3 X 3 X 3 factorial design. The first factor was size of problem (5-parity, 7-

parity, 9-parity). The second factor was the number of hidden units (N, 2N, 3N). The third factor was the
structure in the sampling distribution used to initialize connection weights (low structure, medium struc-
ture, high structure). In this design, there are 27 different cells. In each cell, 20 different networks were
trained, each randomly initialized in accordance with the constraints imposed by the structure manipula-
tion. Each of these different networks (540 in total) represented a different "subject" in the experiment.
The dependent measure for the study was the number of training epochs required for a network to solve
the parity problem.

Each network was trained with the Dawson and Schopflocher rule (1992). Network connections

were updated after every pattern presentation, using a learning rate of 0.001. One epoch involved the
presentation of every possible input pattern to the network. The order of pattern presentation was ran-
domized every epoch. Networks were said to have converged on a solution to the problem when a "hit"
was recorded for the output unit for every pattern presented during the epoch. A "hit" was defined as out-
put unit activity of 0.9 or greater when the desired output was 1.0, or as output unit activity of 0.1 or less
when the desired output was 0.0. If convergence was not achieved after 10,000 epochs, then training
was stopped, and the value of 10,000 was entered as the dependent measure.

11.5.3.4 The Potential Power Of Selectionism

If connectionist networks can instantiate selectionist principles, then there should be significant in-

teractions between the manipulations of structure and number of hidden units. In particular, fast learning
of the parity problems should require a combination of high structure and a high number of hidden units.

Structure

Low Medium High

Number
Of

Hidden
Units

N
10,000
(0.00)

9190.90
(2553.26)

10,000
(0.00)

2N
9887.35
(503.79)

4218.90
(2650.38)

2840.70
(4257.08)

3N
10,000
(0.00)

849.05
(361.79)

88.75
(44.65)

Table 11-1. Mean epochs to converge on the 9-bit
parity problem, with standard deviations in paren-

theses. Each cell is represents the mean from train-
ing 20 different networks.

 This is exactly the kind of pattern that emerges from the results of this first simulation. Table 11-

1 provides the results for the 9-bit parity problem; similar patterns of results were observed for the two
other versions of the parity problem that were examined. From the table, it can be seen that the slowest
learning occurs in situations in which there is a combination of low structure and a small number of hid-
den units. The fastest learning occurs in the condition for which there was high structure and a large
numbers of hidden units. However, even when the number of hidden units is high, this is not by itself
enough to guarantee fast learning. Looking across the last row of the table, it can be seen that when the
number of hidden units was held constant at 3N (i.e., held at 27 for the 9-bit version of the parity prob-
lem), structure is still required. The low structure condition in this row never led to a learned solution
(which is why the average sweeps to completion is 10,000 with zero standard deviation). When medium
structure is used for this number of hidden units, on average the problem is learned in well under 1000
epochs. When high structure is used, learning is accomplished in well under 100 epochs.

A statistical analysis of all of the results of this simulation, using analysis of variance on all 27

cells of the experimental design, confirmed the regularities that were revealed in Table 11-1. Most im-
portantly, there was a significant interaction between the number of hidden units and the level of struc-

 - 151 -

Minds And Machines © M.R.W. Dawson 12/02/2016

ture. In general, this emerges because the effect of structure is amplified by increasing the number of
hidden units, as we saw in Table 11-1. Here, when the number of hidden units is at the minimum, there is
essentially no effect of structure. However, as the number of hidden units is increased, the differences
between the means of the different structure conditions become quite large.

One concern with the simulation described above is it could be argued that the increased learning

speed observed was not due to selectionist principles. Rather, the fast learning speed might merely be a
reflection of the large connection weights that accompanied the large gaps in a high-structured network.
Network structure might not have contributed to the improvements in learning the parity problems.

We ran a second simulation to determine whether the results above were indeed due to the

amount of initial structure, or were simply due to the presence of large weights. The second simulation
was identical to the first, with the exception of how the connection weights were initialized. Instead of im-
posing a gap (structure) in the sampling range, the random sampling of connection weights in this exper-
iment spanned across the entire sampling distribution (i.e. from –1 to +1, -2 to +2, and –3 to +3), without
leaving a gap in the middle.

Connection Weight Range

Narrow Medium Wide

Number
Of

Hidden
Units

N
9983.70
(72.90)

10,000
(0.00)

10,000
(0.00)

2N
9529.25

(1457.69)
10,000
(0.00)

10,000
(0.00)

3N
10,000
(0.00)

10,000
(0.00)

10,000
(0.00)

Table 11-2. Mean epochs to converge on the 9-bit par-
ity problem in the second simulation, with standard
deviations in parentheses. Each cell is represents

the mean from training 20 different networks.

The results of the second simulation were markedly different from the first. Table 11-2 presents

the mean sweeps to convergence for the 9-bit parity problems, and can be compared to Table 11-1.
First, learning this particular version of the parity problem proved enormously difficult in this study. In
most of the cells, networks reliably failed to converge on a solution after 10,000 epochs. Second, when
learning did occur, it did so for conditions in which there were fewer hidden units, and the range from
which connection weights were selected was narrow. Clearly having a wider range of connection weights
is not sufficient to account for the results of the first simulation, because if this were so, then Tables 11-1
and 11-2 would have been very similar in appearance. Analysis of variance of the full set of data for the
second simulation confirmed this interpretation. It would appear that the results of the first simulation de-
pend upon the presence of structure – a gap in the sampling distribution. This is consistent with are con-
sistent with a selectionist perspective.

11.5.3.5 The Need For Future Research

The experimental results above are a first step towards demonstrating that there exists an inter-

esting possibility for a convergence between selectionism and connectionism. However, a great deal
more research is required before this convergence is demonstrated conclusively. The simulations above
provided a result that was consistent with the hypothesis that the learning rule was being used to select
pre-existing structure from the network, and that this dramatically aided the network in finding a solution
to the problem. However, this was only demonstrated with one problem (parity), and with one architec-
ture (value units). Clearly, more research needs to be conducted to explore whether these results gener-
alize to other problems and architectures.

As well, the manipulation of structure was very coarse in the above simulations. Other manipula-

tions are worthy of exploration. For instance, perhaps the networks could be provided with specific struc-

 - 152 -

Minds And Machines © M.R.W. Dawson 12/02/2016

tures or circuits, designed for accomplishing particular tasks, rather than just a random assortment of
connection weights that are mathematically structured. “A system assembled out of beefed-up subnet-
works could escape all of the criticisms. But then we would no longer be talking about a generic neural
network!” (Pinker, 2002, p. 82). However, rather than viewing this development as an abandonment of
connectionism, we could more positively view it as an evolution of connectionism into a more powerful,
fully formalized, selectionist theory.

 - 153 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Chapter 12: From Synthesis To Analysis

The three previous chapters have each introduced a fundamental building block of connectionist
modeling: storing associations between patterns in sets of connection weights, using nonlinear activation
functions to make decisions, and training networks that are composed of multiple layers of nonlinear pro-
cessors. Together, these three components provide the capability to train multilayer perceptrons to solve
problems of interest to us. In principle, multilayer perceptrons are tremendously powerful, and represent
a single kind of tool with which an enormous diversity of modeling can be performed. We saw in Chapter
11 that all that is really required to begin a modeling project is some method for encoding input and output
patterns in a format that can be processed by a connectionist network.

However, the ability to define a training set, and to use something like the generalized delta rule

to create a network capable of correctly responding to it, is not sufficient for us to practice synthetic psy-
chology. This is because if connectionist models are going to inform cognitive science, then they will not
do so by merely being brought into existence. We have already seen that multilayer perceptrons are as
powerful, in principle, as universal Turing machines. Because these models are so powerful, we should
always be able to train some kind of network to solve a problem, and we should never be surprised by the
simple creation of a network. Instead, connectionist models will have to surprise and inform us by telling
us something new about a problem that they learned to solve. In order for us to find out this kind of in-
formation, we have to momentarily abandon synthesis, and we must instead perform an analysis of the
internal structure of our models. By taking a network apart, and by understanding the kinds of regularities
that it uses to solve a problem, we will be able to make contributions to psychology and cognitive science.

The purpose of this chapter is to provide an introduction to some methods for interpreting the in-

ternal structure of connectionist networks. This chapter proceeds as follows: First, a case study of a
model from Chapter 11 will illustrate the kind of information that is available when a network is interpret-
ed, and will also demonstrate the kind of insights that network analysis can provide. Second, we will con-
sider some of the emergent properties of value unit networks, and demonstrate how these properties
have led to novel techniques for network analysis. Again, case studies will be used to make these points.
Third, we will illustrate the relevance of this approach to synthetic psychology by briefly sampling some
previous research in which network interpretation was used to contribute to debates in cognitive science.

12.1 REPRESENTING MUSICAL CHORDS IN A PDP NETWORK

In Chapter 11, we introduced an example problem in which a connectionist network was trained

to classify musical chords. The network that was described had 24 input units, each of which represented
a key or note on a mini-piano. The network had 4 output units, each of which was used by the network to
represent a different kind of musical chord – major, minor, dominant, or diminished. The network used 4
hidden units to successfully classify 192 different chords, each of which was defined by four different
notes. The network was able to identify chord type independent of what scale the chord was related to,
and independent of what inversion was used to represent the order of the notes that made up the chord.

In order to solve this problem, the internal structure of this network must represent some basic in-

formation about music. What kind of knowledge does this network have? Does the network pay attention
to the same kinds of regularities that are emphasized when a person learns to play piano? Or has the
network instead discovered a different set of musical properties? In order to answer these sorts of ques-
tions, we must treat the network as a special set of data, and we must analyze this data in order to de-
termine the nature of the network’s internal structure. When this kind of analysis succeeds, we will un-
derstand what features the hidden units detect, and we will know how these features are represented.
We will also comprehend how output units combine these features to make correct responses.

12.1.1 Linear Analysis Of Hidden Unit Responses

 - 154 -

Minds And Machines © M.R.W. Dawson 12/02/2016

The network that learned to classify musical chords did not have any direct connections between
its input units and its output units. We saw in Chapter 11 that one way in which to view such a network is
that its hidden units transform or fold the pattern space that the network is learning to classify. With re-
spect to the input unit encoding, the pattern space is not linearly separable. However, when the hidden
units detect regularities in the input patterns, they transform the input encoding into a new encoding that
is simpler, and which (for many problems) is often linearly separable. If the hidden unit representation is
linearly separable, or if it is at least simpler than the input layer representation of patterns, then linear
models of data can often reveal a great deal of information about how a network functions.

In order to explore this possibility, we performed discriminant analysis on the music chord net-

work. The discriminant analysis of a data set delivers equations that can be used to classify patterns
(e.g., Klecka, 1980). These equations take the values of variables as input, and combine them as a
weighted, linear sum that is essentially identical to the multiple regression method that was discussed in
Chapter 3. The result of summing these weighted predictors determines what category an input pattern
belongs to. In our discriminant analysis, the input variables were the activation values of the hidden units
to the input patterns. In other words, instead of having 192 different patterns defined by 24 input varia-
bles (i.e., the original training set), we represented each of the 192 patterns as the set of 4 hidden unit
activation values. In our discriminant analysis, we used these hidden unit activities to predict the type of
chord that was being detected.

The results of a discriminant analysis that used all four hidden unit activities as predictor variables

indicated that the hidden units had indeed simplified the pattern space. It was able to use these activities
to predict chord type with 98% accuracy. To be more specific, it generated a set of equations that cor-
rectly classified all of the diminished, dominant, and minor chords. These functions also correctly classi-
fied 33 of the 36 major chords. The only problem that this analysis had was that 3 of the major chords
were misclassified as being minor chords.

Even more interesting results were obtained when discriminant analysis was performed using a

smaller number of predictor variables. When only the activations of hidden units 2 and 4 were used as
predictors, discriminant analysis was still extremely successful, classifying the chords with 94% accuracy.
Again, all of the diminished, dominant, and minor chords were correctly classified, even though only two
predictors were being used. 25 of the major chords were also correctly classified. The remaining 11 ma-
jor chords were misclassified as being minor chords.

How do only two hidden units transform the 192 input patterns in order to provide this high degree

of accuracy in classification? Figure 12-1 illustrates how hidden units 2 and 4 organize the input patterns.
This graph is a scatterplot of the 192 chords, where the x-position of a chord in the graph is provided by
the activity of hidden unit 2, and the y-position of a chord in the graph is provided by the activity of hidden
unit 4. It can be seen from this graph that there are really only four different combinations of hidden unit
activity, and that these combinations correspond nearly perfectly with the four different kinds of chords in
the training set. If both hidden units are activated with values of near 1.00, then this indicates that the
chord is diminished (Type 4 on the graph). If one of the hidden units has an activation of near 1.00, and
the other has an activation of approximately 0.5 or 0.6, then the chord is dominant (Type 3 on the graph).
If one of the hidden units has a fairly high activation (0.6 or higher), and the other has near zero activa-
tion, then the chord is minor – except for 12 major chords that fall in this region of the graph (Type 2 on
the graph). If both hidden units have near zero activity, then the chord is major (Type 1 on the graph).

 - 155 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Figure 12-1. Music chords as represented by the activities of
hidden units 2 and 4. Circles represent major chords, Xs represent mi-

nors, +s represent dominants, and triangles represent diminished
chords. The diagonal lines represent cuts that could be made by output

units to separate the different chord types from one another.

0.0 0.2 0.4 0.6 0.8 1.0
Hidden Unit 2 Activity

0.0

0.2

0.4

0.6

0.8

1.0

H
id

de
n

U
ni

t 4
 A

ct
iv

ity

Figure 12-1 also
shows how the output units
could exploit the hidden unit
representation of the input
patterns. Recall that in this
particular network all four of
the output units were value
units. A value unit carves two
parallel slices through a pat-
tern space. If Figure 12-1
was a pattern space for the
output units, then each of
these units could carve this
space in such a way that cor-
rect responses would be
made. This would be accom-
plished by having each output
unit arrange its cuts in a diag-
onal direction on the graph,
going downward from left to
right. As can be seen from
the diagonal lines that have
been added to Figure 12-1,
these cuts could be arranged
in such a way that only one
kind of symbol would fall be-
tween them. The only excep-
tion to this claim is that in Fig-
ure 12-1, 12 of the major
chords would incorrectly fall
into the region that is occu-
pied by all of the minor
chords. Thus this graphical
account of how these two hid-
den units represent musical
chords is slightly less accu-
rate than discriminant analysis, because it would make 12 mistakes instead of 12.

Figure 12-1, and the discriminant analysis of hidden unit responses, is interesting and important

for two different reasons. First, these analyses raise two interrelated questions about hidden unit repre-
sentations. What kind of musical regularities do hidden units 2 and 4 detect, such that these two hidden
units are able to solve most of the chord problem by themselves? And what is special about the 11 or 12
chords that do not appear to be handled by these two hidden units (and are therefore likely handled by
hidden units 1 and 3)? Second, because a two-unit representation can solve most of the problem, these
results strongly suggest that we should concentrate our interpretative efforts on hidden units 2 and 4. In
the next section, we turn to examining the connection weights between these two hidden units and the 24
input units.

12.1.2 Representation Of Notes By Connection Weights

In the previous section, a general understanding of the chord classification network was provided

by the study of one kind of data, hidden unit activities. The values of the connection weights that feed
into processors represent a second type of data that can be extremely helpful in the task of network anal-
ysis.

 - 156 -

Minds And Machines © M.R.W. Dawson 12/02/2016

For example, consider the two hidden units that appear to be capable of solving most of the chord
classification problem. After discriminant analysis had indicated the importance of these two units, we
looked at them more closely by examining their connection weights. Recall that each of these units had
24 different incoming connections, each associated with one of the “piano keys” on our imaginary mini-
piano. In order to solve this particular problem, it seemed reasonable to expect that these connection
weights had to represent some property about the different notes that the network was being presented,
and that the hidden units represented the structure of a chord by combining this property from the four
notes that could be presented to it by any one of the training patterns.

In examining the connection weights of both

hidden units, we observed an extremely regular pat-
tern. For hidden unit 2, the connection weight as-
sociated with the lowest A that could be present- ed
was a strong negative. The next connection
weight (A#) was a weaker negative value, about half
the weight of the first. The third connection
weight (B) was a strong positive value, and the
fourth connection weight (C) was a positive val- ue
that was about half the weight of the third. This same pattern then repeated itself for each set of four
notes through to the end of the input units. Hidden unit 4 had exactly the same pattern, but it was shifted
one note to the right. The first connection weight was a weak negative, the second a strong positive, the
third a weak negative, and the fourth a strong negative. This pattern repeated itself again and again
through the input patterns. In both of these patterns, identical notes (that is, notes that are an octave
apart, or separated by twelve keys on the mini-piano) were given exactly the same connection weight.
Table 12-1 provides the value of the connection weight associated with each note by both of the hidden
units.

It is useful to consider the connection weights from Table 12-1 as representing “note names” that

are assigned by the hidden units. One interesting property of the table is that it shows that notes for
which musicians would provide different names are all given the same name by the hidden units. For
example, three notes that we would ordinarily treat as being different are A, C#, and F. However, hidden
unit 2 gives all three of these notes the same weight or “name” (-0.29), as does hidden unit 4 (-0.17). An
examination of the table shows that there are three other sets of different note names that are treated as
being equivalent as far as these two hidden units are concerned.

 What is special about these different notes that leads them to be treated in an identical fashion

by these hidden units? One important property for each set of three note names in Table 12-1 is that the
notes are equally spaced on the keyboard. For instance, C# is four piano keys higher than A, and F is
four piano keys higher than A. This four-key spacing is true of each set of note names in the table. Why
is this property important? In all four types of chords, one will never find three different notes that are
equally spaced four piano keys apart from one another. What this means is that, for example, the net-
work will never see a pattern in which A, C#, and F are all presented together in the same chord. These
three notes are never found together in any major, minor, dominant, or diminished chord. The same is
true for the three other sets of three notes in Table 12-1. Thus, in certain respects it makes sense for the
network to give each note the same “name”. This is because the network will never have to differentiate
between all three notes at the same time.

Of course, the network is not presented single notes as stimuli, but is instead presented four

notes at the same time. Table 12-1 can also be used to provide some insight into why the notes are as-
signed these particular connection weights, and suggest how the network represents individual chords.

For example, we have already noted that the network will never be presented the three notes that

fall into a single cell in Table 12-1 at the same time. However, it is possible for the network to see a pat-
tern in which one note from each of the four different note groups is presented. For example, one valid
stimulus that was presented to the network was B, D, F, and G#. This can be translated into the note
“names” of hidden unit 2 as the pattern 0.28, -.13, -0.29, and 0.15. In terms of the connection weights of

Note Name Hidden Unit 2 Hidden Unit 4
A, C#, F -0.29 -0.17

A#, D, F# -0.13 0.31
B, D#, G 0.28 0.14
C, E, G# 0.15 -0.29
Table 12-1. Correspondence between note

names and connection weight values for two
hidden units in the chord classification net-

work.

 - 157 -

Minds And Machines © M.R.W. Dawson 12/02/2016

hidden unit 4, this chord can also be written as the pattern 0.14, 0.31, -0.17, and –0.29. If one computes
the sum of the four names (i.e., connection weights) from hidden unit 2 (as would be the case when the
hidden unit calculates its net input function), then the result would be 0.01, which is nearly identical to the
bias of –0.01 for that unit. Similarly, if the four values from hidden unit 4 are added together, then the re-
sult is –0.01, which is nearly identical to that unit’s bias of –0.03. Because for this chord the two net in-
puts are nearly identical to the respective biases, both hidden units would generate activation values of
nearly 1.00. From Figure 12-1, we can see that this would indicate that this chord was diminished. In-
deed, all of the diminished chords from the training set can be defined by taking one note from each of
the four different groups in Table 12-1. As a result, any diminished chord will result in a near-zero net
input for each hidden unit, which will in turn result in a high activation value for both hidden units. This is
how these two units represent the fact that a presented chord is diminished in nature.

In general, it appears that the network has

selected the connection weights that are listed in Ta-
ble 12-1 as the “names” for different notes be-
cause individual chords are represented as the sum
of these names (i.e., when net input is comput- ed),
and these particular weight values enable the hid-
den units to generate unique patterns of net in- puts
to each chord type. This is illustrated in Table 12-
2. It provides the different net input values that are
observed in the two hidden units for the different
types of chords, including the 12 major chords that are incorrectly classified as being minor. There are
several observations that can be made from this table.

First, the net inputs that are calculated fall into a very small number of categories. For example,

when hidden unit 2 is presented a dominant chord, then it will compute one of only four net input values: -
0.15, 0.15, -0.45, 0.45. When we note that the symmetric bell shape of the Gaussian activation function
essentially ignores the sign of the net input, we can further reduce the number of net input values that are
generated to the chord types. For instance, that when hidden unit 2 is presented a dominant chord, it
really only generates two net input values, 0.15 and 0.45, because it treats negative and positive values
as being identical when they are passed into its activation function.

Second, the fact that the hidden units generate more than one net input to the same kind of chord

would indicate that as far as the hidden units are concerned, there is some additional structure within
chord type. For example, Table 12-2 suggests that the two hidden units are sensitive to four different
subclasses of minor chords. What are these subclasses? This question can be answered simply by in-
specting the properties of the different minor chords that are associated with each net input class. Hidden
unit 2 generates a net input of ±0.16 to the minor chords that are first and second inversions, and that
start with the note A#, D, or F#, or with the note C, E, or G#. These two different sets of notes are the
ones that are assigned positive weights or names, as indicated in Table 12-1. It generates a net input of
±1.00 to the minor chords that are first and second inversions, and that start with a note that is assigned a
negative weight (i.e., B, D#, or G; A, C#, or F). It generates a net input of ±0.30 to minor chords in root
position whose starting note is from the group A, C#, or F, or from the other group B, D#, or G. Finally, it
generates a net input of ±0.84 to minor chords in root position whose starting note is from the group A#,
D, or F#, or from the other group C, E, or G#. In short, by examining the net input calculated by this unit,
we can see that it can be used to predict the form of the chord (root position, first inversion, second inver-
sion), as well as the note class (i.e., the row in Table 12-1) from which the chord’s starting note is taken.
A similar organization of chords is obtained by examining the net inputs of hidden unit 4.

A third observation to make about Table 12-2 is to draw attention to an additional fact that the ta-

ble does not make explicit. We have seen that the two hidden units each generate four different kinds of
net input responses to minor chords. However, it is not the case that we will observe all possible combi-
nations of classes when we examine the relationship between the net inputs of the two hidden units. For
example, when hidden unit 2 generates a net input that falls into the class ±0.16, then hidden unit 4 will
only generate a net input that falls into the class ±1.05. No other combinations are observed. Such con-

Chord Type Hidden Unit 2 Hidden Unit 4
Major ±0.72 ±0.72, ±0.80

Incorrect
Major

±0.28, ±0.85 ±0.30, ±0.91

Minor
±0.16, ±0.30,
±0.85, ±1.00

±0.13, ±0.30,
±0.90, ±1.05

Dominant ±0.15, ±0.45 ±0.14, ±0.45
Diminished 0.01 -0.01
Table 12-2. Correspondence between chord

types and net input values for two hidden
units in the chord classification network.

 - 158 -

Minds And Machines © M.R.W. Dawson 12/02/2016

straints on the combinations of net inputs ultimately result in the highly striated appearance of the trans-
formed pattern space that was graphed in Figure 12-1.

12.1.3 Problems With Major Chords, And How To Solve Them

The previous section has detailed how hidden units 2 and 4 represent musical regularities.

These hidden units appear to have a much different view. They represent the input patterns using only 4
different note names, with each note repeated six different times, and with 4 piano keys separating re-
peated notes. By representing the individual note “names” with carefully chosen connection weights,
these units use the sum of the four note names (i.e., net inputs) to represent whole chords. The net in-
puts produced by each chord type produce characteristic activity in the two hidden units, which in turn can
be used to classify chords (see Figure 12-1). Furthermore, variations in net input (and therefore varia-
tions in hidden unit activity) are associated with specific chord structures within a chord class (e.g., type of
inversion, type of note upon which the chord begins).

While this representation of musical knowledge is rich and interesting, it is not complete – even

for the pattern set that the network was trained to classify. There are a handful of major chords that are
not correctly represented by this four-note musical system. Why is this representation unable to deal with
these major chords? How do the other two hidden units in the network correct this deficiency?

The first step in answering these two questions involves identifying the major chords that are mis-

classified by hidden units 2 and 4. When this is done, it becomes clear that the errors made by these two
hidden units are extremely systematic. Recall from our description of the chord classification problem in
Chapter 11 that our mini-piano was based upon a musical system that used 12 different note names (A,
A#, B, C and so on up to G#). A major chord in root position could be built upon any one of these 12 dif-
ferent note names, and then this chord could be rearranged to produce its first or second inversion.
When hidden unit activities are examined, it becomes clear that the type of representation used by hidden
units 2 and 4 only fails for the second inversion of the major chord based on each of these 12 notes (i.e.,
the second inversion of the major chord based on A, the second inversion of the major chord based on
A#, and so on up to the second inversion of the major chord based on G#).

Why does this representation fail for the second inversion of major chords? This can be an-

swered by considering one major chord as an example. Let us take the root position of the major chord
based on the note C, which uses the four notes C, E, G, and C. If we used the connection weights for
these notes that are assigned by hidden unit 2 (see Table 12-1), this pattern can be represented as the
four values 0.15, 0.15, 0.28, and 0.15, which sum to a total of 0.73. Importantly in this root position pat-
tern, three of these connection weights are identical. The first inversion of this major chord is the pattern
E, G, C, and E. When represented in terms of hidden unit 2 weights, this pattern uses exactly the same
numbers as were observed for the root position version of the chord, but the numbers are arranged in a
different order (0.15, 0.28, 0.15, and 0.15). Obviously the sum of weights for the first inversion is identical
to the sum that was computed for the root form of the chord, because both chords are defined by the
same set of numbers. This is not true for the second inversion of a major chord. The second inversion of
the example chord is G, C, E, and G. In this form of the chord, the note that is repeated (G) corresponds
to the one connection weight that is different from the others in the previous two examples. As a result,
the hidden unit 2 representation of this chord uses the values 0.28, 0.15, 0.15, and 0.28. Because one of
the weights is not repeated in this pattern three times, the sum of their values is 0.86 instead of 0.73.
This net input value is characteristic of all of the minor chords, and as a result the second inversion of the
major chord is misclassified.

It turns out that the properties of this example apply to all of the different major chords that can be

presented to the network. Chords in the root position and in the first inversion are represented as three
identical weights combined with an additional different weight, and therefore produce the same net input.
However, in the second inversion, the representation changes so that the chord is represented as two
pairs of different weights. This results in a change in net input, such that the net input is more similar to
that produced by a minor chord than that produced by a major chord.

 - 159 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Interestingly, the success of the representation used by hidden units 2 and 4 is so great that
when the network learns, it does not abandon this approach, even though it does not work for all of the
patterns. What it does instead is maintain this general representation in these two hidden units, and then
it customizes the weights of the other two hidden units so that they are extremely specialized, and can
handle the exceptions that are not captured by hidden units 2 and 4. In particular, hidden unit 1 only
generates an activation of near 1.00 for 11 patterns, which all turn out to be second inversions of major
chords. Hidden unit 3 turns on to almost any pattern – except for the one remaining second inversion of a
major chord that hidden unit 1’s specialized weights cannot capture! By turning off to this one pattern,
hidden unit 3 can be used to turn the major chord output unit on, because the output unit’s net input is
decreased by this one event (or more properly this one absence of an event) by just the right amount to
turn the unit on when this one chord is presented to the network.

12.1.4 Implications Of The Interpretation

The analysis of the chord classification network illustrates two main themes that lie at the heart of

network analysis. The first theme is methodological. Ultimately, there are only two kinds of data that are
available for network analysis: the responses of processing units to individual patterns, and the values of
network connection weights. Network analysis is based on applying different interpretative strategies to
these two different sorts of data. This might involve a variety of different approaches, ranging from in-
specting particular values of weights or activations, to applying multivariate statistics to find regularities in
either type of data. There is likely no single type of analysis that will work for every network. My own
feeling is that every time one learns a new statistical technique, one is armed with a new tool that is likely
to shed light upon the internal structure of some network of interest. In my lab, as our experience with
network interpretation grows, we find that there are a few approaches (which are described below) that
we are likely to try, because we have had success with them in the past. However, we have also found
that in many cases an approach that was successfully used to interpret one network provides very little
insight into the structure of another. There is no single recipe for interpreting networks.

One reason that no single interpretative technique applies to all networks is that the approach

one takes to analyze a network is usually guided by an understanding of the properties of the problem
that the network was presented. In other words, one often uses knowledge about possible regularities in
a training set to generate hypotheses about the kinds of properties that a network might be exploiting.
For example, in the interpretation of the chord classification network, we realize that different types of
chords are based on different intervals or spacing between the notes in the chord. It makes sense to see
whether the network is sensitive to this kind of information. It was hypotheses of this sort that led us to
realize that individual connection weights could be viewed as being note “names”, and that the regular
spacing of these names (i.e., four piano keys apart) was a crucial feature of the representations used by
hidden units 2 and 4.

The second theme illustrated by the interpretation of this particular network concerns the kinds of

information that the analysis might provide. It should be obvious from the preceding pages that network
analysis involves a fairly focused treatment of the properties of a particular model. However, the surpris-
es that this treatment reveals are not really properties of the network itself, but rather are properties of the
domain about which the network was trained. For example, in the example that we have considered, we
learned of a particularly elegant, novel, and compact representation of chord structure – a representation
in which one replaced a 12-note system with a different system that used only 4 notes. While this repre-
sentation was certainly a property of the network, what it tells us about the network is less important than
what it tells us about the structure of music.

This point is particularly important when models are viewed as contributing to synthetic psycholo-

gy. Network analysis provides us with new and surprising insights about the structure of some domain of
knowledge, and about how this structure might be represented. For example, our network analysis indi-
cated that a distributed representation in which two hidden units cooperated could be used to identify al-
most all of the chord types, and that a small set of special chords (the second inversions of majors) had to
be treated as special cases. Furthermore, it revealed a novel set of equivalence classes of notes, where
individual notes that we would ordinarily treat as being different could be provided the same name (i.e.,

 - 160 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Table 12-1). Synthetic psychologists can use these sorts of surprises to generate hypotheses that can be
studied using the more traditional techniques of experimental psychology. Do humans treat second in-
versions of major chords as being qualitatively different than any other kind of chord? Is there any evi-
dence to indicate that A, C#, and F are represented as being the same note? There is an old view in em-
piricist psychology that says that a theory is only as good as the number of new experiments that it points
to. The analysis of models that were created by adopting a synthetic approach is certainly a rich source
of new hypotheses about domains of interest.

12.2 INTERPRETING THE INTERNAL STRUCTURE OF VALUE UNIT NETWORKS

It has been argued that connectionism’s potential contributions to cognitive science are limited by

the fact that these networks are either difficult to interpret, or that interpretations are rarely reported in the
literature (e.g., Dawson & Shamanski, 1994; McCloskey, 1991; Mozer & Smolensky, 1989). Connection-
ists have responded to this kind of challenge by proposing a diverse range of approaches to the interpre-
tation of the internal structure of their networks (e.g., Alexander & Mozer, 1995; Andrews, Diedrich & Tick-
le, 1995; Craven & Shavlik, 1994; Duch, Adamczak, & Grabczewski, 1996; Duch, Adamczak,
Grabczewski, Ishikawa & Ueda, 1997; Fu, 1994; Hanson & Burr, 1990; Omlin & Giles, 1996; Thrun,
1995). In recent years in my own laboratory we have been exploring a variety of techniques for interpret-
ing the internal structure of value unit networks. The purpose of this section of the paper is to introduce
these methods.

12.2.1 Identifying Trigger Features In Integration Device Networks

How does the brain encode our experiences? Many contemporary neuroscientists believe that

the brain uses representations that depend upon the signals of large numbers of simultaneously active
neurons (for an overview see Pouget, Dayan, & Zemel, 2000). “A singular neuron for each concept is
rendered implausible in most vertebrates by the neurophysiological evidence that has accumulated since
1928, when the first recordings from sensory nerves revealed a broad range of sensitivity. […] This isn’t to
say that a particular interneuron might not come to specialize in some unique combination – but it’s so
hard to find narrow specialists, insensitive to all else” (Calvin, 1996, p. 12-13).

However, the view that neural representations depend upon the action of large populations of

cells is not universal. For well over half a century, neuroscientists have attempted to understand the biol-
ogy of vision by mapping the receptive fields of individual neurons in the visual system (e.g., Hubel &
Wiesel, 1959; Lettvin, Maturana, McCulloch & Pitts, 1959). Their results suggest that it may be possible
to describe a neuron as being sensitive to a “trigger feature”, which, when detected, produces maximum
activity in the cell. Furthermore, the more central the neuron is located in the visual system, the more
complex and abstract its trigger feature is likely to be (see Kandel, Schwartz & Jessel, 1991, Chapters 28-
30).

Such results led Barlow (1972) to propose his neuron doctrine for perceptual psychology. “The

central proposition is that our perceptions are caused by the activity of a rather small number of neurons
selected from a very large population of predominantly silent cells. The activity of each single cell is thus
an important perceptual event and it is thought to be related quite simply to our subjective experience” (p.
371). What this central proposition leads to is the view that in order to determine the role of a specific
neuron in the visual system, one must find its trigger feature – the stimulus pattern that best matches the
cell’s receptive field. “A description of that activity of a single nerve cell which is transmitted to and influ-
ences other nerve cells, and of a nerve cell’s response to such influences from other cells, is a complete
enough description for functional understanding of the nervous system” (p. 380).

Whether the neuron doctrine is true of the brain is a controversial issue. However, this issue is

independent of the possibility that the neuron doctrine can be usefully applied to connectionist networks.
First, these networks are acknowledged to be far simpler than brains (e.g., Douglas & Martin, 1991), and
thus might be more amenable to an analysis that tries to identify trigger features. Second, in many cases
the training sets that are presented to networks are simple in nature (for instance, involving a binary rep-

 - 161 -

Minds And Machines © M.R.W. Dawson 12/02/2016

resentation of input patterns, as was the case in the chord classification network), and this too might allow
trigger feature identification to be successful.

How would one apply the neuron doctrine to connectionist networks? One approach would be

purely empirical in nature. A trained network would be viewed as being no different from a biological sys-
tem, and would therefore be studied using techniques analogous to those used by neuroscientists to ex-
plore the receptive fields of visual neurons.

Moorhead, Haig, and Clement (1989) provided one example of this approach. They used the

generalized delta rule to train a multilayer perceptron to detect the presence of horizontal or vertical edg-
es or bars. In other words, the output units in their network were trained to respond as if they were simple
cells in the visual cortex. Their network had two independent banks of 25 input units per bank, where one
bank represented the “off” signals coming from a 5 X 5 array of neurons performing a difference of
Gaussian filtering, and the other bank represented the “on” signals coming from this same set of filters.
These two sets of processors represented the results of filtering a much larger raw image (21 X 21 pix-
els), where each raw image was a line or edge that passed through the center of the display at a specific
orientation. The question of interest was whether the hidden units developed biologically plausible recep-
tive fields. Moorhead, Haig, and Clement borrowed a technique from neuroscience to answer this ques-
tion. They spot-mapped the receptive fields of the hidden units by presenting a small 3 X 3 stimulus,
which was either bright or dark, at every possible position in the 21 X 21 raw image array. Each raw
“spot” image was filtered in the same manner as were the original stimuli, and the responses of the hid-
den units were recorded to each spot. They then graphed the receptive field by plotting hidden unit activi-
ty at the coordinates of each spot stimulus. Moorhead, Haig, and Clement had hoped to find that these
receptive fields would have a center-surround appearance, but this was not what they observed in most
of their hidden units. “There is no direct equivalence between the retinogeniculo striate pathway and a
neural network which has been trained to respond in a manner similar to simple cells” (p. 802).

A second example of this empirical approach is found in Zipser and Andersen (1988). They

used a network to explore how the location of a target on the retina could be combined with information
about gaze direction to transform the coordinates of a target into head-centered space. This kind of task
is important because it is one approach to generating a stable representation of the world in which objects
maintain a constant position even as we look around, changing the projection of objects on our eyes. The
input units encoded the location of targets on a retina that was defined as an 8 X 8 grid of processors.
Each processor was tuned to generate a maximum response when a target spot was presented at its lo-
cation, but would also generate a weaker response if the target were presented at a neighboring location.
A second set of input units encoded eye position information. Signals from these two sets of input units
were sent to a set of 25 hidden units, which in turn fed into an array of output units that represented target
position in a normalized coordinate system. The network learned to make these transformations very
quickly. At the end of training, Zipser and Andersen spot-mapped the hidden units. They did this by pre-
senting a target spot at each of 17 different locations while eye coordinates were held fixed. This proce-
dure was analogous to a study in which the responses of neurons in the parietal cortex of monkeys were
measured when the monkeys fixated on one stimulus location while targets were presented to others.
After spot-mapping the network, the hidden unit responses were normalized so that the maximum re-
sponse always was assigned a value of 1; this procedure was also applied to the single-cell recording
data taken from the monkeys. Zipser and Andersen found a striking resemblance between the receptive
fields of the hidden units and the receptive fields of the neurons, suggesting that these neurons are being
used to transform coordinate systems.

A second approach to identifying the trigger features in a connectionist network is analytic, and

depends upon the activation function that is used by the hidden units. To be more precise, if a hidden
unit uses the logistic activation function (or some similar monotonic activation function), then one can
identify the stimulus that best matches the receptive field of the hidden unit simply by inspecting its con-
nection weights.

Assume that a hidden processing unit uses a monotonic activation function like the logistic, and

computes its net input by summing the weighted signals that it receives from the input units. The trigger

 - 162 -

Minds And Machines © M.R.W. Dawson 12/02/2016

feature for this unit is the input stimulus that produces the maximum activation in the unit. Because the
activation function is monotonic, this also means that the trigger feature is the input stimulus that produc-
es the highest net input. What stimulus will do this? If we know what the highest and lowest possible
activation values for the input units are, we can inspect the connection weights and define the trigger fea-
ture. We simply assign the highest possible input value to each connection that has a positive weight,
and the lowest possible input value to each connection that has a negative weight. The resulting pattern
of high and low inputs is the trigger feature for that unit.

Dawson, Kremer, and Gannon (1994) used this analytic rule to define the trigger features for a

network that was similar in spirit to the vision network studied by Moorhead, Haig, and Clement (1989).
Their network was an 11 X 11 array of input units that could be turned either on or off. These inputs fed
into a 9 X 9 array of hidden units. In one condition, each hidden unit only received input from a small 3 X
3 window of input units. Dawson, Kremer and Gannon presented horizontal or vertical bars at all possible
positions in their input array. Their network had two output units that were trained to be analogous to
complex cells in the visual cortex – one unit was trained to turn on to any vertical bar, while the other unit
was trained to turn on to any horizontal bar. They inspected the connection weights to identify the trigger
features for each hidden unit in accordance with the rule described in the previous paragraph. They dis-
covered a significant number of the hidden units had developed receptive fields that were analogous to
those of simple cells. This was not the case in a second network in which every hidden unit was con-
nected to every input unit. Dawson, Kremer and Gannon argued that biologically plausible receptive
fields might be obtained by imposing constraints on network connections, and suggested that failure to do
so might be one reason that Moorhead, Haig, and Clement did not find the receptive fields that they were
interested in.

12.2.2 Families Of Trigger Features In Value Units

Dawson, Kremer, and Gannon (1994) demonstrated the utility of an analytic definition of the trig-

ger feature of an integration device. Can one define the trigger feature of a value unit in a similar way?

For the sake of simplicity, let us assume that we are working with a value unit with set to 0 in its

Gaussian activation function. Following Barlow’s (1972) neuron doctrine, the trigger feature for this unit
will be the feature that produces the maximum activation. For this value unit, this will occur when the net
input to the unit is equal to 0 (i.e., equal to the value of). When will the net input be equal to 0? Recall
that for the kinds of networks that we have been discussing in this book, the net input function is the inner
product between a vector that represents a stimulus and a vector that represents the connection weights
that fan into the unit. So, the net input will be equal to 0 when this inner product is equal to 0. However,
when an inner product is equal to 0, this means that the two vectors being combined are orthogonal to
one another, with an angle of 90 between them. In other words, the trigger feature for a value unit is an
input pattern that is orthogonal to the connection weights of the unit.

This definition has an extremely important implication. In principle, there will not be only one in-

put pattern that is orthogonal to a unit’s connection weights. The connection weights of a value unit can
be viewed as being analogous to a surface normal in computer vision (e.g., Marr, 1982). A surface nor-
mal is a vector that is perpendicular to a plane; the direction in which the surface normal is pointed pro-
vides the orientation of the plane in space. What the connection weights of a value unit do is provide the
orientation of a hyperplane in hyperspace. Any vector that falls flat along this hyperplane will be perpen-
dicular to the connection weights, and will therefore serve as a trigger feature. Many, many different vec-
tors can fall along this hyperplane. As a result, we must conclude that a value unit does not have a single
trigger feature, but that many different input vectors – each related to one another in a very restricted way
– are trigger features for this kind of unit.

One further consequence of this analysis of value unit trigger features is that there will be other

families of input patterns as well. These will be patterns that fall into the same hyperplane, but the hyper-
plane will not be orthogonal to the vector of connection weights. One consequence of this is that all of
these patterns will produce identical net inputs, but these net inputs will be some value that is not equal to
. McCaughan, Medler, and Dawson (1999) discuss the geometry of this observation in more detail.

 - 163 -

Minds And Machines © M.R.W. Dawson 12/02/2016

What are the consequences of this analysis of value units? First, because of their activation func-

tion, value units are best thought of as orienting some hyperplane in hyperspace that defines its trigger
features. All of the input vectors that fall into this plane will produce the same net input, and will also re-
sult in maximum activation in the value unit. Other input patterns will fall into other hyperplanes that are
at different orientations. These patterns will also produce identical net inputs, which will lead to identical
activations. However, these will have different values from the net inputs/activations generated by the
trigger features. What all of this implies is that if one trains a network of value units, and then measures
the responses of its hidden units to all of the members of the training set, the hidden unit activations
should be highly organized. Instead of having a rectangular distribution of activation values, one set of
patterns will all generate one activation value, another set will generate a different activation value, and
so on. This is the basis of the banding phenomenon that was described in Chapter 2. By identifying the
sets of patterns that all produce the same levels of activation values in a hidden value unit, and by exam-
ining the features that these patterns have in common, we can develop a very rich account of the kinds of
features that the hidden units are exploiting (Berkeley, Dawson, Medler, Schopflocher & Hornsby, 1995).
The next section provides an example of this kind of interpretation in action.

12.2.3 Identifying Local Features In A Network Of Value Units

12.2.3.1 Problem Definition

The monks problems are a set of three different artificial training sets that have been used as a

standard benchmark for comparing different machine learning algorithms (Thrun et al., 1991). Six differ-
ent features define the appearance of each monk in the problem set. They can have one of three possi-
ble head shapes and one of three possible body shapes. They can be holding one of three different ob-
jects. They can wear a jacket that is one of four different colors. They may or may not be smiling. They
may or may not be wearing a tie. The full datasets that define the monks problems can be obtained from
the UCI Machine Learning Repository (Blake & Merz, 1998).

In the first monks problem, an input pattern belongs to the target category if it is consistent with

the following rule: ((head shape = body shape) or (jacket color = red)). In the training set, half of the pat-
terns belong to the target category. Typically when this problem is studied a system is first trained on 124
of these patterns, and its performance is then tested on the remaining stimuli. Because our interest was
in network interpretation, we did not follow this practice. Instead, we trained a network to correctly classi-
fy all 432 monks that can be created by combining the values of the six different features.

12.2.3.2 Network Architecture And Problem Encoding

In this example, a value unit network was trained to solve the first monks problem. It consisted of

one output value unit and two hidden value units. The output unit was trained to turn on when the net-
work was presented a pattern that belonged to the target category, and to turn off to any other pattern. 15
input units were used to encode the input patterns using a local coding scheme.

The local coding scheme worked as follows. The first three input units represented head shape.

If this shape was round, then only the first input unit was turned on. If this shape was square, then only
the second input unit was turned on. If this shape was octagon, then only the third input unit was turned
on. The next three input units encoded body shape using exactly the same scheme. The seventh input
unit was turned on if the monk was smiling, and was turned off otherwise. The next three input units rep-
resented whether the monk was holding a sword, a balloon, or a flag by turning the corresponding unit on,
and turning the other two units off. The next four input units represented jacket color (red, yellow, green,
or blue) by turning the appropriate unit on, and the other three units off. The final output unit was turned
on if the monk wore a tie, and was turned off otherwise.

12.2.3.3 Training The Network

 - 164 -

Minds And Machines © M.R.W. Dawson 12/02/2016

The training set consisted of all 432 patterns of the first monks problem, and the network was
trained using the Rumelhart software that was discussed in Chapter 11. The network was started in a
random state, with each connection weight being randomly selected from the range -0.1 to 0.1. Unit bi-
ases were set equal to 0.00 throughout training. The network was trained using Dawson and
Schopflocher's (1992) learning rule for value units, with a learning rate of 0.01. The order of pattern
presentation was randomized every epoch. Convergence was operationalized as training the network
into a state in which a "hit" would be achieved for every pattern. A hit was defined as an output unit re-
sponse of 0.90 or greater when the desired response is 1, or as an output unit response of 0.10 or less
when the desired response is 0. Convergence was achieved after only 22 epochs of training.

After the network converged, the Rumelhart software was used to plot the jittered density plots of

its two hidden units. A jittered density plot is one kind of scatterplot. Each point on the jittered density
plot represents the hidden unit activity that is produced when one of the training patterns is presented.
The x-coordinate of the point represents the activation value. The y-coordinate of the point is a randomly
selected value, which is used to minimize the overlap of points that generate the same hidden unit activi-
ty. Berkeley et al. (1995) reported that while jittered density plots for integration devices are usually
smeared, jittered density plots for value units are often highly structured, and are organized into distinct
bands (see also Dawson, 1998, Chapter 5). The reasons for this were discussed in the previous section
on trigger features.

The jittered density plots for the two hidden units in this monks problem network were distinctly

banded. The first hidden unit had 3 bands. For this unit, 228 of the patterns generated an activity of 0.00
(band H1 A), 60 of the patterns generated an activity between 0.11 and 0.22 (band H1 B), and the re-
maining 144 patterns generated an activity of 1.00 (band H1 C). The second hidden unit was also orga-
nized into 3 distinct bands. 96 of the patterns generated an activity of 0.00 (band H2 A), 192 of the pat-
terns generated an activity between 0.06 and 0.13 (band H2 B), and the remaining 144 patterns generat-
ed an activity between 0.99 and 1.00 (band H2 C). No other activation values were observed in either
hidden unit.

12.2.3.4 Identifying Definite Features Associated With Bands

How are these bands uses to interpret the inner workings of a trained network? Berkeley et al.

(1995) reasoned that for a subset of training patterns to all fall into the same band, they must share some
input features in common. In order to identify what these shared features are, you look at only the subset
of patterns that belong to a band of interest. Each of these patterns is defined as a set of input values.
Descriptive statistics are performed on these input values. If these statistics show that a property is true
of all of the patterns that belong to the band, then this property is called a definite feature, and is used to
interpret the network. There are two different kinds of definite features that can be discovered in this way.

Berkeley et al. (1995) called the first a definite unary feature. A definite unary feature occurs

when one of the input units has the same value for all of the patterns that belong to a band. When de-
scriptive statistics are performed, this is revealed when the standard deviation of that feature for the set of
patterns is equal to zero. In the monks network, one example of a definite unary feature is found in band
H1 C. In this band, input unit 11 is always equal to 0 for each of the 144 patterns in the band. As this unit
represents the jacket color red, this feature is important, because it indicates that for these patterns, jack-
et color is never red, and therefore none of these patterns belong to the target category.

Berkeley et al. (1995) called the second a definite binary feature. A definite binary feature occurs

when two input units are in a constant relationship for all of the patterns that belong to a band. What this
means is that while the individual values of the input units vary in the band, the relationship between the
two remains the same. In particular, the two input units will either have identical values, or they will have
opposite values, when inputs are encoded in a binary format. A definite binary feature is revealed when
one takes all of the patterns that fall into a band, and computes the correlations between the values of the
input units. For binary encoding, if a correlation of 1.00 is found between two input units, then this indi-
cates that the two units always have the same value. If a correlation of –1.00 is found then this indicates
that the two units always have the opposite value. Band H1 C in the monks network also provides an

 - 165 -

Minds And Machines © M.R.W. Dawson 12/02/2016

example of a definite binary feature. For the 144 patterns in this band, the correlation between the values
of input unit 3 and input unit 6 is equal to –1.00. This indicates that these two input units never have the
same value – when input unit 3 is set to 1, input unit 6 is set to 0; when input unit 3 is set to 0, input unit 6
is set to 1. This feature is important, because input unit 3 represents octagonal head shape, and input
unit 6 represents octagonal body shape. If these two units are never equal for all 144 patterns in this
band, then head shape and body shape are never the same for any of these patterns. This provides an-
other reason for why these 144 patterns do not conform to the rule that defines the patterns that belong to
the target category.

Table 12- 3

provides the defi- nite
features that were
identified in all 6
bands that were ob-
served in this net-
work. One thing that
immediately be-
comes apparent from
examining this ta-
ble is that both hid-
den units can be seen as devices that respond to properties that rule out the possibility that a pattern be-
longs to the target class. If a pattern generates high activity in either (or both) hidden units, then it will fall
into band C. All of the patterns that belong to band C in either unit have the wrong jacket color, and the
wrong relationship between head and body shape, to turn the output unit on. When we examine the con-
nection weights from the two hidden units to the output unit, we find further support for this interpretation.
The connection weight from hidden unit 1 is 0.84, and the weight from hidden unit 2 is 0.96, while the bias
of the output unit is equal to 0.00. So, if one or both of the hidden units activates, the net input will be too
high to turn the output unit on. The output unit will only respond if both hidden units have very low activity
– that is, if both of them have failed to detect any reason that a pattern should not be put into the target
category.

Four of the six bands described in Table 12-3 provide definite features that have useful local in-

terpretations. What this means is that by examining these features by themselves, in the context of the
input encoding, meaning can be assigned to them. Furthermore, this assigned meaning is relevant for
describing how the network generates a correct response. However, the other two bands (H1 A and H2
B) do not appear to have this property. While both bands are associated with definite binary features,
these features by themselves do not appear to be sufficient to support a decision about whether a pattern
belongs to the target category.

For example, an examination of band H1 A reveals that input units 3 and 6 have the same value.

This indicates that for the patterns that fall into this band, head shape and body shape are either both oc-
tagonal, or are both not octagonal. In this latter case, it is possible that head and body shape are differ-
ent – one could be round, the other square, and both would not be octagonal. So, by itself, this definite
feature is not completely useful. Exactly the same observation can be made for band H1 B. For the pat-
tern that fall into this band, head shape and body shape are either both square, or are both not square,
and this regularity is not by itself a sufficient condition for making an output response.

Why then are these two hidden units detecting these two features? The answer to this question

is that these two bands are not being used locally and independently to guide the network’s response.
Instead, these two bands are detecting two features that can be used in combination to make a judgment
about an input pattern. There are some patterns that, when presented, will cause activity that will fall into
band H1 A and into band H2 B at the same time. For these patterns, it will be the case that input 3 = in-
put 6, and that input 2 = input 5. If both of these properties are true, then it must follow that head shape
and body shape are equal, and that the pattern belongs to the target category. It is impossible to define a
pattern in this training set in which both of these equalities hold, but head shape and body shape differ.

Unit Band Definite Feature Interpretation Implication

H1

A Input 3 = Input 6 Eh? Eh?
B Input 11 = 1

Inputs 12, 13, 14 = 0
Jacket red In target class

C Input 11 = 0
Input 3 Input 6

Jacket not red
Different body and head shapes

Not in target class

H2

A Input 11 = 1
Inputs 12, 13, 14 = 0

Jacket red In target class

B Input 2 = Input 5 Eh? Eh?
C Input 11 = 0

Input 2 Input 5
Jacket not red
Different body and head shapes

Not in target class

Table 12-3. Definite features in the bands of the monks network.

 - 166 -

Minds And Machines © M.R.W. Dawson 12/02/2016

These two bands therefore encode a useful and interpretable feature, but the meaning of this fea-
ture is distributed over different bands that are found in different hidden units. Thus these bands do not
provide local features. Dawson and Piercey (2001) have shown that in many cases the bands found in
value units encode distributed features. As a result, the kind of local analysis that was demonstrated in
Table 12-3, which was characteristic of my lab’s early research on network interpretation (e.g., Berkeley
et al., 1995; Dawson, Medler & Berkeley, 1997), is often not going to be appropriate. A different kind of
analysis, which is geared at discovering interpretations that are distributed across hidden units, is re-
quired. This alternative approach to network analysis is described in the next section.

12.2.4 Identifying Distributed Features In A Network Of Value Units

12.2.4.1 Problem Definition

In order to demonstrate the discovery of distributed features in a network of value units, let us

consider another classification problem that is used as a benchmark in the machine learning literature.
The problem that we will use is the zoo database that is also available from the UCI Machine Learning
Repository (Blake & Merz, 1998).

The zoo database consists of 101 different animals, each described by 16 different features.

Most of the features are coded as being true or false (hair, feathers, eggs, milk, airborne, aquatic, preda-
tor, toothed, backbone, breathes, venomous, fins, tail, domestic, catsize). One of the features (legs) is
represented as a number indicating how many legs an animal has.

The task of a system that is presented the zoo database is to use these 16 features to classify

each of the patterns into one of seven different animal types. 41 of the animals belong to the type
“mammal”, 20 to the type “bird”, 5 to the type “reptile”, 13 to the type “fish”, 4 to the type “amphibians”, 8
to the type “insect”, and a varied assortment of 10 animals belong to the type “invertebrate” (clam, crab,
crayfish, lobster, octopus, scorpion, seawasp, slug, starfish, worm).

12.2.4.2 Network Architecture

A value unit network was trained to categorize the different animals in the zoo database. It con-

sisted of seven output value units, each of which represented one of the different animal types. When an
animal of a particular type was presented, the network’s task was to turn on the corresponding output
unit, and to turn all of the other output units off. The network also had three hidden value units. 16 input
units were used to encode the input patterns. Of these units, 15 were either turned on or off to represent
the presence or absence of the feature that each unit represented. The 16th unit was assigned a value of
0, 2, 4, 6, or 8 to indicate the number of legs that a particular animal had.

12.2.4.3 Training The Network

 The network was trained using the Rumelhart software. It was started in a random state, with

each connection weight being randomly selected from the range -0.1 to 0.1, and with each unit bias (i.e.,
) being started at 0.00. Unit biases were modified during learning. The network was trained using Daw-
son and Schopflocher's (1992) learning rule for value units, with a learning rate of 0.01. The order of
pattern presentation was randomized every epoch. The network was trained until a "hit" was obtained for
every pattern. A hit was defined as an output unit response of 0.90 or greater when the desired response
is 1, or as an output unit response of 0.10 or less when the desired response is 0. Convergence was
achieved after 1101 epochs of training.

The purpose of training this demonstration network was to provide an example of how one might

proceed to discover definite features that are not local, but are instead distributed across hidden units.
Our favored technique for identifying such features is to use cluster analysis. The next section provides a
brief introduction to cluster analysis, and in particular identifies one practical problem that is faced when-
ever any cluster analysis is performed. The section that follows offers one solution to this problem that

 - 167 -

Minds And Machines © M.R.W. Dawson 12/02/2016

is possible when neural networks are being analyzed. With these two points out of the way, the chapter
returns to this network, and demonstrates how cluster analysis can be performed on it.

12.2.4.4 Activations, Cluster Analysis, And The Number Of Clusters Problem

Cluster analysis is a method for dividing a set of n observations into g groups (Ripley, 1996). For

example, k-means is the name of a statistical method that partitions data into a prespecified (k) number of
groups by minimizing the sum of squared distances from each data point to the center of its assigned
cluster (Aldenderfer & Blashfield, 1984). In other words, when clustering is performed by k-means, stimuli
that are assigned to the same cluster are nearer to each other than they are to stimuli that are assigned
to different clusters.

Cluster analysis would appear to be an ideal approach for taking the activations of hidden units to

input patterns, and grouping different patterns into meaningful groups. All of the patterns that are as-
signed to the same group would be related in the sense that they produced similar patterns of activation
across a group of hidden units. After patterns were assigned to groups on this basis, we could search for
definite features amongst all of the patterns that belonged to the same cluster. This would provide a
method for discovering features that were distributed across hidden units. The banding of hidden units
would still be important, because the more structured the raw data is, the more successful cluster analysis
should be.

Given that the primary goal of cluster analysis is to assign data to groups, an obvious question to

ask is “How many groups should be used?” Unfortunately, no single method for determining the optimal
number of clusters in a data set has been agreed upon (Aldenderfer & Blashfield, 1984; Everitt, 1980;
Gorsuch, 1983). This is reflected in the fact that many different methods exist for dealing with this issue.

One approach to the number of clusters problem is to have an objective and automatic decision

rule, which typically involves the examination of some quantitative aspect of the clustering algorithm’s
performance as a function of the number of groups to which data has been assigned. For example, Milli-
gan and Cooper (1985) used Monte Carlo methods to examine the performance of 30 such rules on da-
tasets with known, error-free clustering structure. Another approach to the number of components prob-
lem is more subjective, often utilizing graphs and requiring the user to make a judgment based on the
appearance of a curve. For example, Aldenderfer and Blashfield (1984, pp. 54-56) describe a variant of
the scree test (Cattell, 1978) that can be applied to cluster analysis. Other subjective methods include
deciding on the number of clusters after simply inspecting scatterplots of the raw data (e.g. Ripley, 1996,
p. 313). In general, most cluster analysts recommend some combination of formal and graphical meth-
ods to arrive at the most reliable solution to the number of clusters problem, although the specific meth-
ods are not agreed upon (e.g., Aldenderfer & Blashfield, 1984; Sarle, 1994). Indeed, a variety of different
approaches may be applied because in the end any methods used will be “judged by their results; a suc-
cessful clustering produces groups which can be interpreted by domain experts” (Ripley, 1996, p. 311).

Why has no single solution to the number of clusters problem emerged? Aldenderfer and Blash-

field (1984) point out two main difficulties that have not been overcome. The first is the fact that it is ex-
tremely difficult to create an appropriate null hypothesis (e.g., an operationalization of “structureless da-
ta”) against which methods for determining the appropriate number of clusters can be compared. The
second is that multivariate data distributions are typically very complex and potentially mixed, and as a
result “it is unreasonable to assume that formal tests of clustering ability are likely to be developed” (p.
54).

While these two points provide excellent reasons for the failure to develop a general solution to

the number of clusters problem, they do not rule out the possibility for identifying a solution to this prob-
lem that can be usefully applied to a specific domain. The hidden unit activities of a trained connectionist
network represent one specific domain in which this problem can be solved. The next section will de-
scribe a heuristic, objective rule for determining how many clusters should be used to organize the data
that is obtained when a set of hidden units are wiretapped.

 - 168 -

Minds And Machines © M.R.W. Dawson 12/02/2016

12.2.4.5 Solving The Number Of Clusters Problem

Consider a network that has been successfully trained to map each member of a stimulus set to

the correct member of a response set. For example, in a moment we will return to an analysis of the value
unit network that learned to assign the 101 different animals to 7 different categories on the basis of the
input features. As was noted earlier, one approach to determining how the network performs this map-
ping, or to determining the nature of the internal representations used by the network, is to measure hid-
den unit activities produced in the network by each of the training patterns. This would produce a set of
hidden unit activity vectors that could then be examined with k-means cluster analysis. The point of this
analysis would be to reduce this potentially large number of vectors into a much smaller number of clus-
ters. Furthermore, these clusters should be interpretable – by examining the properties of each cluster,
one should be able to determine how the trained network actually translated input features into an output
response.

How many clusters should the set of hidden unit activity vectors be assigned to? The answer to

this question depends upon one piece of heuristic information that we have about the domain that is be-
ing clustered: there is a correct mapping from hidden unit activity vectors to output responses. We know
that this must be true, because if the network has correctly learned the task that it was presented, then
the network itself has discovered one such mapping. This knowledge can be used as follows: we should
extract the smallest number of clusters such that every hidden unit activity vector assigned to the same
cluster produces the same output response in the network. In other words, every pattern that is assigned
to the same cluster should produce the same output response in the network if all of the patterns in the
cluster truly belong together. We should find the smallest number of clusters for which this property is
true.

In practice, the following procedure can be followed to implement this rule. Assume that a net-

work has been trained to correctly classify a set of input patterns, and that the hidden unit activity vectors
for each of these patterns have been recorded. Perform a k-means cluster analysis of these vectors.
Once complete, create a two-way frequency table for the data. This table should record the number of
instances in each cluster that correspond to each possible output vector for the network. For example, in
the zoo network, this table would indicate how many patterns that fell into cluster x were mammals, how
many patterns that fell into cluster x were birds, and so on. By examining this table, determine whether
another k-means analysis is required (an analysis involving partitioning the data into a larger number of
clusters). If the cluster analysis is incomplete, then there will be more than one non-zero entry in at least
one of its rows, indicating that members of the same cluster map onto two (or more) different network re-
sponses. In this case, another cluster analysis should be performed, with patterns being assigned to at
least one additional cluster. This process is repeated until each row of the frequency table has only one
non-zero entry per row, indicating a unique mapping from clusters of hidden unit activity vectors to net-
work responses. An interpretation of these clusters should indicate the nature of the internal representa-
tions used by the network to produce its stimulus/response mapping.

12.2.4.6 Cluster Analysis Of The Zoo Network

We analyzed the zoo network by performing k-means cluster analysis on the set of hidden unit

activities that were obtained by wiretapping the network. The results were surprisingly simple – when the
hidden unit activities were assigned to 7 different clusters, each cluster was “pure” in the sense that every
member in a cluster was associated with the same network response. According to the stopping rule that
was introduced in the previous section, this is the desired number of clusters for our analysis. No addi-
tional cluster analysis was required.

It should be pointed out that while this particular analysis worked with the minimum number of

clusters possible, this is usually not the case. It is more typical to have to assign hidden unit activities to
more clusters than there are types of network responses, because each cluster captures important dis-
tinctions between patterns that lead to the same response. For example, in one analysis performed by
Dawson, Medler, McCaughan, Willson, and Carbonaro (2000), there were 9 different responses that were

 - 169 -

Minds And Machines © M.R.W. Dawson 12/02/2016

possible from a network that classified mushrooms as being edible or poisonous, and that also provided a
reason for making this judgment. However, hidden unit activities had to be assigned to 13 different clus-
ters before each cluster was “pure”. Furthermore, the cluster analysis of the hidden unit activities gener-
ated a much simpler solution than does a cluster analysis that classifies animals in terms of the 16 differ-
ent features that are input to the animal. Even when k-means clustering assigns patterns to 25 different
clusters, some of the clusters are not pure. Clearly the hidden units have discovered regularities in the
data that are both powerful and simplifying.

A

fter
hid-
den
unit
ac-
tivi-
ties
hav

e
bee

n
as-

sign
ed
to

clus-
ter,
the

next
step
is to
iden

tify definite features associated with each cluster. We do this by applying the same techniques that were
reported in the analysis of the monks network. However, instead of computing descriptive statistics for
patterns that fall into a particular band on a hidden unit, we now apply these statistics to the subsets of
patterns that all belong to the same cluster. Table 12-4 provides the definite features that were obtained
for each cluster.

Cluster Type H1 H2 H3 Unary Features Binary Features
1 Mammal 0.93 0.00 0.87 ~feathers, milk, backbone

breathes, ~venomous
eggs toothed

2 Fish 0.00 1.00 0.88 ~hair, ~feathers, eggs, ~milk,
~airborne, aquatic, backbone,

~breathes, fins, 0 legs, tail

3 Bird 0.94 0.99 0.02 ~hair, feathers, eggs, ~milk,
backbone, breathes, ~fins, 2

legs, tail

4 Other 0.17 0.66 0.01 ~hair, ~feathers, ~milk,
~airborne, ~toothed,

~backbone, ~fins, ~domestic

eggs tail

5 Reptile 0.01 0.16 0.98 ~hair, ~feathers, ~milk,
~airborne, backbone, ~fins, tail,

~domestic

Aquatic breathes, predator
catsize, eggs aquatic, eggs
breathes, predator = toothed,

toothed catsize

6 Insect 0.88 0.22 0.00 ~feathers, eggs, ~milk,
~aquatic, ~toothed, ~backbone,

breathes, ~fins, 6 legs, ~tail,
~catsize

7 Amphibian 0.00 0.15 0.33 ~hair, ~feathers, eggs, ~milk,
~airborne, aquatic, toothed,
backbone, breathes, ~fins, 4

legs, ~domestic, ~catsize

Table 12-4. Feature analysis of the clusters taken from the zoo network. The average activity pro-
duced in each hidden unit by the patterns in the cluster is given, along with the definite unary and

binary features that were revealed by descriptive statistics.

 - 170 -

Minds And Machines © M.R.W. Dawson 12/02/2016

MM

F

MMMM

FF

MM

B

F

O

OO

B

M

F
M

B
B

M

B

I

AA

MMM

I

MM

B

F

MM

B

F

II

B

I

B

MM

O

M
M

MM

IA
O

MM

BB

B

B

FF

R MMM
M

MMMM

B

O

F

M
MR

O

BB

R

O

F

B

M

O

F

B

I

A

R
R

F

MM

B

M

I

M

O

B

Mammals

Reptiles

Birds

Fish

Insects
Amphibians

Others

It is important to

note that these defi-
nite features only emerge
by simulta- neously con-
sidering the patterns in terms of the activations that they produce in all three hidden units. If the activa-
tions of individual units are considered separately, then it is very difficult to grasp the kinds of features
that a particular hidden unit is detecting. This is because the units are not working to detect features lo-
cally, but are instead working cooperatively to represent distributed features. At the level of individual
hidden units, because these units are not working as local feature detectors, very disparate combinations
of animal properties can have the same effect on a hidden unit.

For example, let us consider how hidden unit 1 treats birds and insects. From Table 12-4 it can

be seen that both of these animal types produce very similar activity in the hidden unit. If we examine the
definite features associated with both types of animal, we see that they only differ in terms of three fea-
tures: feathers, backbone, and legs. Birds have feathers, a backbone, and two legs; insects have no
feathers and backbone, but have two legs. How is it possible that these differences in features can still
result in having a similar effect on hidden unit 1? An examination of connection weights points to an an-
swer. The weights from these three features that feed into hidden unit 1 are –1.12 for feathers, 0.54 for
backbone, and –0.15 for number of legs. Considering these three features alone – the only features that
distinguish all birds from all insects in the training set – we can determine that different combinations pro-
duce similar contributions to net input. For birds, the contribution to net input is (1 * -1.12) + (1 * 0.54) +
(2 * -0.15) = -0.88. If we take away feathers and backbone, but compensate by adding more legs, we
can get nearly exactly the same contribution to net input for insects: (0 * -1.12) + (0 * 0.54) + (6 * -0.15) =
-0.90. In other words, extremely different combinations of unrelated features provide the same effect on
the hidden unit. For this reason, interpreting the kinds of features represented by individual units is not
particularly fruitful for this network. Instead, one can only make sense of the network by interpreting fea-
tures associated with animals that produce particular effects on all three hidden units.

How, then, does this distributed representation of features by the hidden units get converted into

appropriate output unit responses? The activity produced in each hidden unit by a pattern provides three
coordinates to locate that pattern as a point in a transformed pattern space. The hidden units work in co-
ordination to place patterns that share the definite features listed in Table 12-4 in very similar locations in

Figure 12-2. The pattern space for the zoo problem after the 16
input features have been transformed into activation values in three hid-

den units.

 - 171 -

Minds And Machines © M.R.W. Dawson 12/02/2016

this space. This can be seen in Figure 12-2. Because the hidden units geometrically arrange the animals
is this neat way, the output units can adjust their hidden units so that a particular cluster of points falls into
their receptive fields, and the units will only turn on to one cluster that has been isolated in this fashion.

12.3 NETWORK INTERPRETATION AND SYNTHETIC PSYCHOLOGY

In this chapter, we have focused on introducing techniques for interpreting networks of value

units. We have seen different approaches demonstrated on three different networks. In this final section
of this chapter, we will briefly review the results of some applications of these approaches that have ap-
peared in the synthetic psychology literature. These examples have been organized into three different
categories. First, a network that was interpreted by examining local features associated with bands is
discussed. This interpretation is analogous to the monks network analysis that was described above.
Second, some networks that were interpreted by examining features distributed across hidden units are
reviewed. These networks were explored using the clustering techniques that were demonstrated for the
zoo network. Finally, a network that was explored by examining the structure of its connection weights is
given a brief overview. The techniques used for this network are most similar to the ones that were used
to investigate the chord classification network at the start of this chapter.

12.3.1 Interpretations Based On Finding Local Features In Bands

12.3.1.1 The Wason Card Selection Problem

One task that is famous in cognitive psychology is Wason's (1966) selection task. The Wason se-

lection task is typically viewed as a problem in hypothesis testing and deductive reasoning. In standard
form, it consists of presenting a participant with an abstract conditional rule of the form, If p then q, and
four cards displaying the categories of p, not-p, q, and not-q. For example, a subject might be given the
rule “If there is a vowel on one side of the card, then there is an even number on the other side of the
card”, and might see four cards: “E”, “K”, “4” and “7”. Although participants can see only one side of each
card, they are told that each card has another category on its flip side. Participants are then instructed to
test the truth of the rule by selecting the fewest possible cards from the set of four. In other words, they
have to choose the smallest number of cards such that if these cards were flipped over, and their other
side examine, this evidence would either prove or falsify the rule. According to formal methods of as-
sessing the truth of a conditional rule, only an instance of a p together with a not-q can falsify the rule
(Garnham & Oakhill, 1994). Hence, participants need to choose the p and the not-q cards (i.e., “K” and
“7” in our example) because only these cards can provide information that disproves the rule.

The Wason selection task appears to be a simple problem, but this simplicity is deceptive, be-

cause participants usually get it wrong (for a review see Evans, Newstead, & Byrne, 1993). For instance,
an average of only 10 percent of participants select the correct cards. In contrast, an average of 90 per-
cent of participants make either incomplete selections by choosing only the p card or incorrect selections
by choosing the q card along with the p card. For this reason, the selection task has been studied exten-
sively since it first appeared in the literature.

In one recent examination of the selection task, Leighton and Dawson (2001) adopted a synthetic

approach, and trained connectionist networks to choose relevant cards. Three different networks were
created. One generated the correct responses as dictated by logic. A second network generated one of
the incorrect responses often observed in humans, and just selected the p card. A third simulation gen-
erated another common human error, and selected the p and the q cards. In these networks, the first four
input units were used to encode a logical rule in binary notation, and four sets of three input units (for a
total of 16 units in all) were used to represent the cards that were presented to the network. Eight differ-
ent conditional rules were developed, and all combinations of four different types of cards (with two cards
per card type) were created, which resulted in a training set of 3072 different patterns. The networks
each had four different output units, one for each card. If an output unit was turned on, then this indicated
that the network would flip this card over to test the rule that is was presented.

 - 172 -

Minds And Machines © M.R.W. Dawson 12/02/2016

After the networks were trained, the hidden units were wiretapped, and the results of this wiretap-
ping were plotted using jittered density plots. One example of this analysis was performed on the eight
hidden units that were used by the network that was trained to generate logically correct responses to the
selection task. For this network (as well as the other two described in the paper), the jittered density plots
were highly banded. Furthermore, Leighton and Dawson (2001) noted that pairs of hidden units had very
similar plots. A large number of definite features were identified for all of the bands of all of the hidden
units. An examination of definite features associated with correlated pairs of hidden units indicated that
pairs of hidden units controlled each output unit. One of the units was highly sensitive to the type of rule
that was being presented to the network, and both units were only sensitive to patterns that indicated that
a particular output unit should be turned on. In other words, each pair of hidden units used definite fea-
tures that focused on rule properties that were correlated with turning only one of the cards over.

One interesting question that Leighton and Dawson (2001) also explored with their networks was

task complexity. Perhaps human subjects make certain kinds of responses because these involve a
smaller computational load. They found that when a network was only required to turn one card over, the
problem was simpler – only two hidden units were required. Eight hidden units were required for both
networks that had to turn two cards over. However, the one network that turned two cards over to make
logically incorrect responses was sensitive to a much simpler set of definite features. The result of all of
these analyses and comparisons between networks resulted in an inductive theory of Wason task reason-
ing, in contrast to more typical deductive theories.

12.3.2 Interpretations Based On Finding Features Distributed Across Hidden Units

Many of the early analyses of networks in my laboratory were based on methods that focused on

identify local features associated with bands. For example, this kind of analysis of a network trained to
classify logical syllogisms revealed a set of internal rules that were very classical in nature, and which
were used to argue for similarities between connectionist and symbolic models of cognition (e.g., Berke-
ley et al., 1995; Dawson, 1998; Dawson, Medler, & Berkeley, 1997). However, our experiences with net-
work analysis have indicated that the reliable identification of local features is more the exception than the
rule. Instead, we have found that we are much more likely to discover distributed features in networks, as
is indicated by the case studies that are described below.

12.3.2.1 The Mushroom Problem

The mushroom problem is another benchmark training set for machine learning Schlimmer,

1987), and can also be obtained from the UCI Machine Learning Repository (Blake & Merz, 1998). It
consists of 8124 different patterns, each defined as a set of 21 different features. The task is to use these
features to decide whether a mushroom is edible or not.

In one study, Dawson et al. (2000) trained a network of value units to solve the mushroom prob-

lem. The network had one output unit, four hidden units, and 21 input units (one for each input feature).
After training was successfully completed, they “wiretapped" the responses of the hidden units to each of
the training patterns. K-means cluster analysis was then performed. Dawson et al. used the heuristic
stopping rule described in this chapter to determine that the data should be assigned to 13 different clus-
ters. They then identified the definite features associated with each cluster.

After identifying definite features, Dawson et al. (2000) proceeded to use them to provide a con-

cise description of how the network was classifying mushrooms. First, they represented the possible fea-
ture values associated with each cluster as a vector of 119 entries, because when considering the differ-
ent values for the 21 different features, 119 different values are possible. If a feature value belonged to
the cluster, then it was given a value of 1 in the vector; otherwise it was given a value of –1. Second,
they performed a discriminant analysis using these vectors. The 119 features in the vectors were used
as predictors, and the predicted variable was networked response -- whether the feature vector was as-
sociated with mushrooms that were affable or not. They found that a simple discriminant function that
used only seven feature values (cap color = cinnamon, odor = anise, gill color = white, stalk color above
ring = white, ring type = evanescent, habitat = meadows, habitat = woods) could correctly classify every

 - 173 -

Minds And Machines © M.R.W. Dawson 12/02/2016

pattern in the training set. It would appear to the hidden units were collectively representing the presence
or absence of these features, and that the output units used this distributed representation to solve the
mushroom problem. This analysis resulted in a completely novel account of how the mushroom problem
could be solved, and the nature of this account is arguably more psychologically plausible than accounts
derived from traditional methods in machine learning, such as decision trees.

12.3.2.2 The Mushroom Problem With Extra Outputs

Dawson et al. (2000) also interpreted a network of value units trained a variation of the mushroom

problem. This variation involved extra output learning, in which the network not only had to use an output
unit to represent whether a mushroom was edible or not, but also had to use other output units to repre-
sent the reason for this decision. This network used 21 input units, 5 hidden units, and 10 output units.
The first output unit indicated if the mushroom was edible. The remaining nine output units each repre-
sented a reason for making a decision, where each reason corresponded to a particular terminal branch
in a classical decision tree that was created by applying traditional machine learning techniques to the
mushroom problem dataset. The purpose of this second network was to determine whether the decision
tree could be translated into a network using standard connectionist training techniques.

After training, the responses of the 5 hidden units to each of the 8124 patterns were recorded,

and k-means cluster analysis was conducted. After applying the heuristic stopping rule that has been
described in this chapter, it was determined that the patterns of hidden unit activities should be assigned
to 12 different clusters. As was the case in the previous analysis, each of these clusters was associated
with a definite set of mushroom features. However, this was not the most interesting analysis that could
be performed using these clusters. Instead, Dawson et al. (2000) translated the classical decision tree
into a set of nine condition-action rules that defined a small production system. They then demonstrated
a unique mapping in which all of the patterns that belonged to a particular cluster map directly onto one of
these productions. In other words, they were able to show that when the 5 hidden units had a particular
pattern of activity -- a pattern that could be assigned to one of the clusters -- this could be translated into
a claim that the network was executing a specific production rule. Dawson et al. (2000) used this result to
argue that connectionist models and classical symbolic models of the type are not only extremely similar,
but are identical, at least from the perspective of how some philosophers of science view theories. This
claim about theory identify depends on the ability to translate one kind of theory into another. Many
would argue that this is not possible if the two theories are fundamentally different.

12.3.3 Interpretations Based On Other Techniques.

There may be instances for which the two types of approaches that have been illustrated in the
two preceding sections simply don’t work. For example, in some cases when a value unit network is deal-
ing with continuous inputs, the jittered density plots do not band (e.g., Dawson et al., 1994). In other cas-
es, a network of value units might be better viewed as a function approximation network. In this case,
distributed features can be hard to find (e.g., Zimmerman, 1999). In situations like this, other interpreta-
tive techniques need to be explored. Usually, these techniques involve taking different approaches to
discovering regularities that are present in hidden unit activities, connection weights, or both.

We have already seen a detailed account of this final type of analysis in Chapter 8. When Daw-

son, Boechler, and Valsangkar-Smyth (2000) analyzed a network that had been trained to make spatial
judgments, they had to explore specific relationships between geographic distances and connection
weights. This required them to view hidden units as occupying particular places on a map, and as a re-
sult forced them to use optimization techniques to determine where on the map hidden units could be lo-
cated. The results of this approach, as was detailed in Chapter 8, were the discovery of a particular type
of encoding (coarse allocentric representation of space) that could be related to some theoretical issues
in the cognitive map literature. A second implication of this research, in the context of the current chapter,
is to emphasize the point that there is no single technique for network analysis. Many different analytic
approaches may need to be explored before a network reveals its internal secrets.

 - 174 -

Minds And Machines © M.R.W. Dawson 02/12/2016

Chapter 13: From Here To Synthetic
Psychology

We have now come the end of this introduction to the synthetic approach in psychology and

cognitive science. Let us take a moment to review some of the main themes that this book has covered,
and to consider where one might proceed from here.

Models have had an important role to play in both psychology and cognitive science. In Chapter

2, we saw that the reason for this is that models offer many advantages. They help to provide a rigorous
specification of a theory, by making terms more precise, by providing new tools for studying concepts,
and by revealing hidden assumptions. They permit complex domains to be studied, in some cases
providing insights where techniques such as mathematics fail. They also provide a medium in which a
researcher can be provided surprising insights into a phenomenon. While we also saw that all of these
advantages do not come without having other potential costs, these advantages make modeling both a
plausible and fruitful endeavor.

However, modeling is not a homogenous practice. There are many different kinds of models that

are available to researchers, and these were overviewed in Chapters 3 through 5. We identified three
different classes of models: models of data, mathematical models, and computer simulations. We com-
pared and contrasted these different types of models in terms of a number of basic properties. Does the
model attempt to fit pre-existing measurements? Is the model linear? Does the model depend upon
some goodness of fit metric? Can the model surprise us? Does the model behave, or does it merely
summarize or describe behavior?

As we moved from Chapter 3 to Chapter 5, we saw a transformation in these properties. For ex-

ample, models of data fit pre-existing measurements, are usually linear, live or die by their goodness of fit
to data, do not provide surprises, and do not behave. In contrast, computer simulations need not fit pre-
existing data, usually have important nonlinear components, do not depend on fitting data, are designed
to surprise us, and actually behave. In short, there is more to modeling that describing some data that
has already been collected by some statistical equation.

The implications of this observation were explored in Chapters 6 and 7. Given that we can create

models that behave, one approach to modeling is to assume some basic components, and to use these
components to construct a behaving system. If the right kinds of components have been selected, then
the behavior should be both surprising and interesting. From this synthetic approach, one main purpose
of a model is to show how a set of interesting components can behave. The model’s behavior becomes
the primary data of interest.

Why is this approach to modeling attractive? One of the main reasons is Braitenberg’s (1984)

law of uphill analysis and downhill synthesis. If an interesting set of nonlinear components are put to-
gether, and if these components are placed in a complex or interesting environment, then the expected
result is that the synthesized system will generate more complicated behavior than one would have pre-
dicted on the basis of the known properties of the components. Furthermore, because the system was
constructed, then the expectation is that the researcher who built it will have a ready explanation for these
surprises. In short, Braitenberg’s position was that synthetic psychology should lead to simpler theories
of complex phenomena.

However, Chapter 8 argued that Braitenberg’s (1984) position does not seem to be completely

correct. In many cases, it is possible to construct a system that surprises, but to also be in a position
where an understanding of that system is not readily available. It was then claimed that for synthetic psy-
chology to work, one certainly has to synthesize models that behave. However, it is inevitable that once
these models are constructed, researchers will have to adopt an analytic approach to derive theories that

 - 175 -

Minds And Machines © M.R.W. Dawson 12/02/2016

explain their performance. While it is likely that this analysis will be immeasurably aided by having built a
system, this step is both necessary and can be complex. This point was illustrated by an example analy-
sis of a connectionist network that had learned to make spatial judgments about cities in Alberta.

Indeed, connectionism provides one rich medium in which synthetic psychology can be practiced

and explored. In Chapters 9, 10, and 11 we discussed connectionist modeling in terms of three general
synthetic building blocks. The first was the storing of associations between stimuli and responses in a set
of modifiable connection weights. The second was the incorporation of nonlinear activation functions into
the processing units from which the networks were constructed. The third was the development of learn-
ing rules that were capable of chaining layers of nonlinear processors together to make sequences of de-
cisions. In each chapter, we saw how these different building blocks provided tools that could be applied
to psychological problems. We also saw, in Chapter 11, that when these three building blocks were com-
bined together, extremely powerful models were possible.

Nevertheless, once these models are synthesized, they must still be analyzed in order to provide

psychological explanations. Chapter 12 illustrated this by discussing some of the general techniques that
could be used to interpret the internal structure of one type of connectionist architecture, networks of val-
ue units. Three different techniques were explored. The first was the examination of connection weights
and hidden unit responses. The second was the discovery of local features associated with bands that
are often found in the jittered density plots of wiretapped hidden units. The third was the use of cluster
analysis to identify definite features that are distributed across activity patterns in more than one hidden
unit.

It is hoped that this discussion of connectionism and synthetic psychology can provide the reader

with the inspiration to explore new phenomena by adopting the synthetic approach. Some of this explora-
tion can be conducted with the software that has been developed in my lab during the creation of this
manuscript. Other connectionist environments might prove more powerful and useful, particularly as the
complexity or size of problems of interest increases. Of course, connectionism is not the only medium in
which this kind of exploration can be conducted – symbolic models in artificial intelligence, genetic algo-
rithms, artificial life simulations, and behavior-based robotics are also candidates that have been explored
by many researchers. Regardless of the medium, though, the approach will still be the same. Choose
some components. Build something with them. Watch your creation behave, searching for emerging
surprises. Finally, explain these surprises by performing an analysis of the structure of the system that
you built.

 - 176 -

Minds And Machines © M.R.W. Dawson 12/02/2016

References

Adams, B., Breazeal, C., Brooks, R. A., & Scasselati, B. (2000). Humanoid robots: A new kind of tool.
IEEE Intelligent Systems, 25-31.

Aldenderfer, M. S., & Blashfield, R. K. (1984). Cluster Analysis (Vol. 07-044). Beverly Hills, CA: Sage
Publications.

Alexander, J. A., & Mozer, M. C. (1995). Template-based algorithms for connectionist rule extraction. In
G. Tesauro & D. S. Touretzky & T. K. Leen (Eds.), Advances In Neural Information Processing
Systems (Vol. 7, pp. 609-616). Cambridge, MA: MIT Press.

Anderson, J. A., & Rosenfeld, E. (1988). Neurocomputing: Foundations of Research. Cambridge, MA:
MIT Press.

Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S. (1977). Distinctive features, categorical per-
ception and probability learning: Some applications of a neural model. Psychological review, 84,
413-451.

Anderson, J. R., & Bower, G. H. (1973). Human Associative Memory. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Andrews, R., Diederich, J., & Tickle, A. B. (1995). A survey and critique of techniques for extracting rules
from trained artificial neural networks. Knowledge-Based Systems, 8, 373-389.

Ashby, W. R. (1956). An Introduction To Cybernetics. London: Chapman & Hall.
Ashby, W. R. (1960). Design For A Brain (Second Edition ed.). New York, NY: John Wiley & Sons.
Ashcraft, M. H. (1989). Human Memory And Cognition. Glenview, IL: Scott, Foresman and Co.
Atkinson, R. C., Bower, G. H., & Crothers, E. J. (1965). An Introduction To Mathematical Learning Theory.

New York, NY: John Wiley & Sons.
Ballard, D. (1986). Cortical structures and parallel processing: Structure and function. The Behavioral

And Brain Sciences, 9, 67-120.
Bannon, L. J. (1980). An investigation of image scanning. Unpublished Unpublished doctoral dissertation,

University of Western Ontario, London, ON.
Barlow, H. B. (1972). Single units and sensation: A neuron doctrine for perceptual psychology? Percep-

tion. 1, 371-394.
Bechtel, W. (1985). Contemporary connectionism: Are the new parallel distributed processing models

cognitive or associationist? Behaviorism, 13, 53-61.
Bechtel, W., & Abrahamsen, A. (1991). Connectionism And The Mind. Cambridge, MA: Basil Blackwell.
Berkeley, I. S. N., Dawson, M. R. W., Medler, D. A., Schopflocher, D. P., & Hornsby, L. (1995). Density

plots of hidden value unit activations reveal interpretable bands. Connection Science, 7, 167-186.
Berlyne, D. E. (1971). Aesthetics And Psychobiology. New York, NY: Appleton-Century-Crofts.
Bever, T. G., Fodor, J. A., & Garrett, M. (1968). A formal limitation of associationism. In T. R. Dixon & D.

L. Horton (Eds.), Verbal Behavior And General Behavior Theory (pp. 582-585). Englewood Cliffs,
NJ: Prentice-Hall.

Bird, A. (1998). Philosophy Of Science. Montreal & Kingston: McGill-Queen's University Press.
Blake, C. L., & Merz, C. J. (1998). UCI Repository of machine learning databases. Irvine, CA: University

of California, Department of Information and Computer Science. Available:
[http://www.ics.uci.edu/~mlearn/MLRepository.html].

Blickhan, R., & Full, R. J. (1993). Similarity in multilegged locomotion: Bouncing like a monopode. Journal
of Comparative Physiology A, 173, 509-507.

Block, N. (1981). Imagery. Cambridge, MA: MIT Press.
Bock, R. D., & Jones, L. V. (1968). The Measurement And Prediction Of Judgment And Choice. San

Francisco, CA: Holden-Day.
Bodanis, D. (2000). E = MC2: A Biography Of The World's Most Famous Equation. Toronto, CA: Random

House.
Boden, M. (1977). Artificial Intelligence And Natural Man. New York, NY: Basic Books.
Boring, E. G. (1950). A History Of Experimental Psychology. New York, NY: Appleton-Century-Crofts.
Braitenberg, V. (1984). Vehicles: Explorations In Synthetic Psychology. Cambridge, MA: MIT Press.
Braithwaite, R. B. (1970). Models in the empirical sciences. In B. A. Brody (Ed.), Readings In The Philos-

ophy Of Science. Englewood Cliffs, NJ: Prentice-Hall.

 - 177 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Brooks, R. A. (1989). A robot that walks; emergent behaviours from a carefully evolved network. Neural
Computation, 1, 253-262.

Brooks, R. A. (1999). Cambrian Intelligence: The Early History Of The New AI. Cambridge, MA: MIT
Press.

Brooks, R. A. (2002). Flesh And Machines: How Robots Will Change Us. New York, NY: Pantheon
Books.

Brown, T. H. (1990). Hebbian synapses: Biophysical mechanisms and algorithms. Annual Review of Neu-
roscience, 13, 475-511.

Burgess, N., Donnett, J. G., Jeffery, K. I., & O'Keefe, J. (1999). Robotic and neuronal simulation of the
hippocampus and rat navigation. In B. N. & K. J. Jeffery & J. O'Keefe (Eds.), The Hippocampal
And Parietal Foundations Of Spatial Cognition. Oxford: Oxford University Press.

Burgess, N., Recce, M., & O'Keefe, J. (1995). Spatial models of the hippocampus. In M. A. Arbib (Ed.),
The Handbook Of Brain Theory And Neural Networks. Cambridge, MA: MIT Press.

Caelli, T. (1981). Visual Perception: Theory And Practice. Oxford: Pergamon Press.
Calvin, W. H. (1996). The Cerebral Code. Cambridge, MA: MIT Press.
Cattell, R. B. (1978). The Scientific Use Of Factor Analysis. New York: Plenum Press.
Changeux, J.-P., & Dehaene, S. (1993). Neuronal models of cognitive functions. In M. H. Johnson (Ed.),

Cognition and brain development: A reader. Oxford: Blackwell.
Cheng, K., & Spetch, M. L. (1998). Mechanisms of landmark use in mammals and birds. In S. Healy (Ed.),

Spatial Representation In Animals. Oxford: Oxford University Press.
Chomsky, N. (1959). A review of B.F. Skinner's Verbal Behavior. Language, 35, 26-58.
Chomsky, N. (1965). Aspects Of The Theory Of Syntax. Cambridge, MA: MIT Press.
Chomsky, N. (1995). The Minimalist Program. Cambridge, MA: MIT Press.
Chomsky, N., & Halle, M. (1991). The Sound Pattern Of English. Cambridge, MA: MIT Press.
Churchland, P. M., & Churchland, P. S. (1990). Could a machine think? Scientific American, 262, 32-37.
Churchland, P. S., Koch, C., & Sejnowski, T. J. (1990). What is computational neuroscience? In E. L.

Schwartz (Ed.), Computational Neuroscience. Cambridge, MA: MIT Press.
Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge, MA: MIT Press.
Clark, A. (1989). Microcognition. Cambridge, MA: MIT Press.
Clark, A. (1993). Associative engines. Cambridge, MA: MIT Press.
Coombs, C. H., Dawes, R. M., & Tversky, A. (1970). Mathematical Psychology: An Elementary Introduc-

tion. Englewood Cliffs, NJ: Prentice-Hall.
Cotman, C. W., Monaghan, D. T., & Ganong, A. H. (1988). Excitatory amino acid neurotransmission:

NMDA receptors and Hebb-type synaptic plasticity. Annual Review of Neuroscience, 11, 61-80.
Cotter, N. E. (1990). The Stone-Weierstrass theorem and its application to neural networks. IEEE trans-

actions on neural networks, 1, 290-295.
Craik, K. J. M. (1943). The Nature Of Explanation. Cambridge: Cambridge University Press.
Craven, M. W., & Shavlik, J. W. (1994). Using sampling and queries to extract rules from trained neural

networks. Machine Learning: Proceedings of the Eleventh International Conference.
Crick, F., & Asanuma, C. (1986). Certain aspects of the anatomy and physiology of the cerebral cortex. In

J. McClelland & D. E. Rumelhart (Eds.), Parallel Distributed Processing (Vol. 2). Cambridge, MA:
MIT Press.

Cummins, R. (1983). The Nature Of Psychological Explanation. Cambridge, MA.: MIT Press.
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control,

signals, and systems, 2, 303-314.
Cziko, G. (1995). Without Miracles: Universal Selection Theory And The Second Darwinian Revolution.

Cambridge, MA: MIT Press.
Dawson, M. R. W. (1990). Training networks of value units: Learning in PDP systems with nonmonoton-

icactivation functions. Canadian Psychology, 31(4), 391.
Dawson, M. R. W. (1991). The how and why of what went where in apparent motion: Modeling solutions

to the motion correspondence process. Psychological Review, 98, 569-603.
Dawson, M. R. W. (1998). Understanding Cognitive Science. Oxford, UK: Blackwell.
Dawson, M. R. W., Boechler, P. M., & Valsangkar-Smyth, M. (2000). Representing space in a PDP net-

work: Coarse allocentric coding can mediate metric and nonmetric spatial judgements. Spatial
Cognition and Computation, 2, 181-218.

 - 178 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Dawson, M. R. W., & Di Lollo, V. (1990). Effects of adapting luminance and stimulus contrast on the tem-
poral and spatial limits of short-range motion. Vision Research, 30, 415-429.

Dawson, M. R. W., Dobbs, A., Hooper, H. R., McEwan, A. J. B., Triscott, J., & Cooney, J. (1994). Artificial
neural networks that use single-photon emision tomography to identify patients with probable
Alzheimer's disease. European Journal of Nuclear Medicine, 21(12), 1303-1311.

Dawson, M. R. W., Kremer, S., & Gannon, T. (1994). Identifying the trigger features for hidden units in a
PDP model of the early visual pathway. Paper presented at the Tenth Canadian Conference On
Artificial Intelligence, Banff, Alberta.

Dawson, M. R. W., Medler, D. A., & Berkeley, I. S. N. (1997). PDP networks can provide models that are
not mere implementations of classical theories. Philosophical Psychology, 10, 25-40.

Dawson, M. R. W., Medler, D. A., McCaughan, D. B., Willson, L., & Carbonaro, M. (2000). Using extra
output learning to insert a symbolic theory into a connectionist network. Minds And Machines, 10,
171-201.

Dawson, M. R. W., Nevin-Meadows, N., & Wright, R. D. (1994). Polarity matching in the Ternus configura-
tion. Vision Research, 34, 3347-3359.

Dawson, M. R. W., & Piercey, C. D. (2001). On the subsymbolic nature of a PDP architecture that uses a
nonmonotonic activation function. Minds and Machines, 11, 197-218.

Dawson, M. R. W., & Pylyshyn, Z. W. (1988). Natural constraints in apparent motion. In Z. W. Pylyshyn
(Ed.), Computational Processes in Human Vision: An Interdisciplinary Perspective. Norwood, NJ:
Ablex.

Dawson, M. R. W., & Schopflocher, D. P. (1992). Autonomous processing in PDP networks. Philosophical
Psychology, 5, 199-219.

Dawson, M. R. W., & Schopflocher, D. P. (1992). Modifying the generalized delta rule to train networks of
nonmonotonic processors for pattern classification. Connection Science, 4, 19-31.

Dawson, M. R. W., & Shamanski, K. S. (1994). Connectionism, confusion and cognitive science. Journal
of Intelligent Systems, 4, 215-262.

Dawson, M. R. W., & Thibodeau, M. H. (1998). The effect of adapting luminance on the latency of visual
search. Acta Psychologica, 99, 115-139.

Dawson, M. R. W., & Wright, R. D. (1994). Simultaneity in the Ternus configuration: Psychophysical data
and a computer model. Vision Research, 34, 397-407.

De Wilde, P. (1997). Neural Network Models, Second Edition. London: Springer.
Delamater, A. R., Sosa, W., & Katz, M. (1999). Elemental and configural processes in patterning discrimi-

nation learning. The Quarterly Journal Of Experimental Psychology, 52B, 97-124.
DeYoe, E. A., & van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends

in Neuroscience, 11, 219-226.
Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R., & Lehman, S. (2000). How animals

move: An integrative view. Science, 288, 100-106.
Douglas, R. J., & Martin, K. A. C. (1991). Opening the grey box. Trends In Neuroscience, 14, 286-293.
Dreyfus, H. L. (1992). What Computers Still Can't Do. Cambridge, MA: MIT Press.
Duch, W., Adamczak, R., & Grabczewski, K. (1996). Extraction of logical rules from training data using

backpropagation networks. Paper presented at the The 1st Online Workshop On Soft Computing.
Duch, W., Adamczak, R., Grabczewski, K., Ishikawa, M., & Ueda, H. (1997). Extraction of crisp logical

rules uing constrained backpropagation networks -- comparison of two new approaches. Paper
presented at the European Symposium On Artificial Neural Networks (ESANN'97), Bruge, Bel-
gium.

Duch, W., & Jankowski, N. (1999). Survey of neural transfer functions. Neural Computing Surveys, 2,
163-212.

Dutton, J. M., & Briggs, W. G. (1971). Simulation model construction. In J. M. Dutton & W. H. Starbuck
(Eds.), Computer Simulation Of Human Behavior. New York, NY: John Wiley & Sons.

Dutton, J. M., & Starbuck, W. H. (1971). Computer simulation of human behavior. New York: John Wiley
& Sons.

Edelman, G. M. (1987). Neural Darwinism. New York: Basic Books.
Edelman, G. M. (1988). Topobiology. New York: Basic Books.
Edelman, G. M. (1989). The Remembered Present. New York: Basic Books.
Edelman, G. M. (1992). Bright Air, Brilliant Fire. New York: Basic Books.
Edelman, G. M., & Mountcastle, V. B. (1978). The Mindful Brain. Cambridge, MA: MIT Press.

 - 179 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Eich, J. M. (1982). A composite holographic associative recall model. Psychological Review, 89, 627-661.
Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethink-

ing Innateness. Cambridge, MA: MIT Press.
Ericsson, K. A., & Simon, H. A. (1984). Protocol Analysis: Verbal Reports As Data. Cambridge, MA: MIT

Press.
Estes, W. K. (1975). Some targets for mathematical psychology. Journal of Mathematical Psychology, 12,

263-282.
Evans St., B. T. J., Newstead, S. E., & Byrne, R. M. (1993). Human Reasoning: The Psychology Of De-

duction. Hillsdale, NJ: Lawrence Erlbaum Associates.
Everitt, B. (1980). Cluster Analysis. New York: Halsted.
Farah, M. J. (1994). Neuropsychological evidence with an interactive brain: A critique of the "locality" as-

sumption. Behavioral and brain sciences, 17, 43-104.
Farah, M. J., Weisberg, L. L., Monheit, M., & Peronnet, F. (1989). Brain activity underlying mental image-

ry: Event-related potentials during mental image generation. Journal of Cognitive Neuroscience,
1, 302-316.

Feigenbaum, A., & Feldman, J. (1995). Computers And Thought. Cambridge, MA: MIT Press.
Feigenbaum, E. A. (1995). The simulation of verbal learning behavior. In E. A. Feigenbaum (Ed.), Com-

puters & Thought (pp. 297-309). Cambridge, MA: MIT Press.
Fodor, J. A. (1968). Psychological Explanation: An Introduction To The Philosophy Of Psychology. New

York: Random House.
Fodor, J. A. (1975). The Language Of Thought. Cambridge, MA: Harvard University Press.
Fodor, J. A. (1983). The Modularity Of Mind. Cambridge, MA: MIT Press.
Fodor, J. A., & McLaughlin, B. P. (1990). Connectionism and the problem of systematicity: Why Smo-

lensky's solution doesn't work. Cognition, 35, 183-204.
Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture. Cognition, 28, 3-71.
Foster, J., Ainsworth, J., Faratin, P., & Shapiro, J. (1997). Implementing a mathematical model of hippo-

campal memory function. In M. A. Conway (Ed.), Cognitive Models Of Memory. Cambridge, MA:
MIT Press.

Fu, L. (1994). Rule generation from neural networks. IEEE Transactions on neural networks, 24, 1114-
1124.

Fukushima, K. (1986). A neural network model for selective attention in visual pattern recognition. Biolog-
ical Cybernetics, 55, 5-15.

Full, R. J., & Tu, M. S. (1991). Mechanics of a rapid running insect: two-, four-, and six-legged locomotion.
Journal of Experimental Biology, 156, 215-231.

Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks. Neu-
ral networks, 2, 183-192.

Furumoto, L. (1980). Mary Whiton Calkins (1863 - 1930). Psychology of Women Quarterly, 5, 55-68.
Gallistel, C. R. (1990). The Organization Of Learning. Cambridge, MA: MIT Press.
Gardner, H. (1984). The Mind's New Science. New York: Basic Books.
Garnham, A., & Oakhill, J. (1994). Thinking And Reasoning. Cambridge, MA: Blackwell.
Gerrissen, J. F. (1991). On the network-based emulation of human visual search. Neural Networks, 4,

543-564.
Gluck, M. A., & Myers, C. E. (1997). Psychobiological models of hippocampal function in learning and

memory. Annual Review of Psychology, 48, 481-514.
Goodale, M. A. (1988). Modularity in visuomotor control: From input to output. In Z. W. Pylyshyn (Ed.),

Computational Processes In Human Vision: An Interdisciplinary Perspective (pp. 262-285). Nor-
wood, NJ: Ablex.

Goodale, M. A. (1995). The cortical organization of visual perception and visuomotor control. In S. M.
Kosslyn & D. N. Osherson (Eds.), An Invitation To Cognitive Science: Visual Cognition (Vol. 2,
pp. 167-213). Cambridge, MA: MIT Press.

Goodale, M. A., & Humphrey, G. K. (1998). The objects of action and perception. Cognition, 67, 181-207.
Gorsuch, R. L. (1983). Factor Analysis (Second Edition ed.). Hillsdale, NJ: Lawrence Erlbaum Associ-

ates.
Granger, R., Ambros-Ingerson, J., & Lynch, G. (1989). Derivation of encoding characteristics of Layer II

cerebral cortex. Journal of Cognitive Neuroscience, 1, 61-87.
Graubard, S. (1988). The Artificial Intelligence Debate. Cambridge, MA: MIT Press.

 - 180 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Grey Walter, W. (1950). An imitation of life. Scientific American, 182(5), 42-45.
Grey Walter, W. (1951). A machine that learns. Scientific American, 184(8), 60-63.
Grey Walter, W. (1963). The Living Brain. New York, NY: W.W. Norton & Co.
Grossberg, S. (1988). Neural Networks And Natural Intelligence. Cambridge, MA: MIT Press.
Grush, R. (2000). Self, world and space: The meaning and mechanisms of ego- and allocentric spatial

representation. Brain And Mind, 1, 59-92.
Hagan, M. T., Demuth, H. B., & Beale, M. (1996). Neural Network Design. Boston, MA: PWS Publishing.
Hallahan, W. L. (1996). DECtalk software: Text-to-speech technology and implementation. Digital Tech-

nical Journal, 7, 5-19.
Hanson, S. J., & Burr, D. J. (1990). What connectionist models learn: Learning and representation in

connectionist networks. Behavioral and brain sciences, 13, 471-518.
Hanson, S. J., & Olson, C. R. (1991). Neural networks and natural intelligence: Notes from Mudville.

Connection science, 3, 332-335.
Hartman, E., Keeler, J. D., & Kowalski, J. M. (1989). Layered neural networks with Gaussian hidden

units as universal approximation. Neural computation, 2, 210-215.
Haugeland, J. (1985). Artificial Intelligence: The Very Idea. Cambridge, MA: MIT Press.
Hebb, D. O. (1949). The Organization Of Behaviour. New York: John Wiley and Sons.
Hebb, D. O. (1959). A neuropsychological theory. In S. Koch (Ed.), Psychology: A Study Of A Science.

Volume1: Sensory, Perceptual, And Physiological Foundations (pp. 622-643). New York, NY:
McGraw-Hill.

Hille, B. (1990). Ionic Channels Of Excitable Membranes, Second Edition. Sunderland, MA: Sinauer.
Hillis, W. D. (1988). Intelligence as emergent behavior, or, the songs of Eden. In S. R. Graubard (Ed.),

The Artificial Intelligence Debate. Cambridge, MA: MIT Press.
Hinton, G. E., & Anderson, J. A. (1981). Parallel Models Of Associative Memory. Hillsdale, NJ: Lawrence

Erlbaum Associates.
Hocking, B. (1963). The Ultimate Science: A Layman's Account Of Biology. Toronto, ON: CBC Publica-

tions.
Hodges, A. (1983). Alan Turing: The Enigma Of Intelligence. London: Unwin Paperbacks.
Holland, J. H. (1992). Adaptation In Natural And Artificial Systems. Cambridge, MA: MIT Press.
Holland, J. H. (1998). Emergence. Reading, MA: Perseus Books.
Holland, O., & Melhuish, C. (1999). Stigmergy, self-organization, and sorting in collective robotics. Artifi-

cial Life, 5, 173-202.
Hopcroft, J. E., & Ullman, J. D. (1979). Introduction To Automata Theory, Languages, And Computation.

Reading, MA: Addison-Wesley.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abili-

ties. Proceedings of the National Academy of Sciences, 79, 2554-2558.
Horgan, J. (1993). The mastermind of artificial intelligence. Scientific American, 269(5), 35-38.
Hornik, M., Sinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approxi-

mators. Neural Networks, 2, 359-366.
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat's striate cortex. Journal

of physiology, 148, 574-591.
Hume, D. (1952). An Enquiry Concerning Human Understanding. La Salle, IL: The Open Court Publishing

Company.
Ingle, D. (1973). Two visual systems in the frog. Science, 181(4104), 1053-1055.
Jackendoff, R. (1992). Languages Of The Mind. Cambridge, MA: MIT Press.
James, W. (1890). The Principles Of Psychology, Volume One. New York, NY: Dover Publications.
Jerne, N. K. (1967). Antibodies and learning: Selection versus instruction. In G. C. Quarton & T.

Melnechuk & F. O. Schmitt (Eds.), The neurosciences: A study program (pp. 200-208). New York:
Rockefeller University Press.

Johnson, S. (2001). Emergence. New York, NY: Scribner.
Jordan, M. I. (1986). An introduction to linear algebra in parallel distributed processing. In D. Rumelhart &

J. McClelland (Eds.), Parallel Distributed Processing, Volume 1. Cambridge, MA: MIT Pressv.
Jourdain, R. (1997). Music, The Brain, And Ecstasy. New York: William Morrow & Co.
Kaiser, H. R. (1958). The VARIMAX criterion for analytic rotation in factor analysis. Psychometrika, 23,

187-200.

 - 181 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Kamin, L. J. (1969). Selective association and conditioning. In N. J. Mackintosh & W. K. Honig (Eds.),
Fundamental Issues In Associative Learning (pp. 42-64). Halifax: Dalhousie University Press.

Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (1991). Principles Of Neural Science, Third Edition. New
York: Elsevier.

Karsai, I. (1999). Decentralized control of construction behavior in paper wasps: An overview of the
stigmergy approach. Artificial Life, 5, 117-136.

Kasabov, N. K. (1996). Foundations Of Neural Networks, Fuzzy Systems, And Knowledge Engineering.
Cambridge, MA: MIT Press.

Kintsch, W. (1970). Learning, Memory, And Conceptual Processes. New York, NY: John Wiley & Sons.
Kitchin, R. M. (1994). Cognitive maps: What are they and why study them? Journal Of Environmental

Psychology, 14, 1-19.
Klecka, W. R. (Ed.). (1980). Discriminant Analysis (Vol. 07-019). Thousand Oaks, CA: Sage.
Klein, R. M. (1999). The Hebb legacy. Canadian Journal of Experimental Psychology, 53(1), 1-3.
Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry.

Human Neurobiology, 4, 219-227.
Koffka, K. (1935). Principles Of Gestalt Psychology. New York: Harcourt, Brace & World.
Kohler, W. (1975). Gestalt Psychology. New York: New American Library.
Kosslyn, S. M. (1980). Image and mind. Cambridge, MA: Harvard University Press.
Kosslyn, S. M. (1994). Image and Brain. Cambridge, MA: MIT Press.
Kosslyn, S. M., Pascual-Leone, A., Felican, O., Camposano, S., Keenan, J. P., Thompson, W. L., Ganis,

G., Sukel, K. E., & Alpert, N. M. (1999). The role of area 17 in visual imagery: Convergent evi-
dence from PET and rTMS. Science, 284, 167-170.

Kosslyn, S. M., Thompson, W. L., & Alpert, N. M. (1997). Neural systems shared by visual imagery and
visual perception: A positron emission tomography study. Neuroimage, 6, 320-334.

Kosslyn, S. M., Thompson, W. L., Kim, I. J., & Alpert, N. M. (1995). Topographical representations of
mental images in area 17. Nature, 378, 496-498.

Krumhansl, C. L. (1978). Concerning the applicability of geometric models to similarity data: The interrela-
tionship between similarity and spatial density. Psychological Review, 85, 445-463.

Krumhansl, C. L. (1982). Density versus feature weights as predictors of visual identifications: Comment
on Appelman and Mayzner. Journal Of Experimental Psychology: General, 111, 101-108.

Kruskal, J. B., & Wish, M. (1978). Multidimensional Scaling. Beverly Hills, CA: Sage Publications.
Kube, C. R., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Autono-

mous Systems, 30, 85-101.
Kube, C. R., & Zhang, H. (1994). Collective robotics: From social insects to robots. Adaptive Behavior, 2,

189-218.
Kubow, T. M., & Full, R. J. (1999). The role of the mechanical system in control: a hypothesis of self-

stabilization in hexapedal runners. Philosophical Transactions Of The Royal Society B, 354, 849-
861.

Kuffler, S. W., Nicholls, J. G., & Martin, A. R. (1984). From Neuron To Brain, 2nd Edition. Sunderland,
MA: Sinauer Associates.

Kukla, A. (1989). Nonempirical issues in psychology. American Psychologist, 44(5), 785-794.
LaBerge, D., Carter, M., & Brown, V. (1992). A network simulation of thalamic circuit operations in selec-

tive attention. Neural Computation, 4, 318-331.
Langton, C. G. (1995). Artificial Life: An Overview. Cambridge, MA: MIT Press.
Leahey, T. H. (1987). A History Of Psychology (Second ed.). Englewood Cliffs, NJ: Prentice-Hall.
Lederman, L. (1993). The God Particle. New York, NY: Dell Publishing.
Leighton, J. P., & Dawson, M. R. W. (2001). A parallel distributed processing model of Wason's selection

task. Cognitive Systems Research, 2, 207-231.
Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., & Pitts, W. H. (1959). What the frog's eye tells the frog's

brain. Proceedings of the IRE, 47(11), 1940-1951.
Levitan, I. B., & Kaczmarek, L. K. (1991). The Neuron: Cell And Molecular Biology. New York: Oxford

University Press.
Levy, S. (1992). Artificial Life. New York, NY: Vintage Books.
Lewandowsky, S. (1993). The rewards and hazards of computer simulations. Psychological science, 4,

236-243.

 - 182 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Lewandowsky, S., & Hockley, W. E. (1991). Relating theory and data: Towards an integration. In W. E.
Hockley & S. Lewandowsky (Eds.), Relating Theory And Data: Essays On Human Memory In
Honor Of Bennet B. Murdock (pp. 3-19). Hillsdale, NJ: Lawrence Erlbaum Associates.

Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP magazine, April, 4-22.
Lippmann, R. P. (1989). Pattern classification using neural networks. IEEE Communications magazine,

November, 47-64.
Locke, J. (1977). An Essay Concerning Human Understanding. London: J.M. Dent & Sons.
Luce, R. D. (1989). Mathematical psychology and the computer revolution. In J. A. Keats & R. Taft & R. A.

Heath & S. H. Lovibond (Eds.), Mathematical and Theoretical Systems. Amsterdam: North-
Holland.

Luce, R. D. (1997). Several unresolved conceptual problems of mathematical psychology. Journal of
Mathematical Psychology, 41, 79-87.

Luce, R. D. (1999). Where is mathematical modeling in psychology headed? Theory & Psychology, 9,
723-737.

Lunneborg, C. E. (1994). Modeling Experimental And Observational Data. Belmont, CA: Duxbury Press.
Lynch, G. (1986). Synapses, Circuits, And The Beginnings Of Memory. Cambridge, MA: MIT Press.
Mackenzie, D. (2002). The science of surprise. Discover, 23(2), 59-62.
Malgady, R. G., & Johnson, M. G. (1976). Modifiers in metaphor: Effect of constituent phrase similarity on

the interpretation of figurative sentences. Journal Of Psycholinguistic Research, 5, 43-52.
Marr, D. (1982). Vision. San Francisco, Ca.: W.H. Freeman.
Martinez, J. L., & Derrick, B. E. (1996). Long-term potentiation and learning. Annual Review of Psycholo-

gy, 47, 173-203.
Massaro, D. W. (1988). Come criticisms of connectionist models of human performance. Journal of

Memory and Language, 27, 213-234.
Matin, L. (1968). Critical duration, the differential luminance threshold, critical flicker frequency, and visual

adaptation: A theoretical treatment. Journal of the Optical Society of America, 58, 404-415.
McCaughan, D. B., Medler, D. A., & Dawson, M. R. W. (1999). Internal representation in networks of

nonmonotonic processing units. Paper presented at the International Joint Conference On Neural
Networks, Washington, D.C.

McClelland, J. L. (1986). Resource requirments of standard and programmable nets. In D. Rumelhart & J.
McClelland (Eds.), Parallel Distributed Processing (Vol. 1). Cambridge, MA: MIT Press.

McClelland, J. L., Rumelhart, D. E., & Group, t. P. (1986). Parallel Distributed Processing, V.2. Cam-
bridge, MA: MIT Press.

McClelland, J. L., Rumelhart, D. E., & Hinton, G. E. (1986). The appeal of parallel distributed processing.
In D. Rumelhart & J. McClelland (Eds.), Parallel Distributed Processing (Vol. 1). Cambridge, MA:
MIT Press.

McCloskey, M. (1991). Networks and theories: The place of connectionism in cognitive science. Psycho-
logical science, 2, 387-395.

McComb, G. (1987). The Robot Builder's Bonanza: 99 Inexpensive Robotics Projects. Blue Ridge Sum-
mit, PA: TAB Books.

McCorduck, P. (1988). Artificial intelligence: An apercu. In S. Graubard (Ed.), The Artificial Intelligence
Debate. Cambridge, MA: MIT Press.

McCorduck, P. (1991). Aaron's Code: Meta-Art, Artificial Intelligence, And The Work Of Harold Cohen.
New York: W.H. Freeman.

McCulloch, W. S. (1988). What is a number, that a man may know it, and a man, that he may know a
number? In W. S. McCulloch (Ed.), Embodiments Of Mind (pp. 1-18). Cambridge, MA: MIT Press.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin
of Mathematical Biophysics, 5, 115-133.

McCulloch, W. S., & Pitts, W. H. (1988). A logical calculus of the ideas immanent in nervous activity. In W.
S. McCulloch (Ed.), Embodiments Of Mind (pp. 19-39). Cambridge, MA: MIT Press.

McNaughton, B., Barnes, C. A., Gerrard, J. L., Gothard, K., Jung, M. W., Knierim, J. J., Kudrimoti, H., Qin,
Y., Skaggs, W. E., Suster, M., & Weaver, K. L. (1996). Deciphering the hippocampal polyglot:
The hippocampus as a path integration system. The Journal of Experimental Biology, 199, 173-
185.

Medin, D. L., Goldstone, R. L., & Gentner, D. (1993). Respects for similarity. Psychological Review,
100(2), 254-278.

 - 183 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Medler, D. A. (1998). A brief history of connectionism. Neural Computing Surveys, 1, 18-72.
Mellet, E., Petit, L., Mazoyer, B., Denis, M., & Tzourio, N. (1998). Reopening the mental imagery debate:

Lessons from functional anatomy. Neuroimage, 8, 129-139.
Miller, R. R., Barnet, R. C., & Grahame, N. J. (1995). Assessment of the Rescorla-Wagner model. Psy-

chological Bulletin, 117(363-386).
Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for
determining the number of clusters in a data set. Psychometrika, 50, 159-179.
Milner, P. M. (1957). The cell assembly: Mark II. Psychological Review, 64(4), 242-252.
Minsky, M. (1963). Steps toward artificial intelligence. In E. A. Feigenbaum & J. Feldman (Eds.), Comput-

ers And Thought. New York, NY: McGraw-Hill.
Minsky, M. (1972). Computation: Finite And Infinite Machines. London: Prentice-Hall International.
Minsky, M., & Papert, S. (1988). Perceptrons, 3rd Edition. Cambridge, MA: MIT Press.
Mitchell, M. (1996). An Introduction To Genetic Algorithms. Cambridge, MA: MIT Press.
Moorhead, I. R., Haig, N. D., & Clement, R. A. (1989). An investigation of trained neural networks from a

neurophysiological perspective. Perception, 18, 793-803.
Moravec, H. (1999). Robot. New York, NY: Oxford University Press.
Mozer, M. C., & Smolensky, P. (1989). Using relevance to reduce network size automatically. Connec-

tion Science, 1, 3-16.
Murdock, B. B. (1982). A theory for the storage and retrieval of item and associative information. Psycho-

logical Review, 89, 609-626.
Murdock, B. B. (1985). Convolution and matrix systems: A reply to Pike. Psychological Review, 92, 130-

132.
Murdock, B. B. (1997). Context and mediators in a theory of distributed associative memory (TODAM2).

Psychological Review, 104, 839-862.
Newell, A. (1973). Production systems: Models of control structures. In W. G. Chase (Ed.), Visual Infor-

mation Processing (pp. 463-526). New York, NY: Academic Press.
Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135-183.
Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.
Newell, A., & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.
O'Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurones.

Nature, 381, 425-428.
O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: preliminary evidence from unit

activity in the freely moving rat. Brain Research, 34, 171-175.
O'Keefe, J., & Nadel, L. (1978). The Hippocampus As A Cognitive Map. Oxford: Clarendon Press.
Omlin, C. W., & Giles, C. L. (1996). Extraction of rules from discrete-time recurrent neural networks.

Neural networks, 9, 41-52.
Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation, and confirmation of nu-

merical models in the earth sciences. Science, 263, 641-646.
Ortony, A. (1979). Beyond literal similarity. Psychological Review, 86, 161-180.
Paivio, A. (1969). Mental imagery in associative learning and memory. Psychological review, 76, 241-263.
Paivio, A. (1971). Imagery And Verbal Processes. New York: Holt, Rinehart & Winston.
Paivio, A. (1986). Mental Representations: A Dual-Coding Approach. New York: Oxford University

Press.
Pao, Y.-H. (1989). Adaptive Pattern Recognition And Neural Networks. Reading, MA: Addison-Wesley.
Pavlov, I. P. (1927). Conditioned Reflexes. New York, NY: Oxford University Press.
Pearce, J. M. (1997). Animal Learning And Cognition: An Introduction. East Sussex: Psychology Press.
Pearce, J. M., & Bouton, M. E. (2001). Theories of associative learning in animals. Annual Review of Psy-

chology, 52, 111-139.
Pedhazur, E. J. (1982). Multiple Regression In Behavioral Research (Second ed.). New York, NY: Holt,

Rinehart and Winston.
Pfeifer, R., & Scheier, C. (1999). Understanding Intelligence. Cambridge, MA: MIT Press.
Piattelli-Palmarini, M. (1989). Evolution, selection and cognition: From "learning" to parameter setting in

biology and in the study of language. Cognition, 31, 1-44.
Pike, R. (1984). Comparison of convolution and matrix distributed memory systems for associative recall

and recognition. Psychological Review, 91, 281-294.
Pinker, S. (2002). The Blank Slate. New York, NY: Viking.

 - 184 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Popper, K. R. (1979). Objective Knowledge. London: Oxford University Press.
Pouget, A., Dayan, P., & Zemel, R. S. (2000). Information processing with population codes. Nature Re-

view Neuroscience, 1, 125-132.
Pylyshyn, Z. W. (1979a). Metaphorical imprecision and the "top-down" research strategy. In A. Ortony

(Ed.), Metaphor And Thought (pp. 420-436). Cambridge: Cambridge University Press.
Pylyshyn, Z. W. (1979b). The rate of 'mental rotation' of images: A test of a holistic analogue hypothesis.

Memory and Cognition, 7, 19-28.
Pylyshyn, Z. W. (1980). Computation and cognition: Issues in the foundations of cognitive science. Be-

havioral and Brain Sciences, 3, 111-169.
Pylyshyn, Z. W. (1981). The imagery debate: Analogue media versus tacit knowledge. Psychological Re-

view, 88(1), 16-45.
Pylyshyn, Z. W. (1984). Computation And Cognition. Cambridge, MA.: MIT Press.
Pylyshyn, Z. W. (1991). The role of cognitive architectures in theories of cognition. In K. VanLehn (Ed.),

Architectures For Intelligence (pp. 189-223). Hillsdale, NJ: Lawrence Erlbaum Associates.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
Quinlan, P. (1991). Connectionism And Psychology. Chicago, IL: University of Chicago Press.
Redish, A. D., & Touretzky, D. S. (1999). Separating hippocampal maps. In B. N. & K. J. Jeffery & J.

O'Keefe (Eds.), The Hippocampal And Parietal Foundations Of Spatial Cognition. Oxford: Oxford
University Press.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effective-
ness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical
Conditioning II: Current Research And Theory (pp. 64-99). New York, NY: Appleton-Century-
Crofts.

Restle, F. (1971). Mathematical Models In Psychology: An Introduction. Baltimore, MD: Penguin Books.
Restle, F., & Greeno, J. G. (1970). Introduction To Mathematical Psychology. Reading, MA: Addison-

Wesley.
Ripley, B. D. (1996). Pattern Recognition And Neural Networks. Cambridge, UK: Cambridge University

Press.
Rochester, N., Holland, J. H., Haibt, L. H., & Duda, W. L. (1956). Tests on a cell assembly theory of the

action of the brain, using a large digital computer. IRE Transactions On Information Theory, IT-2,
80-93.

Rojas, R. (1996). Neural Networks: A Systematic Exploration. Berlin: Springer.
Rollins, M. (2001). The strategic eye: Kosslyn's theory of imagery and perception. Minds and Machines,

11, 267-286.
Romney, A. K., Shepard, R. N., & Nerlove, S. B. (1972). Multidimensional Scaling: Theory And Applica-

tions In The Behavioral Sciences. Volume II: Applications. New York, NY: Seminar Press.
Rosenblatt, F. (1962). Principles Of Neurodynamics. Washington: Spartan Books.
Roufs, J. A. J. (1972). Dynamic properties of vision. I. Experimental relationships between flicker and

flash thresholds. Vision Research, 12, 261-278.
Royce, J. R. (1970). The present situation in theoretical psychology. In J. R. Royce (Ed.), Toward Unifica-

tion In Psychology. Toronto: University of Toronto Press.
Rumelhart, D. E., & Abrahamson, A. A. (1973). A model for analogical reasoning. Cognitive Psychology,

5, 1-28.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986a). Learning internal representations by error

backpropagation. In D. E. Rumelhart & J. McClelland (Eds.), Parallel Distributed Processing (Vol.
1). Cambridge, MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986b). Learning internal representations by error
propagation. In D. E. Rumelhart & G. E. Hinton (Eds.), Parallel Distributed Processing (Vol. 1, pp.
318-362). Cambridge, MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986c). Learning representations by back-propagating
errors. Nature, 323, 533-536.

Rumelhart, D. E., & McClelland, J. (1986). On learning the past tenses of English verbs. In J. McClelland
& D. E. Rumelhart (Eds.), Parallel Distributed Processing. Volume 2: Psychological And Biologi-
cal Models (pp. 216-271). Cambridge, MA: MIT Press.

Rumelhart, D. E., McClelland, J. L., & Group., t. P. (1986). Parallel Distributed Processing, V.1. Cam-
bridge, MA: MIT Press.

 - 185 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Sandon, P. A. (1992). Simulating visual attention. Journal of Cognitive Neuroscience, 2, 213-231.
Sarle, W. S. (1994). Neural networks and statistical models. Paper presented at the Proceedings
of the Nineteenth Annual SAS Users Group International Conference.
Schlimmer, J. S. (1987). Concept acquisition through representational adjustment. Unpublished Doctoral

dissertation, University of California Irvine, Irvine, CA.
Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3, 417-424.
Searle, J. R. (1984). Minds, Brains And Science. Cambridge, MA: Harvard University Press.
Searle, J. R. (1990). Is the brain's mind a computer program? Scientific American, 262, 26-31.
Searle, J. R. (1992). The Rediscovery Of The Mind. Cambridge, MA: MIT Press.
Seidenberg, M. (1993). Connectionist models and cognitive theory. Psychological science, 4, 228-235.
Seidenberg, M., & McClelland, J. (1989). A distributed, developmental model of word recognition and

naming. Psychological review, 97, 447-452.
Sejnowski, T. J., & Rosenberg, C. R. (1988). NETtalk: A parallel network that learns to read aloud. In J. A.

Anderson & E. Rosenfeld (Eds.), Neurocomputing: Foundations Of Research (pp. 663-672).
Cambridge, MA: MIT Press.

Selfridge, O. G. (1956). Pattern cognition and learning. In C. Cherry (Ed.), Information Theory. London:
Butterworths Scientific Publications.

Shanks, D. R. (1995). The Psychology Of Associative Learning. Cambridge, UK: Cambridge University
Press.

Shanks, D. R. (1997). Representation of categories and concepts in memory. In M. A. Conway (Ed.),
Cognitive Models Of Memory. Cambridge, MA: MIT Press.

Shepard, R. N. (1972). A taxonomy of some principal types of data and of multidimensional methods for
their analysis. In R. N. Shepard & A. K. Romney & S. B. Nerlove (Eds.), Multidimensional scaling:
Theory and applications in the behavioral sciences. Vol 1:Theory (pp. 21-47). New York, NY:
Seminar Press.

Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, MA: MIT
Press.

Shepard, R. N., Romney, A. K., & Nerlove, S. B. (1972). Multidimensional Scaling: Theory And Applica-
tions In The Behavioral Sciences. Volume I: Theory. New York, NY: Seminar Press.

Shepherd, A. J. (1997). Second-Order Methods For Neural Networks. London: Springer.
Sherry, D., & Healy, S. (1998). Neural mechanisms of spatial representation. In S. Healy (Ed.), Spatial

Representation In Animals. Oxford: Oxford University Press.
Siegelmann, H. T. (1999). Neural Networks And Analog Computation: Beyond The Turing Limit. Boston,

MA: Birkhauser.
Simon, H. A. (1996). The Sciences Of The Artificial (Third ed.). Cambridge, MA: MIT Press.
Skinner, B. F. (1957). Verbal Behavior. New York, NY: Appleton-Century-Crofts.
Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 11, 1-

74.
Sorabji, R. (1972). Aristotle On Memory. Worcester, GB: Ebenezer Baylis and Son.
Sporns, O., & Tononi, G. (1994). Selectionism And The Brain. San Diego, CA: Academic Press.
Steinbuch, K. (1961). Die lernmatrix. Kybernetik, 1, 36-45.
Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. Amer-

ican scientist, 4, 421-457.
Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks: Expectation and pre-

diction. Psychological Review, 88(2), 135-170.
Taylor, W. K. (1956). Electrical simulation of some nervous system functional activities. In C. Cherry (Ed.),

Information Theory. London: Butterworths Scientific Publications.
Tesauro, G., & Janssens, B. (1988). Scaling relationships in backpropagation learning. Complex Sys-

tems, 2, 39-44.
Theraulaz, G., & Bonabeau, E. (1999). A brief history of stigmergy. Artificial Life, 5, 97-116.
Thompson, W. L., Kosslyn, S. M., Sukel, K. E., & Alpert, N. M. (2001). Mental imagery of high- and low-

resolution gratings activates Area 17. Neuroimage, 14, 454-464.
Thrun, S. (1995). Extracting rules from artificial neural networks with distributed representations. In G.

Tesauro & D. S. Touretzky & T. K. Leen (Eds.), Advances in Neural Information Processing Sys-
tems (Vol. 7). Cambridge, MA: MIT Press.

 - 186 -

Minds And Machines © M.R.W. Dawson 12/02/2016

Thrun, S. B., Bala, J., Bloedorn E., Bratko, I., Cestnik, B., Cheng, J., De Jong, K., Dzeroski, S., Fahlman,
S. E., Fisher, D., Hamann, R., Kaufman, K., Keller, S., Kononenko, I., Kreuziger, J., Michalski, R.
S., Mitchell, T., Pachowicz, P., Reich, Y., Vafaie, H., Van de Welde, W., Wenzel, W., Wnek, J., &
Zhang, J. (1991). The MONK's Problems - A Performance Comparison of Different Learning

 algorithms (Technical Report CS-CMU-91-197). Pittsburgh: Carnegie Mellon University.
Tolman, E. C. (1932). Purposive behavior in animals and men. New York: Century Books.
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological review, 55, 189-208.
Tourangeau, R., & Sternberg, R. J. (1981). Aptness in metaphor. Cognitive psychology, 13, 27-55.
Tourangeau, R., & Sternberg, R. J. (1982). Understanding and appreciating metaphors. Cognition, 11,

203-244.
Touretzky, D. S., Wan, H. S., & Redish, A. D. (1994). Neural representation of space in rats and robots. In

J. M. Zurada & R. J. Marks & C. J. Robinson (Eds.), Computational Intelligence: Imitating Life.
New York, NY: IEEE Press.

Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, Series 2h, 42, 230-265.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433-460.
Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352.
Tversky, A., & Gati, I. (1982). Similarity, separability, and the triangle inequality. Psychological Review,

89, 123-154.
Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. Ingle & M. A. Goodale & R. J.

W. Mansfield (Eds.), Analysis Of Visual Behavior. Cambridge, MA: MIT Press.
VanLehn, K. (1991). Architectures For Intelligence. Hillsdale, NJ: Lawrence Erlbaum Associates.
von Neumann, J. (1973). First draft of a report on the EDVAC. In B. Randell (Ed.), The Origins Of Digital

Computers: Selected Papers (pp. 355-364). Berlin: Springer-Verlag.
Waldrop, M. M. (1992). Complexity: The Emerging Science At The Edge Of Order And Chaos. New York,

NY: Simon & Schuster.
Warren, H. C. (1921). A History Of The Association Psychology. New York, NY: Charles Scribner's Sons.
Wasserman, E. A., & Miller, R. R. (1997). What's elementary about associative learning? Annual Review

of Psychology, 48, 573-607.
Watkins, M. J. (1990). Mediationism and the obfuscation of memory. American Psychologist, 45(328-

335).
Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review, 20, 158-177.
Watson, J. D. (1968). The Double Helix. New York, NY: New American Library.
Webb, B. (1996). A cricket robot. Scientific American, 275, 94-99.
Webb, B. (2000). What does robotics offer animal behaviour? Animal Behaviour, 60, 545-558.
Whitten, D. N., & Brown, K. T. (1973). Slowed decay of the monkey's cone receptor potential by intense

stimuli, and protection from this effect by light adaptation. Vision Research, 13, 1659-1667.
Wickens, T. D. (1982). Models For Behavior: Stochastic Processes In Psychology. San Francisco, CA:

W.H. Freeman.
Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. Institute of Radio Enginners, Wester Elec-

tronic Show and Convention, Convention Record, Part 4, 96-104.
Wiener, N. (1948). Cybernetics: Or Control And Communciation In The Animal And The Machine. Cam-

bridge, MA: MIT Press.
Williams, M. R. (1997). A History Of Computing Technology (Second Edition ed.). Los Alamitos, CA:

IEEE Computer Society Press.
Winer, B. J. (1971). Statistical Principles In Experimental Design (Second ed.). New York, NY: McGraw-

Hill.
Wittgenstein, L. (1953). Philosophical Investigations (G. E. M. Anscombe, Trans.). Oxford, UK: Blackwell.
Zeigler, B. P. (1976). Theory Of Modelling And Simulation. New York, NY: John Wiley & Sons.
Zimmerman, C. L. (1999). A network interpretation approach to the balance scale task. Unpublished

Ph.D., University of Alberta, Edmonton.
Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network that simulates response

properties of a subset of posterior parietal neurons. Nature, 331, 679-684.

 - 187 -

Synthetic Psychology © M.R.W. Dawson 12/02/2016

