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Chapter 1: The Kids In The Hall 
 
It is noon on a beautiful March day in Edmonton.  At King Edward Elementary School, a 

group of schoolchildren aren't playing outside in the sunshine during the lunchtime recess.  In-
stead, they form a crowd in a dark hall that is only illuminated by a small, bright flashlight resting 
on the middle of the floor.  They are acting like scientists, and have in hand pencils and index 
cards for recording their observations.  The focus of their scientific interest is the behavior of two 
small Lego robots that are navigating through the hallway.  Both robots look like tiny tractors from 
outer space.  Motors turn two large wheels at the rear, and a smaller front wheel turns as a robot 
steers through the hallway.  Two small red LEDs shine like headlights mounted on the front.  A 
thin, flexible barrier surrounds each robot, looking like a flexible hoop or shell. 

 
One of the robots wanders down the hall, away from the flashlight, bumping into dark 

baseboards.  As it comes in contact with the wall, it stops and does a short gyrating dance.  
Sometimes this causes it to point towards the light, but soon it steers itself to point in another di-
rection.  On several occasions, the students have to scramble out of the way of an approaching 
machine. The second robot spends more time bumping into the flashlight.  When it is steering, it 
slowly moves in and out of the pool of light that the flashlight provides.   

 
These students have had some experience building and programming other Lego robots 

as part of a weekly science fair club.  They understand the function of the components that they 
can see on the moving robots. However, they did not construct these two machines.  Their task 
was to try and figure out why each robot behaved the way that it did.  By inspecting their move-
ment, could the students come up with a general story about the program stored in each robot, 
about how each robot sensed the world, or about why the robots seemed to be different? 

 
When they observed the robots behaving independently, their previous experience was 

evident.  Many of the kids wrote down observations like "one likes the light and the other one 
likes the dark."  Nevertheless, some students came up with theories that far exceeded my pro-
gramming abilities.  One suggested that one of the robots "thinks when stops, figures out things, 
searches for dark."  The complexity of their theories -- or least the complexity of the programming 
that their theories required -- increased dramatically when they observed the two robots moving 
at the same time. "They want to get away from each other."  "The black robot likes to hit things 
and the green robot likes people."  "Together they attack things." 

 
It is later that same week.  University students in an undergraduate psychology course 

find themselves with pens and index cards in hand, facing the same task as the kids at King Ed-
ward Elementary School.  The undergraduates have a strong technical background in the science 
of behavior, but have had no previous experience with Lego robots.  Many of their observations of 
robot behavior lead to proposals of very sophisticated internal mechanisms, and of complex rela-
tionships between the two machines.  "The turquoise robot seemed to be the smarter robot.  It 
first began to move in a circular motion, but seems to be able to adjust its behavior according to 
the behavior of the black robot."  "They must be sending sequence information to each other."  
"Turquoise keeps trying to attack Black."  "Now Turquoise moves to where the flashlight used to 
be."  "Turquoise seems to be more exploratory, directed."  "The robots took turns moving.  One 
moved, while the other remains stationary."  "Turquoise hesitates until Black hits the light.  Tur-
quoise then follows Black off to the right." 

 
The apparent complexity of the robots’ behavior is, perhaps surprisingly, not evident in 

their internal mechanisms.  The two robots are variations of one of the vehicles described in a 
classic text on synthetic psychology (Braitenberg, 1984).  The two LEDs are part of a pair of light 
sensors that measure the brightness around them.  Each light sensor is connected to a motor, 
and the motor’s speed is determined by the light sensor’s signal.  In one robot, the light sensor on 
the right of the machine drives the right motor and the left sensor drives left motor.  In the other 
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robot, the connections between light sensors and motors are crossed so that the light sensor on 
one side sends a signal to the motor on the other side.  The barrier surrounding the robot, when 
pushed, depresses one of four touch sensors mounted on the body of robot.  When any one of 
these sensors are activated, the motors are stopped, and then a reflex is initiated in which the two 
motors run backwards and then forwards at randomly selected speeds for a short period of time.  
These mechanisms, and only these mechanisms, are responsible for one robot preferring the 
dark and the other preferring the light, as well as for any apparently sophisticated interactions 
between the two machines. 

 
1.1 SYNTHETIC VERSUS ANALYTIC TRADITIONS 

 
When asked to describe and explain robot behavior, both sets of students were facing 

the situation that makes scientific psychology difficult.  The only given is the external behavior of 
a complicated system.  The internal processes that mediate this behavior cannot be directly ob-
served.  The challenge is to infer plausible and testable theories of these unknown internal pro-
cesses purely on the basis of what can be seen directly.   “How do we represent information men-
tally and how do we use that information of to interact with the world in adaptive ways?  The prob-
lem persists because it is extraordinarily difficult, perhaps the most difficult one in all of science” 
(Paivio, 1986, p. 3). 

 
In spite of this difficulty, psychology has made many advances by carefully observing and 

analyzing behavioral regularities.  For example, psychology has developed many detailed theo-
ries of the intricate processes involved in visual perception.  These theories can predict minute 
aspects of behavior with astonishing accuracy, and are also consistent with discoveries about the 
underlying structure of the brain. 

 
However, some researchers would argue that in spite of such success, psychology and 

cognitive science in general requires alternative research strategies.  There is a growing tenden-
cy in cognitive science to adopt a radically different -- and non-analytic -- approach to understand-
ing mental phenomena.  This approach is evident in research associated with such labels as syn-
thetic psychology, based-based robotics, or embodied cognitive science (e.g., Brooks, 1999; 
Pfeifer & Scheier, 1999). This research is based upon the general assumption that theory building 
in cognitive science would be better served by synthesis than analysis. 

 
Practitioners of embodied cognitive science would not be surprised that the students 

came up with theories that overestimated the complexity of the two robots. They would also pre-
dict that these theories would become more and more complicated as the scene being observed 
became more complex as well (for instance, by containing two moving robots instead of just one).  
According to synthetic psychology's “law of uphill analysis and downhill synthesis”, a theory cre-
ated by analyzing a complicated situation is guaranteed to be more complicated than a theory 
created using the synthetic approach (Braitenberg, 1984).   

 
One reason for this is that when we observe complex behavior, we have difficulty deter-

mining how much of the complexity is due to the mechanisms of the behaving agent and how 
much is due to the environment in which the agent behaves.  For the kids in the hallway, the 
problem is to decide how much of the behavior is explicitly programmed, and how much is the 
result of both static and dynamic environmental variables.  It seems that we have a tendency to 
attribute more intelligence to the behaving system than might be necessary. 

 
Embodied cognitive science proposes that simpler and better theories will be produced if 

they are developed synthetically.  In the most basic form, this is done as follows: First, a re-
searcher decides on a set of basic building blocks, such as a library of primitive operations.  For 
the two robots, the building blocks were the sensors, the motors, and a relatively simple pro-
gramming language developed by Lego. Second, a system is constructed by organizing these 
building blocks in a particular way.  For the two robots, this was done by physically situating the 
sensors and motors in a particular fashion, and by writing elementary code to convert sensor 
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readings into motor speeds. Third, the system is situated in an environment, and its behavior is 
observed.  For the designer, one of the interesting questions is whether the observed behavior is 
more surprising or interesting than might be expected given what is known about how the system 
was constructed. 

 
If these three steps are followed, then there are two general expectations.  First, because 

the system is constructed from known components, the researcher should have an excellent un-
derstanding of how it works. Second, when the system is embedded into a real environment, the 
interaction between the system and this environment should result in emergent phenomena.  
These emergent phenomena will be complicated behaviors that are surprising in the sense that 
they were not directly intended or programmed into the system.  The net result of all of this is 
(hopefully) a better and simpler theory of the complex behavior then would have been the case 
had the theory been created just by analyzing an existing system’s behavior. 

 
The purpose of the first part of this book is to explore the differences between synthetic 

and analytic approaches to cognitive science.  I am going to make the argument that when you 
adopt an analytic approach to explaining mental phenomena, a "cognitive model" is viewed in a 
very particular way.  Synthetic researchers treat models very differently, and their work offers 
some advantages that may not be evident to those who use models in the analytic tradition.   

 
The general aim of this book is to broaden the notion of what a cognitive model is, and to 

demonstrate what models, probably construed, can do for psychology and for cognitive science.  I 
am not going to argue for the synthetic approach and against the analytic tradition, because later 
I hope to make a strong case that both traditions are required even when one's work is predomi-
nantly synthetic.  I am going to argue that a synthetically designed model is a liberating and excit-
ing addition to the toolbox of analytic researchers. 



 - 4 - 

Minds And Machines © M.R.W. Dawson 12/02/2016 

Chapter 2: Advantages And Disad-
vantages Of Modeling 

 
2.1 WHAT IS A MODEL? 

 
In science, phenomena that are difficult to study or to understand in their own right are often ap-

proached through the use of models.  The kinds of models that are used are as diverse as science itself.  
In biology, model organisms are used to study processes that cannot be easily measured in humans.  In 
engineering, models of physical structures are tested in wind tunnels.  Some might argue that physics is 
concerned with the development and testing of mathematical models of physical systems  

 
Even within a single discipline, one can find a bewildering diversity of model types.  For example, 

in psychology, computer simulation models have been created for many cognitive phenomena (Boden, 
1977; Feigenbaum & Feldman, 1995; Grossberg, 1988; VanLehn, 1991). Mathematical models have 
been used to study human perception, learning, judgments and choice (Bock & Jones, 1968; Caelli, 1981; 
Restle, 1971). Statistical models have become the primary tool for expressing relationships between vari-
ables  (Lunneborg, 1994; Pedhazur, 1982; Winer, 1971).  Model organisms, such as the long-finned squid 
Loligo pealei, have been used to help understand the generation and transmission of nervous impulses 
(Hille, 1990; Levitan & Kaczmarek, 1991). 

 
A famous philosophical passage highlights the perils of defining even the simplest of terms: 

“Consider for example the proceedings that we call ‘games’. I mean board games, card-games, ball 
games, Olympic games, and so on. What is common to them all? -- Don't say: ‘There must be something 
common, or they would not be called 'games' ‘-but look and see whether there is anything common to all” 
(Wittengstein, 1953, p. 31e). Given the diversity that we have briefly noted above, the term ‘model’ could 
just have easily been used to demonstrate this point!  Wittgenstein went on to argue that there was only a 
family resemblance between members of a category. “For if you look at them you will not see something 
that is common to all, but similarities, relationships, and a whole series of them at that.”  The features that 
constitute these similarities and relationships change as different members of the same class are com-
pared to one another.  What kind of family resemblance would we find amongst the members of the class 
‘model’? 

 
Intuitively, a model is an artifact that can be mapped on to a phenomenon that we are having dif-

ficulty understanding.  By examining the model we can increase our understanding of what we are model-
ing.  “A calculating machine, an anti-aircraft ‘predictor’, and Kelvin’s tidal predictor all show the same abil-
ity.  In all these latter cases, the physical process which it is desired to predict is imitated by some me-
chanical device or model which is cheaper, or quicker, or more convenient in operation” (Craik, 1943, p. 
51). 

 
For it to be useful, the artifact must be easier to work with or easier to understand than is the 

phenomenon being modeled.  This usually results because the model reflects some of the phenomena’s 
properties, and does not reflect them all.  A model is useful because it simplifies the situation by omitting 
some characteristics.  “Any kind of working model of a process is, in a sense, an analogy.  Being different 
it is bound somewhere to break down by showing properties not found in the process it imitates or by not 
possessing properties possessed by the process it imitates” (Craik, 1943, p. 53).  Similarly, “the word 
model may be used instead of theory to indicate that the theory is only expected to hold as an approxima-
tion, or that employing it depends upon various simplifying assumptions” (Braithwaite, 1970. p. 269). 

 
While a model can imitate a phenomenon, it need not resemble it.  “Kelvin’s tide-predictor, which 

consists of a number of pulleys on levers, does not resemble a tide in appearance, but it works in the 
same way in certain essential respects – it combines oscillations of various frequencies so as to produce 
an oscillation which closely resembles in amplitude at each moment the variation in tide level at any 
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place” (Craik, 1943, p. 51).  Similarly, Galileo revolutionized science by using geometry to represent phys-
ical quantities like velocity and acceleration that do not themselves resemble lines or angles (Haugeland, 
1985).  

 
Of course, consistent with Wittgenstein’s notion of family resemblance, none of the claims made 

in the preceding paragraphs apply equally well to every model.  For instance, some models are less anal-
ogous than others.  The properties of the ionic channels in one model, the giant axon of the squid, are 
expected to correspond perfectly to the properties of the same channels in the human nervous system 
(Kuffler, Nicholls, & Martin, 1984). Similarly, some models, such as the scale models of structures that are 
tested in wind tunnels, have much stronger resemblances to entities in the real world than do other kinds 
of models. 

 
One property that does seem common to all models, though, is the notion of predictive utility.  A 

model is used to generate predictions that can be used to test the validity of a theory.  The model is used 
because in some sense it provides an easier or faster route to prediction.  Later in this book we will see 
that the many different kinds of models available to psychology can be used in a variety of ways, and that 
in some sense it is not correct to describe the models of synthetic psychology as providing “predictive 
utility”.  Prior to embarking on that much longer discussion in later chapters, let us first turn quickly to con-
sidering some of the advantages and disadvantages of using models in general. 

 
2.2 ADVANTAGES AND DISADVANTAGES OF MODELS 

 
Modeling in psychology or cognitive science is associated with both advantages and disad-

vantages (e.g., Lewandowsky, 1993).  In this section of the chapter, we will consider three general ad-
vantages of modeling.  However, after each of these three advantages, we will follow with a discussion of 
associated disadvantages.  Models are like fine knives with which you can create gourmet meals, but with 
which you can also cut off your fingers. 

 
2.2.1 Rigorous Specification Of Theory 

 
“Theory in a field as immature as psychology cannot be expected to amount to much -- and it 

doesn’t” (Royce, 1970. p. 17). There are many reasons for skepticism about the quality of psychological 
theory.  Some researchers have argued that psychologists, envious of physics, attempted to develop 
quantitative theories without first laying a proper qualitative foundation (Kohler, 1975). Others would ar-
gue that whenever psychological theories are expressed verbally, they are necessarily vague and impre-
cise.  As well, there is a long tradition in experimental psychology of being extremely wary of verbal data 
(Ericsson & Simon, 1984). It would not be surprising if there were an accompanying wariness of verbally 
or informally stated theories. 

 
How do you make theories better?  Many researchers would argue that this is accomplished by 

translating an informal verbal theory into a formal mathematical expression or into a working computer 
simulation.  "Even deceptively simple models can benefit from the rigor of simulations" (Lewandowsky, 
1993, p. 236). 

 
2.2.1.1 Precision Of Terms 
 
There are several reasons that the process of formalization is useful.  First, it adds precision in 

specifying theoretical terms.  An informal theory can be full of references to terms with vague definitions 
like “memory" or "attention".  Many academic debates emerge because different researchers use the 
same terms in different ways.  In a formal model, conceptual terms have to be carefully operationalized in 
order for the model to work.  This forced precision enables the theorist to communicate his ideas to others 
less ambiguously then would be the case if the theory were communicated as an informal statement. 

 
One interesting historical example of this can be found in experimental aesthetics.  One of the 

main goals of this discipline was to measure subjects’ responses or preferences, and to relate these 
measurements to properties of the works of art or other objects that were presented (Berlyne, 1971). In 
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this field, it has proven difficult to specify both properties of stimuli and properties of preferences.  For ex-
ample, the Gestalt psychologists introduced the notion of "goodness of configuration" with their Law of 
Prägnanz (Kohler, 1975). According to this law, we perceive organized patterns instead of isolated ele-
ments, and we actively organize these patterns to make them “good".   

 
Unfortunately, the definition of good in the Law of Prägnanz was particularly vague: "psychologi-

cal organization will always be as ‘good’ as the prevailing conditions allow.  In this definition the term 
‘good’ is undefined.  It embraces such properties as regularity, symmetry, simplicity and others" (Kohler, 
1975, p. 110).  Berlyne (1971) revolutionized the field with formalization, in particular by characterizing 
stimulus properties numerically using definitions of complexity and redundancy that were taken from 
mathematical information theory.  Berlyne took the same approach to the notion of preference, formaliz-
ing emotion in terms of arousal.  Berlyne’s approach led to extremely vibrant study of aesthetics by exper-
imental psychologists in the 1960s and '70s.  The renaissance of the field was largely driven by the fact 
that Berlyne’s formalization permitted researchers in different labs to have more precise understanding of 
the stimulus and response properties that were being studied in diverse experiments. 

 
2.2.1.2 New Tools For Studying Concepts 
 
A second advantage of formalization comes from recognizing that the language in which a theory 

is expressed determines the kinds of ways in which the theory can be tested or explored.  For instance, 
after a verbal theory has been formalized mathematically, one can use mathematical operations to inves-
tigate its implications (Coombs, Dawes, & Tversky, 1970; Lunneborg, 1994; Wickens, 1982). In other 
words, formalization not only results in a more precise specification of the concepts in the theory, but also 
results in a more precise set of tools for studying these concepts. 

 
One example of this can be found in my own research on how the human visual system tracks 

the identity of moving targets (Dawson, 1991). In one approach, I converted a general theory of this track-
ing into a particular type of computer simulation.  I was then able to use the simulation to generate hy-
potheses about what human subjects would see when presented apparent motion displays that had never 
been studied before (Dawson & Pylyshyn, 1988). In a second approach, I formalized the theory using 
some of the elementary operations of linear algebra.  With this formalization, I was able to prove that the 
computer simulation would generate unique solutions to tracking problems.  I was also able to prove that 
there was a strong relationship between my model and a more general model that was unrelated to mo-
tion processing (Hopfield, 1982).  The algebra showed that both models could be described as minimizing 
identical energy functions.  Both of these proofs were examinations of crucial characteristics of my theory, 
but would have been impossible to conduct had the model not been expressed algebraically. 

 
2.2.1.3 Revelation Of Hidden Assumptions 
 
A third advantage of formalization is that it can reveal hidden assumptions in an informal theory 

which themselves need to be fleshed out in greater detail in order for the theory to be complete.  For ex-
ample, many theories in cognitive psychology are expressed as flowcharts of black boxes.  Ideally, each 
black box in such a flowchart is supposed to be a primitive operation that needs no further explanation 
(Cummins, 1983; Dawson, 1998).   Bringing the flowchart to life in, for instance, a computer simulation 
can reveal that some of these alleged primitives are themselves very complicated processes that require 
further analysis and explanation. 

 
As a case in point, consider the study of vision.  For most people, visual perception is extremely 

easy: we just look at something and see it.  Because of this, artificial intelligence researchers believed in 
the 1960s that it would be very straightforward to build computer vision programs.  “In the 1960s almost 
no one realized that machine vision was difficult” (Marr, 1982, p. 16). Indeed, Marvin Minsky has admitted 
that he assigned computer vision to a student as a summer programming project (Horgan, 1993). How-
ever, when serious attempts were directed towards programming a machine to see, astonishing difficul-
ties arose.  It became painfully obvious that underlying the process of seeing was a set of enormously 
complicated information processing problems that the human visual system was solving effortlessly in real 
time.  Identifying the nature of these problems, let alone solving them, became a staggering challenge for 
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vision researchers – and the core of a new discipline.  Vision research has obviously benefited from at-
tempts to formalize our intuitions about perceptual processing. 

  
2.2.2 Problems With Formalization 

 
We have seen in the preceding section that one general property of the model is that it can result 

in the conversion of an informal theory into a theory that is stated more rigorously or more precisely.  
We've also seen that there are several advantages to doing this.  However, it is important to realize that 
the formalization of the theory can also be hazardous.  Let's briefly consider some potential disad-
vantages of formalization. 

 
2.2.2.1 The Irrelevant Specification Problem 
 
One potential problem with formalization is that this process requires a researcher to make de-

sign decisions.  For instance, in a computer simulation one might have many possible ways for represent-
ing information.  To build a model, one of these representational formats must be selected.  The hope is 
that the specific choice is theory-neutral.  If the choice is theory-neutral, this means that the simulation will 
behave in the same manner whatever representational format is chosen.  However, this is often not the 
case.  Many design decisions are theory-laden.  In other words, the behavior of the model is affected by 
the design decisions.  With one representational code a computer simulation might behave one way, but 
it will behave differently with another representational code.  Lewandowsky (1993) calls this the irrelevant 
specification problem. 

 
To illustrate the irrelevant specification problem, let us consider a model of how human subjects 

perform in a particular memory task.  One of the earliest techniques for studying memory was the paired-
associate learning task (Ashcraft, 1989). In this task, subjects were presented pairs of consonant-vowel-
consonant nonsense syllables (CVCs), such as XOP-LUD.  When presented the first member of the pair, 
subjects’ task was to remember the second member of the pair.  So, when presented XOP a subject 
would respond with LUD.  The dependent measure for this task was usually the number of trials that were 
required before a short list of these pairs was remembered perfectly.  The paired-associate learning task 
was central to the study of interference theories of forgetting. 

 
In 1961, a computer simulation of this type of memory task, called EPAM for Elementary Perceiv-

er and Memorizer, was first described (Feigenbaum, 1995).  This model used a discrimination learning 
process to create a discrimination net to represent remembered CVCs.  This discrimination net was very 
similar to modern decision trees used by computer scientists for pattern recognition (e.g., Quinlan, 1986). 
Each branch of Feigenbaum's discrimination net was a test that would distinguish one CVC from another.  
Each terminal leaf of the discrimination net was one of the component letters of a CVC.  During learning, 
EPAM would grow its discrimination net using the minimum amount of information required.  As more 
items were added to the net, the early discrimination tasks might start to fail, which allowed EPAM to 
model interference effects in paired-associate learning. 

 
One of the key design decisions in EPAM was the assumption that the primitive symbols in the 

discrimination net were individual letters. Feigenbaum and Feldman (1995) made this design decision for 
the very plausible reason "letters are familiar and are well-learning units for the adult subject” (p. 301).  
However, it turns out that this design decision is theory-laden.  In one of my first experiences with com-
puter simulation in a Minds and Machines course taught by Zenon Pylyshyn at the University of Western 
Ontario, we started with an EPAM model that used Feigenbaum’s coding format.  We then revised the 
model by making a different design decision about the internal symbols.  In the revised model, we de-
scribed each letter as a set of visual features.  As a result, the discrimination net terminated in featural 
subcomponents of a CVC’s component letters.  The revised model had a great deal of difficulty learning 
any paired associates, indicating that the choice of internal representation strongly affects the model's 
performance. 

 
2.2.2.2 The Relevant Formalization Problem 
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Hodges (1983) describes a problem that mathematician Alan Turing encountered when he for-
malized a method for playing chess.  "Alan had all the rules written out on its paper, and found himself 
torn between executing the moves that his algorithm demanded, and doing what was obviously a better 
move.  There were long silences while he totted up the scores and chose the best minimax ploy, hoots 
and growls when he could see it missing chances" (p. 440).  This illustrates a disadvantage that I will call 
the relevant formalization problem.  After you formalize a model, like Turing, you have to accept its bad 
properties along with the good. The relevant formalization problem occurs when this is not done, because 
there is a strong temptation to selectively focus on a formalization’s successes, and ignore its failures. 

 
My own experience with the relevant formalization problem came when I taught myself connec-

tionism by programming the equations in a popular account of the generalized delta rule (Rumelhart, Hin-
ton, and Williams, 1986b). After programming the equations, I tested my work by trying to train networks 
on the problems that Rumelhart, Hinton, and Williams described.  To my dismay, I found that in several 
cases my program didn't converge to a trained connectionist network.  Thinking that there must be a bug 
in my code, I spent a great deal of time poring over it, and was frustrated by failing to find any errors.  It 
turned out that my code was correct, but that in many cases it was failing to converge because the net-
work connection weights were driving the system into a local minimum.   

 
I should have expected this, because the generalized delta rule is, in principle, subject to this kind 

of problem (Minsky & Papert, 1988).  However, I had different expectations because, in my opinion, Ru-
melhart, Hinton, and Williams (1986b) had fallen into the relevant formalization problem.  They reported 
that "we do not know the frequency of such local minima, but our experience with this and other problems 
is that they are quite a rare.  We have found only one other situation in which a local minimum has oc-
curred in many hundreds of problems of various sorts” (p. 332).  My own experience with this kind of net-
work is that problems like local minima are much more frequent. 

 
Having to take the formalization seriously can be extremely productive.  One excellent example of 

this is found in work that uses production systems to model human search of short-term memory (Newell, 
1973), and is described in the paragraphs that follow. 

 
Sternberg (1969) reported one famous study of short-term memory.  In the Sternberg memory 

task, subjects were given a string of digits to hold in short-term memory.  After a set delay, subjects were 
presented an additional probe digit.  Their task was to say whether or not the probe was a member of the 
memorized list.  The dependent measure in this experiment was reaction time.  Sternberg found a linear 
increase in response time as a function of the number of digits in the memorized list.  Sternberg also 
found that the slope of the reaction time function for lists that did not contain the probe was twice the 
slope of the reaction time function for lists that did.  Sternberg used these results to propose a self-
terminating serial search model of short-term memory; this was one of the first experiments that demon-
strated how reaction time data could be used to infer the properties of internal processes. 

 
Newell (1973) described a series of production system models of the Sternberg memory task.  

Production systems are described in more detail later in Chapter 5.  For the time being, a production sys-
tem is essentially a set of condition-action pairs that scan a memory.  When the contents of the memory 
match a production’s condition, then it takes control of the memory and performs its action.  Usually this 
action involves changing the contents of the memory, so that some other production’s condition might be 
met. 

 
Newell (1973) found that it was very easy to create fairly simple production system models of the 

Sternberg memory task.  In fact, he describes seven different production system models written in a lan-
guage called PSG.  Each of these models was capable of making the correct response when given the 
probe.  However, only one of these models generated response latency functions that resembled those of 
human subjects.  Interestingly, this production system was not a model of search.  Instead, it was a model 
of a general encoding and decoding scheme that could be used to perform the Sternberg task, as well as 
other basic tasks in cognitive psychology. 
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Given this result, it would have been quite reasonable for Newell (1973) to report only his last 
production system model.  However, had he done so, he would have fallen victim to the relevant formali-
zation problem.  This is because one of his basic assumptions was that production systems described the 
functional architecture of human cognition.  “In this view PSG represents the basic structure of the human 
information processing system.  It follows that any program written in PSG should be a viable program for 
the human subject” (p. 494).  As a result, in addition to coming up with one model that fits the human re-
action time data, Newell must come up with a theory about why humans might use that production sys-
tem, and not any of the other six, some of which are simpler.  “Our example makes clear that multiple 
production systems are possible.  Without a theory of which system is selected the total view remains 
essentially complete”. 

 
Newell (1973) went on to explore why an encoding model for performing the Sternberg memory 

task might be more adaptive than other possible production systems.  He proposed that for the Sternberg 
task, short-term memory is unreliable, and an encoding model of memory processing is better at dealing 
with this unreliability.  He also showed how an encoding strategy works well for a variety of other tasks, 
which is not the case for the simpler production system models that he was able to devise.  However, 
Newell also identified plausible alternatives to the encoding model that are worthy of further exploration.  
In short, by avoiding the relevant formalization problem, Newell was able to develop a rich and detailed 
understanding of the Sternberg memory task that went far beyond what would be possible by only having 
a single, successful model that fit the data. 

 
2.2.2.3 The Communication Problem 
 
In formalizing a theory, a typical goal is to convert a set of informal verbal statements into a set of 

precise expressions that can be manipulated by some formal mechanism – mathematics, logic, or an al-
gorithm.  With this goal in mind, it is apparent that a theory will be more technical after formalization than 
it was before.  This leads to another problem that must be faced: communicating the formalization to oth-
ers, including those who might be interested in the domain, but not as interested in the technical details of 
the formalization. 

 
Zeigler (1976) points out that the construction and testing phase of modeling can be quite exciting 

– often more exciting than recasting the model into a form for general distribution.  As a result, “once the 
modeling challenge has been successfully overcome and the modeler’s own curiosity satisfied, he may 
find it difficult to become enthusiastic about the task of clarifying it for himself and communicating to oth-
ers what he has accomplished” (p. 7).  But clarification and communication are both required if the model 
is to have any impact. 

 
Zeigler (1976) proposes that the effective communication of a model involves the following as-

pects.  First, the researcher must generate an informal description of the model and its underlying goals 
and assumptions.  Second, the researcher must provide a formal description of the model, including a 
presentation of the program used if the model is a simulation.  Third, the researcher should present the 
tests of the model, including results and analysis.  Fourth, the researcher should generate some conclu-
sions about the model’s range of application, validity, and cost.  Finally, the researcher should relate his 
or her current model to both past and future models. 

 
Zeigler (1976) notes that when the model is communicated, two different audiences must be kept 

in mind.  One audience is the set of potential users of the model or its variations.  The other audience is 
composed of  “people who may not use the program or model directly but may make other uses of it in 
relation to their own research and development – call them the colleagues” (p. 8).  With these two differ-
ent audiences in mind, Zeigler suggests that the “informal description of the model is the most natural and 
effective way of establishing contact with the reader’s intuition and of interfacing your world model with his 
world model” (p. 9).  However, it is important to realize that with the audience of colleagues, this informal 
account might be the only way that contact is made.  They may not be interested in paying the necessary 
attention to the more formal descriptions of the model, because they are an audience that isn’t interested 
in using it. 
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 2.2.3 Exploration Of Complex Domains 
 
We have already seen that one advantage of modeling is the rigorous specification of theory.  A 

second advantage is that models permit the exploration of complex ideas.  “Simulations can be of value in 
this way either because a seemingly attractive idea might otherwise be too unconstrained to support pre-
dictions and tests or because a complex model may resist analytic exploration” (Lewandowsky, 1993, p. 
237).  Let us briefly explore each of these ideas. 

 
2.2.3.1 The Economy Of Models 
 
In mathematical psychology, as we will see in Chapter 4, one usually attempts to define a rela-

tionship between one set of variables and another.  Within this framework, it sometimes is the case that 
there are a great many variables to be explored.  Each of these variables can take on one of many differ-
ent numerical values.  The problem for a mathematical psychologist is to explore the set of possible set-
tings for the variables in order to determine the best possible model.  Mathematical psychologists have 
realized that the fastest, most economical approach to exploring the parameter space for a model is to 
use computer simulations (Estes, 1975; Luce, 1989, 1997, 1999).  

 
The economy of modeling provides advantages for scientists who have little direct interest in 

mathematical psychology.  Many are interested in studying systems that are highly complex, and that are 
also very difficult and expensive to examine experimentally. For example, neuroscientists who study the 
nervous systems of animals have to face the combined expenses of maintaining animals, of providing 
resources for drug or surgical treatments, and of histological examination of manipulated nervous sys-
tems – not to mention the ethical expenses of sacrificing animals for the advancement of knowledge. 
When a neuroscience experiment is performed, it would be very valuable to have a strong sense before-
hand that the experiment is going to work, and is also going to provide important information.  This kind of 
research is simply too expensive for “fishing” for interesting results. 

 
One approach for increasing the likelihood that an experiment is going to be successful is to use 

computer simulation techniques to identify key issues, or predict the likely outcomes of experiments.  The 
simulation is itself much less expensive to run, and can be easily used to simulate a variety of experi-
ments.  One can use the simulation to “fish” for interesting results in a fashion that is far faster and 
cheaper than by actually performing the experiments on animals.  Once an interesting set of predictions 
has been identified using the computer simulation, the result can be verified by actually performing the 
experiment on animals.  The expectation is that the experiment should be successful because of all of the 
simulation work that was carried out beforehand.  The results of the experiment can then be used to re-
fine the computer simulation, so that it reflects an advancing state of knowledge, and so that it can be 
used to predict more sophisticated results in the future. 

 
One excellent example of exploiting the economy of modeling is found in the research of neuro-

scientist Gary Lynch and his colleagues (e.g., Lynch, 1986).  Lynch is primarily concerned with under-
standing the neural mechanisms underlying memory, and uses the olfactory system of the rat as his pri-
mary research focus.  Lynch’s research has uncovered many precise details about the neural circuitry 
that permits rats to remember and process information about different smells.  A great deal of this infor-
mation has been the result of experiments on rat brains.  However, computer simulation has also been a 
central tool in Lynch’s research program. 

 
For instance, Granger, Ambros-Ingerson, and Lynch (1989) developed a computer simulation of 

olfactory cortex.  The simulation consisted of 100 input cells (simulating axons of the lateral olfactory 
tract) randomly and sparsely connected to up to 500 cells in the olfactory cortex.  Processing units in the 
simulation have a number of mathematical properties that model such characteristics as synaptic con-
ductance, dendritic summation, excitatory and inhibitory signal characteristics, spike generation, and the 
speed of axon transmission.  Depending upon the kinds of pulses transmitted to the network, it can learn 
by modifying the pattern of connectivity between its processing units.  Granger et al. found that after 
learning a set of distinct groups of odors, the simulation’s initial response to a cue odor only indicated the 
category to which it belonged.  Subsequent responses to the same stimulus successively subdivided the 
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category into increasingly specific encodings of the original cue.  In other words, the model was demon-
strating its ability to organize olfactory memories at a number of different levels of detail. 

 
Importantly, the simulation created by Granger et al. (1989) led to at least five different predic-

tions that were specific, and which were also not intuitively obvious.  For example, in the simulation only a 
small number of cells responded to a specific input.  As well, different cells responded when the simula-
tion was presented different “sniffs”, with the patterns of which cells were firing reflecting similarities and 
differences among odor cues.  It is these sorts of specific, surprising predictions made by the model that 
can be selected as likely candidates for empirical study in animal systems.  In the Lynch lab, there is a 
constant back-and-forth exchange of information between simulations and experiments, with each infor-
mation exchange resulting in a more and more detailed understanding of the neural circuitry. 

 
2.2.3.2 Beyond Mathematical Boundaries 
 
In many disciplines there can be a marked competition between theorists and experimentalists.  

In physics, Lederman (1993, p. 13) observes, “In the eternal love-hate relation between theory and exper-
iment, there is a kind of scorekeeping. How many important discoveries were predicted by theory?  How 
many were complete surprises?”  The tension between theory and experiment is also a frequently ob-
served characteristic of psychology (Kukla, 1989; Paivio, 1986, Chaps 1-2).  

 
One reason for this tension is that it is possible for theorists to make predictions about observa-

tions that take years for experimentalists to confirm.  Many examples of this can be found in physics (e.g., 
Bodanis, 2000). For example, Einstein’s general theory of relativity was first publicized in 1915.  One of its 
major predictions, of the curvature of space, could not be empirically confirmed until observations of star 
positions during total solar eclipses were made in 1919 and 1922.  In the 1930s, Chandrasekhar used 
special relativity theory to predict that white dwarf stars could only exist up to a certain mass.  He proved 
that if a star were larger than this limit, then it would ultimately collapse into a denser object (a neutron 
star or a black hole).  This theory was extremely controversial when it was originally proposed, and was 
not empirically supported until observations in the 1960s that discovered pulsars, and which later demon-
strated that pulsars were rotating neutron stars. 

 
In these examples from physics, formal theories anticipated experimental results by years or dec-

ades.  With the advent of computer simulation techniques, however, it is now possible to experimentally 
study models of systems whose complexity cannot yet be captured by mathematical formalisms. 

 
In a wide variety of fields, researchers are interested in the properties of systems that have a 

large number of (often simple) components.  Frequently, one component can influence the behavior of 
neighboring components in a manner that can only be captured by nonlinear equations.  Furthermore, the 
behavior of one component’s neighbors can influence the behavior of that component via feedback.  In 
spite of the fact that these systems do not have any component that serves as a central controller, they 
often exhibit interesting, emergent, and systematic regularities.  Examples of such systems include slime 
molds, insect colonies, and biological neural networks, to name a few.  A new discipline, called complexi-
ty theory, is concerned with studying the properties shared by these diverse systems (Holland, 1998; 
Johnson, 2001; Waldrop, 1992).  

 
The many nonlinear interactions in a distributed system like an ant colony or a brain make it very 

difficult to summarize the behavior of the system as a whole mathematically.  However, it is possible to 
program a computer to simulate the interactions between system components.  This means that the sys-
tem can be studied, and understood, by making empirical observations about the behavior of the comput-
er simulation even in the absence of formal theory.  The fields of artificial life, genetic algorithms, artificial 
neural networks, and synthetic psychology all depend crucially upon the fact that one can use computers 
to explore regularities in domains that are currently too complicated to describe in formal equations. 

 
2.2.4 Problems With Exploring Complex Domains 
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From the preceding section, it is clear that models provide a medium that provides many ad-
vantages for researchers interested in exploring complicated ideas in an efficient, inexpensive manner.  
These ideas can even be explored in advance of any mathematical account of the domain.  However, 
while the ability to explore complex domains is a definite advantage of modeling, it can lead to some in-
teresting disadvantages.  Two of these are considered in the subsections below.  

 
2.2.4.1 Bonini’s Paradox 
 
Dutton and Starbuck (1971) used the name Bonini’s paradox to identify one problem with com-

puter simulations of complex phenomena. Bonini’s paradox, named after Stanford business professor 
Charles Bonini, occurs when a computer simulation is at least as difficult to understand as the phenome-
non that it was supposed to illuminate.  “The computer simulation researcher needs to be particularly 
watchful of the complexity dilemma.  If he hopes to understand complex behavior, he must construct 
complex models, but the more complex the model, the harder it is to understand. ... As more than one 
user has realized while sadly contemplating his convoluted handiwork, he can easily construct a comput-
er model that is more complicated than the real thing.  Since science is to make things simpler, such re-
sults can be demoralizing as well as self-defeating” (Dutton & Briggs, 1971, p. 103).  

 
While any model may fall into this trap, Bonini’s paradox is particularly relevant for researchers 

who use connectionist networks.  Connectionist models are introduced in more detail later in this book, 
and are essentially brain-like networks of simple nonlinear processors that can learn to solve complex 
pattern recognition problems.  Connectionist researchers freely admit that in many cases it is extremely 
difficult to determine how their networks accomplish the tasks that they have been taught. “If the purpose 
of simulation modeling is to clarify existing theoretical constructs, connectionism looks like exactly the 
wrong way to go.  Connectionist models do not clarify theoretical ideas, they obscure them” (Seidenberg, 
1993, p. 229). 

 
Connectionist networks can fall prey to Bonini’s paradox for several reasons.  First, because con-

nectionist models are usually taught by example, they do not require a researcher to come up with de-
tailed theory of how to perform a pattern recognition task prior to creating the model.  In other words, 
connectionist networks allow “for the possibility of constructing intelligence without first understanding it” 
(Hillis, 1988, p. 176). Second, one can train connectionist networks that are extremely large; their sheer 
size and complexity makes it difficult to understand their internal workings.  For example, Seidenberg and 
McClelland’s (1989) network for computing a mapping between graphemic and phonemic word represen-
tations uses 400 input units, up to 400 hidden units, and 460 output units.  Determining how such a large 
network works is an intimidating task.  This is particularly true because in many PDP networks, it is very 
difficult to consider the role that one processing unit plays independent from the role of the other pro-
cessing units to which it is connected (see also Farah, 1994). 

 
Difficulties in understanding how a particular connectionist network accomplishes the task that it 

has been trained to perform has raised serious doubts about the ability of connectionists to provide fruitful 
theories about cognitive processing.  McCloskey (1991) warns “connectionist networks should not be 
viewed as theories of human cognitive functions, or as simulations of theories, or even as demonstrations 
of specific theoretical points” (p. 387).  In a nutshell, this dismissal was based largely on the view that 
connectionist networks are generally uninterpretable (see also Dawson & Shamanski, 1994).  It is clear 
that the success of connectionist networks, or of any other type of model, to contribute to psychological 
theory, depends heavily upon a researcher’s ability to avoid Bonini’s paradox.  Later in this book we will 
see several examples of how this can be accomplished. 

 
2.2.4.2 The Validation Problem 
 
In Chapters 3 and 4, we will see that two common modeling approaches in psychology are mod-

els of data and mathematical modeling.  Both use mathematical equations to describe and predict behav-
ioral regularities.  The equations represent a theoretical statement about behavior.  The validity of the 
theoretical statement is usually assessed using “goodness of fit”:  the equation makes certain predictions 
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about what behavior should be observed in experimental subjects.  The validity of the theory depends 
upon the extent that the predictions are consistent with these empirical observations. 

 
However, the fact that new modeling techniques such as computer simulation permit the study of 

systems that cannot be formally described had led to a situation in which this traditional notion of theory 
validation does not work very well.  Mathematical psychologists, for example, are deeply disturbed by the 
fact that it is very difficult to formulate a procedure for measuring the validity of computer simulations (Es-
tes, 1975; Luce, 1999). 

 
This problem is compounded by the bottom-up strategies used in the simulations that are of con-

cern to complexity theorists.  In many instances, these simulations involve defining the interactions be-
tween neighboring components in the model, without being concerned with the overall outcome of the 
simulation.  In other words, rather than modeling a particular phenomenon (which we will see is the typi-
cal top-down strategy used to create models of data and to propose mathematical models), complexity 
theorists are interested in discovering what surprising properties emerge from the interactions of known 
components.  In many cases, they may have no idea what kinds of regularities will emerge from their 
simulation. 

 
This makes it particularly difficult to validate a complexity theorist’s simulation, because it may not 

even be known a priori what the model is a model of.  This is one of the reasons that many of these simu-
lations are viewed skeptically.  For instance, these models have been described as being “fact free sci-
ence” by evolutionary biologist John Maynard Smith (Mackenzie, 2002). Some have argued that it is im-
possible to verify or validate these kinds of simulations (Oreskes, Shrader-Frechette, & Belitz, 1994). 
“Like a novel, a model may be convincing – it may ring true if it is consistent with our experience of the 
natural world.  But just as we may wonder how much the characters in a novel are drawn from real life 
and how much is artifice, we might ask the same of a model:  How much is based on observation and 
measurement of accessible phenomena, how much is based on informed judgment, and how much is 
convenience?”  

 
Validating a model is a difficult problem that is a central concern of psychology and cognitive sci-

ence (Fodor, 1968; Pylyshyn, 1980, 1984). For the time being, let us simply be aware that this problem 
exists.  In several of the later chapters we will have an opportunity to consider how synthetic psycholo-
gists approach this problem. 

 
2.2.5 Serendipity  

 
We have already covered two of the main advantages of models: the rigorous specification of 

theory and the ability to explore complicated domains.  There is one further advantage to be considered – 
the ability of a model to reveal serendipitous discoveries.  Lewandowsky (1993) is concerned by the fact 
that “a widespread opinion among critics is that theories or simulations somehow stand in the way of ser-
endipitous discovery” (p. 238).  He goes on to point out the flaws in this view. 

 
In the next three chapters of this book, the notion of serendipity will be important in distinguishing 

different kinds of models.  In particular, I will be arguing that some kinds of models (models of data, 
mathematical models) provide less opportunity to surprise a researcher than do others (computer simula-
tions).  However, as a prelude to that more detailed discussion, let us briefly consider some general as-
pects of how models can lead to surprises. 

 
2.2.5.1 Emergence And Surprise 
 
One of the reasons that some researchers believe that models cannot generate surprises is be-

cause systems like computer simulations are deterministic.  If a computer can only follow its program, 
then it stands to reason that it should be impossible for the program to surprise the programmer (Hauge-
land, 1985).  
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The difficulty with this logic is that it assumes that the purpose of the programmer is to create a 
program that is responsible for carrying out some overall, holistic, behavior.  However, sometimes this is 
not the programmer’s goal.  Indeed, in many situations the programmer is concerned with programming 
simple and well-defined local interactions between the components of a system. “Local turns out to be the 
key term in understanding the power of swarm logic.  We see emergent behavior in systems like ant colo-
nies when the individual agents in the system pay attention to their immediate neighbors rather than wait 
for orders from above. They think locally and act locally, but their collective action produces global behav-
ior” (Johnson, 2001, p. 74). 

 
In many situations, the programmer will have complete understanding of the programmed local 

interactions, but will be unable to predict the global behavior that the local interactions produce.  It is 
these emergent properties that are surprising, and which are capable of providing new insights. 

 
2.2.5.2 An Example: Banding In Value Units 
 
One example of a serendipitous result from a model comes from my own laboratory’s research on 

connectionist networks.  As we will see in more detail later in this book, a connectionist model is a net-
work of simple processors that send numerical signals to one another.  One of the basic tasks of any pro-
cessing unit in this kind of network is to add up the total incoming signal, and to convert it into an internal 
level of activity.  Mathematically, this is done using an equation called an activation function. 

 
By 1989, Don Schopflocher and I had developed a method of training connectionist networks that 

used a different activation function than is found in typical connectionist networks (Dawson, 1990; Daw-
son & Schopflocher, 1992). We called our architecture networks of value units, using terminology bor-
rowed from Ballard (1986), because the activation function tuned the processor so that it had a strong 
response to a narrow range of incoming signal, and had a very weak response when the incoming signal 
was too strong or too weak to fall in this narrow range (for more details, see Chapters 10 and 11). 

 
After this architecture had been published, we continued to study it because it had several ad-

vantages that we wanted to exploit.  However, one problem that we were concerned about was Bonini’s 
paradox: the networks that we trained had an internal structure that was very difficult to understand.  We 
expended a great deal of fruitless effort trying to develop techniques for figuring out the “program” that 
was encoded in the connection weights of our networks. 

 
In the winter of 1993, we literally stumbled upon an emergent property of the value unit architec-

ture that aided network interpretation immeasurably.  One of my philosophy graduate students, Istvan 
Berkeley, had trained a network of value units to solve a logic problem developed by Bechtel and Abra-
hamsen (1991). He had devoted hundreds of hours to examining the structure of this particular network.  
One kind of data that we collected in this process was analogous to “wiretapping” of neurons by neuro-
scientists: we simply recorded the activity of each processor within the network to each stimulus that the 
network was presented. 

 
In an effort to help interpret the network, Don Schopflocher took a copy of the “wiretapping” data, 

and attempted some multivariate analyses.  This didn’t provide any breakthroughs.  However, Don did 
notice that in the data a lot of numbers were repeated.  He didn’t make anything of this, and neither did I.  
In fact, I pretty much ignored this observation.  Importantly, the very next day, Istvan – who had been 
looking at the very same data – came to me and repeated, almost word for word, Don’s observation.  Be-
ing told the same thing twice finally captured my attention, and I took the data and started to perform 
some graphical analyses. 

 
In very short order, I had selected a particular type of graph called a jittered density plot.  One 

such graph can be drawn for each one of our processing units.  In a jittered density plot, each dot in the 
graph represents the unit’s response to one stimulus pattern.  The x-position of the dot indicates the ac-
tual level of unit activity.  The y-position of the dot is randomly selected, and is used to try and prevent 
dots from overlapping each other as much as possible. 
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Now, for a standard processing unit, a jittered density plot is not very informative, because it is 
not very structured.  Usually it is just a smear of dots throughout the whole graph.  Our serendipitous find-
ing was that the jittered density plots for value units were much more structured.  Rather than being an 
uninformative smear, as in the example above, we found that the plots for the processors in Istvan’s net-
work were organized into tight bands, usually with a great deal of space separating one band from anoth-
er.  

  
We were tremendously excited and surprised by this result, and our excitement grew and grew as 

each new jittered density plot came out of the printer.  A whole new set of questions jumped to mind.  
Why did the bands emerge?  Was there anything in common among the subset of patterns that fell into 
one band?  In answering these questions, we discovered that the bands provided a method for identifying 
the kinds of features that were being detected by each unit in the network.  We were then able to use 
these features to determine how the network was solving the logic problem, and to make an argument 
that connectionist networks might be more symbolic than was traditionally thought (Berkeley, Dawson, 
Medler, Schopflocher, & Hornsby, 1995; Dawson, Medler, & Berkeley, 1997). 

 
More recently, we have developed a much stronger formal understanding of why banding occurs, 

and have used it to predict and discover banding for other problems and for other architectures 
(McCaughan, Medler, & Dawson, 1999).  We have also developed more sophisticated interpretation 
techniques than the purely local ones that we reported in 1995 (Dawson, Boechler, & Valsangkar-Smyth, 
2000; Dawson, Medler, McCaughan, Willson, & Carbonaro, 2000; Dawson & Piercey, 2001; Medler, 
McCaughan, Dawson & Willson, 1999). However, all of these advances have depended upon our original 
lucky discovery.  Don Schopflocher and I had no idea that we were going to produce this result when we 
developed our learning rule in 1989.  Indeed, we were using this algorithm for approximately 4 years – 
and encountering numerous dead ends in network interpretation – before we chanced upon this discov-
ery. 

 
2.2.6 Luck: Good And Bad 

 
For the other two advantages of modeling, the rigorous specification of theory and the ability to 

explore complex phenomena, we have outlined accompanying disadvantages.  What possible disad-
vantages might one find with an approach that permits serendipitous discovery?  The subsections below 
briefly consider three different kinds of concerns. 

 
2.2.6.1 Is Good Luck Bad Science? 
 
One concern that is often raised when serendipity is a key component of a research program is 

that the program doesn’t seem to be very scientific.  The traditional view of science is that it is a careful, 
gradual, goal-directed advancement of knowledge, in which current information is used to generate and 
test new hypotheses.  Hypotheses “are the first rungs of the ladder of science, becoming theories as the 
harder factual sides of the ladder are extended, and finally facts when the ladder makes firm contact with 
structures established by other ladders of hypothesis” (Hocking, 1963, p. 3). 

 
However, “science seldom proceeds in the straightforward logical manner imagined by outsiders.  

Instead, its steps forward (and sometimes backward) are often very human events in which personalities 
and cultural traditions play major roles” (Watson, 1968, p. ix). Put another way, “the discoveries of penicil-
lin, X-rays, and America have apparently failed to alert students of memory to the possibility of serendipi-
tous findings within their own field” (Watkins, 1990, p. 333). 

 
Nevertheless, there is still some sense that if the advancement of one’s research field depends 

overtly on serendipity, then this reflects a weakened dependence on theory or on prior knowledge.  This 
simply isn’t so.  In very general terms, we will see that advances in synthetic psychology come about by 
taking a set of components, by letting them interact, and by observing surprising emergent phenomena.  
However, the role of theory and prior knowledge in this endeavor is still fundamentally important, because 
it guides decisions about what components to select, and about the possible dynamics of their interaction. 
In the words of Benjamin Franklin, diligence is the mother of good luck. 
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2.2.6.2 Good Luck, Bad Control 
 
We will see later that one of the modern arguments in favor of adopting a synthetic approach to 

modeling, rather than analyzing a system into its components, is the opportunity for generating simpler 
theories. “Analysis is more difficult than invention in the sense in which, generally, induction takes more 
time to perform than deduction: in induction one has to search for the way, whereas in deduction one fol-
lows a straightforward path. A psychological consequence of this is the following: when we analyze a 
mechanism, we tend to overestimate its complexity” (Braitenberg, 1984). 

 
However, if many of the advances of synthetic psychology are going to depend upon emergent 

surprises, then this view tells only half the story.  There are many solid theoretical and empirical argu-
ments that make the point that analytic approaches are difficult, and lead to overly complicated theories.  
However, a synthetic approach may be no less difficult.  The tacit view of proponents of the synthetic ap-
proach, like Braitenberg, is that if one can build a system, then one must be able to understand it.  How-
ever, we have already seen that this view is not completely correct.  The idea that models can lead to 
serendipitous results comes from the situation in which a modeler has a very precise understanding of a 
system at one level (i.e., the level of the components), but has little understanding of the system at an-
other level (i.e., a higher level at which emergent surprises can be seen). 

 
In other words, modelers in synthetic psychology are likely going to be in a situation in which they 

have a high degree of control of their systems at a microlevel, but have much less control of their systems 
at a macrolevel.  Furthermore, they may have little understanding about how microlevel processes result 
in macrolevel behaviors.  We will see later in this book that the only way to deal with this problem is to 
combine synthetic and analytic approaches.  After one discovers an emergent surprise in a synthetic 
model, a good deal of effort is going to be required to analyze the model in order to account for how the 
surprise emerged.  Finding lucky surprises will not suffice.  Synthetic psychology is charged with explain-
ing the surprises too. 

 
2.2.6.3 Going Beyond The Model 
 
One final concern with the serendipity of modeling is that it requires a researcher to go beyond 

the direct intent of his or her model.  This is a problem because this requires the researcher to move 
against a tradition that is a strong, tacit component of experimental psychology, as we will see in the next 
two chapters.  When many psychologists think of modeling, their view is that the purpose of a model is to 
fit or mimic experimental data.  The reason for this belief is that it is central to two types of models that 
have a long history in psychology, models of data and mathematical models.  In general, if a model of 
data or a mathematical model does not fit the data, then the model is abandoned. 

 
The possibility of discovering new and surprising characteristics of a model requires that this very 

narrow view of what a model is intended to do, or of how a model should be evaluated, must be either 
abandoned or suspended.  This is because the only way that a model can surprise is if one examines 
how it deals with situations that it was not originally intended to face.  Once my students have developed 
a model of some phenomena, I always ask them to find out what they can “get from the model for free”.  
My request is an attempt to encourage them to determine whether their model has any interesting or sur-
prising emergent properties that they may not have considered.  I also tell them that if a model doesn’t 
have any surprises, then it may not be a very good model.  My own experience is that this is true – but to 
be aware of this truth, one must abandon the notion that the only purpose of a model is to fit data that has 
already been collected from subjects!  
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 Chapter 3: Models Of Data 
 
Statistics is a field that develops techniques that uses observations of small samples to 

make broad generalizations.  Typically, the observations in question are in numerical form, and 
the methods developed by statisticians are mathematical in nature.  At the heart of any statistical 
method is a model for data.  “Models for data summarize a set of observations in the behavioral 
or biological sciences so that we may communicate with our colleagues and the public” 
(Lunneborg, 1994, p. 1). The purpose of this chapter is to provide a brief overview of models of 
data, so that later we can contrast this type of model with others more likely to be found in syn-
thetic psychology. 

 
According to Lunneborg (1994), a model of data is both explanatory and statistical.  It is 

explanatory in the sense that it typically describes the influence of one or more variables on an-
other response variable.  In other words, if we know the values for the predictor variables then we 
can predict or explain the value of the response variable.  A model of data is statistical in the 
sense that variability in the predictor variables will be related to variability in the response varia-
ble.  By determining how strong the relationship is between predictor and response variability, we 
can determine how well the model fits the data. 

 
3.1 AN EXAMPLE OF A MODEL OF DATA 

 
To illustrate some of the properties of models of data, we will be using a small set of 

numbers taken from a published experiment (Dawson & Thibodeau, 1998). In this experiment, the 
task was to search through for a visual target in a 4X4, an 8X8, or a 12X12 grid of distractor ob-
jects. The target was only present in half of the displays, and the type of display that the subject 
saw from trial to trial was randomly selected. The response variable in this experiment was reac-
tion time – the time that elapsed from when the display was presented to when a subject pressed 
a response key to indicate whether or not a target was seen. 

 
Table 3-1 contains data from one subject in this experiment for only those displays in 

which a target was present.  The numbers in the Time column below give the average reaction 
time in milliseconds for detecting the target in a number of different experimental conditions.  We 
would like to come up with a statistical model for these data. 

  
Time Ob-

jects 
Fil

ter 
O

xF 
766.44 16 0 0 
704.62 16 1 1

6 
796.63 16 2 3

2 
1319.7

1 
64 0 0 

1230.5
7 

64 1 6
4 

1523.5
1 

64 2 1
28 

2118.9 144 0 0 
2086.3

3 
144 1 1

44 
2351.3

2 
144 2 2

88 
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Table 3-1.  Sample data from the Dawson and 
Thibodeau  

(1998) study of visual search. 
 
In this particular experiment, there were two conditions that were manipulated in an at-

tempt to affect reaction time.  The first was the size of the grid – the number of objects to be 
searched. Presumably, as more objects were displayed, it would take longer to find the target. 
The Objects column in the table above lists the total number of objects that were displayed in 
each of the three sizes of grid. 

 
One kind of statistical model for the reaction time data would be an equation that used 

the values in the Objects column to predict the values in the Time column. One mathematical 
method for creating such a model is called multiple regression (Pedhazur, 1982). Multiple regres-
sion uses the underlying correlations between variables to come up with a linear equation that 
uses one or more variables to predict the response variable as accurately as possible.  Multiple 
regression is a standard component of any statistical package.  If I take the numbers from the 
table and provide them to a multiple regression program, then this program will come up with the 
following equation for predicting reaction time: 

 
Time = (13.55* Objects) + 405.16   Equation 3-1 

 
What does Lunneborg (1994) mean by describing this kind of model as being both ex-

planatory and statistical?  To answer this question, consider Figure 3-1.  It is a graph that plots 
the Time values from the table on the y-axis, and the Objects values on the x-axis.  The line on 
the graph is the line that is defined by the regression equation that predicts Time from Objects. 

0 50 100 150
NUMBER OF OBJECTS

0

1000

2000

3000

4000

R
T

 I
N

 M
IL

L
IS

E
C

O
N

D
S

 
 

The explanatory nature of the regression equation is revealed by the average change in 
the position of the reaction times when the number of objects changes.  As can be seen from the 
graph, when the number of objects increases, there is a substantial increase in reaction time.  
The explanatory nature of the model is evident, then, in the slope of the regression line. 

Figure 3-1. Graphing reaction time in milliseconds as a function of the number of objects 
in a visual search display. 
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The goodness of fit between the model and the data indicates the statistical nature of the 

model.  On the graph, it is clear that the fit is good, because for each Objects value on the x-axis, 
the corresponding Time values (the dots) are clustered very close together, and the regression 
line runs through the middle of each cluster.  This goodness of fit can be measured quantitatively 
too, by considering the differences between the actual values in the Time column and the values 
predicted by the regression equation.  The regression software does this automatically by calcu-
lating a squared multiple correlation value (R2) that measures goodness of fit.  For the equation 
above, the value of R2 was calculated to be 0.79.  This indicates very high goodness of fit – it 
means that 79% of the variability in Time was predicted by the variability in Objects. 

 
Other models for these data are feasible, and they show that other “goodness of fit” out-

comes are possible.  For example, the second manipulation in the Dawson and Thibodeau (1998) 
experiment was viewing condition.  Subjects watched the display through one of three different 
neutral density filters.  A neutral density filter is an optical medium that reduces the amount of 
light passing through it without changing other properties of the light, such as color. In other 
words, these filters reduce the brightness of what is seen through them.  These filters come in 
different thicknesses, so that different filters let different amounts of light through.  In this experi-
ment, subjects looked through a 0 unit filter which let 100 percent of the light through, a 1 unit 
filter which let 10 percent of the light through, and a 2 unit filter which let only one percent of the 
light through.  The Filter column in the table above indicates which type of filter was used to ob-
tain the average reaction times that are listed. 

 
If multiple regression is used to predict Time from Filter, then it generates the following 

equation:  
 

Time = (339.45* Filter) + 1077.73  Equation 3-2 
 
With respect to goodness of fit, the equation results in an R2 equal to 0.12.  In other 

words, by itself the Filter variable only accounts for 12% of the variance in Time, and is therefore 
providing a poorer fit to the data than was the case with the Objects variable.  If we were to 
graph this relationship, we would find that it would differ in appearance from Figure 3-1 by having 
a wider spread within the different sets of dots, and a regression line that was much flatter in 
slope.  

 
Regression software can also be used to predict a variable using two or more predictors.  

For instance, we could create a model for Time by using both Objects and Filter as predictors.  
When this is done, the resulting regression equation is: 

 
Time = (13.55 * Objects) + (339.45* Filter) + 65.70  Equation 3-3 

 
The R2 for this equation is equal to 0.91, indicating that by using both predictors together, 

nearly all of the variability in Time can be accounted for.  Even though on its own Filter does not 
provide a very good fit to the data, the relatively small amount of variance that this predictor can 
explain is important, and is different from the variance explained by Objects.  (Indeed, Dawson 
and Thibodeau’s (1998) main discovery was that decreasing luminance slowed down visual 
search. 

 
3.2 PROPERTIES OF MODELS OF DATA 

 
The regression example can be used to illustrate some of the general characteristics of 

models of data.  It will be instructive to keep these characteristics in mind, because we will be 
interested in determining whether they are true of other types of models to be discussed later in 
this chapter. 

 



 - 17 - 

Minds And Machines © M.R.W. Dawson 12/02/2016 

3.2.1 Models Of Data Fit Pre-Existing Measurements 
 
First, models of data assume that some phenomenon of interest has already been meas-

ured, because these measurements provide the to-be-modeled data.  Furthermore, models of 
data are analytic, because they usually involve decomposing the variability of the measured vari-
able into the separate sources of variability – the variability of the predictors. 

 
Multiple regression provides a good example of the decompositional or analytic nature of 

this type of model.  In the most general sense, the overall variability of the dependent measure is 
split into two components – the variability that can be accounted for by all the predictors in the 
equation (called the “sum of squares regression”), and the variability that cannot be accounted for 
by the predictors (called the “sum of squares error”).  In a more particular sense, regression 
equations can be used to partition the total R2 into the proportion of variance accounted for by 
each predictor in the equation, although this is not a practice that is highly recommended by stat-
isticians because it can fail to take into account the correlations among predictor variables 
(Pedhazur, 1982). 

 
3.2.2 Models Of Data Are Usually Linear  

 
Second, models of data are usually linear in nature.  To say that a model is linear is to 

accept a principle of superposition: if one knows the effect of predictor A on the dependent meas-
ure, and if one knows separately the effect of predictor B on the dependent measure, then the 
combined effects of A and B on the dependent measure is equal to the sum of the effects of pre-
dictors A and B (Luce, 1999). This is particularly evident in the regression equation, because the 
value for the dependent measure is predicted by summing the (weighted) values of the predic-
tors.   

 
Some might argue that the assumption that a model is linear amounts to the assumption 

that predictors in a statistical model are not presumed to interact.  However, this is not the case.  
Consider our visual search example.  Dawson and Thibodeau (1998) expected an interaction be-
tween the Filter and the Objects variables, because they assumed that as the Filter became 
stronger, the visual search mechanism would slow down considerably, and as a result it would 
take much longer to move from one object to another.  In short, the Objects effect should be in-
fluenced by the Filter value. 

 
This expectation can be handled in linear regression in two steps.  First, a new predictor 

variable for the interaction between Objects and Filter is defined.  Let us call this predictor OxF, 
which is an acronym for “Object x Filter Interaction”. OxF can be calculated by simply taking the 
value for Objects and multiplying it by the value for Filter, as is also shown in Table 3-1.  Sec-
ond, one takes these three predictor values and uses a regression program to determine the 
equation for predicting the Time value.  When this is done, the following equation is delivered: 

 
Time = (8.49 * Objects) + (-38.92 * Filter)  + (5.07 * OxF) + 444.14 Equation 3-4 

 
The R2 associated with this equation is 0.99, which shows that by including the interac-

tion term as a predictor, we can account for an additional 8% of the variance in Time that is not 
predicted by Objects and Filter alone.  Note that this equation is linear, in the sense that the pre-
dicted value for Time is a weighted sum of the three predictors in the regression equation. 

 
If a linear model of data can account for interactions, then what kind of model is excluded 

from traditional statistical analyses?  The kind of model that is excluded is some nonlinear trans-
formation of the linear combination of the predictors.  For example, one nonlinear transformation 
that we will frequently encounter in later chapters is defined by the logistic equation.  The logistic 
equation is nonlinear, in the sense that if one were to plot the values obtained by computing f(x) 
for different values of x (where f(x) is the logistic equation), then the graph of this function would 
not be a straight line, but would instead be an s-shaped curve (see Figure 10-1c). 
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The kind of statistical model that we would rarely see would be one in which a linear sum 

of weighted predictors was used to create a value for x that would be passed into an equation like 
the logistic.  Using the visual search data as an example, a very uncommon statistical model 
would be 

 
Time = f((a * Objects) + (b * Filter)  + (c * OxF) + d)  Equation 3-5 

 
In this equation, f is a nonlinear function, and a, b, c, and d are all constants.  In later 

chapters, we will see that many of the models in synthetic psychology are of interest because 
they explicitly exploit nonlinear relationships. 

 
3.2.3 Models Of Data Are Evaluated By Goodness Of Fit  

 
A third property of a model of data is that its utility or value is highly dependent upon the 

notion of goodness of fit.  If only one model of data is being considered, then goodness of fit de-
termines whether it will be used at all.  “If the fit is good enough, if enough of the response varia-
bility is explained by our model, it is retained.  On the other hand, if the fit is not good enough, the 
model is rejected” (Lunneborg, 1994, p. 15).  If more than one model is being considered at one 
time, then the best-fitting model is retained, and all of the other competing models are rejected.  
For example, of the four regression equations provided earlier, we would choose Equation 3-4 
(using Objects, Filter, and OxF as predictors) over the others, because it led to the highest R2 
value. 

 
The use of goodness of fit as the litmus test for retaining a model of data is a crucial 

characteristic.  First, it indicates that models of data are essentially quantitative in nature, be-
cause whether they are adopted depends upon a quantitative evaluation (namely, the value of 
goodness of fit).  Second, it demonstrates that the critical function of a model of data is to fit or 
predict pre-existing data.  If one were to think graphically, the best model would be one in which a 
plot of the actual data and a plot of the data predicted by a model lay directly on top of one an-
other. 

 
Why are these characteristics important to highlight?  The main reason is because we 

can use them to consider alternative forms of models that do not share them. In Errol Morris’ 
documentary Fast, Cheap and Out of Control, MIT roboticist Rodney Brooks says, “I like to look 
at what everyone is doing, find some common thing that they're all assuming implicitly, but they 
don't even realize they're assuming, and then to negate that thing”. Let us take Brooks’ perspec-
tive for a moment, and imagine the possibility (at least) of a different kind of model, a model 
whose characteristics are opposite to the ones considered above.  Could we create a model that 
was qualitative in nature, instead of quantitative?  Could we design a model that was not intended 
to fit pre-existing data points, but instead was constructed in the absence of such information?  
We will return to these questions later in this book. 

 
3.2.4 Models Of Data Rarely Surprise Us 

 
The three properties of models of data that we have considered to this point have been 

positive in nature.  The fourth property is perhaps a bit more negative: models of data leave very 
little room for surprise.  What does it mean to say that a model of data fails to surprise us?  Let’s 
explore this issue by using multiple regression as an example.   

 
Usually one starts designing a model of data on the basis of general intuitions about the 

relationships between variables (Lunneborg, 1994). For example, Dawson and Thibodeau (1998) 
were aware that a number of theories of how attention is shifted during visual search relied upon 
inhibitory mechanisms (Fukushima, 1986; Gerrissen, 1991; Koch & Ullman, 1985; LaBerge, 
Carter, & Brown, 1992; Sandon, 1992).  They were also aware of results showing that adapting 
luminance could be used to affect inhibitory processes (Dawson & Di Lollo, 1990; Matin, 1968; 
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Roufs, 1972; Whitten & Brown, 1973).  From this knowledge, Dawson and Thibodeau reasoned 
that adapting luminance should affect visual search. 

 
The next stage of model development is to convert intuitions into experiments.  This re-

quires that concepts be operationalized into variables that can be measured and manipulated. 
For example, at this stage of modeling Dawson and Thibodeau (1998) made design decisions 
about how to measure visual search (i.e., in terms of search latency), about the number and type 
of objects in the different displays, about how to manipulate adapting luminance with neutral den-
sity filters, and so on. 

 
The final stage of modeling is to conduct the experiment in order to acquire the data from 

which the statistical model will be generated.  Goodness of fit can then be used to evaluate the 
regression equation that defines the relationship between the dependent measure and our predic-
tors. 

 
Where in this process can surprises emerge?  The model of data that we produce in the 

final stage can reveal surprises concerning the intuitions that we had at the early stages of devel-
opment – these intuitions might be shown to be wrong.  Indeed, the whole point of conducting an 
experiment is to test the validity of our intuitions.  If we could not be surprised – if our intuitions 
were guaranteed to be correct – then there would be no point at all to designing and conducting 
an experiment. 

 
However, a model of data can reveal few other surprises.  Consider taking the model and 

using it to predict new data points.  For instance, imagine taking the best regression equation for 
the visual search data, and using it to predict search latencies for a new number of objects (say, a 
display size of 50) and for a new filter (say, 1.5 units).  The regression equation would predict 
what the search time should be in this new situation, and we could go out and collect this new 
data to determine how accurate this prediction was.  If the equation was an accurate predictor, 
then we certainly wouldn’t be surprised.  But what if the equation did not provide an accurate pre-
diction? 

 
In this latter situation, we might be surprised, but this surprise would only be fleeting.  

This is because as soon as the model fails to fit the data, it will be abandoned.  Instead, we will 
enter into a new phase of model development, either making slight revisions to the old model (for 
instance, by adding a new predictor) or by coming up with a completely new model (Lunneborg, 
1994).  Models of data aren’t surprising with respect to future measurements, because they either 
make accurate, non-surprising predictions or they are abandoned. 

 
Let us consider surprise from a slightly different perspective.  In many instances of com-

puter simulation, surprises emerge because when seemingly simple components are combined, 
they sometimes generate behavior that is far more interesting than was expected or intended 
(Lewandowsky, 1993).  For example, Dawson (1991) developed a simple model of how the visual 
system tracks the identities of objects as they move.  He then found that this model provided a 
new theory of how one apparent motion display, called the Ternus configuration, could have more 
than one appearance depending on how the display was timed (Dawson, Nevin-Meadows, & 
Wright, 1994; Dawson & Wright, 1994).  One way to think about surprises like these is that they 
are emergent properties of a model (Holland, 1998).  We will be talking about emergence in much 
greater detail in later chapters.  For the time being, we can consider it as an example of a princi-
ple from Gestalt psychology, in which the whole is more than the sum of its parts (Kohler, 1975). 

 
Unfortunately, most traditional models of data can’t surprise us in this way either.  This is 

because of their linear nature.  In a linear model of data, the whole is exactly equal to the sum of 
its parts (Luce, 1999).  New and surprising phenomena will not emerge from a linear model of 
data. 
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3.2.5 Models Of Data Do Not Behave 
 
A fifth property of models of data is also related to the issue of surprise.  Models of data 

provide descriptions of behavior, but do not behave. 
 
For example, consider the various regression equations that were given earlier in this 

chapter.  Each of these equations describes a mathematical relationship between one kind of 
measure (search latency) and one or more predictors (number of objects, filter type, etc.).  How-
ever, none of these equations actually performs visual search.  We can’t look at the behavior of 
these models to find new and surprising properties of visual search. 

 
Contrast this with some possible model that actually performs visual search.  If this model 

actually generated search behavior, then we could examine this behavior from a number of dif-
ferent perspectives.  We could, of course, look at how long it took the model to find a target in the 
display.  But we could also look at the kinds of mistakes made by the model, the precise order in 
which a display of visual objects was examined by the model, how long each individual object 
was processed, and so on.  Because the model behaves, and because we can observe and 
measure this behavior in many different ways, the model is in a position to suggest new and pos-
sibly surprising results.  We could then go back to the laboratory, and run new experiments to see 
if these surprising results were also evident in human search behavior. 

 
Lewandowsky and Hockley (1991) have proposed that one criterion for progress in cogni-

tive psychology is the extent to which data and theory have become interrelated.  Progress is be-
ing made if theory generates data, and if the data collected in turn constrains the theory that is 
being developed.  This view is an updating of the old empiricist approach to theory evaluation in 
experimental psychology, which argued that one could measure the quality of a theory in terms of 
the number of new experiments that it inspired. 

 
Because models of data do not behave, they do not lead directly to new experiments.  In-

stead, models of data are best viewed as a quantitative measure of the validity of the theory that 
led to a particular experiment being conducted.  A regression equation of the type that we saw 
earlier will only lead to new experiments indirectly, by generating sufficient goodness of fit to data 
to increase our confidence in the theory or intuitions that directed the design of the experiment in 
the first place.  New experiments will be generated from this theory, not from the model of data 
that was used to validate it. 
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Chapter 4: Mathematical Models 
 
"It is a familiar historical fact that as science progresses, its theories become more and more 

mathematical in form.  Verbally stated propositions are replaced by exact quantitative logic" (Atkinson, 
Bower, & Crothers, 1965, p. 2).  In the study of behavior, one field that is particularly concerned about 
converting verbal theories into quantitative theories is called mathematical psychology.  In the previous 
chapter, we saw that models of data are quantitative in nature, because they express a mathematical re-
lationship between a variable of interest and a set of predictors.  Why do we distinguish the models of 
mathematical psychology from quantitative models of data? 

 
The primary reason for this distinction can be found in philosophy of science’s discussion of the 

differences between regularities and laws (Bird, 1998, Chapter 1).  A regularity is a fact that expresses a 
true generalization that has been induced from a set of observations.  For example, recall one of the re-
gression equations from the previous chapter: 

 
Time = (8.49 * Objects) + (-38.92 * Filter)  + (5.07 * OxF) + 444.14 Equation 4-1 

 
Equation 4-1 expresses regularity because it is a generalization that is based upon a set of ob-

servations, and because we can make a plausible empirical argument for its truth because this equation 
accounts for almost 100 percent of the variance of Time. 

 
Some philosophers might argue that laws and regularities are identical.  However, there are many 

objections to this position (Bird, 1998).  For instance, one can propose laws in the absence of regularities, 
and one can identify an indefinite number of regularities that are not laws.  As a result, philosophers of 
science usually require that laws have stronger properties then merely being regularities.  One proposal is 
that a law expresses a causal relation between universal properties. 

 
Equation 4-1 illustrates this latter point.  It provides a compact and accurate summary of a set of 

data, and can easily be seen as expressing regularity.  However, we would likely be very uncomfortable 
to say that this equation expresses a law of visual search.  One reason for this is because this equation 
expresses a regularity that was observed in the search processes of only one subject.  We would proba-
bly not expect this equation to predict search times perfectly for every other subject.  It would be much 
more likely to find that the equations generated for other subjects were of the same type of, but had dif-
ferent values for the constants.  In short, we would not expect a model of data to express a universal rela-
tionship. 

 
In contrast to this, mathematical psychology really is interested in formulating psychological laws. 

"From the first efforts toward psychological measurement, investigators have had in mind the goal of mak-
ing progress toward generality in psychological theory by developing quantities analogous to mass, 
charge, and the like in physics and showing that laws and principals formulated in terms of these derive 
quantities would have greater generality than those formulated in terms of observables" (Estes, 1975, p. 
273). This explains why mathematical psychology has focused upon learning and perception. "In psy-
chology, mathematical theories have developed primarily in the field of experimental psychology, espe-
cially in learning, perception, and psychophysics.  The data in these areas display the kind of consistent 
regularities that are necessary for formulating empirical laws" (Atkinson et al., 1965, p. 1). 

 
If we view models of data as being concerned with expressing regularities, and if we view math-

ematical models as being concerned with formulating laws, then it would be expected that the practice of 
mathematical psychology is broader than the experimental methods that were briefly discussed in the 
previous section.  How does mathematical psychology proceed? 

 
Mathematical models are the product of the cycle of theory formulation, deduction, and verifica-

tion (Atkinson et al., 1965; Coombs, Dawes & Tversky, 1970).  First, an initial theory is inferred from ex-
tant data.  Second, the theory is stated rigorously as a set of axioms.  Third, logical and mathematical 
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operations are used to deduce consequences from this set of axioms.  Some of these consequences may 
be surprising, and some of these consequences may even seem contradictory to expectations.  Fourth, 
new data is collected to see if it agrees with the deduced consequences.  If agreement is not observed, 
then the theory will be rejected and will have to be either revised or replaced.  If agreement is observed, 
then this new data has been explained.  In this case, a fifth step can be taken in which the theory is used 
to predict the outcome of phenomena that have not yet been observed.  The mathematical model will 
evolve by predicting new observations that in turn will result in the model being retained, revised, or re-
placed. 

 
4.1 AN EXAMPLE MATHEMATICAL MODEL 

 
If a puff of air is directed towards one of our eyes, a reflex will be triggered and the eye will blink.  

Ordinarily, if we hear a tone, this reflex will not be triggered, and the eye will not blink.  However, imagine 
a situation in which we are subject to several trials in which we hear a particular tone, and then shortly 
afterwards an air puff stimulates our eye.  In this situation, learning will occur because it is advantageous 
(for eye protection) to realize that the tone is a warning that a puff of air is on the way.  After this learning 
has occurred, the tone will produce an eyeblink, even if there is no puff of air. 

 
This eyeblink learning is an example of classical or Pavlovian conditioning (Pavlov, 1927).  In 

Pavlovian conditioning, there are two stimuli: the unconditioned stimulus (US) and the conditioned stimu-
lus (CS).  Prior to learning, the US will produce a definite response in the learner, called the uncondi-
tioned response (UR).  The learner will not generate the UR if only the CS is presented prior to learning.  
If, however, the US and the CS are paired together in a series of training trials, then eventually the CS will 
elicit the UR.  In this case, it is usually said that the CS elicits the conditioned response (CR). 

 
Pavlovian conditioning is generally thought to be the result of a growing association between the 

learner’s representations of the CS and the US.  A number of factors have been shown to affect the 
growth of this association.  Informally, effective Pavlovian conditioning depends upon the US being unex-
pected or surprising, and upon the full attention of the learning being focused upon the CS (Pearce, 
1997). 

 
The requirement that the US be surprising for effective Pavlovian conditioning is illustrated in a 

learning phenomenon called blocking (Kamin, 1969).  Imagine a two stage conditioning experiment.  In 
the first stage, CS1 (a tone) precedes the US (an air puff), so that after a series of trials it will come to elic-
it the CR (an eyeblink). We then proceed to a second stage, in which two conditioned stimuli are used.  
CS1 (a tone) and CS2 (a tap on the shoulder) are presented at the same time, both preceding the US.  In 
this second stage, it will turn out that our subject will not learn to produce the CR when only presented 
CS2.  It is as if the learning that had already occurred in the first stage blocked any new learning in stage 
two.  One account of this blocking would be to say that the initial learning removed the element of sur-
prise in the US.  Because our subject had already learned that CS1 predicted the puff of air, there was no 
need to alter that learning when CS1 was paired with CS2. 

 
Blocking provided existing data that served as a springboard for the development of a mathemat-

ical theory of learning.  One important example was the Rescorla-Wagner model of conditioning 
(Rescorla & Wagner, 1972). 

 
Rescorla and Wagner (1972) assumed that learning affected the strength of the association be-

tween the CS and the US.  In their model, the strength of this association at trial t can be represented by 
the symbol Vt.  The point of their model was to specify how this associative strength changed from trial to 
trial.  The change in associative strength at trial t can be symbolized as Vt.  

 
In general, Rescorla and Wagner (1972) assumed that if the CS and US were repeatedly paired 

together then there would be a gradual increase in the association between them.  However, this gradual 
increase was not presumed to be limitless.  They proposed that there was a maximum value of this asso-
ciation, and that this maximum value was determined by the magnitude of the US.  In their model, this 
maximum value is represented as .  The salience of a CS is also known to affect learning; conditioning 
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will occur more rapidly with a strong CS than with a weak CS (Pearce, 1997).  Rescorla and Wagner in-
cluded a parameter in their model that reflected the salience of the CS, and designated this parameter 
with the symbol . 

 
Informally, Rescorla and Wagner (1972) proposed that the growth of the association between a 

CS and the US is determined by the difference between the current strength of the association (Vt) and 
the maximum strength of the association ().  Early in conditioning, this difference will be large, and as a 
result the change in associative strength (Vt) will be large.  Later in training, this difference will be small-
er, because the current associative strength will have grown to be closer to the maximum.  As a result, 
later in training the change in associative strength (Vt) will be smaller.   

 
Formally, this proposal can be written as the following equation that defines the amount of 

change in associative strength at trial t, and which also uses  to take into account the salience of the CS: 
 

Vt = ( - Vt)     Equation 4-2 
 
Given this expression, we can write a second equation that provides the value of the associative 

strength at trial t+1 (Vt+1) on the basis of the previous associative strength Vt and the value Vt: 
 

Vt+1 = Vt + Vt = Vt + ( - Vt)   Equation 4-3 
 
This kind of recursive equation, in which the new value of a variable depends upon a previous 

value, will be seen in many of the chapters that follow. 
 
The preceding paragraphs have illustrated some of the preliminary steps in mathematical model-

ing: the conversion of an informal theory of a phenomenon into a formal statement.  The next stage would 
be to use this formal statement to derived predictions, and to see how well these predictions agree with 
experimental data. 

 
The Rescorla-Wagner model can easily be used to generate predictions by making some as-

sumptions about the parameters of the model, and then by using the equation to generated predicted val-
ues of Vt over a series of learning trials.  For example, assume that prior to learning, the initial associative 
strength (V0) was equal to 0, and that that the value of  was equal to 0.1.  Imagine doing two different 
learning experiments with these settings.  In the first,  is set to 100, and for the other  is set to 50.  If Vt 
is plotted on the same graph for both of these studies, it will be seen that the Rescorla-Wagner model 
predicts that the growth of associative strength is represented by a nonlinear function.  This function is 
exponential in nature, decelerating as it approaches the asymptotic value of .  In our hypothetical exper-
iment, the first line will climb towards the value of 100, while the other only climbs to the value of 50.  Both 
will reach their maximum value by the time that t takes on the value of 45 or 46. The Rescorla-Wagner 
model can also be used to predict that the effect of CS salience is to change the rate at which associative 
strength approaches the asymptote.  The larger the salience, the sharper is the bend in the learning 
curve, and the faster does learning reach the maximum associative strength.  

 
The model can also be used to make predictions about more complicated learning situations.  For 

example, in one paradigm Pavlovian conditioning might proceed for a set number of trials, and then an 
attempt to extinguish this learning might follow by presenting the CS without the US for some additional 
trials.  This situation can be handled in the Rescorla-Wagner model by changing the value of  to 0 when 
the extinction trials begin.  Figure 4-1 shows what the model predicts when  is equal to 100 for the first 
50 learning trials, and is then set to 0 for another 50 extinction trials.  For the solid line,  was equal to 
0.3, and for the dotted line  was equal to 0.1. The graph shows that the model predicts that CS salience 
also affects the rate of extinction. 
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T

he ex-
amples of the Rescorla-Wagner model that we have discussed to this point all assume that there is only 
one conditioned stimulus involved in learning.  However, one of the motivations for the model was coming 
up with a theory that could account for phenomena like blocking.  This requires that the equations that we 
have seen take into account the possibility of there being a compound CS. 

 
To handle multiple conditioned stimuli, Rescorla and Wagner (1972) proposed that the overall as-

sociative strength that was being modified was equal to the sum of the individual associative strengths 
corresponding to each CS.  Let us assume that there are three different conditioned stimuli CS1, CS2, and 
CS3.  Each of these, on any given trial, has a strength of association with the US that is represented re-
spectively as V1, V2, and V3.  Overall associative strength (VTOTAL) for this example would therefore be 
defined as: 

 
VTOTAL = V1 + V2 + V3   Equation 4-4 

  
Once VTOTAL has been defined, it can be used to calculate the change in each of the component 

associative strengths.  For example, to determine the change in associative strength for CS1 at some 
trial, one would compute the following: 

 
V1 = 1( - VTOTAL)   Equation 4-5 

 
Note that this equation requires the use of a value for CS salience that is unique to CS1 (that is, 

1).  Similar equations would be used to calculate V2 and V3.  The overall change in associative 
strength for this example would then be: 

 
VTOTAL = V1 + V2 + V3  Equation 4-6 

 
Rescorla and Wagner’s (1972) model was able to make predictions about learning that involved 

compound stimuli (for an introduction, see (Pearce, 1997).  For example, it provided an explanation of 
blocking.  It also provided an account of overshadowing, in which learning that involves two stimuli in a 
compound results in a smaller increase in the associative strength of each than would be observed if 
each stimulus was used as the only stimulus in Pavlovian conditioning.  Miller, Barnet, and Grahame 
(1995) review eighteen different successes of the model. 

Figure 4-1.  Extinction in the Rescorla-Wagner model. 
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The ability of the Rescorla-Wagner model to make interesting predictions, and to have these pre-

dictions confirmed by later experimentation, has resulted in its continued popularity.  However, there are 
also many results that it does not explain. Miller et al. (1995) also review twenty-three specific failures of 
the model.  They proceed to argue that such failures are the result of five classes of problematic assump-
tions that underlie this particular mathematical model. 

 
As we would expect from viewing mathematical modeling has a cycle of theory formulation, de-

duction, and verification, the failures of the Rescorla-Wagner model have led to a set of newer models 
(for an introduction to some, see Pearce, 1997).  These newer models typically retain some of the proper-
ties of the Rescorla-Wagner formulation, but attempt to address some of its problematic assumptions.  
None of these models has arisen to replace the Rescorla-Wagner theory, because the newer models 
tend to be more complicated and also have their own list of failures. “For the time being, researchers 
would be well advised to continue using aspects of the Rescorla-Wagner model, along with those of other 
contemporary models, to help them design certain classes of experiments” (Miller et al., 1995, p. 381). 

  
4.2 MATHEMATICAL MODELS VS. MODELS OF DATA 

 
Now that we have briefly considered the Rescorla-Wagner model as an example, we are in a bet-

ter position to consider some general properties of mathematical models, particularly in comparison to 
models of data. 

 
4.2.1 The Need For Pre-Existing Measurements   

 
In the previous chapter, we saw that models of data required pre-existing measurements to be 

made in order for the model to be specified.  Mathematical models appear to relax this constraint some-
what.  On the one hand, the practice of mathematical psychology would suggest that the initial form of a 
mathematical model is grounded in an existing set of data.  Furthermore, the initial tests of a mathemati-
cal model will usually examine its ability to be consistent with known phenomena.  On the other hand, 
once a model has shown some promise in dealing with the known, it is then used to generate predictions 
about phenomena that may not yet have been observed.  In this sense, the use of a mathematical model 
is quite different from the use of a model of data. 

 
4.2.2 Linearity   

 
We saw that models of data are often constructed using traditional statistical methods, and as a 

result are usually linear in nature.  In contrast, many mathematical models are nonlinear in nature.  For 
instance, the nonlinearity of the Rescorla-Wagner model – evident in Figure 4-1 -- emerges from the re-
cursive nature of their equation, in which new association strength is based in part upon a previous value.  
Mathematical models of judgment and decision are also frequently nonlinear in nature, because they in-
volve modeling discrete decisions (e.g., Bock & Jones, 1968).  For example, the notion of a perceptual 
threshold is a decidedly nonlinear construct. 

  
4.2.3 Goodness Of Fit 

 
We saw in Chapter 3 that a crucial aspect of models of data was some assessment of the good-

ness of fit between the model and empirical observations.  Mathematical models share this property.  
“What problems, some will ask, can you see in the matter of testing mathematical theories?  Does not one 
simply construct a model, apply it to data, and accept or reject on the basis of goodness of fit?  Well, that 
is indeed a standard procedure – perhaps the standard procedure” (Estes, 1975, p. 267). 

 
However, the evaluation of a mathematical model using a goodness of fit metric can in some 

sense be more exciting than is the case for a model of data.  This is because a mathematical model can 
lead to predictions about things that have yet to be observed.  In this case, the model is the inspiration for 
a novel set of experiments, and the issue is assessing goodness of fit to this new data. 
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4.2.4 Surprise   
 
One of the key differences between models of data and mathematical models concerns the issue 

of surprise.  It was argued earlier that models of data rarely surprise us.  In contrast, the goal of a mathe-
matical model is to generate surprise, at least to the extent that it provides us with knowledge that we 
didn't have prior to creating the model.  "The purpose of constructing models is not to describe data, 
which must be describe before models can be applied to them, but rather to generate new classifications 
or categorizations of data" (Estes, 1975, p. 271). Estes goes on to say, "What we hope for primarily from 
models is that they will bring out relationships between experiments or sets of data that we would not oth-
erwise have perceived.  The fruit of interaction between models and data should be a new categorization 
of phenomena in which observations are organized in terms of a rational scheme in contrast to the sur-
face demarcations manifest in data that have only come through routine statistical processing." 

 
Given that both models of data and mathematical models describe quantitative relationships be-

tween variables, it is instructive to consider why the former model rarely surprises us, and why the latter 
model is designed to surprise.  One reason that mathematical models are capable of surprise is because 
they appear to be much closer to a statement of law or theory than are models of data.  This means that 
mathematical models are far more flexible.  As we saw in the Rescorla-Wagner example, one can use a 
single mathematical model to create predictions for a rather diverse set of experimental paradigms.  A 
second reason that mathematical models are capable of surprise is because they are often nonlinear.  
We will see later in this book that nonlinear interactions between components are a rich source of sur-
prise and complexity. 

 
4.2.5 Model Behavior 

 
 Finally, let us compare models of data to mathematical models with respect to the issue of 

whether the model behaves.  In this case, it would appear that both types of models are equivalent.  As 
was the case for models of data, mathematical models provide a description of behavior, and do not be-
have.  For example, the Rescorla-Wagner model describes how one parameter, association strength, will 
change during learning.  This model, however, does not itself learn. 

 
The reason for this is that mathematical models attempt to formalize psychological phenomena 

by translating them into quantitative form.  Most models in mathematical psychology are based upon the 
foundations of measurement theory, which focuses upon procedures for measuring psychological varia-
bles.  Measurement theory has a central place in textbooks that introduce mathematical psychology (At-
kinson et al., 1965; Coombs et al., 1970; Restle, 1971; Restle & Greeno, 1970).  However, there is an 
enormous difference between predicting the value of some measurement related to a psychological pro-
cess and actually carrying out this process.
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Chapter 5: Computer Simulations 
 
Mathematical psychologists had high hopes about the potential impact for their discipline 

on psychology as a whole.  Unfortunately, many now believe that the promise of mathematical 
psychology has not been fulfilled.  "Many of us have hoped that mathematical psychology would 
prove a major vehicle for developing theoretical interrelationships between psychology and the 
various social sciences, thus facilitating both theoretical developments and applications.  But as 
things have actually gone, the flourishing of new mathematical models and methods has profited 
various specific research areas greatly but has contributed less than we would like toward bridg-
ing the gaps between disciplines or mediating applications of social science to social problems" 
(Estes, 1975, p. 265) Luce (1997, p. 79) shares this view: "On entering the field 45 years ago I 
anticipated that has mathematical psychology developed, it would increasingly be incorporated 
into the intellectual life of departments of psychology.  In the United States, that has not hap-
pened to any great extent." 

 
Why has mathematical psychology had such a limited success?  Some mathematical 

psychologists would argue that this is due to the arrival of computer simulation methods.  For Es-
tes (1975, p. 268), one "aspect of the computer revolution which has raised new and, to say the 
least, challenging problems for us is, of course, the advent of computer simulation models." Luce 
(1997, p. 80) believes that computers have "made it relatively easy to simulate quite complex in-
teractive systems.  For many, it is clearly simpler and more agreeable to program then it is to 
study processes mathematically." 

 
In what regards does a computer simulation differ from a mathematical model?  Luce 

(1999) has argued that mathematical models are attempts to capture regularities in observable 
and measurable behavior.  In contrast, much of the computer simulation research from cognitive 
science is concerned with modeling inferred internal processes.  "The distinction here is whether 
the individual (or group) is treated as a ’black box’ having observable behavioral (phenomenolog-
ical) properties to formulate the theory, or whether in some sense one attempts to ‘open’ the 
black box in order to formulate what is going on inside and how these processes give rise to be 
observed behavior.  Of course, behavioral regularities are common to both approaches – they are 
just dealt with differently" (p. 725). 

 
Why is there this difference in emphasis?  The fundamental reason is that mathematical 

psychology is grounded in measurement.  As a result it ultimately attempts to model behavior; 
that is, it attempts to predict measured values. 

 
Computer simulations, however, are not tied to measurement theory.  Instead, the simu-

lations are inspired by the computer metaphor, which is the claim that thinking is identical to the 
kind of symbol manipulation carried out by a digital computer (e.g., Dawson, 1998).  Indeed, 
some would argue that this view is not a metaphor (e.g., Pylyshyn, 1979).  As a result, computer 
simulations are not merely models of behavior; they are instead intended to be systems that ac-
tually behave. 

 
5.1 A SAMPLE COMPUTER SIMULATION 

 
To enrich our understanding of the differences between computer simulations and the 

other types of models that we have already discussed, let us turn to a specific example. 
 

5.1.1 Production System Models 
 
 Newell and Simon’s (1972) Human problem solving was the culmination of 17 years of 

research.  The goal of the book was to describe a rigorous theory of human problem solving from 
an information processing perspective.  Rather than focusing on very general characteristics of 
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problem solving, Newell and Simon aimed to generate explicit theories of how individual subjects 
solved specific problems.  Their notion of an explicit theory was a computer simulation.  “Such a 
representation is no metaphor, but a precise symbolic model on the basis of which pertinent spe-
cific aspects of the man’s problem solving behavior can be calculated” (p. 5). 

 
At the heart of their computer simulations was a proposal for a specific cognitive architec-

ture or “language of thought” (Fodor, 1975; Pylyshyn, 1984).  A cognitive architecture is a theory 
about the basic programming language that carries out cognitive information processing.  Newell 
and Simon (1972) argued that a plausible form of this architecture is the production system. 

 
A production system is a set of operators that manipulate symbols stored in a working 

memory.  Each operator can be thought of as a condition-action pair, or as an “if-then” rule.  In 
general, all of the operators in a production system scan the working memory for the presence of 
their condition.  When a particular operator finds its condition, it seizes control and prevents the 
other operators from working.  It then performs its action, which usually involves re-writing some 
of the information in the working memory.  In other words, control -- what to do next -- is broad-
cast by the working memory, and is seized by one of the set of productions.  After the production 
performs its action, control is released, and is again broadcast by the memory. 

 
In the most general sense, Newell and Simon (1972) proceeded by first collecting verbal 

protocols of subjects as they thought aloud when solving a problem. They then took these verbal 
protocols and used them to create problem behavior graphs.  A problem behavior graph repre-
sents a subject’s state of knowledge about the problem being solved, as well as the operators 
that converted one state of knowledge into the next.  It also represents how a subject makes pro-
gress as they work on the problem. This also includes information about “backtracking”, situations 
in which a subject feels that they have reached a dead end and therefore they return to an earlier 
state of knowledge about a problem to try a different approach.  The problem behavior graph is 
then used to generate a set of productions that appear to underlie the subject’s problem solving 
behavior.  This set of productions constitutes a theory about problem solving that is instantiated 
as a working computer program.  The computer program is run, and the theory is validated (in 
part) by comparing the problem behavior graph it generates to the one created from the subject’s 
protocol. 

 
Newell and Simon (1972) successfully used this methodology to create computer simula-

tions of problem solving behavior for a variety of problems.  These included cryptarithmetic, in 
which subjects must decode a letter expression into numbers; logic, in which a subject is given a 
starting expression and a set of logical rules, and must use these to convert the starting expres-
sion into a goal expression; and chess, in which subjects must choose the best next move when 
presented a position from the middle of a chess game.  These problems are all well-defined: they 
have a specific starting state, a solution that can be explicitly defined, and a set of explicit rules 
that a subject must follow when trying to go from the start of the problem to its solution.  The 
problems that Newell and Simon studied were difficult enough to challenge subjects (i.e., to en-
sure that they actually engaged in problem solving behavior), but were not so difficult that they 
could not be solved in a reasonable amount of time, or that they would produce a verbal protocol 
that was prohibitively long for later analysis. 

 
5.1.2 A Cryptarithmetic Example 
 
To provide an example of Newell and Simon’s (1972) methodology, let us consider how 

they modeled how one subject solved the following cryptarithmetic problem: DONALD + GERALD 
= ROBERT, D = 5.  The subject’s task is to figure out the digits represented by all of the other 
letters in the problem given this starting information.  The first step in the analysis was to have a 
single subject solve the problem, speaking aloud at all times when the problem was being solved.  
The subject’s session was tape recorded, providing the raw data for the analysis.  The transcript 
of the protocol, which contains 2186 words, is provided in their book. 
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When the protocol was transcribed into written form, it was broken up into short phrases 
that were labeled for later reference.  This labeling was the first processing of the raw data, for 
each phrase was assumed to represent a single task assertion or reference.  However, the 
“phrasing” of the protocol was not presumed to explicitly affect later analysis.  Furthermore, there 
was very little “cleaning up” of the protocol by removing variability and redundancy in what the 
subject is saying.  This was because parts that were easy to code did not require this, and be-
cause Newell and Simon (1972) preferred to keep parts of the transcript that were difficult to code 
in their original form to extract any information that they did happen to contain. 

 
The next step in the analysis was to take the transcribed protocol, and to infer from it the 

subject’s problem space for the cryptarithmetic problem.  A problem space defines the represen-
tational space in which a system’s problem solving activities take place.  A human subject in their 
studies was presumed to “encode these problem components -- defining goals, rules, and other 
aspects of the situation -- in some kind of space that represents the initial situation presented to 
him, the desired goal situation, various intermediate states, imagined or experienced, as well as 
any concepts he uses to describe these situations to himself” (Newell & Simon, 1972, p. 59). 

 
For instance, by examining the transcribed protocol obtained from one cryptarithmetic 

subject, Newell and Simon (1972, pp. 166-168) recognized (among other things) that he assigned 
digits to letters, inferred relations from the columns of the problem, generated digits that satisfied 
certain relations, used relations like equality, inequality, and parity, and could consider disjunctive 
sets.  Newell and Simon used the protocol to create a problem space that included approximately 
25 states of knowledge and rules (see Newell & Simon, 1972, Fig. 6.1). 

 
The reason that Newell and Simon (1972) relied on the notion of a problem space was 

that they assumed that problem solving was, in essence, a subject’s search through this space to 
find a path (of rules that, when applied, produced intermediate states of knowledge) from the 
starting state for the problem to the goal state.  Because of this assumption that problem solving 
was a form of search, their next step was to describe the full dynamics of the subject’s search 
using a problem behavior graph.  A problem behavior graph consists of a set of nodes connected 
together by links.  Each node represents some state of knowledge about the problem.  Each link 
represents a rule in the problem space that, when applied to the state of knowledge to the left of 
the link, produces the state of knowledge to the right of the link.   

 
The dynamics of search are represented in two ways in a problem behavior graph.  First, 

time increases from left to right across a single line in the problem behavior graph.  Second, 
sometimes after pursuing a train of thought a subject reaches a dead end, and has to backtrack 
to some earlier point in their search.  Newell and Simon (1972) represented this in the problem 
behavior graph by creating a new line.  This line started with the node to which subjects had 
backtracked, drawn directly beneath its last location in the problem behavior graph.  Newell and 
Simon showed how a detailed problem behavior graph could be constructed by examining the 
subject’s protocol, and by adhering to the components in the problem space that had been de-
rived for that subject (e.g., pp. 173-185). 

 
The next step in Newell and Simon’s (1972) approach was to develop a production sys-

tem to account for the problem behavior graph that had been created from the subject’s thinking-
aloud protocol.  The goal of the program was to make three things explicit: the processes for do-
ing the arithmetic, the processes for deciding what to do next, and the information remembered 
by the subject as the problem is being solved (e.g., to permit back-tracking). 

 
Newell and Simon (1972) were able to use the problem behavior graph to derive a pro-

duction system that accounted for their subject’s behavior.  Each link between two nodes in the 
problem behavior graph represents the input and output for a particular operation.  Newell and 
Simon examined the problem behavior graph to find evidence for the repetition of an operation’s 
occurrence, viewing the operation as being a production.  “Repetition of decision situations is the 
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key issue, for if each situation called forth a unique process, then we could never verify that a 
proposed process was in fact the one used” (p. 191). 

 
For example, the problem behavior graph for one subject solving the DONALD + GER-

ALD = ROBERT problem consisted of 238 nodes.  From this graph, Newell and Simon were able 
to find evidence for 14 different productions.  “The total program, then, is the collection of these 
individual productions, plus the ordering of the productions that resolves conflict if several condi-
tions are satisfied concurrently” (p. 192).   

 
Newell and Simon (1972) demonstrated that this small production system accounted for 

approximately 80 percent of the structure of the subject’s problem behavior graph.  Furthermore, 
“most of the inadequacies of the model appear to be due either to the lack of a detailed account 
of attention and memory mechanisms or to missing data” (p. 227).  In other words, when the pro-
duction system failed, it seemed to be because the verbal protocol didn’t reveal all of the neces-
sary information.  Newell and Simon were also able to show that while this approach produced a 
computer simulation of one subject solving one problem, the discoveries made by this approach 
generalized quite well to other problems and to other subjects. 

 
5.2 CONNECTIONIST MODELS 

 
The production system simulation that we have just discussed is an example of what 

cognitive scientists would call a classical model (see also Dawson, 1998, Chapter 2).  A classical 
model is a distinct set of rules or operations that are designed to manipulate a set of symbols 
stored in a memory system (Newell, 1980).  In recent years, many researchers have become crit-
ical of some of the general assumptions that underlie classical models (e.g., Bechtel & Abraham-
sen, 1991; Brooks, 1999; Rumelhart & McClelland, 1986; Smolensky, 1988).  These researchers 
have proposed alternative proposals about the nature of the cognitive architecture. 

 
5.2.1 Properties Of Connectionism  

 
One example of an alternative type of model is a connectionist or parallel distributed pro-

cessing (PDP) network.  Dawson (1998, Chapter 3) provides a brief introduction to this kind of 
modeling, particularly in relation to classical cognitive science.  Chapters 9 through 12 of this cur-
rent book present many connectionist ideas in detail.  For the time being, let us quickly consider 
some general properties of connectionism so that we can compare this type of simulation to the 
other models that have been discussed in the current chapter. 

 
A connectionist network is a system of inter-connected, simple processing units that can 

be used to classify patterns presented to it. Such a network is usually made up of three kinds of 
processing units: input units encode the stimulus or activity pattern that the network will eventual-
ly classify; hidden units detect features or regularities in the input patterns, which can be used to 
mediate classification; and output units represent the network’s response to the input pattern (i.e., 
the category to which the pattern is to be assigned) on the basis of features or regularities that 
have been detected by the hidden units. Processing units communicate by sending numerical 
signals through weighted connections.  

  
In most cases, a processing unit carries out three central functions: First, a processor 

computes the total signal that it receives from other units. A net input function is used to carry out 
this calculation. After the processing unit determines its net input, it transforms it into an internal 
level of activity, which typically ranges between 0 and 1. The internal activity level is calculated by 
means of an activation function. Finally, the processing unit uses an output function to convert its 
internal activity into a signal to be sent to other units.  

 
The signal sent by one processor to another is transmitted through a weighted connec-

tion, which is typically described as being analogous to a synapse.  The connection itself is mere-
ly a communication channel.  The weight associated with the connection defines its nature and 
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strength.  For example, inhibitory connections are defined with negative weights, and excitatory 
connections are defined with positive weights.  A strong connection has a weight with a large ab-
solute value, while a weak connection has a weight with a near-zero absolute value.  The pattern 
of connections in a PDP network defines the clausal relations between the processors and is 
therefore analogous to a program in a conventional computer (Smolensky, 1988). 

 
Unlike a conventional computer, though, a network is not given a step-by-step procedure 

for performing a desired task. It is instead trained to solve the task on its own. For instance, con-
sider a popular supervised learning procedure called the generalized delta rule (Rumelhart, Hin-
ton, & Williams, 1986a, 1986b).  

 
To train a network with the generalized delta rule, one begins with a network that has 

small, randomly assigned connection weights. The network is then presented a set of training 
patterns, each of which is paired with a known desired response. To train a network on one of 
these patterns, the pattern is presented to the network’s input units, and the network generates a 
response using its existing connection weights. An error value for each output unit is then calcu-
lated by comparing the actual output to the desired output. This error value is then used to modify 
connection weights in such a way that the next time this pattern is presented to the network, the 
network’s output errors will be smaller. By repeating this procedure a large number of times for 
each pattern in the training set, the network’s response errors for each pattern can be reduced to 
near zero. At the end of this procedure, the network will have a very specific pattern of connectivi-
ty (in comparison to its random start) and will have learned to perform the desired stimu-
lus/response pairing. 

 
5.2.2 A Connectionist Example  

 
The mushroom problem is a benchmark problem to be used to study machine learning 

(Schlimmer, 1987).  It consists of 8124 different mushrooms, each defined as a set of 21 different 
features (odor, color, number of gills, etc).  The task is to use these features to classify a mush-
room as being edible or not. 

 
To provide a concrete example of connectionist simulation, let us briefly consider an ex-

ample of a PDP network trained to solve the mushroom problem. In one study, Dawson, Medler, 
McCaughan, Willson, and Carbonaro (2000) taught a particular type of PDP network to solve the 
mushroom problem.  The network had one output unit, four hidden units, and twenty-one input 
units (one for each input feature).  The network was trained using a version of the generalized 
delta rule (Dawson & Schopflocher, 1992) that is discussed in depth in Chapters 10 and 11.  The 
network learned to solve the problem (i.e., to correctly classify each of the 8124 mushrooms) after 
a training session in which each pattern was presented 1852 times. 

 
Dawson et al. (2000) were not merely interested in designing a PDP network to solve the 

mushroom problem.  They were also interested in determining how the trained network used the 
mushroom features to classify the patterns.  To do this, they recorded the responses of the hid-
den units to each of the training patterns.  They then used a statistical technique called cluster 
analysis to identify 13 different network states that were responsible for the network generating a 
correct response.  These internal states are called distributed representations, because each 
state is defined by a specific pattern of activity across all of the hidden units. 

 
Dawson et al. (2000) then examined the sets of input patterns that were caused the net-

work to generate each of these internal states. For example, each of 3288 different mushrooms 
caused the hidden units in the network to produce the same internal state.  They were interested 
in determining what all of these patterns had in common to make the network behave in this way. 
From this type of analysis for each of the internal states, Dawson et al. were able to identify a 
simple equation that used only seven feature values (cap color = cinnamon, door = anise, gill col-
or = white, stalk color above ring = white, ring type = evanescent, habitat = meadows, habitat = 
woods) to correctly classify every pattern in the training set.  The hidden units were collectively 



 - 32 - 

Minds And Machines © M.R.W. Dawson 12/02/2016 

representing the presence or absence of these specific features.  The output unit then used this 
distributed internal representation to solve the mushroom problem. 

 
5.3 PROPERTIES OF COMPUTER SIMULATIONS 

 
In the preceding sections, we have seen two very different examples of computer simula-

tion models.  From these two examples, we are now in a position to compare and contrast com-
puter simulations to models of data and to mathematical models. 

 
5.3.1 Requirement For Existing Data 

 
Earlier, we saw that models of data depend completely upon having pre-existing meas-

urements for a model to be formulated.  Mathematical models relaxed this need somewhat.  They 
usually are formulated on the basis of existing data, but are then later used to make predictions 
about phenomena that may not yet have been observed. 

 
Computer simulation models relax the need for pre-existing measurements even further.  

In some instances, computer simulations are similar to mathematical models in that they can be 
created from pre-existing measurements.  We saw this earlier when verbal protocols were used 
as the raw material from which a production system could be created.  This model can then be 
used to make novel predictions. 

 
The example PDP simulation that we saw is even further removed from a model of data 

and from a mathematical model.  While classifying mushrooms as being edible or not is clearly a 
task that humans are capable of accomplishing, Dawson et al. (2000) were able to build their 
network without any knowledge of how people solve this classification problem.  Indeed, one le-
gitimate question to investigate is whether people and the network classify mushrooms in the 
same way. PDP networks allow “for the possibility of constructing intelligence without first under-
standing it” (Hillis, 1988, p. 176). 

 
In short, it would appear that computer simulations do not absolutely require pre-existing 

measurements in order to be created.  This is a fairly radical departure from other kinds of models 
that one would see in psychology (i.e., models of data or mathematical models). 

 
5.3.2 Linearity   

 
Previously, and we saw that models of data are typically linear.  For example, regression 

uses a linear sum of predictor values to estimate a value for a dependent measure.  In contrast, 
mathematical models frequently incorporate nonlinear relationships between variables.  It was 
argued earlier that this makes them more sophisticated than most models of data. 

 
Although it is not a necessary property, most computer simulations incorporate nonlinear 

elements or operations.  Rather than realizing this as a nonlinear equation relating two variables, 
computer simulations are often implicitly nonlinear.  This is because many computer simulations 
are designed to model internal information processes, which are tacitly nonlinear, but which also 
are usually not formulated mathematically (Luce, 1999). 

 
For example, consider the production system for cryptarithmetic.  Each production in this 

model represents a primitive operation to be performed on symbols stored in a memory.  As such, 
productions are not usually considered as being mathematical equations.  However, from a 
mathematical perspective a production could be described as being an object that was in one of 
two different discrete states (active or not active).  This state depends upon the contents of the 
memory, but not in a way that is linear or even continuous.  We would have to say that produc-
tions are nonlinear operators. 
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Our PDP example is also extremely nonlinear.  This is because each of its hidden units 
and its output unit can be described mathematically in terms of the equation that converts net in-
put into internal activity (i.e., the activation function).  The activation function for the units in the 
Dawson et al. (2000) network was a particular form of the Gaussian, which is clearly nonlinear 
because it is a bell-shaped function as will be seen in Chapter 10.  Most modern PDP networks 
use nonlinear activation functions. 

 
In principle, the typical nonlinear nature of computer simulations provides them with great 

power and flexibility.  Imagine the set of all possible mathematical functions.  Now imagine the 
subset of these functions that are linear.  What is the relative size of this subset compared to the 
larger set?  Luce (1999) points out that the set of possible linear systems is "vanishingly small 
among the class of all possible systems” (p. 729).  What this means is that a linear system is only 
capable of computing an extremely small subset of the possible mathematical functions. 

 
In contrast to a linear system, a mathematical device called a Turing machine is capable 

in principle of computing any mathematical function, linear or not (Minsky, 1972).  Many of the 
architectures used to simulate human information processing have this degree of power because 
of their nonlinear nature.  For example, Newell (1980) demonstrated that production systems 
have this kind of power by showing how a Turing machine could be constructed from a set of 
productions.  Similarly, McCulloch and Pitts (1943) demonstrated how one could construct a Tu-
ring machine from units similar to those found in modern PDP networks. "To psychology, howev-
er defined, specification of the net would contribute all that could be achieved in the field" (p. 25).  
Many modern researchers have derived many new proofs that demonstrate the tremendous 
power, in principle, of current PDP networks (Cotter, 1990; Cybenko, 1989; Funahashi, 1989; 
Hartman, Keeler, & Kowalski, 1989; Hornik, Stinchcombe & White, 1989; Lippmann, 1989; 
Siegelmann, 1999). 

 
5.3.3 Goodness Of Fit 

 
Mathematical psychologists have not embraced the arrival of computer simulations with 

tremendous enthusiasm. “I think that learning to live with computers is perhaps the single most 
difficult and critical task facing mathematical psychology as a discipline” (Estes, 1975, p. 267).  
There are three general reasons for this state of affairs, all of which appear to be related to the 
theme that computer simulations are not easily evaluated in terms of the conventional “goodness 
of fit” measures used to assess mathematical models and models of data. 

 
First, computer simulations permit the creation of models that outstrip current mathemati-

cal methods, and as a result cannot be formally analyzed or specified (Luce, 1999).  This is clear-
ly a problem for mathematical psychology, because one cannot evaluate goodness of fit if a 
mathematical model cannot be formulated. 

 
Second, the general architectures that lay at the heart of both symbolic and connectionist 

computer simulations are so powerful, in principle, that any stimulus-response function can be 
approximated to an arbitrary level of accuracy.  Indeed, this is exactly the implication of many of 
the existing proofs concerning the power of connectionist networks (Cotter, 1990; Cybenko, 1989; 
Funahashi, 1989; Hartman, Keeler, & Kowalski, 1989; Hornik, Stinchcombe & White, 1989; Lipp-
mann, 1989).  “If we have the right connections from the input units to a large enough set of hid-
den units, we can always find a representation that will form any mapping from input to output” 
(Rumelhart, Hinton, & Williams, 1986a, p. 319).  If the goal of a computer simulation were merely 
to fit data, then there doesn’t seem to be much to be gained by this approach with so much power 
at hand (Massaro, 1988). “The matter of fitting models to data has suddenly become so easy that 
it no longer constitutes a useful method of tracing theoretical progress” (Estes, 1975, p. 267).  
Similar arguments have been made against symbolic simulations (Paivio, 1986). 

 
Third, mathematical psychologists are very concerned by the fact that “goodness of fit” 

seems extremely difficult to define for many computer simulations.  “To me the most troubling 
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[trend] is some lack of concern about how complex computer models are to be evaluated empiri-
cally” (Luce, 1999, p. 733).  Estes (1975, p. 268) states this concern plainly, noting that simula-
tions are models “that can be fitted to data just as readily as the more familiar mathematical mod-
els but that have no specifiable mathematical form and for which we are generally unable even to 
formulate, let alone solve, the problem of testing goodness of fit.” 

 
This last point highlights one of the key differences between computer simulations and 

the other kinds of models that we have encountered.  Both models of data and mathematical 
models are designed to capture precise, quantitative relationships between variables.  This is not 
the case for many computer simulations. For instance, by focusing upon mechanisms that pro-
duce behavior, production systems are much more qualitative in nature than the models dis-
cussed in previous chapters.  This qualitative nature makes goodness of fit very difficult to define 
– and perhaps a less relevant property. 

 
Goodness of fit becomes even more tenuous to define for connectionist models.  Consid-

er the mushroom network that was described above.  While this network was given information 
about which mushrooms were poisonous and which were not, the network was not given any in-
formation about how a relationship between input features and mushroom classes was to be 
computed.  Importantly, the network was not designed to model human classification processes – 
there was no information available to it about how humans classify mushrooms!  In other words, 
there was no behavioral data for the model to fit.  In most cases it a network will not be of interest 
just because it solves a particular problem.  Rather, the model becomes interesting when we ex-
amine the internal representations that it uses to solve the problem (Dawson, 1998; Hanson & 
Burr, 1990).  As far as psychology is concerned, it is interesting to determine whether people use 
the same kinds of information as that which is found represented inside the network.  But to an-
swer this kind of research question, it is the person who is being fit to the model! 

 
5.3.4 Surprise 

 
Many people are reluctant to accept the notion that a computer simulation can lead to 

surprise.  How could a programmer possibly be surprised, when all that a computer does is follow 
the instructions of a program that he or she wrote (Haugeland, 1985)? 

 
However, surprise – and in particular surprise to a programmer – is a common outcome 

of a computer simulation.  Consider, for example, artist Harold Cohen’s program Aaron, which 
has been evolving over the last several decades (McCorduck, 1991).  Aaron is comprised of hun-
dreds of rules for creating complex drawings, and uses these rules to direct machinery to create 
drawings on paper.  “At first impression the drawings seem a relentless (and, given their source, 
a surprising) celebration of nature, the earliest drawings an organic world of simple clouds and 
whimsical creatures that just elude taxonomy; the later, more mature ones settings of frondescent 
jungles peopled by half-nude innocents” (p. 113).  Aaron’s creations have been the subject of 
numerous, successful, shows in art galleries. 

 
The drawings that emerge from Aaron are surprising, even to Cohen himself.  “The first 

time the program accumulated closed forms into something it knew to be an approximation of a 
figure, and I found an array of quasi-people staring eyelessly at me from my old 4014, I recoiled 
in fright.  What was I getting myself into?” (McCorduck, 1988, p. 80). Cohen does not tell Aaron 
what to draw.  Instead, Aaron might be described as having an instinct to draw forms that are 
governed by the general principles that Cohen has provided. For instance, “Aaron’s compositional 
strategy could be summed up in a little rule that said ‘Put it where there’s room for it to be seen’” 
(McCorduck, 1991, p. 69).  

 
During its evolution, Cohen has equipped Aaron with rules about lines, open and closed 

figures, plants and their growth, and human forms.  Cohen views these rules as cognitive primi-
tives, and not as rules of form.  “That’s one of the reasons the program is able to generate on its 
own a much richer set of forms than anybody has been able to program by describing only forms” 
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(McCorduck, 1991, p. 68).  Cohen eventually realized that only a handful of principles were re-
quired, in combination, to provide Aaron with enormous creativity. 

 
This last observation is critical to the issue of surprise in computer simulations.  Those 

who are skeptical of the ability of programs to surprise fail to recognize the fact that programmers 
do not write the code for the overall behavior of a system, but rather write the code for its specific 
component functions.  The overall behavior that emerges when these component functions are 
combined can be completely surprising to the programmer who wrote the code.  This is particular-
ly true if the component functions are nonlinear in nature.  One might have been very precise un-
derstanding of how each function behaves, but still be unable to predict the outcome of the non-
linear interactions between different functions. 

 
For example, it is surprising that the complex and detailed structure of a problem-

behavior graph for a cryptarithmetic problem can emerge from a system comprised of only four-
teen different productions.  However, this property appears to be true of production system mod-
els in general.  “We need postulate only a very simple information processing system in order to 
account for human problem solving in such tasks as chess, logic, and cryptarithmetic.  The ap-
parently complex behavior of the information processing system in a given environment is pro-
duced by the interaction of the demands of that environment with a few basic parameters of a 
system” (Newell & Simon, 1972, p. 870).  Of course, this emerging complexity depends critically 
upon the fact that the interactions are nonlinear, as we will see later in this book. 

 
The same story is also true for connectionist models.  “The study of connectionist ma-

chines has led to a number of striking and unanticipated findings; it’s surprising how much com-
puting can be done with a uniform network of simple interconnected elements” (Fodor & Py-
lyshyn, 1988, p. 6).  Other more specific surprises emerge from the study of individual networks.  
For instance, the mushroom network example earlier in the chapter revealed a completely novel 
decision rule for this categorization task, as well as a completely novel parallel representation of 
this rule (Dawson et al., 2000). We will see later in Chapter 12 that connectionist networks can 
reveal surprising regularities in problems that lead directly to questions about whether human 
problem solvers pay attention to these regularities.  However, again the source of such surprises 
is the fact that connectionist networks rely upon the interactions of nonlinear components to pro-
vide mappings from stimuli to responses. 

 
5.3.5 Model Behavior 

 
“Modern scientific psychology was started by quantification” (Koffka, 1935, p. 13).  The 

theory and application of behavioral quantification is the primary concern of measurement theory, 
which supplies the foundations for both models of data and mathematical psychology (Coombs, 
Dawes, & Tversky, 1970; Lunneborg, 1994; Restle & Greeno, 1970; Zeigler, 1976). 

 
Quantification, or at least calculations involving numerical values, was also a central mo-

tivation for the development of modern computers (Williams, 1997). The development of electron-
ic computers was driven primarily by the need to calculate complex ballistic firing tables used to 
aim artillery.  In 1945, John von Neumann wrote a description of the proposed properties for the 
EDVAC computer, providing the first account of what is now known as the von Neumann compu-
ting architecture. In his report, it is quite apparent that the function of the computer was to carry 
out a variety of numerical calculations – the superiority of EDVAC’s design was that it would not 
be limited to just calculating tables (von Neumann, 1973).  There is no suggestion that computers 
were capable of carrying out computations that were not numerical in nature. 

 
However, computers are not merely number crunchers. Mathematician Alan Turing rec-

ognized that a general information processor should properly be viewed as a symbol manipulator, 
and used this idea to propose the general characteristics of a universal computing device (Turing, 
1936).  Turing later was involved in using this proposal to aid in the development of one of the 
first digital computers, the ACE (Hodges, 1983). Shortly after its development, his view of compu-
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tation as symbol manipulation led Turing to write about the possibility of machine intelligence (Tu-
ring, 1950).  It is unclear to this day the extent to which von Neumann was aware of some of the 
deeper implications of Turing’s 1936 paper when the EDVAC computer was being designed 
(Hodges, 1983). 

 
The reason that viewing computers as general symbol manipulators had inevitable impli-

cations for psychology was that around the same time that digital computers were being invented, 
other researchers began to propose that cognitive processes involved symbol manipulation as 
well.  The modern roots of this idea are usually attributed to philosopher Kenneth Craik, who 
wrote: “My hypothesis then is that thought models, or parallels, reality – that its essential feature 
is not ‘the mind’, ‘the self’, ‘sense-data’, nor propositions but symbolism, and that this symbolism 
is largely of the same kind as that which is familiar to us in mechanical devices which aid thought 
and calculation” (Craik, 1943, p. 57).  Earlier roots for this kind of idea can be found in the 17th 
century proclamation of British empiricist Thomas Hobbes that “by ratiocination, I mean computa-
tion” (Haugeland, 1985).  By the late 1950s researchers in computer science, linguistics, psychol-
ogy, philosophy, and neuroscience were all taking Craik’s notion of symbolism very seriously, 
which led to the birth of modern cognitive science. (For an excellent history of these modern de-
velopments, see Gardner, 1984.) 

 
Why is this important?  A standard argument against machine intelligence argues that 

computers can’t actually duplicate intelligence, that at best they can only simulate intelligent be-
havior.  “No one supposes that a computer simulation of a storm will leave us all wet, or a com-
puter simulation of a fire is likely to burn the house down.  Why on earth would anyone in his right 
mind suppose a computer simulation of mental processes actually had mental processes?” 
(Searle, 1984, pp. 37-38).  The answer to this question is that computers manipulate symbols, 
and that while no one believes that storms or fires are caused by symbol manipulation, most cog-
nitive scientists believe that intelligence is. 

 
While this view is not universally accepted (Churchland & Churchland, 1990; Dreyfus, 

1992; Graubard, 1988; Searle, 1980, 1990, 1992), most cognitive scientists – be they classical or 
connectionist – endorse it (Dawson, 1998).  As a result, one consequence of the assumption that 
cognition is information processing is that computers are not limited to generating some number 
related to behavior, but instead are capable of actually behaving.  This is a fundamental differ-
ence between computer simulations and the two other types of models that we have seen. 

 
The production system for cryptarithmetic actually solves these kinds of problems. “We 

have not treated the task as an unanalyzed ‘variable’ against which to plot our subject’s behavior 
(as occurs in intelligence testing, or even in many experimental investigations, such as those on 
functional fixity or the Einstellung effect).  Rather we have attempted to discern the specific 
mechanisms whereby each bit of task-oriented behavior is produced” (Newell & Simon, 1972, p. 
303).  Similarly, the mushroom network actually classifies mushrooms as being edible or poison-
ous.  With these kinds of models, the questions that arise concern whether the behavior of the 
model is due to the same kind of internal processes that might be found in human subjects.  The 
answer to such questions requires a completely different methodological approach that often 
seems only remotely related to “goodness of fit” (Pylyshyn, 1984). 

 

Chapter 6: First Steps Toward Synthetic 
Psychology 

 
6.1 INTRODUCTION 

  
The preceding three chapters have provided a brief exposure to a variety of different types of 

models that can be found in psychology.  We are now in a position to use this background knowledge to 
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focus our attention on synthetic psychology.  The purpose of this chapter is to provide a brief introduction 
to some of the basic properties that will be found in the synthetic approach.  These properties will be in-
troduced by considering how to build a toy robot that walks. 

 
Even within one class of models, computer simulations, we saw that there can be a great deal of 

variety.  Some computer simulations are analytic in nature.  For example, one creates a production sys-
tem by taking a complicated phenomenon, breaking it down into its components, and using these compo-
nents to construct the simulation.  This analytic approach has been highly successful in psychology and in 
cognitive science.  However, this approach is not the primary focus of this book. 

 
We are instead primarily concerned with models that are synthetic in nature.  An example of a 

computer simulation consistent with the synthetic approach is a connectionist network of the sort that was 
introduced in Chapter 5.  When the synthetic approach is adopted, a set of basic building blocks is taken 
and is assembled into a working system.  The question of interest is whether these basic components can 
be organized into a system that does something complicated, interesting, or surprising. 

 
Why is this book focusing on the synthetic approach?  One reason is that in modern cognitive 

science there is a growing interest in developing models from the synthetic perspective.  A number of fair-
ly recent simulation methodologies that are popular in cognitive science are essentially synthetic in na-
ture.  These methods include artificial neural networks (e.g., Bechtel & Abrahamsen, 1991; Dawson, 
1998), genetic algorithms (e.g., Holland, 1992; Mitchell, 1996), and artificial life (e.g., Langton, 1995; 
Levy, 1992). 

 
A second reason for exploring the synthetic approach is that it melds quite nicely with a new tradi-

tion in robotics, artificial intelligence, and cognitive science.  This new tradition is defining a new field, a 
field that has been associated with a variety of labels in recent years.  These labels include behavior-
based robotics (Brooks, 1999), new artificial intelligence, based-based artificial intelligence, and embod-
ied cognitive science (Pfeifer & Scheier, 1999).  The embodied cognitive science movement is gaining 
popularity, and is challenging the traditional symbol-based conception of artificial intelligence and cogni-
tive science using many of the same arguments that were put forth by connectionist researchers in the 
early 1980s. 

 
6.1.1 Synthetic Psychology Vs. Embodied Cognitive Science 

 
Importantly, embodied cognitive science and synthetic psychology are not identical fields.  Em-

bodied cognitive science is a reaction against the traditional view that human beings as information pro-
cessing systems “receive input from the environment (perception), process that information (thinking), and 
act upon the decision reached (behavior).  This corresponds to the so-called sense-think-act cycle” 
(Pfeifer & Scheier, 1999, p. 37).  This has also been called the sense-model-plan act framework (Brooks, 
1999).  The sense-think-act cycle, which is a fundamental characteristic of conventional cognitive sci-
ence, is an assumption that the embodied approach considers to be fatally flawed. 

 
One of the aims of embodied cognitive science is to replace the sense-think-act cycle with a prin-

ciple of sensory-motor coordination (Pfeifer & Scheier, 1999), which might be construed as a sense-act 
cycle.  The purpose of this change is to eliminate, as much as possible, thinking -- the use of internal rep-
resentations to mediate intelligence.  What makes this a plausible move to consider is the possibility that 
if one situates an autonomous agent in the physical world in such a way that the agent can sense the 
world, then no internal representation of the world is necessary.  “The realization was that the so-called 
central systems of intelligence – or core AI as it has been referred to more recently – was perhaps an un-
necessary illusion, and that all the power of intelligence arose from the coupling of perception and actua-
tion systems” (Brooks, 1999, p. viii). 

 
The synthetic approach is an important component of this movement, because it opens the door 

to discovering behaviors that emerge from the interaction between an agent and its environment. Embod-
ied cognitive scientists seek this kind of emergence because they do not want to explain complex behav-
ior by only appealing to internal mechanisms.  Instead, “if we want to achieve wall-following behavior, we 
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should design not a module for wall-following within the agent, but instead basic processes that together, 
interacting with the environment, engender this desired behavior” (Pfeifer & Scheier, 1999, p. 307).  How-
ever, the synthetic approach is not equivalent to this embodied movement.  For instance, and as we will 
see throughout this book, connectionist modeling can easily be construed as synthetic simulation (Pfeifer 
& Scheier, 1999, Chapter 5).  Nevertheless, much of what is interesting about connectionist networks are 
the representational properties that stand between “sensation” and “action” (Dawson, 1998). 

 
6.1.2 Overview: Synthesis, Emergence, Analysis 

 
The purpose of this chapter is to introduce the key characteristics of the synthetic approach as it 

can be used in psychology.  These characteristics can be summarized with the acronym SEA, which 
stands for synthesis, emergence, and analysis.  In my view, these are the three fundamental steps re-
quired for the synthetic approach to make contributions to psychology and to cognitive science. 

 
In very general terms, synthetic psychology should proceed by carrying out these three steps in 

succession.  First, a set of basic building blocks is used to synthesize a model.  Second, the performance 
of the model is explored, with particular attention being paid to its emergent properties.  Third, the emer-
gent properties are explained in a theory that accounts for them by appealing to internal mechanisms, to 
the environment, or to an interaction between the two. 

 
For our first exposure to these three steps, this chapter describes a class activity that I have used 

in one of my graduate courses.  This example as it stands is not particularly psychological – a characteris-
tic that is unfortunately true of many of the phenomena modeled by embodied cognitive science.  Howev-
er, it provides a concrete example of the three components of SEA.  In later chapters, we will use these 
foundations to build synthetic models that seem more relevant to higher-order psychological processes. 

 
6.2 BUILDING A THOUGHTLESS WALKER 

 
It has been my experience that when you try to teach modeling, students really benefit from 

hands-on work.  So, when I was teaching a course on the synthetic approach in the fall of 2000, I thought 
that it was important to spend at least some time having students actually construct a working model.  
This was not merely to expose them to modeling per se.  The activity that I had in mind was intended to 
expose them to the realization that a phenomenon that they took for granted was actually quite compli-
cated. 

 
One of the problems that I faced in doing this was that different students had enormous differ-

ences in their backgrounds of computer programming.  This meant that the class activity couldn’t involve 
hands-on computer simulation, because I was not really interested in spending a great deal of time teach-
ing programming as part of this course.  My solution was to have students build a walking robot from a 
particular kind of toy buildings set, K’NEX. 

 
One week I brought two large containers of K’NEX materials into class, along with an assortment 

of text aids.  The class was asked to build a robot that could walk forward.  The text aids were used to 
provide inspiration, but I didn't give any specific instructions.  The class was quite small (8 or 9 students), 
and they spent the first little while organizing themselves into groups, exploring K’NEX, and thinking about 
how they were going to approach this class problem. 

 
By the end of class a week later, and only working during class time, the students had construct-

ed a set of modular components that could be used to create a two-legged system, a four-legged system, 
or a six-legged system.  Under certain conditions, described in more detail below, the students were suc-
cessful in creating a robot that could walk the length of the classroom. 

 
In the sections below, I will describe the next-generation of the robot built in the style that was 

created by the students.  It represents a next-generation system only to the extent that I took the liberty of 
making some minor improvements to their original model.  The original robot, constructed under condi-
tions that weren't necessarily ideal, had a few flaws that needed to be corrected.  Some of the flaws in-
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volved robot parts that were intended to be identical in each module, but were not.  Some of the flaws 
were structural problems that required solutions involving parts, such as elastics, that were not pure 
K’NEX.  The robot described below is built purely from K’NEX parts in the spirit of the robot that was con-
structed in class. 

 
The sections below describe this robot as a project that could be built by the reader.  It only men-

tions the parts and the properties of the final system.  However, it is important to remember that when it 
was designed, students made explicit decisions to build in one way, and not in another.  This was be-
cause they had many more materials available to them than those that are mentioned below.  The reader 
of this section should keep in mind that other designs are easily possible, and might want to consider al-
ternative approaches to building the robot if they decide to try to replicate the efforts of this class.  If the 
reader is interesting in exploring this robot in more detail, pictorial instructions of how it was built, and vid-
eos of the behavior of different versions of this model, are available at the website that provides supple-
mentary material for this book (www.bcp.psych.ualberta.ca/~mike/Book2/). 

 
6.2.1 A Class Project 

 
 The purpose of this project is to build a robot that can walk at least a few steps forward inde-

pendently.  It is not required to be able to turn, or to avoid obstacles.  One goal of building the system is 
to start to have some appreciation for some of the properties that are characteristics of walking systems. 

 
6.2.2 Materials 

 
The entire robot was constructed out of a large set of K’NEX building materials that my daughter 

and son had accumulated over the years.  K’NEX is a toy building system comprised of rods that can be 
inserted into geometric connectors that hold the rods together to create larger structures.  Rods and con-
nectors are made from plastic, and are coded-coded to indicate length or shape.  While structures built 
from K’NEX can be quite sturdy, there is a fair amount of “give" in these building materials.  This turns out 
to be advantageous in providing emergent walking behavior in the robot. 

 
In addition to the rods and connectors, the robot-building students also had available to them 

three identical motors that can be used to provide movement to K’NEX structures.  These motors drive 
plastic gears that can rotate a K’NEX rod inserted as an axle.  One of the advantages of using such mo-
tors for this project is that they too have a little bit of “give” in them, which was important for getting the 
robot to work.  Having three of these motors was a luxury, as well as an indicator of how many raw mate-
rials the students had available.  Usually K’NEX kits that use motors of this type only include one. 

 
The only additional material required for building the robot was some literature that described a 

number of different robot projects, none of which use K’NEX.  As we will see below, one important prob-
lem the students needed to solve was how to convert the rotating motion of the motors into a stepping 
action.  They found one chapter in McComb (1997) that was particularly useful for providing a solution to 
this problem. 

 
6.3 STEP 1: SYNTHESIS 

 
In adopting the synthetic approach, the first general step is to take a group of basic building 

blocks and assemble them into a working system.  This contrasts with the analytic approach because the 
researcher does not start with a complete system, and decompose it into component parts or functions. 

 
In the first phase of synthesizing the walking robot, the basic building blocks are the K’NEX parts.  

In the later phase, a more abstract sense of building block is adopted.  This is because you can create 
larger walking systems by linking together smaller identical walking modules.  In order to create these 
higher-order building blocks, students had to make three important design decisions.  These decisions 
are described below. 
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6.3.1 From Rotation To Stepping 
 
In order to create a walking robot, the students decided that the fundamental engineering problem 

to be solved was converting the rotation of an axel into a stepping motion.  In making this decision, the 
students also made some progress in terms of organizing their work on the whole robot.  They had decid-
ed to convert each motor into a system that would cause two legs to step.  They divided themselves into 
three small groups of students, each working with one of the motors.  When one group had some insight 
into solving a particular design problem, they communicated it to the other two groups. 

 
The primary inspiration for converting rotation into stepping came from Figure 16-15 in McComb 

(1987).  This figure demonstrated that if one attached a leg to the outside of a rotating wheel, and also 
permitted the leg to rotate freely at the point of attachment, then the rotation of the wheel would result in 
the leg being lifted up and pushed down in a stepping motion.  The students exploited this design in creat-
ing the axle to be rotated by the K’NEX motor (for pictures, please visit the website).  The axle was a red 
rod.  On one end of the rod, a white connector was attached sideways.  At the other end of the rod, an-
other white connector was attached sideways, but on the opposite side of the rod.  These two white con-
nectors represent wheels that would be rotated when the motor rotates the red rod.  The white connectors 
are placed on opposite sides of the rod so that the two legs moved by the motor would do so cooperative-
ly (i.e., one would be stepping in front of the other).  A blue rod is placed through the middle of each white 
rod, and a beige connector is attached to one end to keep it from falling out.  When constructed in this 
way, the blue rod can freely rotate in the white connector.  If the leg is attached to the blue rod, then it is 
possible to make it “step” when the red axle rotates. 

 
6.3.2 Balance 

 
A second design issue to be faced by the students was the nature of the legs that were to be at-

tached to the axles.  The problem to be dealt with was this: the legs had to be constructed in such a way 
that a two-legged module would stand, even if the motor was not turned on.  This was a problem because 
the “body” of the module – which was essentially the motor – was fairly heavy in relation to other compo-
nents, and the legs were mounted in the middle of this body.  The feet at the end of the legs had to be 
constructed so that the module would balance. 

 
Balance was achieved by attaching a fairly large and wide “foot” to a red rod that served as a leg.  

The foot was constructed from four white connectors and two yellow connectors held together very solidly 
with white and green rods.  The robot’s point of contact with the ground was the two yellow connectors.  
The leg was attached to the axle by connecting firmly to the axle being moved by the motor.  As a result, 
it was possible for the leg to push upwards with enough force to lift the “body” of the module. 
 
6.3.3 Leg Support 

 
In order to create a successful stepping motion, it is not sufficient to connect the foot to the axle.  

A support must also be provided to the top of the red leg, in order to prevent the entire leg from being ro-
tated around the axle and hitting the ground.  In other words, the support must be used to restrain the leg 
in such a way that it keeps pointing (roughly) up and down during movement. 

 
In order to deal with this problem, the students designed a structure that was used to contain the 

motor, and was also used to loosely constrain the top of the leg.  This structure was essentially a body 
that had a connector that the leg passed through, but was not directly attached to.  This arrangement al-
lows the leg to move fairly freely in an up and down motion, but prevents the top of the leg from being 
rotated downwards to interfere with any stepping movement. In other words, the legs step, they do not 
rotate. 

 
6.4 STEP 2: EMERGENCE 

 
The first general step in synthetic psychology is to construct a working system.  The second gen-

eral step is to watch it work, paying attention to surprising or emergent properties.  As we will see in 
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Chapters 7 and 8, a practitioner of the synthetic approach expects that a system of simple components 
will generate far more interesting behavior than would be expected, particularly when it is embedded in an 
interesting environment. 

 
What is an emergent property?  One way to think about emergence is in terms of the line-

ar/nonlinear distinction that we explored when discussing models of data, mathematical models, and 
computer simulations.  In a linear system, the behavior of the whole system is exactly equal to the sum of 
the behaviors of its parts.  If one understands the behaviors of all of the parts of a linear system, then this 
means that there should be no surprises when observing the behavior of the system as a whole.  In con-
trast, in a system in which the components interact nonlinearly, then surprises can emerge.  “The hall-
mark of emergence is this sense of much coming from little” (Holland, 1998, p. 2). 

 
Holland (1998) points out that while emergence is a ubiquitous phenomenon in the natural world, 

it is exceedingly complicated, and therefore defies definition.  However, he argues that the scientific study 
of emergence is in a position to take advantage of some essential characteristics.  First, emergence 
should be studied in systems that can be described as being governed by rules or laws.  Second, an 
emergent phenomenon should be a pattern that is both recognizable and recurring.  Third, theories of 
emergent phenomena will depend crucially upon modeling.  Fourth, emergent phenomena will often be 
seen in systems that are either adaptive or dynamic over time.  Fifth, “emergence usually involves pat-
terns of interaction that persist despite a continual turnover in the constituents of the patterns” (p. 7).  
These persistent patterns can be used as building blocks for larger systems. In other words, emergent 
phenomena will often be observed in systems that are organized hierarchically. 

 
The walking robot that was constructed by the class is exceedingly simple.  Nevertheless, when 

its behavior was observed and manipulated, it exhibited many of these fundamental properties of emer-
gence.  In the sections below, we will consider observations made concerning three different versions of 
the robot: a two-legged robot, a four-legged robot, and a six-legged robot. 

 
6.4.1 Two-Legged System 

 
The behavior of a two-legged system was interesting in some respects, but disappointing in oth-

ers.  When the motor was turned on, the robot began to sway back and forth in a surprisingly life-like 
fashion.  The “body” of the system also rotated back and forth.  If one was to call each yellow connector 
at the base of the leg a “toe”, then the stepping behavior of this robot could be described as follows:  
three “toes” were always in contact with the table.  Two were on the leg on one side of the robot; the third 
was the toe on the back of the other leg.  In short, when the robot stepped, it raised the front “toe” of one 
leg, and then it raised the front “toe” of the other leg. 

 
All of this behavior was interesting, in the sense that it was quite a bit more complicated than the 

students predicted prior to turning the robot on.  However, with all of this swaying, rocking, and toe lifting, 
one disappointing fact was obvious: the robot did not walk.  It carried out all of this movement while stay-
ing in one place on the table.  A video of this movement can be seen at the website for this book. 

 
6.4.2 Four-Legged System 

 
The next stage of exploring the walking behavior of the robot was to take four additional white 

rods, and to connect two two-legged modules together to create a four-legged robot.  When the modules 
were connected together, care was taken to ensure that both motors were pointed in the same direction.  
By convention, the rear of a module was the end where the motor switch, and the wire connecting the 
motor to the battery case, was found. 

 
K’NEX motors can be run in two different directions, clockwise and counter-clockwise, depending 

upon the setting of the motor’s switch.  In the first test of the four-legged robot, both motors were turned 
on in the same direction.  The behavior of the robot didn’t depend on whether this direction was clockwise 
or counter-clockwise, and also was not affected by whether the motors were started at the same time or 
not, or by the starting positions of the two legs. 
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When the students drove the motors in the same direction, the robot as a whole began to sway 

and to rotate in a very similar fashion to the two-legged system.  If one were to watch only one side of the 
robot, then one would typically see three “toes” in contact with the ground. Occasionally two “toes” would 
be seen in contact with the ground – one from each foot.   Sometimes all four “toes” in contact with the 
ground.  When these observations were made, the robot was not walking.  All of its swaying movement 
was being done on the spot. 

 
Interestingly, every so often the movement of the two component modules would become unco-

ordinated.  When this happened, the “give” in the K’NEX motor became important.  The students would 
hear a definite clicking sound as the gears of one of the motors jammed, and the rotation of one of the 
axles would cease for a short period (a second or less).  Then, the motor that had stopped would start 
again, and at that moment the robot would lift one entire foot off the ground, and take a definite step for-
ward.  The extent of this forward movement was about 1 or 2 centimeters.  Unfortunately, when the next 
step occurred, it was often in the opposite direction!  So, when walking did occur, it was forward, then 
backward, one labored step at a time. 

 
In short, this first test of the four-legged system led to results that were essentially the same as 

the results observed in the two-legged system: there was lots of robot movement, but essentially no walk-
ing.  However, every now and again a definite step would emerge, suggesting that the robot’s design was 
on the right track. 

 
From observing the first test of this robot, it appeared that the coordination between the two leg 

modules was critical.  For the most part, the two modules were in step, and as a result the robot did not 
walk.  Walking only appeared when the stresses on the robot’s legs caused a disruption between the co-
ordination of the two legs. 

 
This observation led to a simple manipulation that had dramatic results.  If walking in this system 

required that the two leg modules be out of synch, then perhaps it would walk better if the two motors 
were run in opposite directions.  At face value, this prediction is counterintuitive, because one would ex-
pect that if walking were to be achieved then the two sets of legs would have to be moving in the same 
direction.  However, the students could quickly test their hypothesis simply by setting the two motor 
switches in opposite directions. 

 
When this second test was conducted, the results were much more encouraging.  At first, the ro-

bot motors protested loudly – angry clicks were heard from both.  However, after a few moments, the 
clicks were heard less frequently, and the robot began to walk forward.  When it was walking optimally, it 
would lift one rear foot completely off of the table’s surface, and at the same time lift the front foot on the 
opposite side.  It would then move about 2 cm.  In some instances, the motors would lose this nice walk-
ing coordination, the stepping behavior would attenuate, and the robot would either slow down or stand 
still.  This only lasted for a moment though – when the robot was in this state, the motors would start click-
ing back and forth again, and then the robot would begin to step forward.  Examples of the movements of 
this robot are also available on the book website. 

 
6.4.3 Six-Legged System 

 
The final exploration of walking by the students involved studying the behavior of a six-legged ro-

bot.  The students created this robot by connecting a third two-legged module to the four-legged robot.  
Once again, care was taken to ensure that all three motors pointed in the same direction. 

 
In the first test of the six-legged robot, the behavior of the system was very similar to that of the 

four-legged robot.  The motors would complain when they were first all started in the same direction.  The 
robot would begin to sway back and forth, and rotate a bit towards the left and right.  Shortly thereafter, 
the three different motors would be coordinated in a pattern in which all three legs on each side of the 
robot moved in synch.  In this configuration, the robot essentially swayed back and forth in one place, and 
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the closest that it came to stepping would be raising only one “toe” of any of its legs off the table’s sur-
face. 

 
On occasion, because the motors were running independently, this relatively stable configuration 

was disrupted.  One or more of the motors would click, the axle would momentarily stop, and suddenly 
one of the robots legs would lift completely off the surface.  A similar stepping motion would then be initi-
ated in one or both of the other modules, and the robot would take a fairly large step (in the order of 5 cm) 
in one direction.  Shortly afterwards, the system would again stabilize into the configuration in which the 
legs on each side were in synch, and the machine swayed back and forth on the spot.  As was the case 
with the four-legged robot, when the next stepping action occurred, it was often in the direction opposite 
to the last step taken. 

 
The second experiment with this robot was conducted by trying to manipulate the coordination of 

the three leg modules by altering the direction of the motors.  In particular, the motor driving the middle 
pair of legs was set to run in a direction opposite to that being run by the other two motors. 

 
When the motors were set in these directions, the robot walked quite effectively, as is illustrated 

on the book website.  After an initial period of competition between the three motors, all three modules 
coordinated themselves into an arrangement in which each module raised one “foot” entirely off the table 
surface.  In general, the three modules coordinated themselves in such a way that walking was achieved 
by resting the weight of the robot on one triangle of “feet” while the second triangle of “feet” was stepped 
forwards.  Each triangle was defined by a front and rear leg on the same side of the robot, accompanied 
by the middle leg on the other side of the robot. 

 
6.4.4 Emergence And Surprise 

 
Let us now briefly summarize the main results of this phase of working with the K’NEX robots.  

One nice aspect of this demonstration project is that it provides an excellent example of emergence.  By 
themselves, none of the two-legged modules built by the students were capable of walking.  However, if 
two or three of these non-walking modules were coupled together, then walking was possible.  It is clear 
that the walking behavior emerged from an interaction between the modules. 

 
A second point to be made from this demonstration concerns the notion of surprise.  In particular, 

when reliable walking behavior was observed in a robot, this was only achieved when the motors of adja-
cent two-legged modules were turning in opposite directions.  This finding was counterintuitive, because 
at the outset it was natural to expect that all of the motors needed to turn in the same direction to get the 
machine stepping forwards.  The robot project provides a very nice example of the possibility for surprise 
in a synthetic project. 

 
Nevertheless, demonstrating that the synthetic approach can generate surprise is a fairly trivial 

result, and as such does not mark the end of the research program.  “It is true that surprise, occasioned 
by the antics of a rule-based system, is often a useful psychological guide, directing attention to emergent 
phenomena.  However, I do not look upon surprise as an essential element in staking out the territory” 
(Holland, 1998, p. 5).  The lasting value of surprise in the synthetic framework occurs when it directs at-
tention to emergent behaviors that can be explained by appealing to properties of system components.  
For this reason, after a system has been synthesized, and after emergent phenomena have been ob-
served in its workings, the researcher must step back and analyze in an attempt to explain their creation. 

 
6.5 STEP 3: ANALYSIS 

 
One of the fundamental characteristics of the synthetic approach is the assembly of components 

into a working system that exhibits surprising, emergent behavior.  The class project that we have been 
describing has provided a concrete example of this. 

 
A second, less explicit, characteristic of much synthetic research is the assumption that it leads 

more directly or more easily to explanations than does analytic research.  Chapters 7 and 8 will provide 
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more information about this assumption.  For the time being, let it suffice to say that it is quite natural to 
assume that if you build a system, and engineer it out of parts whose workings you understand, then you 
should be in a position to explain the mechanisms from which surprising regularities emerge. 

 
We will see that this assumption is not correct.  In many of the examples that we will consider, 

building a system, and observing surprises in it, is pretty easy.  The difficult – and interesting – work starts 
when an attempt is made to generate theories of regularities that emerge from what we synthesize. “Un-
derstanding the origin of these regularities, and relating them to one another, offers our best hope of 
comprehending emergent phenomena in complex systems.  The crucial step is to extract the regularities 
from incidental and irrelevant details” (Holland, 1998, p. 4).  A good deal of analysis is required to carry 
this crucial step out. 

 
The walking robots that we have been describing in this chapter are not particularly sophisticated 

machines, and were not designed to provide deep insights into the nature of locomotion.  Nevertheless, it 
is instructive to analyze aspects of their behaviors, because even these simple machines reveal some 
very interesting properties. 

 
6.5.1 Emergence And The Thoughtless Walker   

 
For a first pass at analyzing the walking robots, it is instructive to consider their behavior in terms 

of the criteria for emergence that have been proposed by Holland (1998).  One reason for doing this is 
because it helps to support the claim that the walking behavior of the robots really is emergent.  A second 
reason for doing this is because it draws our attention to a number of different properties of these robots.  
These properties demonstrate that even with these simple toy components, the behavior of the robots is 
complicated and interesting. 

 
6.5.1.1 Recognizable, Recurring Patterns 
 
One of the criteria proposed by Holland (1998) as being necessary for emergence is the discov-

ery of recognizable and recurring patterns.  Emergent behaviors can’t simply be those that are rare and 
surprising; they have to be results that are replicable.  Are the behaviors in our robots of this type?  The 
moment-by-moment behavior of all of the robots is quite complicated, and a detailed classification of the 
behaviors would likely require a detailed, frame-by-frame analysis of video images of their performance.  
However, even a casual observation of their movements suggests that there are two general states that 
the robots “prefer” to be in. 

 
The first state is one in which as many robot “toes” as possible are in contact with the ground.  In 

this state, the motors cause the robot to sway from side to side, and to turn back and forth, but the robot 
does not step forward.  Usually, when a foot moves, it only is a slight movement that causes only one of 
its two “toes” to be raised off the ground.  In multi-module robots, this state is associated with all of the 
legs on the same side of the robot moving together.  The two-legged robot is always in this state. 

 
The second state is one in which a robot is actually walking forward.  In this state, more than one 

leg is lifted completely off the ground, usually at roughly the same time.  As the robot steps forward, it still 
sways and turns, but not to the degree seen in the other state.  For the robot to be in this state, there 
must be definite coordination between different two-leg modules.  In particular, modules that are connect-
ed to each other are coordinated in a “diagonal” fashion: if one module is lifting the left leg when the robot 
is in this state, then any attached modules will be lifting the right leg. 

 
The robot is not only seen in these two states.  However, other robot states appear to be quite 

transitory.  They occur for fairly brief periods of time as the robot changes from one of the above states to 
the other.  These transitions appear to be more stressful on a robot’s structure than either of the two 
states described above.  This claim is supported by the fact that it is during these transitions that the mo-
tors stop functioning properly, grinding their gears with a distinctive clicking sound, and failing to rotate 
the red axle.  In order to determine whether any of these transitory behaviors represent recurrent patterns 
would require detailed analysis (e.g., of slow motion video) of the robot. 
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When all of the motors are turning in the same direction, the robots are much more likely to be in 

the swaying state than in the walking state.  Every 15 or 20 seconds, there will be a brief transition into 
the walking state (for one step), followed by a transition back into the swaying state.  This situation is re-
versed when adjacent motors are turning in the opposite direction.  In this case, the robots are much 
more likely to be in the walking state, except that every 15 or 20 seconds there is a brief transition into the 
swaying state, almost immediately followed by a transition back into the walking state. 

 
6.5.1.2 Rule-Governed System 
 
Holland (1998) suggests that a second criterion for the scientific study of emergence is that it oc-

curs in a rule-governed system.  “Emergent phenomena also occur in domains for which we presently 
have few accepted rules; ethical systems, the evolution of nations, and the spread of ideas come to mind” 
(p. 3).  Holland suggests that an understanding of emergence in these domains will have to wait until we 
have a better understanding of the laws that govern them. 

 
The robots that we have been describing are governed by laws, but not in the usual sense that 

comes to mind in psychology or cognitive science.  Usually, the term “rule-governed” in cognitive science 
immediately brings to mind a system that is controlled by a computer program.  Furthermore, the comput-
er program is usually thought be of a classical or symbolic type, such as the production system that was 
discussed in Chapter 5.  However, it is obvious that no such program is responsible for the behavior of 
the robots.  I call them thoughtless walkers because they have absolutely no capacity to use symbolic 
representations to control their actions. 

 
Instead, the robots are governed completely by the laws of physics.  The motors are supplying ki-

netic energy that causes robot parts to move, and the movement of these parts generate forces against 
the surface upon which robot rests.  The surface reflects forces back through the robot, which results in 
other emergent behaviors, such as the side-to-side swaying of the robot body.  As we will see below, a 
great deal of analytic research on the locomotion of multi-legged animals proceeds by analyzing the dis-
tribution of forces through the walking system. 

 
Describing the robots as being governed by the laws of physics leads to an interesting specula-

tion that would require detailed physical analysis to validate.  Each robot represents a physical system 
that holds kinetic energy, and is subject to a variety of forces.  We could imagine measuring a robot in 
such a way that we could come up with a single number that represents its total stress or energy at any 
given time.  My suspicion is that the two main states of the robot that were described above represent 
low-energy configurations.  When a robot is in either of these two states, it is under the least amount of 
stress that it can be in when its motors are running.  When the physical situation changes – for instance, 
when forces get redistributed because different motors are out of sequence – a robot moves to a higher 
energy state.  When it is in such a state, it attempts to distribute forces again in such a way that the over-
all energy is again reduced.  This results in the transitory behavior, and the accompanying complaints 
from one or more of the motors.  From this perspective, the swaying state might represent the least ener-
gy state for the robot when its motors are running, because this state is the easiest to produce.  The walk-
ing state might represent a higher energy state (which could explain why walking was unexpectedly hard 
to produce).  However, the energy of the walking state is still lower than any of the transition states.  
When the motors are running in the opposite directions, the robot is unable to reach the ideal swaying 
state, and instead has a preference for the next best configuration – walking. 

 
6.5.1.3 Dynamic System 
 
Holland (1998) proposes that emergent phenomena are to be expected when the laws governing 

a system are invariant, but the system components governed by the laws are changing or dynamic.  The 
thoughtless walkers that we have been discussing are obviously dynamic systems, because they are built 
from parts that are designed to move. 
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However, these robots are also dynamic in a subtler and more interesting sense.  We have al-
ready described the robots in terms of two general lower-energy states, and have pointed out that both of 
these states depend upon a particular type of coordination between modules controlling different pairs of 
legs.  We have also pointed out that there is no central computer that runs a program that coordinates the 
different modules.  How, then, is coordination between leg modules possible? 

 
The answer to this question is that different modules communicate to one another, but not in the 

symbolic fashion that is typically thought of in psychology and cognitive science.  A different kind of com-
munication is enabled by the dynamic nature of a robot’s parts, and of the forces at play through its struc-
ture.  When two modules become uncoordinated (e.g., because they are rotating a slightly different 
speeds), a robot’s balance is altered in such a way that one module can run easily, but another cannot.  
In other words, changes in the physical configuration of the robot could be described as one module 
communicating to another that it is becoming uncoordinated.  This message is communicated by chang-
ing the forces in the robot in such a way that one of the motors actually stops for a moment, until forces 
change again in some fashion that permits the motor to resume turning.  In other words, even though 
these robots are thoughtless walkers, they can still be described as information processors. 

 
6.5.1.4 Adaptive System 
 
“The possibilities for emergence are compounded when the elements of the system include some 

capacity, however elementary, for adaptation or learning” (Holland, 1998. p. 5).  The thoughtless nature of 
the robots that we have been considering precludes most of the possibility for learning.  While this is a 
limitation of these robots (in terms of their generating theories about locomotion), such limitations are not 
surprising.  After all, the robots are simply toys that are being used in a demonstration to reveal some of 
the general characteristics of the synthetic approach. 

 
Nevertheless, if one were interested in exploring the properties of these robots in more detail, 

then there is a possibility for adaptation that could be explored with more detailed analyses than those we 
have reported above.  It was mentioned earlier that one of the advantages of K’NEX was the “give” in 
many of the components.  Several of the parts of the robot structure are firm, but flexible.  For example, 
rods can bend, can rotate within the joint of a connector, and can also be rotated a bit in the joint, without 
the overall structure breaking apart.  It would be interesting to determine whether the physical structure of 
a thoughtless walker changed, because of the forces that the robot is subject to, in such a way that a 
physical configuration of a rod that was seen early in an experiment was never seen later.  This might be 
evident if there were fewer transition periods between lower-energy states after a robot had been operat-
ing for a while.  If indeed forces acting upon the robot adjusted its physical structure in this fashion, then 
this would be an example of elementary learning in a thoughtless system. 

 
6.5.1.5 Persistent Patterns, Changing Components 
 
Holland (1998) points out that emergent phenomena frequently exhibit a dynamic, hierarchical 

organization.  At one level of analysis, parts of a system might be changing very frequently.  At a broader 
level of analysis, though, the system might exhibit stable regularities.  “A simple example is the standing 
wave in front of a rock in a white-water river.  The water molecules making up the wave change instant by 
instant, but the wave persists as long as the rock is there and the water flows” (p. 7). 

 
When the robots are successful in walking, they clearly exhibit this kind of hierarchical organiza-

tion.  For example, walking in the six-legged robot can broadly be described as the successive placing of 
a triangular configuration of legs onto the ground.  However, the legs that make up this stable triangle 
change from step to step.  A more detailed analysis of a robot’s behavior would probably provide many 
more examples of this.  For instance, given all of the movement in a robot, and all of the “give” in its com-
ponents, it would not be surprising that a wide diversity of physical configurations of robot parts could all 
be classified as a step. 

 
6.5.2 Comparison To Biological Walking 
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The previous section has shown that there are a number of interesting and surprising emergent 
properties in the walking robots that we have constructed.  This illustrates one of the main advantages of 
the synthetic approach.  We could have taken a complicated phenomenon and analyzed it into putative 
component functions.  Instead, we took a very simple set of building materials and a very general con-
struction goal and were able to create a system that delivered several properties that were not explicitly 
intended. 

 
To my mind, the robot example demonstrates another important advantage of the synthetic ap-

proach.  By observing the regularities in the behavior of the working system, we started to learn important 
facts about walking in general.  In many cases, the synthetic approach will provide us with insights into 
the problems that are being solved by the system is that we build, and these general insights will often be 
more important than a specific account of how a particular system works.  Synthetic models provide a 
medium in which to explore phenomena.  This medium can be so rich that one can learn a great deal by 
exploring the properties of models for their own sake. 

 
A complementary approach, though, is to consider of the system in the context of other types of 

knowledge.  For instance, when a model is being analyzed one fruitful approach is to relate its observe 
properties to known properties of other systems.  In the case of our current demonstration, we could at-
tempt to do this by relating characteristics of our walking robots to knowledge that other researchers have 
collected in their study of animal locomotion. 

 
6.5.2.1 Lifelike Motion 
 
The claim that was made earlier about the appearance of the walking robots was that their 

movement appears to be “lifelike".  What exactly is meant by this claim?  What kind of evidence can be 
cited to support this position?  Research on animal locomotion can provide some answers to these ques-
tions, and can also provide some guidance about what properties of the walking robots deserve our atten-
tion. 

 
At first glance, we might be tempted to think of legs as being kind of wheel.  If legs functioned ex-

actly like wheels, then movement would be uniform.  However, analyses of the locomotion of many differ-
ent animals have shown quite clearly that movement is not uniform at all.  Legs are not wheels; a different 
metaphor is required to model actions like walking or running. 

 
During a slow motion like walking, a better mechanical metaphor is an inverted pendulum (Dick-

inson et al., 2000).  In this metaphor, the pendulum's cable becomes a rigid leg that is attached to a body 
of mass.  When the leg is used for walking, the mass is vaulted over the leg.  In the first half of this 
movement, kinetic energy is transformed into gravitational potential energy.  In the second half of this 
movement, when the body descends, this potential energy is partially recovered as kinetic energy.  One 
consequence of this cycling between kinetic and gravitational energy is that the body of the animal decel-
erates in the first half of the movement, and accelerates in the second half of the movement.  During a 
faster motion like running, the rigid leg of the inverted pendulum is better viewed as a spring, kinetic and 
gravitational potential energies are stored as elastic energy, and the system bounces as if it were on a 
Pogo stick cycling between breaking and propulsive phases.  Again, the running system does not move 
uniformly.  Instead it accelerates and decelerates with every step.  Interestingly, these two metaphors can 
be applied to describe the locomotion of bipedal, quadrapedal, and polypedal organisms (Blickhan & Full, 
1993). 

 
One in respect in which the walking robots are lifelike is that their forward movement is not uni-

form.  Even though the motors work by providing a uniform rotation of an axle, when his motion is con-
verted into a step, the legs work like pendulums.  When legs are being lifted up, the robot’s forward 
movement is very slow because the feet that are in contact with the ground are in the process of convert-
ing kinetic energy into gravitational potential energy.  When the legs are being placed down, the robot 
lunges ahead noticeably faster.  This is because the center of mass over each supporting leg is descend-
ing and accelerating. 
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Animal locomotion research points to a second fashion in which the walking robots are lifelike.  
We saw earlier that getting the robot to walk depended heavily upon leg coordination.  For example, the 
six-legged robot would only walk forward when its motors ran in such a way that the six legs were coordi-
nated to act like two sets of tripods.  Walking was accomplished by having one tripod serve the function of 
the rigid legs of an inverted pendulum, while the other tripod was moved ahead.  This kind of leg coordi-
nation is commonly seen in the walking of the six-legged organisms such as insects (Dickinson et al., 
2000). 

 
A third respect in which the walking of our robots was lifelike involves the many movements of 

their bodies that were not at first glance directly related to walking per se.  In particular, the bodies of all of 
the robots swayed back and forth very noticeably, in the front of the robust rotated between the left and 
right.  Interestingly, these kinds of movements are becoming a more interest to researchers to analyze 
animal locomotion.  The legs of sprawled-posture animals, such as insects and crabs, generate substan-
tial lateral and the forces (Dickinson et al., 2000).  These forces are orthogonal to the direction of motion.  
Analyses of these forces suggest that elastic energy storage and recovery may occur within the horizontal 
plane.  “By pushing laterally, legs create a more robust gate that can be passively self-stabilizing as the 
animal changes the, moves over uneven ground, or is not to skew by uneven terrain” (p. 101). 

 
6.5.2.2 Control With No Brain 
 
One of the predominant themes in the study of animal locomotion is the integration of many dif-

ferent systems, both neural and mechanical.  “An integrative approach to locomotion focuses on the in-
teractions between the muscular, skeletal, nervous, respiratory, and circulatory systems ” (Dickinson et 
al., 2000, p. 100).  Researchers are not only interested in determining how each individual component of 
locomotion system works, but also how all of the components function together as an integrated system. 

 
The integration of motor, sensory, and control systems is also evident in behavior-based robotics.  

Consider Genghis, a six-legged robot built in 1988 by roboticist Rodney Brooks (Brooks, 1989; reprinted 
in Brooks, 1999).  Two motors drive each leg, one for swinging it back and forth, the other for lifting it up 
and down.  A simple walk is achieved by manipulating the behavior of all of the motors in the robot, on the 
basis of sensing different positional characteristics of its legs.  For example, one reflex notices whenever 
a leg is not down, and attempts to bring the leg down by turning one motor on in the appropriate fashion.  
A second reflex notices if any one of the legs happens to move forward for some reason.  When this is 
detected, all of the legs will receive a series of messages that caused them to move backwards slightly.  
Other reflexes will advance a leg forward when it is noticed that the leg is raised, and will raise legs under 
appropriate conditions.  The combination of these sensory measurements and motor signals lead to a 
very robust emergent walking behavior in the robot. 

 
We have already pointed out that no sensory control system has been built into our thoughtless 

walkers.  To the extent that there is control or coordination between different two-legged modules, this is 
mediated completely by the transmission of physical forces through the robot structure. 

 
Recent work by researchers on animal locomotion has explored the capabilities of such thought-

less systems.  Kubow and Full (1999) simulated a walking cockroach in which there was no feedback 
from the equivalent of neural reflexes.  The only feedback in the model resulted from the musculoskeletal 
properties of the cockroach legs that were included in the simulation.  When walking was simulated, and 
the forward movement of the model was perturbed by external forces, the model was self-stabilizing.  De-
pending on the type of perturbation, the model was able to recover in one or more steps.  “Essentially, 
control algorithms can be embedded in the form of the model itself.  Control results from information be-
ing transmitted through mechanical arrangements.  Perturbations change the translation and/or rotation of 
the body that consequently provide ‘mechanical feedback’ by altering legged moment arms” (p. 858).  
This is exactly the kind of coordination that we encountered when examining the conditions under which 
our robots were able to walk. 

 
6.5.2.3 Limitations And Future Explorations 
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Animal walking can be very complicated.  Locomotion is required to accomplish many different 
goals, and each goal might be achieved by a completely different gait in the same animal.  A cockroach 
that walks slowly coordinates six legs in a fashion similar to the six leg and robot described earlier; when 
fleeing at a speed of fifty body lengths per second the same cockroach runs on only two legs (Full & Tu, 
1991).  The ecological roles of different types of locomotion are also reflected in the structure and function 
of different anatomical parts. “Forty percent of the body mass of the shrimp is devoted to the large, tasty 
abdominal muscles that produce a powerful tale flick during rare, but critical, escape behaviors” (Dickin-
son et al., 2000, p. 102).  Animals who move in the real world are subject to a bewildering variety of dif-
ferent forces.  All of these factors contribute to the view that animal locomotion requires the integration of 
multiple sensory, motor, and control systems. 

 
In comparison to biological systems, the thoughtless walkers described in this chapter are very 

simple.  They are only designed to step forward.  They cannot turn, change gait to achieve different goals, 
or manipulate step size to deal with encountered obstacles.  They do not have any neural or sensory con-
trol systems.  Nevertheless, we have seen that even these exceedingly simple toy robots have many in-
teresting emergent properties that are relevant to the scientific study of animal locomotion.  They illustrate 
one of the main reasons that there is a growing interest in the synthetic approach: very simple compo-
nents can be used to build systems that generate a far richer set of properties than could have been pre-
dicted at the outset. 

 
6.6 ISSUES CONCERNING SYNTHETIC PSYCHOLOGY 

 
In this chapter, I have proposed a general approach for conducting synthetic psychology.  This 

approach can be represented with the acronym SEA that stands for synthesis, emergence and analysis.  
In the first stage, a researcher will build a working system from known components.  In the second stage, 
a researcher will observe the actions of this system, looking for emergent phenomena.  In the third stage, 
a researcher will perform an analysis of the working system in an attempt to explain the emergent phe-
nomena by appealing to properties of the system, its environment, or the interaction between them.  A 
simplified example of this approach was illustrated by the construction, observation, and analysis of walk-
ing robots built from K’NEX parts. 

 
The simplified nature of this example can be used to raise, but not adequately deal with, a few is-

sues related to the synthetic approach.  Let us briefly mention these issues, and then confront them in 
more detail in subsequent chapters. 

 
One issue concerns the sequential nature of applying the steps in SEA.  As portrayed in this 

chapter, each step is done independently of the other, and there is a definite sequence of steps to be car-
ried out.  This portrayal does not do justice to the problem-solving practices of my robot-building students, 
and does not completely reflect how synthetic psychology is conducted in practice.  In particular, in build-
ing the robots the students moved back and forth between synthesis, emergence, and analysis.  They 
would attempt to solve a problem in one fashion, observe the system to see if the problem was solved, 
and if the problem remained, then they would analyze the situation to see if they could come up with an 
alternative solution. 

 
A second issue concerns the advantages of the synthetic approach.  While this chapter has at-

tempted to illustrate how one might conduct a synthetic research program, it hasn’t made a strong case 
for why this program would be conducted.  Chapter 7 addresses this issue with an historical overview of 
the synthetic reaction against analytic research.  It will make the argument that the synthetic approach 
does have many advantages.  But it will also make the argument – hinted at by the final component of 
SEA – that synthetic research cannot be performed without also performing analysis. 

 
A third issue concerns the domain of “synthetic psychology” and its relation to embodied cognitive 

science, including the reaction against the sense-think-act cycle.  While the robots described in this chap-
ter have given an example of viewing walking synthetically, they certainly do not qualify as being psycho-
logical models.  The rejection of the sense-think-act cycle is explicit in their thoughtless nature.  But how 
can such models be psychological?  In Chapter 8, I am going to make a stronger argument that the syn-
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thetic approach can be conducted without rejecting the sense-think-act cycle.  My position is that synthet-
ic models that have representational properties are the true products of synthetic psychology.  
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Chapter 7: Uphill Analysis, Downhill 
Synthesis? 

  

7.1 INTRODUCTION 
  
The previous chapter used the construction, observation, and analysis of toy robots to provide a 

concrete example of the three basic steps that are required in synthetic psychology.  The first step is the 
synthesis of a working system from a set of architectural components.  The second step is the study of 
this system at work, looking in particular for emergent properties.  The third step is the analysis of these 
properties, with the goal of explaining their origin.  This general approach was given the acronym SEA, for 
synthesis, emergence, and analysis. 

 
The demonstration project that was presented in Chapter 6 provides a concrete example of these 

three basic steps, but is not by its very nature a particularly good example of synthetic psychology.  In 
terms of advancing our introduction of synthetic psychology, the “thoughtless walkers” that we discussed 
at best raise some important issues that need to be addressed in more detail.  These issues were men-
tioned near the end of Chapter 6. 

 
The purpose of the current chapter is to go beyond our toy robots to consider two related issues 

in more detail.  First, we are going to be concerned with the attraction of the synthetic approach.  Why 
might a researcher choose it instead of adopting the more common analytic approach?  Second, we are 
going to consider claims about the kind of theory that the synthetic approach will produce.  Specifically, 
one putative attraction of the synthetic approach is that theories that emerge from synthetic research are 
considerably less complex than those that are generated from analytic research.  The theme of this chap-
ter will be that the synthetic approach does offer an attractive perspective for explaining complex behav-
iors.  However, it is not an approach that necessarily produces theories that are simpler than those that 
come from analytic research.  Indeed, synthetic research depends heavily upon analysis if its goal is to 
explain, and not merely produce, emergent phenomena. 

 
This chapter adopts an historical context to explore these issues concerning the relationship be-

tween synthetic and analytic traditions.  Starting from an example from early research in cybernetics, the 
chapter will introduce some of the pioneering work on autonomous robots from the early 1950s.  Then, 
the chapter will briefly describe a rebirth – of sorts – of this work in the early 1980s.  In reviewing this re-
search, we will see several examples of simple devices that produce behavior that is both intricate and 
interesting.  But we will also become aware that even the researchers who constructed these devices did 
not have an easy task in explaining their performance. 

 
7.2 FROM HOMEOSTATS TO TORTOISES  

 
In the early stages of the Second World War, it was realized that advances in aviation technology 

needed to be met in kind by advances in anti-aircraft artillery.  Specifically, the speed and maneuverability 
of German aircraft were such that classical methods of aiming this artillery were obsolete.  New tech-
niques for aiming – techniques that were capable of predicting the future position of a targeted plane, and 
sending a projectile to this predicted position – had to be developed, and had to be built right into artillery 
controlling mechanisms (Wiener, 1948). 

 
One of the scientists who worked on this applied problem was Norbert Wiener (b. 1894, d. 1964), 

who had received his PhD in mathematical philosophy from Harvard when he was only 18, studied at 
Cambridge under Russell, and eventually became a professor in the mathematics department at MIT.  
Wiener realized that feedback was a key factor in designing a mechanism for aiming anti-aircraft artillery.  
For example, “when we desire a motion to follow a given pattern the difference between this pattern and 
the actually performed motion is used as a new input to cause the part regulated to move in such a way 
as to bring its motion closer to that given by the pattern” (Wiener, 1948, p. 6).  Wiener also realized that 
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processes like feedback were central to a core of problems involving communication, control, and statisti-
cal mechanics.  He provided a unifying mathematical framework for studying these problems, and this 
framework defined a new discipline that Wiener called cybernetics, which was derived from the Greek 
word for “steersman” or “governor”.  “In choosing this term, we wish to recognize that the first significant 
paper on feedback mechanisms is an article on governors, which was published by Clerk Maxwell in 
1868” (p. 11). 

 
7.2.1 Feedback And Machines 

 
A more definite understanding of feedback, and its relationship to synthetic psychology, begins 

with a very general definition of a machine (Ashby, 1956).  William Ross Ashby (b. 1903, d. 1972) was 
one of the pioneering figures for the field of cybernetics, and was director of research at Barnwood House 
Hospital in Gloucester, and later was the director of the Burden Neurological Institute in the Department 
of Electrical Engineering at the University of Illinois, Urbana.  For Ashby, a machine is simply a device 
which, when given a particular input, generates a corresponding output.  In other words, a machine is a 
device that performs a transformation of an input signal to an output response.  Figure 7-1b illustrates this 
simple and general definition of a machine. 

 
When a machine is defined in this way, then one can 

easily imagine a situation in which two machines are coupled to-
gether.  In the simplest case, this is accomplished by having the 
output of one machine serve as the input to a second machine.  
With this kind of coupling, the behavior of the second machine is 
completely determined by the behavior of the first machine.  For 
example, in Figure 7-1a the behavior of machine M2 is com-
pletely determined by the behavior of machine M1.  This 
means that considering the machines separately does not real- ly 
provide any additional insight into the function that transforms the 
input into the output.  We could replace the two machines with a 
single machine (M3) that maintained the same input/output la-
tionship, as is shown in Figure 7-1b.  We saw this kind of rela-
tionship earlier in the book when we discussed the linear na- ture 
of regression equations, and noted that the behavior of the en-
tire regression equation was exactly equal to the sum of its 
parts. 

 
A more complicated relationship between machines occurs with a different kind of coupling.  The 

straightforward behavior of the two machines in Figure 7-1 occurred because the inputs of machine M1 
were independent of the outputs of machine M2.  If the output of M2 is fed backwards to serve as the new 
input to M1, then much more complicated behavior will result.  At one level of description, the “mechanical 
feedback” that was described in our analyses of the thoughtless walkers in Chapter 6 is of this type: the 
forces generated by the robot (machine M1) are transmitted to the surface (M2), which in turn transmits 
forces back to the robot. 

 
Descriptions of feedback need not be limited to pairs of 

machines.  Many more machines may be coupled together to cre-
ate a more complicated system.  Of particular interest to Ashby was a 
system of four different machines coupled together with feed- back, 
as is shown in Figure 7-2.  To foreshadow observations that we 
will be making later in this chapter about whether synthetic theo-
ries are simple or not, Ashby (1956, p. 54) makes the following ob-
servation about a system of this complexity:  “When there are only 
two parts joined so that each affects the other, the properties of the 
feedback give important and useful information about the prop- prop-
erties of the whole.  But when the parts rise to even as few as four, 
if every one affects the other three, then twenty circuits can be 

Figure 7-1. Simple 
coupling of two machines. 

Figure 7-2.  The 
double-headed arrows in-
dicate mutual feedback 

relationships in a system 
of four different machines.
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traced through them; and knowing the properties of all the twenty circuits does not give complete infor-
mation about the system.” 

 
7.3.1 Ashby’s Homeostat 

 
Imagine if a researcher was interested in studying a system like the one illustrated in Figure 7-2.  

If understanding its twenty component circuits cannot provide complete information about the system, 
then how should the research proceed?  Ashby (1960) provided a decidedly synthetic answer to this 
question by constructing an interesting system that he called the homeostat to study the properties of 
feedback amongst four mutually coupled machines. 

 
7.3.1.1 Basic Design 
 
The homeostat was a system of four identical components.  The input to each component was an 

electrical current, and the output of each component was also an electrical current.  The purpose of each 
component was to transform the input current into the output current.  This was accomplished by using 
the input current to change the position of a pivoted magnet mounted on the top of the component.  In 
essence, each magnet could rotate a needle back and forth.  The needle was connected to a wire that 
was dipped into a trough of water through which another constant electric current was passed.  With this 
physical arrangement, it was possible for the component to output an electrical current that was approxi-
mately proportional to the needle’s deviation from its central position. All things being equal, a large cur-
rent that was input to the component would cause a large deflection of the magnet (and needle), which in 
turn would result in a proportionately large current being output from the component. 

  
The four units were coupled together to create a system of the type that was drawn in Figure 7-2.  

Specifically, the electrical current that was input to one unit was the sum of the electrical currents that was 
output by each of the other three units, after each of these three currents was passed through a potenti-
ometer.  The purpose of the potentiometer was to determine what fraction of an input current would be 
passed on to deflect the magnet, and thus each potentiometer was analogous to a connection weight in a 
PDP network.  The result of this interconnectedness was a dynamic system that was subject to a great 
deal of feedback.  “As soon as the system is switched on, the magnets are moved by the currents from 
the other units, but these movements change the currents, which modify the movements, and so on” 
(Ashby, 1960, p. 102). 

 
In order to dictate the influence of one unit upon another in the homeostat, one could set the re-

sistance value of each potentiometer by hand.  However, Ashby (1960) used a different approach to allow 
the homeostat to automatically manipulate its potentiometers.  Each unit was equipped with 25-valued 
uniselector or stepping switch.  Each value that was entered in the uniselector was a potentiometer set-
ting that was assigned randomly.  A unit’s uniselector was driven by the unit’s output via the deflected 
needle.  If the output current was below a pre-determined threshold level, the uniselector did not activate, 
and the potentiometer value was unchanged.  However, if the output current exceeded the threshold, the 
uniselector activated, and advanced to change the potentiometer’s setting to the next stored random re-
sistance.  With four units, and a 25-valued uniselector in each, there were 390,625 different combinations 
of potentiometer settings that could be explored by the device. 

 
In general, then, the homeostat was a device that monitored its own internal stability (i.e., the 

amount of current being generated by each of its four component devices).  If subjected to external forc-
es, such as an experimenter moving one of its four needles by hand, then this internal stability was dis-
rupted and the homeostat was moved into a higher energy, less stable state.  When this happened, the 
homeostat would modify the internal connections between its component units by advancing one or more 
of its uniselectors to modify its potentiometer settings.  The modified potentiometer settings enabled the 
homeostat to return to a low energy, stable state.  The homeostat was “like a fireside cat or dog which 
only stirs when disturbed, and then methodically finds a comfortable position and goes to sleep again” 
(Grey Walter, 1963, p. 123). 
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7.3.1.2 Behavior Of The Homeostat 
 
Ashby (1960) tested the homeostat was tested by placing some of its components under his di-

rect control, manipulating these components, and observing the changes in the system as a whole.  For 
example, in a simple situation only two of the four components might be tested.  In this kind of study, the 
feedback being studied was of the type M1  M2.  The relation M1  M2 could be placed under the con-
trol of the experimenter by manipulating the potentiometer of M1 by hand instead of using its uniselector.  
The reverse relationship M2  M1 was placed under machine control by allowing the uniselector of M2 to 
control its potentiometer.  After starting up the homeostat and allowing it to stabilize, Ashby manipulated 
M1 to produce instability.  The result was one or more advances by the uniselector of M2, which resulted 
in stability being re-attained. 

 
Even with this fairly simple pattern of feedback amongst four component devices, many surprising 

emergent behaviors were observed.  For example, in one interesting study Ashby (1960) demonstrated 
that the system was capable of a simple kind of learning.  In this experiment, it was decided that one ma-
chine (M3) was to be controlled by the experimenter as a method of “punishing” the homeostat for an in-
correct response.  In particular, if M1’s needle was forced by hand to move in one direction, and the ho-
meostat did not respond by moving the needle of M2 to move in the opposite direction, then the experi-
menter would force the needle of   M3 into an extreme position to introduce instability.  On the first trial of 
this study, when the needle of M1 was moved, the needle of M2 moved in the same direction.  The home-
ostat was then punished, and uniselector-driven changes ensued.  On the next trial, the same behavior 
was observed and punished; several more uniselector-driven changes ensued.  After these changes had 
occurred, movement of M1’s needle resulted in the needle of M2 moving in the desired direction – the ho-
meostat had learned the correct response.  “In general, then, we may identify the behavior of the animal 
in ‘training’ with that of the ultrastable system adapting to another system of fixed characteristics.  Ashby 
went on to demonstrate that the homeostat was also capable of adapting to two different environments 
that were alternated. 

 
7.3.1.3 Implications 
 
The homeostat counts, perhaps, as one of the earliest examples of the synthetic approach in ac-

tion.  It was a fairly simple analog device, constructed from well-understood component machines.  It was 
wired up in such a way that complex feedback could be established among these components, and was 
used to study the dynamic processes that resulted.  It had the advantage of permitting these processes to 
be studied at a time when a mathematical account of the device was not well established, and also at a 
time when computer simulations of this kind of feedback were not really possible.  It demonstrated emer-
gent behaviors, including interesting kinds of learning.  Ashby (1960) was quite interested in drawing par-
allels between the behaviors of the homeostat and behaviors of the nervous system and entire organ-
isms, although he was also aware of many limitations in his machine. 

 
The interesting behavior of the homeostat arises from two general sources.  The first is the rich 

possibilities of interactions between machines, as defined by the feedback relationships that were wired 
into the device.  The second comes from the relatively large number of internal states that could be 
adopted by the machine when its uniselectors were used to modify potentiometer settings. 

 
As a prelude to one theme that will be developed in more detail later in this chapter, the large 

number of different internal states that are available to a working homeostat provides the machine with 
many degrees of freedom with which to produce a low energy state.  However, these same degrees of 
freedom make it difficult for the experimenter to explain the specific mechanisms that the homeostat uses 
to achieve this state.  “A very curious and impressive fact about it, however, is that, although the machine 
is man-made, the experimenter cannot tell at any moment exactly what the machine’s circuit is without 
‘killing’ it and dissecting out the ‘nervous system’ – that is, switching off the current and tracing out the 
wires to the relays” (Grey Walter, 1963, p. 124).  In other words, it is much easier to produce interesting 
behavior in the homeostat than it is to explain this behavior. 
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7.3.2 Grey Walter’s Tortoises 
 
Ashby’s (1960) homeostat could be interpreted as supporting the claim that the complexity of the 

behavior of whole organisms largely emerges from a) a large number of internal components and from b) 
the interactions between these components.  In the late 1940s, William Grey Walter (b. 1910, d. 1977) 
built some of the first autonomous robots to investigate a counter-claim (Grey Walter, 1950, 1951, 1963).  
His research program “held promise of demonstrating, or at least testing the validity of, the theory that 
multiplicity of units is not so much responsible for the elaboration of cerebral functions, as the richness of 
their interconnection” (Grey Walter, 1963, p. 125).  His goal was to use a very small number of compo-
nents to create robots that generated much more life-like behavior than that exhibited by Ashby’s homeo-
stat. Grey Walter was a neurophysiologist who conducted pure and applied research at a variety of Lon-
don hospitals from 1935 to 1939, and at the Burden Neurological Institute in Bristol from 1939 to 1970.  
While our interest in his research is with his robotics work, he was also a pioneer in the use of the elec-
troencephalogram, and was the discoverer of theta and delta waves.  His EEG research and his robotics 
work are both described in his 1963 text The Living Brain. 

  
7.3.2.1 Basic Design 
 
Grey Walter (1963) whimsically gave his autonomous robots the biological classification Machina 

speculatrix because of their propensity to explore the environment.  (He gave Ashby’s (1960) homeostat 
the classification Machina sopora, pointing out that if it were to be judged “entirely by its behavior, the 
naturalist would classify it as a plant” (p. 124).)  Because of their appearance, his robots were more gen-
erally called tortoises.  A very small number of components (two miniature tubes, two relays, two conden-
sers, two motors, and two batteries) were used to create two sense reflexes.  One reflex altered the be-
havior of the tortoise in response to light.  The other reflex altered the behavior of the tortoise in response 
to touch. 

 
At a general level, a tortoise was a small, autonomous motorized tricycle.  One motor was used to 

rotate the two rear wheels forward.  The other motor was used to steer the front wheel.  The behavior of 
these two motors was under the control of two different sensing devices.  The first was a photoelectric cell 
that was mounted on the front of the steering column, and which always pointed in the direction that the 
front wheel pointed.  The other was an electrical contact that served as a touch sensor.  This contact was 
closed whenever the transparent shell that surrounded the rest of the robot encountered an obstacle. 

 
Of a tortoise’s two reflexes, the light-sensitive one was the more complex.  In conditions of low 

light or darkness, the machine was wired in such a way that its rear motor would propel the robot forward 
while the steering motor slowly turned the front wheel.  As a result, the machine could be described as 
exploring its environment.  The purpose of this exploration was to detect light -- when moderate light was 
detected by the photoelectric cell, the steering motor stopped.  As a result, the robot moved forward, ap-
proaching the source of the light.  However, if the light source were too bright, then the steering motor 
would be turned on again at twice the speed that was used during the robot’s exploration of the environ-
ment.  As a result, “the creature abruptly sheers away and seeks a more gentle climate.  If there is a sin-
gle light source, the machine circles around it in a complex path of advance and withdrawal” (Grey Wal-
ter, 1950, p. 44). 

 
The touch reflex that was built into a tortoise was wired up in such a way that when it was activat-

ed, any signal from the photoelectric cell was ignored.  When the tortoise’s shell encountered an obstacle, 
an oscillating signal was generated that rhythmically caused both motors to run at full power, turn off, and 
to run at full power again.  As a result, “all stimuli are ignored and its gait is transformed into a succession 
of butts, withdrawals and sidesteps until the interference is either pushed aside or circumvented.  The 
oscillations persist for about a second after the obstacle has been left behind; during this short memory of 
frustration Elmer darts off and gives the danger area a wide berth” (Grey Walter, 1950, p. 45). 

 
7.3.2.2 Behavior 
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Grey Walter (1950, 1963) built two tortoises, and named them Elsie and Elmer using the initials of 
the terms that described them – “Electro Mechanical Robots, Light-Sensitive, with Internal and External 
stability.”  The question of interest to him was whether the intricate relationships between the small num-
ber of robot components, and the interactions between the robots and their environment, would be suffi-
cient to generate complicated and interesting behaviors.  He attempted to answer this question by ob-
serving the actions of the robots, together and separately, in a number of different environments.  He 
mounted a light source on the robots, and recorded their behavior using time-lapse photography.  As a 
result, the trajectory of a tortoise was traced out on the photograph by the light.  The behavior that he ob-
served was “remarkably unpredictable” (1950, p. 44). 

 
For example, at the start of one experiment, the light was hidden from view by an obstacle.  As a 

result, Elsie began with its exploratory motion.  As a result of this exploration, Elsie collided with the ob-
stacle, which produced the avoidance behavior.  Because of the movements taken to avoid the obstacle, 
the robot was able to detect the light.  It approached the light, but circled it, because when it came too 
close to the light it was too bright, and caused the robot to veer away.  “Thus the machine can avoid the 
fate of the moth in the candle” (Grey Walter, 1963, p. 128). 
  

In a second experiment, Elsie was placed in an environment in which there were two lights, and 
exhibited choice behavior.  The robot started by being attracted to one of the two lights, and approached 
it.  However, when it moved too close to that light, it veered away.  As a result of veering away, it detected 
the second, “pleasantly” dimmer light, which it approached.  Thus, the robot avoided the problem “of Buri-
dan’s ass, which starved to death, as some animals acting trophically in fact do, because two exactly 
equal piles of hay were precisely the same distance away” (Grey Walter, 1963, p. 128). 

 
In a third experiment, the robot encountered a mirror, and its behavior was driven by the com-

bined effects of its ability to detect its own reflected (and relatively dim) light source, and of its physical 
contact with the mirror.  The result was the so-called “mirror dance”.  The robot “lingers before a mirror, 
flickering, twittering and jigging like a clumsy Narcissus.  The behavior of a creature thus engaged with its 
own reflection is quite specific, and on a purely empirical basis, if it were observed in an animal, might be 
accepted as evidence of some degree of self-awareness” (Grey Walter, 1963, pp. 128-129). 

 
The electric components that were used to create the tortoises themselves led to an interesting 

emergent behavior.  In particular, the sensitivity to light was dependent upon the degree to which the bat-
tery of a tortoise was charged.  When fully charged, a bright light would repel the robot.  However, when 
its battery was much weaker, the same bright light would attract the robot, because it would be recorded 
as being of moderate intensity.  This enabled Grey Walter to use lights to control the ability of a tortoise to 
recharge itself.  A hutch was built; if the robot entered the hutch its battery would be recharged.  Inside 
the hutch was a light.  When a tortoise’s battery began to fail, the robot was attracted by the hutch light, 
entered the hutch, and recharged.  However, when the battery was fully recharged, the hutch light re-
pelled the robot, so that it left the hutch and began to explore its environment once again. 

 
Grey Walter (1950, 1951, 1963) reported the results of many different kinds of experiments, in-

cluding some that involved a particularly complicated environment because it included two tortoises.  He 
also designed a later version of the machine, Machina docilis, which was capable of being classically 
conditioned.  It learned to be attracted to a high-pitched whistle.  In general, the results of all of his exper-
iments demonstrated quite clearly that the complexity of the behavior of his robots far exceeded the com-
plexity of the components from which they were constructed. 

 
7.3.2.2 Implications 
 
From where does the complexity of behavior arise?  Simon (1996) explored this question with his 

famous parable of the ant.  He imagined an ant walking along a beach, and that its trajectory along the 
beach was traced.  This trajectory might be thought of as being a very complicated function; explaining 
the behavior of the ant was equivalent to explaining how the many twists and turns of this function arose.  
One might be tempted to attribute the properties of this function to fairly complicated internal navigational 
processes.  Indeed, if one were to adopt an analytic approach, this kind of attribution would be expected.  



 - 57 - 

Minds And Machines © M.R.W. Dawson 12/02/2016 

The trajectory would be taken as raw data, analyzed into key components, and the mechanisms that 
generate these key components would be attributed to the ant.  However, Simon pointed out that this 
would likely lead to an incorrect theory.  “Viewed as a geometric figure, the ant’s path is irregular, com-
plex, hard to describe.  But its complexity is really a complexity in the surface of the beach, not a com-
plexity in the ant” (p. 51).  In other words, fairly simple dispositions of the ant – following the scent of a 
pheromone trail, turning in a particular direction when an obstacle is encountered – could lead to a very 
complicated trajectory, if the environment being navigated through was complicated enough. 

 
Grey Walter’s tortoises provide a robotic analog to the parable of the ant.  The trajectories of their 

movements are very complicated.  However, this complexity is not reflected in the internal complexity of 
the tortoise.  The inner workings of Grey Walter’s robots were very simple and straightforward by design.  
The complexity in the observed behavior must be rooted in the complexity of the interaction between a 
simple robot and its environment.  “So a two-element synthetic animal is enough to start with.  The 
strange richness provided by this particular sort of permutation introduces right away one of the aspects 
of animal behavior – and human psychology – which M. speculatrix is designed to illustrate: the uncer-
tainty, randomness, free will or independence so strikingly absent in most well-designed machines” (Grey 
Walter, 1950, p. 44).  Again, feedback is a key – in this case feedback between the world and the ma-
chine. 

 
Consider this issue from a different perspective, the analytic one that had to be taken by the “kids 

in the hallway” who were discussed in Chapter 1.  When I introduce synthetic psychology in lectures, I 
often use Grey Walter’s tortoises as an introduction.  However, when I do this, I describe the performance 
of the robots first, presenting images of their movements as behavioral data.  Students are asked to infer 
the internal mechanisms of the machines on the basis of these images.  Invariably, after analyzing the 
data that I have presented to them, they propose a far more complicated theory – one that involves many 
more internal properties – than is actually required.  This is exactly the same situation that was observed 
in our Chapter 1 examples.  It would appear that psychology students – and psychologists – have a 
strong tendency to ignore the parable of the ant, and prefer to locate the source of complicated behavior 
within the organism, and not within its environment. 

 
Pfeifer and Scheier (1999) call this the frame-of-reference problem.  “We have to distinguish be-

tween the perspective of an observer looking at an agent and the perspective of the agent itself.  In par-
ticular, descriptions of behavior from an observer’s perspective must not be taken as the internal mecha-
nisms underlying the described behavior” (p. 112).  This is because Pfeifer and Scheier believe that the 
behavior of a system cannot be explained by only appealing to internal mechanisms; an agent’s behavior 
is always presumed by them to be the result of a system-environment interaction.  “The complexity we 
observe in a particular behavior does not always indicate accurately the complexity of the underlying 
mechanisms.” 

 
Here we see one of the strong appeals of adopting the synthetic approach.  By building a system 

and taking advantage of nonlinear interactions (such as feedback between components, and between a 
system and its environment), relatively simple systems can surprise us, and generate far more complicat-
ed behavior than we might expect.  By itself, this demonstrates the reality of the frame-of-reference prob-
lem.  However, the further appeal of the synthetic approach comes from the belief that if we have con-
structed the simple system, then we should be in a very good position to propose a simpler explanation of 
the complicated behavior.  In particular, we should be in a better position than would be the case if we 
started with the behavior, and attempted to analyze it in order to understand the workings an agent’s in-
ternal mechanisms.  Later in this chapter I will argue that while this perspective is appealing, it is also very 
deceptive and dangerous. 

   
7.4 VEHICLES  

 
Surprisingly and disappointingly, Grey Walter’s tortoises appear to have had a very short-lived 

academic impact, and had essentially disappeared from the scene by the end of the 1950s.  To my mind, 
one of the most striking examples of the disappearance of the tortoises is that Grey Walter’s research 
was not cited in the book that provides the renaissance of his theoretical perspective.  In Vehicles, Valen-
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tino Braitenberg proposed a series of 14 different thought experiments (Braitenberg, 1984).  Each of 
these experiments involved conceptualizing a fairly simple machine, and considering how that machine 
might behave in different environments. Some of these machines are reminiscent of Elmer and Elsie.  As 
Braitenberg’s book progresses, the hypothetical machines become more sophisticated, as does their 
consequent behavior.  One of the main themes of the book is one that is familiar from the current chapter: 
simple machines can generate far more complicated behavior than one might expect.  A second theme 
pursued by Braitenberg is that his synthetic approach will lead to simpler explanations than those that 
would be attained if vehicle behaviors were approached analytically.  

 
7.4.1 Braitenberg’s General Approach 

 
Valentino Braitenberg (b. 1926) is the emeritus director of the Max Planck Institute of Biological 

Cybernetics, an emeritus professor at the Institute of Medical Psychology and Behavioral Neurobiology of 
the Eberhard-Karls-University in Tübingen, Germany, and is the director of the cognitive science laborato-
ry at the University of Trento in Italy.  Braitenberg is a leading researcher in cybernetics and neurosci-
ence, and the thought experiments that he presents in Vehicles are an attempt to understand some of the 
characteristics of the brain by adopting the synthetic approach.  The final chapter of the book “sketch a 
few facts about animal brains that have inspired some of the properties of our vehicles, and their behavior 
will then seem less gratuitous than it may have seemed up to this point” (Braitenberg, 1984, p. 95).  In 
general, Braitenberg takes an anatomical property of interest, reduces it to a very simple form, and con-
siders the behavior of a simple machine that incorporates it. 

 
In this section, we will briefly explore Braitenberg’s (1984) approach by considering a couple of 

the devices that he proposed.  After we have introduced some of these machines, we will be in a better 
position to seriously consider some of the pros and cons of adopting a synthetic research strategy. 

 
7.4.2 Some Example Vehicles 
 

7.4.2.1 Vehicle 1: Getting Around 
 

Braitenberg (1984) constructed a deliberate evolutionary sequence that is traced from his early 
vehicles to the later ones.  His early machines are very simple, and are easily thought of as organisms 
that swim around in water.  The later, more sophisticated devices are better thought of as “little carts mov-
ing on hard surfaces” (p. 2). 

 
His simplest vehicle is a swimming device that is best thought of as a cylinder or torpedo, with a 

sensor at one end (the front) and a motor at the other.  The foundational design principle for this vehicle is 
the proportional relationship between the response of the sensor and the speed of the motor.  As the 
sensor detects more of whatever quality it is designed to detect, the motor increases its speed.  As the 
sensor detects less of this quality, the motor slows down.  Under the assumption that this vehicle is mov-
ing in the real world, it will become under the influence of asymmetrical frictional influences.  As a result, it 
will not travel in a perfectly straight line, but will instead follow a complicated trajectory that is both difficult 
to predict and to explain. 

 
From the synthetic perspective used to create this vehicle, its overall behavior is very under-

standable.  However, if faced with analyzing the behavior of the vehicle in the absence of any knowledge 
about its internal structure, it is likely to be very complicated.  On observing this machine, “it is restless, 
you would say, and does not like warm water.  But it is quite stupid, since it is not able to turn back to the 
nice cold spot it overshot in its restlessness.  Anyway, you would say, it is ALIVE, since you have never 
seen a particle of dead matter move around quite like that” (Braitenberg, 1984, p.5). 
 

7.4.2.2 More Advanced Vehicles 
 

The next set of vehicles proposed by Braitenberg (1984) are similar in spirit to Vehicle 1 in that 
they can be viewed as swimming devices propelled by motors whose speed is determined by the output 
of sensors.  However, for these devices, there are two motors, one on each side at the back of the vehi-
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cle.  Each sensor drives its own motor.  The two sensors are mounted on each side at the front of the ve-
hicle.  Of interest is the anatomy of the connections between motors. 

 
For instance, one vehicle might have excitatory connections (i.e., the same kind of sensor-motor 

relationship described for Vehicle 1) between the sensor and the motor on the same side of the vehicle.  
If the signal source being detected by the sensors is straight ahead of this vehicle, both motors will run at 
equal speeds, and the vehicle will run into the source.  However, if the source is to one side, then the 
sensor nearer to the source will detect a stronger signal than will the sensor further from the source.  As a 
result, the two motors will run at different speeds, causing the vehicle to turn away from the source.  
Braitenberg (1984) describes this vehicle as DISLIKING sources, becoming “restless in their vicinity and 
tends to avoid them, escaping until it safely reaches a place where the influence of the source is scarcely 
felt” (p. 9). 

 
One could take the vehicle just described and cross its connections, so that the sensor on the 

right drives the motor on the left, and the sensor on the left drives the motor on the right. With these 
crossed connections, the sensor nearest the source drives the motor on the other side faster than the 
other sensor will drive the motor nearer the source.  If the source is directly in front of the source, the ve-
hicle will drive through it, as was the case for the previous vehicle.  However, if the source is to one side 
of it, then the vehicle will turn towards the source instead of away from it.  Braitenberg (1984) designates 
this vehicle as being AGGRESSIVE: “it, too, is excited by the presence of sources, but resolutely turns 
toward them and hits them with high velocity, as if it wanted to destroy them.” 

 
One common approach to studying the two types of vehicles that have just been described is to 

actually construct them, for instance using Lego Mindstorms or Lego Dacta components.  The advantage 
of doing this is that their behavior is removed from the idealized domain of the thought experiment, and 
becomes subject to real-world influences.  These influences include differential forces of friction on differ-
ent robot parts, and the fact that no two presumably identical robot components will work in exactly the 
same way.  “This means that it is usually more difficult than it seems to get a consistent and reliable au-
tomatic response to a stimulus” (Webb, 1996, p. 94).  If the goal is to design a robot that will move in a 
straight line, then this is a serious problem.  However, if the goal is to produce complex behavior from a 
simple system, then these vagaries of the environment become advantages.  By adopting the synthetic 
approach “what seems like complex behavior in a robot can come from a surprisingly uncomplicated con-
trol algorithm” (p. 95). 

 
The robots that were briefly described as being observed by the “kids in the hallway” in Chapter 1 

were versions of the Braitenberg vehicles described in this subsection.  These Lego Dacta machines 
were constructed and programmed by my daughter Michele and myself.  Each robot used one motor to 
drive one rear wheel, and the speed of rotation of the wheel depended upon the output of a light sensor.  
In one robot, the connections between sensors and motors were crossed, in the other they were not.  
Videos of the behaviors of these robots are available at the website of supplementary material for this 
book (www.bcp.psych.ualberta.ca/~mike/Book2/). 

 
Braitenberg (1984) goes on to consider minor advances in the design of this kind of vehicle.  For 

instance, the sensors might be tuned to be maximally sensitive to a particular range of signal from a 
source.  When this is done, with crossed connections, the behavior of the vehicle mimics the photo-
tropism exhibited by Grey Walter’s tortoises.  The connections between sensors and motors can be made 
inhibitory, so that a motor slows down when the sensor detects more of the signal.  Motors can be driven 
by more than one sensor, each sensitive to a different kind of signal.  In theory, one such vehicle would 
be straightforward to build, but would exhibit extremely complex behavior: “It dislikes high temperature, 
turns away from hot places, and at the same time seems to dislike light bulbs with even greater passion, 
since it turns toward them and destroys them” (p. 12).   Again we see that producing emergent properties 
– where the whole of a system’s performance far exceeds the sum of its simple parts – are one of the key 
goals of the synthetic approach. 
 

7.4.2.3 Vehicle 6: Selection, The Impersonal Engineer 
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When Braitenberg (1984) vehicles emerge from the sea to occupy the land, evolutionary ideas 
take a decidedly different role in his book.  Braitenberg imagines a collection of vehicles, all operating on 
a table, a table that is surrounded by spare parts.  A team of researchers also surrounds the table, and 
the goal of this team is to build new vehicles.  The way that this process works is that a researcher takes 
one of the vehicles from the table, and uses it as a model for the creation of a copy from spare parts.  
Then both the original and the copy are placed back on the table. 

 
A further twist to this thought experiment is the notion that the copies are being made in a hurry, 

and therefore the builders don’t have much time to check their work, or to test the adequacy of each copy.  
As a result, some of the copies that are placed back on the table will not be identical to the original that 
was used as a model.  Many of these copies will be defective, and will therefore fall off the table to be 
used as parts for later generations of copies.  “But it is also possible that we will unwittingly introduce a 
particularly shrewd variation into the pattern of connections, so that our copy will survive forever while the 
original may turn out to be unfit for survival after all” (Braitenberg, 1984, p. 27).  Braitenberg argues that 
this is particularly likely if one vehicle is picked up and used as a model for one vehicle component, and a 
different vehicle is picked up and used as a model for a different vehicle component when the copy is be-
ing constructed.  Of course, if the lucky mutation results in a longer life span for the copy, then this vehicle 
will be more likely to be picked up and used as the model for later generation systems. 
 

7.4.2.4 Further Sophistications 
 

Braitenberg (1984) proposes several additional modifications, and describes how they can be 
used to develop more advanced vehicles.  Some of these vehicles have spatially organized sensors that 
permit them to detect the shapes of objects.  Others have simple connectionist networks that enable them 
to learn from experience.  Still others have feedback loops that enable them to predict the future. 

 
All of these sophistications have two things in common.  First, they are all made possible through 

the use of fairly straightforward materials and engineering.  Second, when they are components of vehi-
cles that are placed in interesting environments, extremely complicated behaviors can emerge. “It is 
pleasurable and easy to create little machines that do certain tricks. It is also quite easy to observe the full 
repertoire of behavior of these machines -- even if it goes beyond what we had originally planned, as it 
often does.” 

 
7.5 SYNTHESIS AND EMERGENCE: SOME MODERN EXAMPLES 

 
The historical examples that have been considered thus far in the chapter all point to two underly-

ing themes.  First, it is definitely possible to construct informative models by building complete systems 
from some set of assumed components, without the need of basing the model on extensive analyses of 
existing data.  In other words, if one looks back at the previous examples, then one striking feature that 
should be noted is that neither the homeostat, the tortoises, nor the vehicles were models that were in-
tended to fit extant behavior.  Second, when this synthetic approach is taken, it is almost always the case 
that interactions between system components, and between these components and a complex environ-
ment, can produce surprising and interesting emergent behavior that usually exceeds the expectations of 
the system designer. 

 
The research that has been reviewed above has inspired a great many modern research pro-

grams.  In order to reinforce these two themes, let us take a moment to briefly review three more modern 
examples of complex behavior emerging (often unintentionally) from relatively simple systems that have 
been created via the synthetic approach. 

 
7.5.1 NETtalk 

 
DECtalk is a program for converting text into audible speech (Hallahan, 1996), and is widely 

viewed as the best commercially available product for this task.  DECtalk consists of eight different pro-
cessing “threads”, each of which is concerned with a major stage of processing, ranging from buffering 
text in an input memory to generating audio via a computer’s sound hardware.  It does this by following a 
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two-stage process.  Of particular interest in the context of the current chapter is the letter-to-sound (LTS) 
thread that converts sequences of ASCII text into sequences of phonemes. First, the LTS thread sepa-
rates the text stream into clauses, and normalizes the text by applying special processing rules to idio-
syncratic text entries (numbers, abbreviations, and so on).  Second, the remaining unprocessed test 
items are converted into phonemes in one of two ways. First, a word is looked up to see if it exists in a 
pronunciation dictionary of common words.  (If this first lookup fails, the word will be tested for an English 
suffix.  If the suffix is found, it will be removed, and the remaining word stem will be looked up in the dic-
tionary again.)  Second, if the word is not found in that dictionary, then it is converted into speech by ap-
plying a set of phonological rules that decompose the text into a sequence of morphemes.  The phonolog-
ical representation of the text that is generated by this two-stage process is then converted into audible 
speech by applying a set of transition rules to it, and then applying digital speech synthesis.  During this 
stage of processing, the LTS thread will identify syllables in the morpheme sequences, and mark some of 
them for additional stress to make the ultimate speech output as natural sounding as possible.  Also, the 
LTS thread will identify the context in which a particular phoneme is found (i.e., surrounding phonemes).  
This is because the pronunciation of some speech sounds will change as a function of context.  The LTS 
thread has a series of rules that instantiate these context-dependent alterations. 

 
While DECtalk exhibits outstanding performance, this is accomplished with considerable cost. 

Hallahan (1996) notes that the program is the product of over 30 man-years of development, and consists 
of around 160,000 lines of code.  This large amount of code is required because there is a considerable 
amount of specific knowledge that is built into the program.  For instance, the LTS thread alone has more 
than 1,500 rules of pronunciation.  Even with this large number of rules, it still requires a dictionary of ex-
ceptional words that has over 15,000 entries.  On older hardware, running DECtalk at settings that pro-
duced medium quality output resulted in its using 69% of a CPU’s processing resources.  Producing the 
highest quality output consumed 89% of the CPU’s resources.  DECtalk has only become more portable 
recently because of advances in CPU design. 

 
NETtalk is a connectionist network that was intended to replace much of the LTS thread in 

DECtalk.  Rather than handcrafting a large number of rules, and a dictionary of exceptional words, 
NETtalk was intended to be a fairly small program that learned to convert text into speech (Sejnowski & 
Rosenberg, 1988).  The network had 7 groups of 29 input units per group to represent text, 80 hidden 
units, and 26 output units that represented phonemes for a total of 309 units and 18,629 weighted con-
nections.  Text was moved through an input “window”, so that the network was trained to pronounce the 
text in the middle of the “window”, while at the same time being aware of the text’s context (i.e., the text 
on either side of the “window”, which had either just been pronounced or was to be pronounced next).  
The network was trained on two different texts.  One was phonetic transcription from the informal speech 
of a child.  The other was a set of over 20,000 different words from a dictionary.  Training was accom-
plished using the generalized delta rule that will be discussed in detail in Chapter 11.  By the time the 
network had learned about 5000 words, its performance was nearly perfect, and its performance general-
ized quite well to words that it had not seen previously.  Interestingly, the network was able to perform at 
this high level without requiring a large separate lookup table as is used in DECtalk. 

  
NETtalk was explicitly designed to exhibit some of the functionality of DECtalk.  It was not intend-

ed to have any implications at all for psychology or cognitive science.  However, during training, NETtalk’s 
output was channeled into audio hardware.  Sejnowski and Rosenberg (1988) noted, “during the early 
stages of learning in NETtalk, the sounds produced by the network are uncannily similar to early speech 
sounds in children” (p. 670).  They use this surprising finding to hypothesize that NETtalk might have dis-
covered representations that are particularly efficient for use by a parallel networks, and that these repre-
sentations may be similar to those employed by humans.  They go on to suggest that the developmental 
regularities that have been observed in NETtalk and other networks (e.g., Elman et al., 1996; Rumelhart 
& McClelland, 1986) “may be a general property of incremental learning in networks with distributed rep-
resentations” (p. 672).  In other words, even though NETtalk was only intended as a particular feat of en-
gineering, its surprising emergent behavior suggested that it might shed light on some topics of psycho-
logical interest. 
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7.5.2   Cricket Phonotaxis 
 
A second example comes from the study of cricket phonotaxis.  This section briefly reviews the 

central points of Webb’s synthetic study of this phenomenon (Webb, 1996). 
 
Phonotaxis, the ability to identify a particular sound and move towards it, is fundamental to a fe-

male cricket’s choosing of a mate.  A male cricket will generate a song as a series of syllables produced 
at a specific frequency and with a specific rhythm.  A female cricket can use these properties to isolate 
the song of a male cricket of her own species from any other sound.  After selecting the song, the female 
cricket will move towards the male producing it, even under conditions in which other males of the same 
species are chirping at the same time.  The mechanisms underlying cricket phonotaxis are not yet com-
pletely understood. 

 
Sounds from the world provide external stimulation to a cricket’s eardrums, which are mounted on 

its forelegs.  Sound also travels inside the cricket’s body to the ears through a tracheal tube that connects 
the two ears to each other and to openings on the cricket’s body called spinnacles.  These internal and 
external sounds travel different distances, and therefore arrive at the same ear at different times, resulting 
in their being out of phase.  The amount of phase shift depends upon the direction of the sound source.  
In general, the cricket’s eardrum that is closer to the sound source will have higher amplitude of vibration. 

 
What mechanisms are responsible for converting differences between eardrum vibration ampli-

tudes into movements in the direction of the detected sound?  Each eardrum stimulates a neuron that 
encodes amplitude.  The larger the amplitude, the higher will be the spike train frequency of the neuron, 
and the sooner will it start to respond. 

 
There are two theories of how the responses of the two neurons are used to direct the cricket’s 

locomotion.  One popular theory is that the cricket turns in the direction of the side with the neuron that is 
firing more frequently.  However, this account would work for any sound, and thus requires postulating 
additional neural mechanisms for picking out the song with the correct rhythm. 

 
A second, simpler theory is that with each sound burst the cricket turns in the direction of the side 

whose neuron begins to fire first.  In other words, this theory ignores spike train frequency.  This second 
theory has the advantage that it does not require additional rhythm-detecting circuitry, because changes 
in the rhythm of the detected song will naturally alter the onset of neural firing.  However, it is not clear 
that this simple theory is sufficient to account for the regularities of cricket phonotaxis. 

 
Webb (1996) adopted the synthetic approach to evaluate the adequacy of this second theory.  

She constructed a LEGO robot with specialized electronics that mimicked the functionality of the neural 
circuits in the cricket’s auditory system.  The robot had two wheels driving it from the rear, each rotated by 
its own engine.  When both motors were running, they pushed the robot forward.  The robot was pro-
grammed to stop the engine of the side whose “ear circuit” reached threshold first.  This resulted in the 
robot turning in that side’s direction – with the aim of having it turn in the direction of the detected song. 

 
The “ear circuitry” of the robot was optimally sensitive to a sound that had a specific frequency 

and rhythm.  Webb (1996) began to test the adequacy of the theory by placing it at one side of an arena, 
and placing a speaker on the other side.  She recorded the trajectory taken by the robot when sounds 
were broadcast from the speaker.  When the sound was of the optimal frequency and rhythm, Webb 
found that the robot followed a zigzag path towards the speaker that was very similar to the trajectory 
taken by a female cricket.  When the properties of the sound deviated from the optimal, the phonotactic 
behavior of the robot became far less successful.  For example, when the syllable rate of the sound was 
increased, the robot drove through the arena in predominately straight lines.  When the syllable rate was 
decreased, the robot followed a curved path towards the speaker, but rarely reached the speaker’s actual 
location.  These robot behaviors began to establish the adequacy of the second theory.  “I discovered 
afterward that real crickets, too, tend to take curved paths at slower rates while failing more completely for 
faster rates.  So the robot not only succeeds like a cricket but tends to fail like one too” (p. 98). 
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Female crickets will choose between songs generated by two different males of the same spe-
cies, usually moving to the louder of the two songs.  Webb (1996) realized that she had not explicitly pro-
grammed this ability into her robot.  Nevertheless, she decided to see what the robot would do in an are-
na in which two speakers were present, and in which the same sound was being played through both.  
“To my surprise, the robot seemed to have no problem making up its mind (so to speak) and went almost 
directly to one speaker or the other” (p. 99).  This suggests that the simple theory of phonotaxis may not 
only explain the general phenomenon of song isolation, but might also account for how a female cricket 
chooses one mate over another.  “Again it appears that it is the interaction of the robot’s uncomplicated 
mechanisms with particular sound fields that produces this interesting – and useful – behavior.” 

 
Webb (1996) used this experimental situation to generate a sound scenario that was completely 

unnatural.  She alternated the location of the sound’s generation between the two speakers in the arena.  
Under these conditions, the robot becomes confused, and moves between the two sounds.  Experiments 
with actual crickets presented with this laboratory situation produced very similar results. 

 
These kinds of results provide yet another demonstration of the advantages of the synthetic ap-

proach.  Webb (1996) explicitly avoided building complicated capacities into her robot, and did not expect 
that the robot’s behavior would be rich and varied.  However, when this simple device was situated in the 
appropriate environment, its performance exceeded her expectations.  “It shows that a rather competent 
and complex performance can come from a simple control mechanism, provided it interacts in the right 
way with its environment” (p. 99). 

 
7.5.3 Stigmergy And Group Behavior 

  
If you visit the website for the Collective Robotic Intelligence Project (CRIP) at the University of 

Alberta (www.cs.ualberta.ca/~kube/research.html), then you will have an opportunity to view some inter-
esting video footage of a small collection of autonomous robots engaged in very complicated group be-
havior.  Six small, cylindrically shaped robots move in an arena.  In the middle of the arena is a brightly lit 
box.  At the start of the video, four of the robots move directly to the box, while two others wander to one 
side of the arena.  Of the robots that reach the box first, three line up side by side against it, while the 
fourth pauses behind this group, and then moves away.  The three robots attempt to push the box, fail, 
and then break formation.  Two return to a different position on the box, and are then joined by one of the 
other robots that had originally wandered off.  When these three robots come in contact with the box, it 
begins to slide and turn.  The movement of the box causes the three robots to break formation, but soon 
they return to push again.  In a moment, the three other robots join them; the six robots jockey for position 
near one corner of the box, and push it quite quickly into a corner of the arena that is brightly lit with an 
overhead spotlight. 

 
This video illustrates performance on a box transport task, which is one of the benchmark tests 

used to study cooperative behavior in robots.  For each robot, the goal of this task is to locate the brightly 
lit box and to push it into a goal location, which is also brightly lit.  Each robot is equipped with light sen-
sors that point forward (for locating the box) and upward (for locating the goal).  Once the robot detects a 
side of the box, it determines if the box is between the robot and the goal location.  If it is, the robot push-
es against the box.  If it is not, the robot attempts to find a different position against the box.  In many 
cases, this will result in the robot losing sight of the box, and having to search for it again.  The robot can 
also lose sight of the box if another robot comes between it and the box. 

 
The box transport task is designed to assess cooperative behavior, because the box is weighted 

so that at least two robots are required to move it.  In order to succeed, the robots must position them-
selves along the box so that more than one of them push at the same time, and so that they are all push-
ing in a fairly consistent direction. 

 
The astonishing thing about the behavior that can be seen in the website videos is that while it 

seems to be highly effective and coordinated, it is accomplished by very simple mechanisms.  Further-
more, the robots do not explicitly communicate with each other, and are not centrally controlled.  These 
robots are the culmination of several years of research that began with the study of core abilities in a 
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group of software agents, and evolved into the performance of the physical robots that is illustrated on the 
website. 

 
Kube and Zhang (1994) used software agents to explore some properties of cooperative behavior 

that were inspired from the study of social insects.  They modeled the sensing and acting of a group of 
robots totally in a software environment.  The simulated robots were provided with three sensors (one for 
the goal, one for obstacles, and one for other robots), two actuators (left and right wheel motors), and five 
simple behaviors.  The behaviors were constructed using the subsumption architecture of Brooks (e.g., 
1999).  The default behavior is find, which causes the robot to move forward in a large arc.  This behavior 
can be suppressed when the robot detects another; in this case it will change its behavior to follow the 
detected robot.  If it gets too close to another robot while following, it will activate its slow behavior.  If the 
goal sensor becomes active, then the robot will initiate the goal behavior, which causes it to move to-
wards the goal.  This behavior will only be stopped by initiating the avoid behavior, which occurs when the 
robot detects that a collision with another robot is imminent.  Note that none of these behaviors involve 
communicating with other robots to coordinate their attack on a target.  The simulation demonstrated the 
collective box transport behavior of the type that was later produced in real robots that incorporated most 
of these general behavioral principles (e.g., Kube & Bonabeau, 2000). 

 
How does this cooperative behavior arise in robots that do not communicate directly with one an-

other?  The answer to this question again depends upon realizing that the robots (simulated or real) are 
situated in an environment that they are both sensing and acting upon.  By changing the environment 
(e.g., by pushing the box, or blocking the path of another robot), they change the environment that is 
sensed by other robots, which in turn alters the behavior of the other robots.  This indirect form of com-
munication – accomplishing by directly altering the environment, and therefore indirectly altering the be-
havior of agents in the environment – is called stigmergy.  This term comes from combining the terms 
stigma (wound from a pointed object) and ergon (work, product of labor) to produce a term whose mean-
ing is “stimulating product of labor” (Holland & Melhuish, 1999). 

 
Stigmergy was a term coined by French zoologist Pierre-Paul Grassé to explain the nest building 

behavior of termites (Theraulaz & Bonabeau, 1999).  Grassé demonstrated that the termites themselves 
do not coordinate or regulate their building behavior, but that this is instead controlled by the nest struc-
ture itself.  The current state of part of the nest stimulates a termite to perform an activity that alters the 
nest; the alteration in turn triggers a new behavior from either the same termite or from another.  Stigmer-
gy also provides an account of the construction of the nests of paper wasps (e.g., Karsai, 1999), and of-
fers an alternative to older theories that attributed a fairly high degree of intelligence or higher-level rules 
to these insects.  Stigmergy is generally viewed as a fairly simple mechanism for producing complex and 
coordinated performances from a group of agents, but has not been studied extensively.  “The potential of 
stigmergy is still largely untapped in the biology community, in which it originated” (Theraulaz & Bona-
beau, 1999 p. 113).  Research on collective robotics, such as the box transport research cited above, or 
studies by Holland and Melhuish (1999) on how robots can exploit stigmergy to sort different objects into 
clusters, can be viewed as an attempt to increase our understanding of stigmergy, and to identify how it 
can interact with other principles to organize useful, collective behaviors. 

 
For the purpose of the present chapter, stigmergy is an example of the “law of downhill synthe-

sis”, which we will consider in more detail in the next section.  From a robot designer’s point of view, an 
individual robot is provided with a very basic set of sensorimotor abilities, and is not required to include 
any facility for communicating directly with other agents.  When placed in a complex environment – made 
particularly complicated by the presence of more than one agent – the result is complex collective behav-
ior.  Importantly, this behavior is completely emergent, because none of the capacities built into the robot 
are explicitly designed to be social or interactive.   

 
7.6 THE LAW OF UPHILL ANALYSIS AND DOWNHILL SYNTHESIS 

 
 Brooks (2002) describes the behavior of one of his graduate students interacting with Cog, a 

humanoid robot with a moving head and arm, and with camera eyes that saccade to objects of interest.  
In this interaction, the student first held a whiteboard eraser and shook it.  Then Cog would saccade to it, 
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reach for it, and touch it.  This sequence of events was then repeated, and it seemed clear that the two 
were taking turns.  However, when this interaction occurred, the capacity for taking turns had not yet been 
programmed into Cog.  The graduate student “had filled in the behavioral details so that the game of turn-
taking with the eraser worked out.  But she had done it subconsciously.  She had picked up on the dy-
namics of what Cog could do and embedded them in a more elaborate setting, and Cog had been able to 
perform at a higher level than its design so far called for” (p. 92).   

 
This anecdote illustrates one theme that we have seen in the historical and modern examples of 

synthetic research that have been presented in this chapter: the generation of behavior that is more com-
plex than expected from a simple system embedded in an interesting environment.  It also provides an 
example that shows, even subconsciously, that humans may have a natural tendency to be overly gener-
ous in assigning complexity to the internal systems of agents that we see in the world, or with which we 
might interact. 

  
These two points are related to two complementary themes that have been argued to be   central 

characteristics of the synthetic approach (Braitenberg, 1984).  The first theme is “downhill synthesis”, 
which means that it is fairly straightforward to construct simple devices that, when they interact with the 
environment, produce surprising and interesting emergent behaviors. This theme is evident in the exam-
ples that we have seen in this chapter, as well as when we discussed the “thoughtless walkers” in Chap-
ter 6. 

 
The second theme is “uphill analysis”, which Braitenberg (1984) uses as an argument in favor of 

the synthetic approach, and against an approach in which the behaviors of existing systems are ex-
plained via analysis. "It is much more difficult to start from the outside and try to guess internal structure 
just form the observation of the data. [...] Analysis is more difficult than invention in the sense in which, 
generally, induction takes more time to perform than deduction: in induction one has to search for the 
way, whereas in deduction one follows a straightforward path. A psychological consequence of this is the 
following: when we analyze a mechanisms, we tend to overestimate its complexity”.  In other words, if the 
goal of synthetic psychology is to explain how various behaviors arise, then Braitenberg is claiming that 
the synthetic approach will lead to simpler theories than those arrived at by adopting the analytic perspec-
tive.  Braitenberg feels strongly enough about this position to proclaim this “the law of uphill analysis and 
downhill synthesis.” 

 
One reason that the law of uphill analysis and downhill synthesis seems to be quite plausible is 

our sense that if a researcher has constructed a system, then he or she should have an excellent under-
standing of its inner workings, and therefore should be in an excellent position to offer straightforward 
mechanistic explanations of complex behavior.  Given that the synthetic approach can produce rich and 
surprising results, this seems to make it an extremely attractive alternative to the more traditional analytic 
approach.  However, it is important to realize that while the law of uphill analysis and downhill synthesis 
can provide grounds for arguing that the synthetic approach is attractive, it cannot justify abandoning 
analysis entirely.  As a matter of fact, for synthetic psychology to succeed, synthesis and analysis must 
both be combined in a research program. 

 
7.6.1 From Demonstration To Explanation 

 
Why is analysis a required component of the synthetic approach?  To answer this question, let us 

consider for a moment what the goals of a synthetic research program might be. 
 
Brooks (1999, pp. 96-97) takes great pains to let us know what, in general, behavior-based robot-

ics and, more specifically, his subsumption architecture, is not.  It is not connectionism, nor neural net-
works, nor production rules, nor a blackboard control architecture, nor even German philosophy.  What 
then is it? 

 
It could be that behavior-based robotics merely demonstrates that complex behaviors frequently 

emerge from simple systems.  To this point, this chapter could be considered to be a short catalogue of 
such demonstrations. However, of biologically inspired robots like the one used to study cricket phonotax-



 - 66 - 

Minds And Machines © M.R.W. Dawson 12/02/2016 

is, Webb (2000, p. 545) asks, “such examples of engineering can be attention grabbing, but what is their 
value for biological science?  In particular, beyond the ‘gimmick’ of resemblance to natural systems, is 
any deeper understanding of how animals behave brought about by the building of such robot systems?” 

 
The answer to questions like these depends first on determining whether the synthetic approach 

to robotics is intended to be anything more than attention grabbing demonstrations.  Even a cursory 
glance at the literature would indicate that roboticists are interested in going beyond demonstrations, and 
coming up with theories of intelligence.  For example, Adams, Breazeal, Brooks, and Scasselati (2000, p. 
28) note, “just as computer simulations of neural nets have been used to explore and refine models from 
neuroscience, we can use humanoid robots to investigate and validate models from cognitive science and 
behavioral science.”  Webb (2000) argues that biologically inspired robots can be used to test existing 
hypotheses, to alter assumptions about stimuli and responses when confronted with a real environment, 
to enforce complete theories (and identify incomplete ones), and to produce novel hypotheses.  Pfeifer 
and Scheier (1999) propose that the goal of embodied cognitive science is to achieve a better under-
standing of intelligence. “The methodology of embodied cognitive science is synthetic, its goal is under-
standing by building” (p. 631).  With these goals in mind, merely generating complicated behavior is not a 
sufficient research program.  The synthetic approach is in the business of explaining, and not just demon-
strating. 

 
If the synthetic approach is to generate new explanations of intelligent behavior, then analysis is 

going to be required.  To see why this is so, imagine that a researcher is constructing autonomous sys-
tems according to a scheme similar to that described in Section 7.4.2.3, in which more successful sys-
tems are being selected for copying, and in which the copying process can introduce random mutations.  
(This hypothetical example is not so far fetched, as it captures the spirit of how problems are solved by 
genetic algorithms (e.g., Holland, 1992; Mitchell, 1996).)  Imagine that after this process had been carried 
out for a certain period of time, one of the constructed systems exhibited a surprising and complicated 
behavior that was of considerable interest to psychologists.  How would this system be used to contribute 
to psychological theory? 

 
Simply demonstrating the interesting behavior would be important, but would not be satisfactory 

on its own.  After all, a psychologists would already know of some other system that generates the behav-
ior (i.e., a person or an animal), and would only be interested in this new system if it shed some light on 
how these other agents of interest worked.  If the new system that demonstrated the behavior did not do 
this, it would be actually be complicating the situation, because instead of having one unexplained system 
(the person or animal), we would have two (the person/animal and the new autonomous system).  As a 
result, in order to contribute to psychological theory, there would be a very strong demand for the re-
searcher to explain the behavior of these new system – to say exactly how its inner mechanisms interact-
ed with each other and with the environment to produce the behavior, and how the absence of such inter-
actions resulted in the behavior not appearing in less successful systems. 

 
In this particular hypothetical example, though, synthesis does not imply an easy route to under-

standing and explanation.  The fact that the researcher constructed the system using selection implies 
that explanation must depend upon a later stage of analysis.  This is because the success of this particu-
lar system (and the failure of other similar systems) was due to some random mutation that affected its 
internal mechanisms.  This mutation was caused by the researcher, but not intentionally.  To explain its 
behavior, the researcher would have to take the system apart, examine its inner workings, and probably 
take other systems apart as well to identify the differences between successful and unsuccessful sys-
tems.  This later stage of analysis, while necessary, is likely to be difficult and intensive. Of vehicles cre-
ated by natural selection, as is the case in this hypothetical example, Braitenberg (1984) writes “we can 
imagine that in most cases our analysis of brains in type 6 vehicles would fail altogether: the wiring that 
produces their behavior may be so complicated and involved that we will never be able to isolate a simple 
scheme” (p. 28).   

 
Of course, synthetic researchers recognize that the analysis of their creations will be challenging.  

Nevertheless, they also realize that such analysis is required to generate explanations.  For example, 
Pfeifer and Scheier (1999, p. 131) outline a ten-step research program for conducting experiments with 
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agents.  The last three steps of this program are purely analytic.  They involve collecting data about the 
agent’s behavior, as well as its internal states; the behavior is then described and analyzed statistically.  
The ultimate goal of this research program is to “formulate explanations of the agent’s behavior”. 

 
Webb (2000) provides an additional argument for the need for analysis in her assessment of how 

biorobotics can contribute to biology.  She notes that just because a robot generates the same behavior 
as an animal, it is not appropriate to conclude that they two systems exploit the same control mecha-
nisms.  This is because a standard realization in modeling is that the same behavior can be generated by, 
in principle, an infinite number of different algorithms (See also Dawson, 1998, Chapters 5 and 6).  As a 
result, a great deal of analysis is required to determine whether the synthetic system and the modeled 
animal are strongly equivalent.  “Proper experimental evaluation is needed to determine fully the real 
strengths or limitations of the implemented hypothesis.  Behavior qualitatively similar to the animal in a 
few trials, while encouraging, cannot be taken as confirmation, yet too few studies do more” (Webb, 2000, 
p. 553). 

 
7.6.2 Implications Of Braitenberg’s Law 

 
According to Braitenberg’s (1984) law of uphill analysis and downhill synthesis, synthesis is much 

easier than analysis, and is more likely to circumvent the frame-of-reference problem.  In other words, the 
synthetic approach should be capable of generating simpler theories than those that would be generated 
by the analytic approach.  However, we have just seen that synthetic researchers have the goal of gener-
ating explanations of intelligence and behavior, and because of this goal realize that analysis is a crucial 
component of their research program.  What then is really implied by the law of uphill analysis and down-
hill synthesis? 

 
The law of uphill analysis and downhill synthesis is not a claim that analysis should be aban-

doned, but is instead a claim that the route to understanding and explanation should first involve perform-
ing synthesis, and then later conducting analysis.  It is this combined approach – with an emphasis on 
early synthesis -- that holds the promise of generating simpler theories than an approach that exclusively 
involves analyzing the behavior of existing agents. 

 
One reason for this promise is the fact that, as we have seen repeatedly, the synthetic approach 

is an explicit attempt to make the most by using the least.  Synthetic modelers usually attempt to design 
fairly simple systems, in the hope that complex behaviors will emerge when they are situated in an envi-
ronment.  A second reason for this promise is that even in cases when researchers may not know pre-
cisely how to explain emergent behavior, the fact that they have constructed the model should make 
analysis easier, because they already have an accurate understanding of its main functional components, 
and should therefore be in a position to target their analyses efficiently and appropriately. 

 
7.6.3 Towards Synthetic Psychology  

 
Almost all of the examples of synthetic research that we have considered to this point have in-

volved sensorimotor systems – in particular, robots of one sort or another.  One question that needs to be 
addressed is whether such systems exclusively define the domain of the synthetic approach.  Can the 
synthetic approach be applied to non-robotic systems?  A second question that must be dealt with is 
whether systems of the type that we have been considering, which are predominately anti-
representational, are of any interest to psychologists.  Is synthetic psychology going to be reduced to 
studying non-representational systems that act on the world, or can the synthetic approach be applied to 
systems that use representations and have been of more interest to cognitive psychology and cognitive 
science?  These questions are addressed in the next chapter. 
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Chapter 8: Connectionism As Synthetic 
Psychology 

 
8.1 INTRODUCTION 

 
In Chapter 6, we introduced the synthetic approach with the “thoughtless walker” examples.  In 

Chapter 7, we turned to a historical review of more serious research to examine why researchers might 
be attracted to the synthetic approach.  We saw that one of the main attractions was the possibility of 
generating interesting and surprising behaviors from the interaction between a fairly simple system of 
components and the environment in which this system was embedded. 

 
One concern raised at the end of Chapter 6, and not addressed in Chapter 7, involved the rele-

vance of the synthetic approach to the study of psychological processes.  In particular, the modern re-
naissance of the synthetic approach that was pioneered by such researchers as Ashby and Grey Walter 
is strongly associated with the movements of behavior-based robotics (Brooks, 1999) and embodied cog-
nitive science (Pfeifer & Scheier, 1999).  These research traditions are strongly anti-representational, and 
are largely dedicated to removing the “think” component from the sense-think-act cycle.  This is strongly 
reminiscent of a failed tradition in experimental psychology, called behaviorism, that attempted to limit 
psychological theory to observables (namely, stimuli and responses), and which viewed as unscientific 
any theories that attempted to describe internal processes that mediated relationships between sensa-
tions and actions. I believe we can write a psychology, define it as Pillsbury, and never go back upon our 
definition: never use the terms consciousness, mental states, mind, content, introspectively verifiable, 
imagery, and the like. “I believe that we can do it in a few years without running into the absurd terminolo-
gy of Beer, Bethe, Von Uexküll, Nuel, and that of the so-called objective schools generally. It can be done 
in terms of stimulus and response, in terms of habit formation, habit integrations and the like” (Watson, 
1913). 

 
Modern cognitive psychology emerged from a strong reaction against behaviorism’s anti-

representational stance (Leahey, 1987).  In psychology, there is a long history of powerful theoretical and 
empirical arguments against behaviorism, and as a result behaviorism is no longer an accepted position 
(but see Leahey, 1987, pp. 461-463).  The standard view in psychology is that many phenomena cannot 
be adequately explained without appealing to mental representations.  Given this situation, and given that 
we have only considered the synthetic approach in the context of anti-representational research, this 
leads to an obvious question:  Is there anything in the synthetic approach that can be applied to the study 
of representational processes? 

 
The purpose of this chapter is to consider one version of the synthetic approach that can be ap-

plied representationally, and which as a result can truly be considered to be synthetic psychology.  This 
position will be supported in this chapter as follows:  First, we will consider the properties of connectionist 
simulations in the context of the synthetic approach.  This will be done to argue that connectionism offers 
one – though not the only – medium in which representational, synthetic research can be conducted.  
Second, we will discuss one case study that has recently appeared in the literature (Dawson, Boechler, & 
Valsangkar-Smyth, 2000).  This case study examines how connectionist simulations can be used to in-
vestigate issues related to one “higher-order processing” topic: spatial cognition.  We will then use this 
case study as a motivator to step back and consider a variety of techniques for performing synthetic psy-
chology using connectionism. 

 
8.2 BEYOND SENSORY REFLEXES 

 
The complexity of the behaviors of all of the machines that were surveyed in Chapter 7 was root-

ed in a set of simple sensorimotor reflexes that were embedded in a complicated environment.  For ex-
ample, the behavior of all robots that were discussed in the chapter was based upon simple routines in 
which a particular sensation (e.g., a value detected by a light sensor, or a switch depressed on a touch 
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sensor) was immediately converted into a particular response (e.g., a particular motor speed, or a change 
in motor direction).  The extent to which the behavior of these robots was complex, surprising, or interest-
ing was due to the interaction of these simple reflexes with the environments in which the robots were 
placed. 

 
The purpose of this section is to briefly consider the extent to which sensorimotor reflexes can be 

relied upon to form the basis of synthetic psychology.  First, some evidence supporting the existence of 
visuomotor modules in humans will be described.  This evidence indicates that sensorimotor reflexes 
should be plausibly considered as a component of synthetic psychology.  Second, the limitations of such 
reflexes will also be considered.  The claim that will be made is that synthetic psychology cannot rely ex-
clusively on such reflexes, and should therefore explore other foundations – some of which might be rep-
resentational. 

 
8.2.1 Visuomotor modules 

 
One of the most influential ideas that has been proposed in cognitive science is that of the modu-

larity of perceptual processing (Fodor, 1983).  While “perception is smart like cognition in that it is typically 
inferential, it is nevertheless dumb like reflexes in that it is typically encapsulated” (p. 2).  A module is a 
domain-specific perceptual system that solves a very particular problem, and is incapable of solving other 
information processing problems.  The operations performed by a module are rapid, mandatory, and run 
to completion once they are initiated.  Fodor argues that all of these characteristics are achieved by asso-
ciating each module with fixed neural architecture -- modularity is physically built into the brain.  The cor-
ollary of this position is that general inferential processing, which is by definition is not modular, is not go-
ing to be associated with a fixed neural architecture.  It is because of this that Fodor (p. 119) is not sur-
prised that we have a neuroscience of sensory systems, but that we do not have a neuroscience of 
thought. 

 
The modularity proposal is usually portrayed as being part of the “sense-think-act” cycle that de-

fines much of the status quo in cognitive science (Dawson, 1998, Chapter 7).  Specifically, modules solve 
many problems in early vision (sense).  The output of these modules is then passed on to visual cognition 
or higher-order cognition for inferential or semantic processing (think).  The results of this higher-order 
processing are then used to generate actions.  However, this is not the only way in which modularity has 
been incorporated into cognitive science. 

 
In some of the earliest work on the neuroscience of vision, Lettvin, Maturana, McCulloch, and 

Pitts (1959) identified neurons in the visual system of the frog that only responded to specific visual stimu-
li, and which in some sense were modular feature detectors.  For instance, one type of cell appeared to 
be a “bug detector”, because it only responded to a stimulus that could be described as a small, moving 
black spot.  However, such feature detectors in the frog do not appear to feed into a higher-order thinking 
mechanism.  Instead, the frog’s visual system appears to be organized into a system of “sense-act” or 
visuomotor modules.  Not only do these modules detect a specific visual stimulus, but they also generate 
a specific motor response. 

 
The existence of visuomotor modules in the frog was first demonstrated by Ingle (1973).  In a 

seminal experiment, Ingle surgically removed one hemisphere of the optic tectum of a frog.  This lesion 
produced a particular form of blindness in which the frog pursued prey presented to the eye that was 
connected to the remaining tectum, but did not respond to prey presented to the eye that would have 
been connected to the ablated tectum.  The lesion did not affect the frog’s ability to avoid a stationary bar-
rier placed between it and its prey.  Importantly, the amphibian brain is very plastic, and Ingle found that 6 
to 8 months after surgery, the nerve fibers from the “bad eye” regenerated, and became connected to the 
remaining optic tectum on the “wrong” side of the animal’s head.  In this case, when a prey target was 
presented to the “bad eye”, the frog was no longer blind to it, and attempted to catch it.  However, be-
cause of the tectal rewiring, the animal’s responses were in the wrong direction.  The frog always moved 
toward a location that was mirror-symmetrical to the actual location of the target, and this incorrect re-
sponse was shown to be due to the topography of the regenerated nerve fibers.  In other words, one role 
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of the optic tectum in the frog is to mediate a visuomotor module that converts a visual sensation directly 
into a motor response. 

 
Perhaps surprisingly, studies of brain-injured patients have demonstrated that the human visual 

system may also be organized into visuomotor modules (Goodale, 1988, 1995; Goodale & Humphrey, 
1998).  For instance, Goodale and his colleagues have studied one patient, DF, who suffered irreversible 
brain damage as a result of carbon monoxide poisoning.  One result of this brain damage was that DF’s 
ability to recognize visual shapes or patterns was severely impaired.  She “was unable to describe the 
orientation and form of any visual contour, no matter how that contour was defined” (Goodale, 1995, p. 
167).  However, DF’s visuomotor abilities were not impaired at all.  “Even though she cannot recognize a 
familiar object on the basis of its visual form, she can grasp that object under visual control as accurately 
and as proficiently as people with normal vision” (p. 169).  Another patient, VK, had the exact opposite 
pattern of dysfunction after a series of strokes.  VK had normal form perception, but her visuomotor con-
trol – in particular, her ability to form her hand to grasp objects of different shapes – was severely im-
paired. 

 
8.2.2 Reflexes Vs. Representations 

 
The evidence that there exists, even in humans, modular systems that involve direct linkages be-

tween sensation and action is consistent with behavior-based robotics and embodied cognitive science.  
Specifically, research in these fields is based upon the assumption that intelligence emerges situating a 
system in the world, and is not a result of representational processing.  The existence of visuomotor 
modules is strongly suggestive of a human information processing architecture that is similar in many 
ways to Brook’s (1989, 1999) subsumption architecture.  However, even researchers of visuomotor mod-
ules in humans would agree that such reflexes are not the sole foundations of psychological processing. 

 
For example, Goodale and Humphrey (1998) point out that “while there is certainly plenty of evi-

dence to suggest that visuomotor modularity of the kind found in the frog also exists in the mammalian 
brain, the very complexity of day-to-day living in many mammals, particularly in higher primates, demands 
much more flexible organization of the circuitry” (p. 184).  They propose a reformulation of Ungerleider 
and Mishkin’s (1982) proposal of two separate anatomical streams of visual processing.  Ungerleider and 
Mishkin proposed a ventral stream from primary visual cortex to inferotemporal cortex for the processing 
of visual appearances, and a dorsal stream from primary visual cortex to posterior parietal cortex for the 
processing of visual locations – the so-called what-where distinction.  Goodale and Humphrey distinguish 
these two streams in terms of the kinds of representations that they construct, and their purpose.  The 
dorsal stream computes representations of object locations and shapes in an egocentric frame of refer-
ence.  These representations are components of visuomotor modules, and are used to control a variety of 
movements (e.g., saccades, grasps, etc.).  The ventral stream computes representations of object fea-
tures in an allocentric frame of reference.  These representations become part of later semantic pro-
cessing. 

 
Furthermore, the dorsal and ventral streams as described by Goodale and Humphrey (1998) are 

not independent, but are required to interact with one another.  For instance, “certain objects such as 
tools demand that we grasp the object in a particular way so that we can use it properly.  In such a case 
both streams would have to interact fairly intimately in mediating the final output” (p. 203).  The fact that 
the two systems can interact is supported by theoretical arguments and anatomical evidence (DeYoe & 
van Essen, 1988) that shows that they are far more interconnected than was originally proposed by Un-
gerleider and Mishkin (1982).  These interactions are, of course, the source of the flexibility and control 
that Goodale and Humphrey note is required by higher-order visual systems to deal with complicated en-
vironmental demands. 

 
That stimulus-response reflexes are not sufficient to account for many higher-order psychological 

phenomena is a theme that has dominated cognitivism’s replacement of behaviorism as the dominant 
theoretical trend in experimental psychology.  In the study of language, this theme was central to Chom-
sky’s (1959) critical review of Skinner (1957).  Many of the modern advances in linguistics were the direct 
result of Chomsky’s proposal that generative grammars provided the representational machinery that 
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mediated regularities in language (Chomsky, 1965, 1995; Chomsky & Halle, 1991).  Similar arguments 
were made against purely associationist models of memory and thought (Anderson & Bower, 1973).  For 
example, Bever, Fodor, and Garrett (1968) formalized associationism as a finite state automaton, and 
demonstrated that such a system was unable to deal with the clausal structure that typifies much of hu-
man thought and language.  Paivio (1969, 1971) used the experimental methodologies of the verbal 
learners to demonstrate that a representational construct – the imageability of concepts – was an enor-
mously powerful predictor of human memory.  The famous critique of “old connectionism” by Minsky and 
Papert (1988) could be considered proofs about the limitations of visual systems that do not include me-
diating representations.  These examples, and many more, have lead to the status quo view that repre-
sentations are fundamental to cognition and perception (Dawson, 1998; Fodor, 1975; Jackendoff, 1992; 
Marr, 1982; Pylyshyn, 1984). 

 
Some robotics researchers also share this sentiment, although it must be remembered that be-

havior-based robotics was a reaction against their representational work (Brooks, 1999).  Moravec (1999) 
suggests that the type of situatedness that characterizes behavior-based robotics (for example, the sim-
ple reflexes that guided Grey Walter’s tortoises) probably provides an accurate account of insect intelli-
gence.  However, at some point systems built from such components will have at best limited abilities.  “It 
had to be admitted that behavior-based robots did not accomplish complex goals any more reliably than 
machines with more integrated controllers.  Real insects illustrate the problem.  The vast majority fails to 
complete their life cycles, often doomed, like moths trapped by a streetlight, by severe cognitive limita-
tions.  Only astronomical egg production ensures that enough offspring survive, by chance” (p. 46).  In-
ternal representations are one obvious medium for surpassing such limitations. 

 
Interestingly, arguments that representations provide an adaptive advantage for an organism, as 

well as flexibility and control of processing, are both central to the philosophical views of Karl Popper.  
Popper proposed an evolutionary theory in which organisms are constantly engaged in a process of prob-
lem solving, a process that Popper viewed as always being resolved through trial and error.  “Error-
elimination may proceed either by the complete elimination of unsuccessful forms (the killing-off of unsuc-
cessful forms by natural selection) or by the (tentative) evolution of controls which modify or suppress 
unsuccessful organs, or forms of behavior, or hypotheses” (Popper, 1979. p. 242).  Popper viewed con-
sciousness as an evolved system of “plastic control”, a system that could be used to control behavior, but 
which was also subject to changes via feedback.  The purpose of representations was argued to supply 
“controls which can eliminate errors without killing the organism; and it makes it possible, ultimately, for 
our hypotheses to die in our stead” (p. 244). 

 
In summary, the synthetic models developed in behavior-based robotics and embodied cognitive 

science can be described as systems of sensorimotor reflexes or visuomotor modules which, when em-
bedded in a complicated environment, can generate surprising or interesting behavior.  These models are 
consistent with the anti-representational motivation of this research trend, namely, the elimination of the 
“think” component of the “sense-think-act” cycle.  These models are also consistent with evidence of the 
existence of visuomotor modules in highly complex organisms, including humans.  However, theoretical 
and empirical arguments would suggest that not all psychological phenomena are equivalent to sen-
sorimotor reflexes.  Some representational processes must exist as well, and it is these processes that 
are of keen interest to psychologists.  The question that this leads to is this: can the synthetic approach 
be conducted in a way that provides the advantages that have been raised in previous chapters, but that 
also provides insight into representational processing? 

 
8.2.3 Synthesis And Representation 

 
Of course, the answer to the question that was just raised is a resounding yes.  There is nothing 

in the synthetic approach per se that prevents one from constructing systems that use representations.  
Describing a model as being synthetic or analytic is using a dimension that it is completely orthogonal to 
the one used when describing a model as being representational or not.  This is illustrated in Table 8-1, 
which categorizes some examples of research programs in terms of these two different dimensions. 

 
 Analytic Synthetic 
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Representational 

Production system generated 
from analysis of verbal proto-
cols 
e.g. (Newell & Simon, 1972)  

Multilayer connectionist network for 
classifying patterns using abstract 
features 
e.g. (Dawson, Boechler, & 
Valsangkar-Smyth, 2000)  

 
 

Non-
Representational 

Mathematical model of associa-
tive learning based upon analy-
sis of learning behavior of sim-
ple organisms 
e.g. (Rescorla & Wagner, 1972) 

Behavior-based robotics system con-
structed from a core of visuomotor 
reflexes 
e.g. (Brooks, 1989)  

Table 8-1.  Classification of some example research programs according to two separate 
dimensions, analytic vs. synthetic and representational vs. non-representational. 

  
The placing of most of the research examples in Table 8-1 should be clear from discussions that 

we have had in preceding chapters.  For example, production system research is designated as being 
both analytic and representational.  It is analytic because production systems are almost always derived 
from an intensive analysis of the verbal protocols of human problem solvers (Ericsson & Simon, 1984; 
Newell & Simon, 1972).  It is representational in the sense that production systems define a set of definite 
rules that detect, and modify, data structures that are stored in a working memory.  Indeed, production 
systems are one of the prototypical examples of the power of symbolic representations in classical cogni-
tive science (Newell, 1980, 1990). 

 
Behavior-based robotics is designated as being both synthetic and non-representational.  As we 

have seen in Chapter 7, it is explicitly synthetic in the sense that researchers build robots from fairly sim-
ple subsystems, and then examine the interesting kinds of behaviors that emerge when the robots are 
situated in an environment (Pfeifer & Scheier, 1999).  It is also an attempt to be as anti-representational 
as possible.  “In particular I have advocated situatedness, embodiment, and highly reactive architectures 
with no reasoning systems, no manipulable representations, no symbols, and totally decentralized com-
putation” (Brooks, 1999, p. 170). One of the foundational assumptions of behavior-based robotics is that if 
a system can sense its environment, then it should be unnecessary for the system to build an internal 
model of the world. 

 
Mathematical models of associative learning, such as the Rescorla-Wagner model (Rescorla & 

Wagner, 1972), are designated as being both analytic and non-representational.  Such models are de-
scribed as being analytic because they are usually based upon an analysis of behavioral regularities (see 
Chapters 3 and 4).  They are described as being non-representational because such models do not ap-
peal to representational content to explain behavior, and frequently model direct relationships between 
stimuli and responses. 

 
8.3 CONNECTIONISM, SYNTHESIS, AND REPRESENTATION 

 
Connectionism was placed in the final cell of table 8-1.  In my view, modern multi-layer PDP net-

works permit research that is both synthetic and representational, and therefore offers one plausible ave-
nue for conducting synthetic psychology.  The following subsections will elaborate on why connectionism 
can be viewed in this way.  Specifically, we will briefly discuss connectionism in the context of the three 
hallmarks of the synthetic approach: synthesis, emergence, and analysis.   

 
8.3.1 Connectionism And Synthesis 

 
In adopting the synthetic approach, a researcher is committed to identifying a basic set of building 

blocks.  Each of these building blocks defines a primitive element.  The set of all of the available primi-
tives defines an entire architecture. For a cognitive scientist, an architecture dictates “what operations are 
primitive, how memory is organized and accessed, what sequences are allowed, what limitations exist on 
the passing of arguments and on the capacities of various buffers, and so on.  Specifying the functional 
architecture of a system is like providing a manual that defines some particular programming language” 
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(Pylyshyn, 1984, p. 92). The goal of synthetic research is to see what variety of systems can be con-
structed from a particular architecture. 

 
In cognitive science, an architecture is usually a kind of programming language.  However, this is 

not a necessary property.  In some cases, there may not be any programming environment at all.  For 
example, in building our “thoughtless walkers” in Chapter 6, the architecture that we restricted ourselves 
to was a set of K’NEX rods, connectors, and motors.  In other cases, an architecture might involve a 
combination of hardware and software elements.  This kind of combined architecture is typical of research 
in embodied cognitive science (Pfeifer & Scheier, 1999). 

 
The architecture is a foundational idea in cognitive science, and therefore it is not surprising that 

many different research programs revolve around proposals for the architecture of cognition.  In some 
cases, researchers present a particular architecture as a candidate proposal for the “language of 
thought”.  For instance, Newell and Simon (1972) made very strong claims that production systems de-
fined the functional architecture of the mind.  Dawson (1998, p. 170) provides (an incomplete) table of 
proposed cognitive architectures that lists 24 different examples.  In other cases, theoretical and empirical 
debates in cognitive science revolve around whether particular properties are part of the architecture or 
not.  For example, in the 1970s and 80s the imagery debate was about whether the visual properties of 
mental images were built directly into the architecture (Block, 1981).  A more recent debate concerns 
whether the architecture of mind is analogous to the architecture of a digital computer (Bechtel & Abra-
hamsen, 1991; Churchland, Koch, & Sejnowski, 1990; Clark, 1989, 1993; Fodor & Pylyshyn, 1988; Py-
lyshyn, 1991; Smolensky, 1988), and has spawned a new architectural proposal, connectionism (McClel-
land & Rumelhart, 1986; Rumelhart & McClelland, 1986). 

 
Parallel distributed processing (PDP) models, or connectionism, are based on general assump-

tions about the kind of information processing carried out by the brain.  First, it is assumed that the primi-
tives for this type of information processing are individual neurons.  Second, it is assumed that the pattern 
of connections between neurons is analogous to the program in a conventional computer, because these 
connections define the causal interactions between neurons (Smolensky, 1988).  Third, it is assumed be-
cause the brain is composed a set of primitive units that operate in parallel, and because representations 
are distributed across a wide array of neurons and synapses, the kind of information processing carried 
out by the brain must be quite different from that to found in a digital computer.  “The analogy between 
the brain and a serial digital computer is an exceedingly poor one in most salient respects, and the fail-
ures of similarity between digital computers and nervous systems are striking” (Churchland et al., 1990, p. 
47). 

 
PDP models represent the embodiment of these general assumptions in a computer simulation 

environment that permits the construction of networks that can solve problems in an incredibly diverse set 
of domains (Dawson, 1998).  Essentially, the building blocks of PDP models represent abstract mathe-
matical descriptions of the kind of information processing that neurons do. This functional approach ig-
nores many of the biological properties of neurons, and attempts to simplify information processing as 
much as possible.  We will consider the building blocks of connectionism in more detail in the remaining 
chapters of this book. 

 
With respect to synthesis, connectionist research typically proceeds as follows:  First, a research-

er identifies a problem of interest, and then translates this problem into some form that can be presented 
to a connectionist network.  Second, the researcher selects a general connectionist architecture, which 
involves choosing the kind of processing unit, the possible pattern of connectivity, and the learning rule.  
Third, a network is taught the problem.  This usually involves making some additional choices specific to 
the learning algorithm – choices about how many hidden units to use, how to present the patterns, how 
often to update the weights, and about the values of a number of parameters that determine how learning 
proceeds (e.g., the learning rate, the criterion for stopping learning).  If all goes according to plan, at the 
end of the third step the research will have constructed a network that is capable of solving a particular 
problem.  The next subsection illustrates this aspect of connectionist research by describing an example 
network that was trained to make judgments about the distances between cities on a map of Alberta 
(Dawson, Boechler, & Valsangkar-Smyth, 2000). 
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8.3.2 Connectionism And Synthesis: An Example 

 
8.3.2.1 Metric Representations Of Space 
 
Our everyday interactions with the visual and spatial world are grounded in the essential experi-

ence that space is metric.  Mathematically speaking, a space is metric if relationships between locations 
or points in the space conform to three different principles (Blumenthal, 1953).  The first is the minimality 
principle.  According to this principle, the shortest distance in the space is between a point x and itself.  
The second is the symmetry principle.  According to this principle, the distance in the space between two 
points x and y is equal to the distance between points y and x.  The third is the triangle inequality.  Ac-
cording to this principle, the shortest distance in the space between two points y and x is a straight line. 

 
One recurring theme in the study of cognition, perception, and action is that intelligent agents 

have internalized the metric properties of the space in which they find themselves situated.  As a result, 
the mental representations used by these agents are thought by some researchers to have metric proper-
ties in their own right.  The paragraphs below briefly introduce three different examples of such proposals: 
similarity spaces, mental images, and cognitive maps. 

 
Similarity is one of the most important theoretical constructs in cognitive psychology (Medin, 

Goldstone, & Gentner, 1993).  The notion of similarity is central to theories of learning, perception, rea-
soning, and metaphor comprehension.  One of the goals of cognitive psychology has been to determine 
the mental representations that enable similarity relationships to affect this wide range of psychological 
phenomena.  One proposal that received a great deal of attention in the 1970s was that concepts were 
represented as points in a multidimensional space, where the dimensions of the space stood for either 
simple or complicated featural properties (Romney, Shepard, & Nerlove, 1972; Shepard, Romney, & Ner-
love, 1972).  In this kind of representation, the similarity between two different concepts was reflected in 
the distance between their locations in the multidimensional space.  Researchers conducted a number of 
different studies in which ratings of concepts were used to position a set of concepts in the metric space.  
This empirically derived space was then used to predict behavior on a variety of different tasks, including 
analogical reasoning (Rumelhart & Abrahamsen, 1973) and judgments of the aptness of metaphor (Tou-
rangeau & Sternberg, 1981; Tourangeau & Sternberg, 1982). Importantly, one of the main assumptions 
underlying the similarity space proposal was that this space was metric.   

 
On the basis of this assumption, one would expect that the metric properties of the space would 

be reflected in the behaviors that were governed by the space.  For example, if a subject used the similar-
ity space to rate the similarity between two concepts A and B, then one would expect these ratings to be 
symmetric: the similarity between A and B should be the same as the similarity between B and A, be-
cause the distance between A and B in the similarity space is presumed to be symmetric. 

 
A second example of a proposed representation that preserves the metric properties of space is 

mental imagery. Mental imagery is a visual experience that is usually elicited when people solve 
visuospatial problems.  Not only does mental imagery provide a visual or pictorial experience, but mental 
images give the sense of being manipulated in a spatial manner -- for instance, by being scanned, rotat-
ed, or zoomed in to (Kosslyn, 1980).  Early behavioral studies of the manipulation of mental images have 
provided data that suggest that they are indeed spatial in nature.  For example, many studies recorded 
the reaction times of subjects as they used mental images to perform some task, and found, for instance, 
that latencies increased linearly as a function of increases in the distance that an image had to be 
scanned or of increases in the amount that an image had to be rotated (Kosslyn, 1980; Shepard & 
Cooper, 1982).    

 
More recent research has turned to cognitive neuroscience in an attempt to explore the represen-

tations responsible for mental imagery. Kosslyn and others have used a variety of modern brain imaging 
techniques to show that when people generate mental images, they use many of the same brain areas 
that are also used to mediate visual perception (Farah, Weisberg, Monheit, & Peronnet, 1989; Kosslyn, 
1994; Kosslyn et al., 1999; Kosslyn, Thompson, & Alpert, 1997; Kosslyn, Thompson, Kim, & Alpert, 1995; 
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Thompson, Kosslyn, Sukel, & Alpert, 2001).  In particular, mental imagery elicits activity in the primary 
visual cortex, a brain area that is organized topographically.  Kosslyn has used this kind of evidence to 
propose an information processing system that is responsible for the generation and manipulation of im-
ages.  He argues that mental images are patterns of activity in a visual buffer that is a spatially organized 
structure in the occipital lobe. 

 
A third example of a proposed representation that preserves the metric properties of space is the 

cognitive map. Beginning with Tolman’s (1932, 1948) proposal that the spatial abilities of the rat were 
mediated by cognitive maps, representations that preserve the metric properties of space have been fun-
damentally important to the study of how humans and animals navigate (Kitchin, 1994). Behavioral stud-
ies have demonstrated that animal representations of space do indeed appear to preserve a good deal of 
its metric nature (for introductions, see Cheng & Spetch, 1998; Gallistel, 1990, Chap. 6).  Many research-
ers are now concerned with identifying the biological substrates that encode metric space.  Single-cell 
recordings of neurons in the hippocampus of a freely moving animal have provided compelling biological 
evidence that one function of the hippocampus is to instantiate a metric cognitive map (O'Keefe & Nadel, 
1978).  In particular, neuroscientists have discovered place cells in the hippocampus that respond only 
when a rat’s head is in a particular location in the environment (O'Keefe & Nadel, 1978).  These place 
cells can be driven by visual information (e.g., by the presence of objects or landmarks in the environ-
ment), and appear to be sensitive to some of the metric attributes of space.  For example, O'Keefe and 
Burgess (1996) found evidence that the receptive field of a place cell can be described as the sum of two 
or more Gaussian tuning curves sensitive to the distance between an animal and a wall in the environ-
ment. 

 
8.3.2.2 Are Spatial Representations Metric? 
 
While research on each of these three proposals for spatial representations has provided evi-

dence that the metric properties of space can be internalized, this evidence is not univocal.  With respect 
to similarity spaces, Tversky and his colleagues conducted a number of experiments that demonstrated 
that similarity judgments were not metric, because in different situations it could be shown that these 
judgments were not always symmetric, did not always conform to the minimality principle, and did not al-
ways conform to the triangle inequality (Tversky, 1977; Tversky & Gati, 1982).   

 
With respect to mental imagery, it has been shown that by manipulating the tacit beliefs of sub-

jects (Bannon, 1980), or by altering the complexity of the image being used (Pylyshyn, 1979), the linear 
relationship between reaction time and image properties could be eradicated.  These findings were used 
to argue that our experience of mental images is based upon more primitive and non-spatial representa-
tional components (Pylyshyn, 1980, 1981, 1984).  Even the evidence from neuroscience is not without 
controversy.  In a detailed review of the literature, Mellet, Petit, Mazoyer, Denis, and Tzourio, (1998) cite 
several studies that have found that some mental imagery tasks do not produce activity in primary visual 
cortex.   

 
With respect to cognitive maps, it has been argued that place cell circuitry by itself does not pro-

vide a cognitive map that can be considered to be metric in the mathematical sense. First, place cells are 
not organized topographically; the arrangement of place cells in the hippocampus is not isomorphic to the 
arrangements of locations in an external space (Burgess, Recce, & O'Keefe, 1995; McNaughton et al., 
1996).  Second, it has been argued that place cell receptive fields are at best locally metric (Touretzky, 
Wan, & Redish, 1994), and that as a result a good deal of spatial information (e.g., information about 
bearing) cannot be derived from place cell activity.  Some researchers have argued that place cells make 
up only a part of the cognitive map, and that the neural representation of metric space requires the coor-
dination of a number of different subsystems (McNaughton et al., 1996; Redish & Touretzky, 1999; 
Touretzky et al., 1994). 

 
8.3.2.3 A Synthetic Approach To Spatial Representation 
 
The three examples that were briefly reviewed above all involve proposals for metric spatial rep-

resentations that mediate spatial behavior.  However, in each example it was shown that such proposals 
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are not without controversy.  In some instances, behavior that is presumably guided by the representation 
can violate the metric properties of space.  In other instances, inspections of the representational or neu-
ral structures that mediate spatial behavior or experience reveal regularities that are inconsistent with the 
notion that the underlying structure is metric in nature. 

 
One reason that such inconsistencies emerge may be because these representational proposals 

were the product of an analytic research strategy.  Cognitive psychologists typically develop theories 
about underlying representations by decomposing complex behavior into more basic functions (Cummins, 
1983; Dawson, 1998).  While this approach, called functional analysis, has been extremely successful, it 
can be dangerous to use.  One problem with it that we saw in Chapter 7 is that it can lead to theories that 
are more complicated than necessary, because the decomposition can fail to partition behavior appropri-
ately into three different categories (behavior caused by the organism, behavior elicited by a complex en-
vironment, and behavior that emerges at the interface between an agent and its environment) (Braiten-
berg, 1984; Simon, 1996).  A second problem is that the decomposition is theory-driven, and as a result 
can miss regularities that are real, but not intuitively obvious.  “The tendency will be to break different ca-
pacities down into different constituent processes.  As a result, explanations that are given of the capabili-
ties in question will rest on a false and artificial theory, one that is, in effect, engineered to account for da-
ta but that is not a realistic model of human neuropsychology” Rollins (2001). 

 
 The synthetic approach is one alternative to functional analysis. Dawson, Boechler and 
Valsangkar-Smyth (2000) decided to explore the notion of spatial representations synthetically by building 
a PDP network that could make judgments that preserved the metric properties of space.  Could a simple 
network learn to make such judgments?  If so, then what kind of internal representation would it use?  
Would the representation be metric or non-metric?  
 

8.3.2.3.1 Defining The Problem 

 
 As was noted earlier, the first step in synthesizing a connectionist network is to choose a problem 
of interest, and to translate this problem into a form that could be dealt with by a PDP model.  Dawson, 
Boechler and Valsangkar-Smyth (2000) wanted to create a network that could perform a behavior that 
was complicated enough to be of psychological interest, and which also preserved the metric properties 
of space.  The task that they selected was a ratings task, in which a network was presented a pair of cit-
ies, and had to rate the distance between the two cities on a scale from 0 to 10. This kind of task is of 
psychological interest, because it is often used to collect distance-like data from human subjects (Shep-
ard, 1972). By basing the ratings on distances measured between cities on a map, one can also ensure 
that a system that can make such judgments is preserving the metric properties of space as well. 
 

Dawson, Boechler and Valsangkar-Smyth (2000) chose thirteen different locations in the province 
of Alberta. They took all possible pairs from this set to create a set of 169 different stimuli, each of which 
could be described as the question “On a scale from 0 to 10, how far is City 1 from City 2?”   The desired 
ratings for each stimulus were created as follows.  First, from a map of Alberta they determined the short-
est distance in kilometers between each pair of locations.  Second, they then converted these distances 
into ratings.  If a stimulus involved rating the distance from one place to itself, the rating was assigned a 
value of 0.  Otherwise, if the distance was less than 100 kilometers, then it was assigned a value of 1; if 
the distance was between 100 and 199 kilometers, then it was assigned a value of 2; if the distance was 
between 200 and 299 kilometers, then it was assigned a value of 3; and so on up to a maximum value of 
10 which was assigned to distances of 900 kilometers or more.  
 

These ratings were designed to preserve the metric properties of the map of Alberta.  To confirm 
that a system that could generate the ratings must have, in some sense, internalized the map of Alberta, 
Dawson, Boechler and Valsangkar-Smyth (2000) analyzed the ratings with a statistical technique called 
multidimensional scaling (MDS).  MDS is designed to take proximity information as input, and to then 
convert this information into a geometric configuration of points from which the proximities can be derived 
(Kruskal & Wish, 1978).  For example, if one were to give MDS a table of distances between cities (e.g., a 
table commonly found on a roadmap), MDS would produce a map with each city situated in the correct 
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location.  When the ratings data is analyzed using MDS, it generates a plot in which each of the 13 cities 
are located very near the position in which they would be found if one examined a road map of Alberta. 

 

8.3.2.3.2 Choosing The Network Architecture 

 
The second step in synthesizing a connectionist network is to choose a particular architecture, 

and to train this architecture to solve the problem of interest.  Part of this step involves making fairly gen-
eral architectural choices.  Dawson, Boechler and Valsangkar-Smyth (2000) decided to train a feedfor-
ward network to solve this spatial judgment task.  The first layer of this network was a set of 13 different 
input units.  The input units used a very simple unary notation to represent pairs of places to be com-
pared.  Each input unit represented one of the thirteen place names.  Pairs of places were presented as 
stimuli by turning two of the input units on (that is, by activating them with a value of 1).  For example, to 
ask the network to rate the distance between Banff and Calgary, the first input unit would be turned on 
(representing Banff), as would the second input unit (representing Calgary).  All of the other input units 
would be turned off (that is, were activated with a value of 0).  This unary representational scheme was 
chosen because it contains absolutely no information about the location of the different places on a map 
of Alberta.  In other words, the input units themselves did not provide any metric information that the net-
work could use to perform the ratings task. 

 
Ten output units were used to represent the network’s rating of the distance between the two 

place names presented as input.  To represent a rating of 0, the network was trained to turn all of its out-
put units off.  To represent any other rating, the network was trained to turn on one, and only one, of its 
output units.  Each of these output units represented one of the ratings from 1 to 10.  For example, if the 
network turned output unit 5 on, this indicated that it was making a distance rating of 5. 

 
The middle layer of the spatial judgment network was a set of six hidden units. Dawson, Boechler 

and Valsangkar-Smyth (2000) selected this number of hidden units because pilot simulations had shown 
that this was the smallest number of hidden units that could be used by the network to discover a map-
ping from input to output.  When fewer than six hidden units were used, the network was never able to 
completely learn the task. 

 
In addition to making decisions about the input representation, the output representation, and the 

number of hidden units, Dawson, Boechler and Valsangkar-Smyth (2000) had to make specific decisions 
about the properties of the hidden and output units, and about how the network was to be trained.  They 
decided that the hidden and output units should all be value units, which are described in more detail in 
Chapters 10 and 11.  A value unit uses a particular type of Gaussian activation function to convert net 
input into internal activity that ranges between 0 and 1.  Such units are tuned to respond to only a narrow 
range of net inputs.  Value units were used because one of the primary goals of the research was to in-
terpret the internal representations discovered by the network.  As will be discussed in Chapter 12, a 
number of different studies have demonstrated that networks of value units permit their internal structure 
to be interpreted in great detail. 

 

8.3.2.3.3 Training The Network 

 
The final step in synthesizing a connectionist network is to actually carry out the training, and cre-

ate a network that is capable of generating the correct response for every pattern in the training set.  
Dawson, Boechler and Valsangkar-Smyth (2000) were able to train their network to make the correct spa-
tial judgment for every pattern in the training set.  With this successful training, the issues of emergence 
and analysis became central to their study. 

 
8.3.3 Connectionism And Emergence: A Prelude 
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In the robot examples of Chapters 6 and 7, after a robot was synthesized, the next step was to 
place it in an environment and observe its behavior.  The point of this observation was to identify interest-
ing and surprising actions that emerged from the interaction between the robot and its world.  Connection-
ist networks can surprise us, but not exactly in this way. 

 
According to Hanson and Olson (1991, p. 332), “the neural network revolution has happened.  

We are living in the aftermath.”  At the time when the neural network revolution was in full swing, it was 
important to demonstrate that PDP models were capable of dealing with domains that were prototypically 
symbolic.  I tell my students that this practice can be called “Gee Whiz connectionism”, because its main 
goal was to allow researchers to exclaim “Gee whiz – PDP networks can do x, so x can be done without 
explicit rules.”  Classical researchers did take note of such results, acknowledging that it was surprising 
that models built from such simple components were capable of providing accounts of complex phenom-
ena (Fodor & Pylyshyn, 1988). 

 
However, in the aftermath of the neural network revolution, there really is no role for Gee Whiz 

connectionism.  As is discussed in slightly more detail below, modern analyses have demonstrated con-
clusively that a broad variety of PDP architectures have the same computational power as the architec-
tures that have been incorporated into symbolic accounts of cognition (Dawson, 1998).  What this means 
is that a connectionist network can learn to perform any task that can be accomplished by a classical 
model.  In the heyday of Gee Whiz connectionism, the mere demonstration that a network could do 
something of interest to classical cognitive science was by itself an emergent phenomenon of considera-
ble interest.  Now, with a better understanding of connectionist power, it is expected that networks can 
perform these tasks.  As a result, the fact that a network can learn a task is no longer an emergent phe-
nomenon of any interest to researchers. 

 
Where, then, does emergence enter a synthetic psychology that uses PDP models?  The answer 

to this question is that it is neither interesting nor surprising to demonstrate that a network can learn a 
task of interest.  However, it can be extremely interesting, surprising, and informative to determine what 
regularities the network exploits.  What kinds of regularities in the input patterns has the network discov-
ered?  How does it represent these regularities?  How are these regularities combined to govern the re-
sponse of the network?  In many instances, the answers to these questions can reveal properties of prob-
lems, and schemes for representing these properties, that were completely unexpected.  In short, this 
means that before connectionist modelers can take advantage of the emergent properties of a PDP net-
work that is being used as paradigm for synthetic psychology, the modelers must analyze the internal 
structure of the networks that they train.  In Chapter 12, we consider in detail several different approaches 
to interpreting connectionist networks. 

 
8.3.4 Connectionism And Analysis 

 
In most cases, the identification of interesting emergent properties in a modern PDP network re-

quires a detailed analysis of the internal structure of a trained network.  In particular, after a network has 
learned to solve some problem of interest, a researcher will take the network apart and examine the 
properties of the internal representations that it has developed.  In many cases, it is expected that this 
kind of analysis will reveal that the network has discovered interesting and surprising regularities in the 
problem.  These surprises are one of the main ways in which connectionist simulations can push re-
search in new directions. 

 
However, if the analysis of connectionist representations is to provide a vehicle for synthetic psy-

chology, then there are two general criticisms that have to be faced first.  The first criticism is the general 
view that the kinds of representations that one will find in PDP networks are not the kinds of representa-
tions that will provide accounts of psychological phenomena.  The second criticism is that even if these 
representations were of potential interest, they are nearly impossible to uncover in a trained network.  We 
will consider each of these points below. 

 
8.3.4.1 Connectionism And Representation 
 



 - 79 - 

Minds And Machines © M.R.W. Dawson 12/02/2016 

One major debate in cognitive science concerns potential differences (and similarities) between 
symbolic models and connectionist networks (Dawson, 1998).  For example, it has been argued that, in 
contrast to symbolic theories, PDP networks are subsymbolic (Smolensky, 1988).  To say that a network 
is subsymbolic is to say that the activation values of its individual hidden units do not represent interpret-
able features that could be represented as individual symbols.  Instead, each hidden unit is viewed as 
indicating the presence of a microfeature.  Individually, a microfeature is unintelligible, because its “inter-
pretation” depends crucially upon its context (i.e., the set of other microfeatures which are simultaneously 
present (Clark, 1993)).  However, a collection of microfeatures represented by a number of different hid-
den units can represent a concept that could be represented by a symbol in a classical model. 

 
One consequence of the proposal that PDP networks use subsymbolic representations is further 

proposal that they process information in a completely different way than one would find in a symbolic 
model such as a production system.  “Subsymbols are not operated upon by symbol manipulation: they 
participate in numerical – not symbolic – computation” (Smolensky, 1988).  The kinds of numerical opera-
tions that are carried out are formal descriptions of the kind of energy minimization that we used to char-
acterize the “thoughtless walkers” in Chapter 6.  For example, Smolensky puts forth a “connectionist dy-
namical system hypothesis” as a proposed account of connectionist information processing.  According to 
this hypothesis, at any state in time a connectionist network can be described as a vector of numbers, 
with each number representing the state of activity of a processing unit.  In some instances, such as an 
account of learning, the vector might also include the values of a network’s weights.  The system is dy-
namic, in the sense that this vector changes over time.   Differential equations precisely describe such 
changes, which in most cases can be thought of as defining a trajectory in some multidimensional space 
through which the system travels to minimize some energy or cost value. 

 
The claims that PDP networks represent and process information in completely different ways 

than symbolic models has led to strong criticisms about their role in cognitive science and psychology.  
Specifically, some researchers have made strong arguments that the kinds of (nonsymbolic) representa-
tions that are found in connectionist models are not adequate to account for many of the regularities of 
human cognition (Fodor & McLaughlin, 1990; Fodor & Pylyshyn, 1988).  In particular, Fodor and Pylyshyn 
argue that connectionist information processing does not involve a combinatorial syntax and semantics, 
and does not involve processes that are sensitive to constituent structure.  They go on to argue that con-
nectionist information processing shares many of the properties (and limitations) of the associationist the-
ories that cognitivism reacted against in the 1950s (see also Bechtel, 1985).  In short, their position is that 
connectionism doesn’t provide the kind of representational account that psychology needs.  “The problem 
with connectionist models is that all the reasons for thinking that they might be true are reasons for think-
ing that they couldn’t be psychology” (Fodor & Pylyshyn, 1988, p. 66). 

 
There are both theoretical and empirical reasons to believe that this dismissal of connectionism is 

premature.  The symbolic paradigm in cognitive science is based upon the assumption that whatever the 
architecture of cognition is, it must have the computational power of a universal Turing machine (UTM) 
(Dawson, 1998). It would appear that connectionist networks also have this level of computational power. 
In some of the earliest work on neural networks, McCulloch and Pitts (1943) examined finite networks 
whose components could perform simple logical operations like AND, OR, and NOT.  They were able to 
prove that such systems could compute any function that required a finite number of these operations.  
From this perspective, the network was only a finite state automaton (see also Hopcroft & Ullman, 1979; 
Minsky, 1972).  However, McCulloch and Pitts went on to show that a UTM could be constructed from 
such a network, by providing the network the means to move along, sense, and rewrite an external "tape" 
or memory.  "To psychology, however defined, specification of the net would contribute all that could be 
achieved in that field" (McCulloch & Pitts, 1943/1988, p. 25).  It has already been noted that more recent 
results have validated and extended this pioneering research. 

 
Empirical evidence also supports the view that the distinction between connectionist and classical 

models is fairly blurred.  For example, in one study Dawson, Medler, and Berkeley (1997) my students 
trained a network of value units on a logic problem developed by Bechtel and Abrahamsen (1991).  When 
they analyzed the internal structure of the network, they found evidence for network states that repre-
sented standard rules of logic.  A second study provided even stronger evidence of the representational 
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equivalence of the two types of models.  Dawson, Medler et al. (2000) were able to translate a symbolic 
theory directly into a connectionist network using a technique called extra-output learning. 

 
8.3.4.2 Connectionism And Bonini’s Paradox 
 
It would appear, then, that examining the internal representations of PDP networks is an appro-

priate activity for synthetic psychology.  Unfortunately, connectionist researchers freely admit that it is ex-
tremely difficult to determine how their networks accomplish the tasks that they have been taught. There 
are a number of reasons that PDP networks are difficult to understand as algorithms, and are thus 
plagued by what we called Bonini’s paradox in Chapter 2. 

 
First, general learning procedures can train networks that are extremely large; their sheer size 

and complexity makes them difficult to interpret.  For example, Seidenberg and McClelland's  (1989) net-
work for computing a mapping between graphemic and phonemic word representations uses 400 input 
units, up to 400 hidden units, and 460 output units.  Determining how such a large network computes a 
particular function is an intimidating task.  This is particularly true because in many PDP networks, it is 
very difficult to consider the role that one processing unit plays independent from the role of the other 
processing units to which it is connected (see also Farah, 1994). 

 
Second, most PDP networks incorporate nonlinear activation functions.  This nonlinearity makes 

these models more powerful than those that only incorporate linear activation functions (e.g. Jordan, 
1986), but it also results requires particularly complex descriptions of their behavior.  Indeed, some re-
searchers choose to ignore the nonlinearities in a network, substituting a simplified (and often highly inac-
curate) qualitative account of how it works (e.g., Moorhead, Haig, & Clement, 1989). 

 
Third, connectionist architectures offer (too) many degrees of freedom.  One learning rule can 

create many different networks -- for instance, containing different numbers of hidden units – that can 
each compute the same function.  Each of these systems can therefore be described as a different algo-
rithm for computing that function.  One does not have any a priori knowledge of which of these possible 
algorithms might be the most plausible as a psychological theory of the phenomenon being studied. 

 
8.3.4.3 Interpreting Connectionist Networks 
 
Difficulties in understanding how a particular connectionist network accomplishes the task that it 

has been trained to perform has raised serious doubts about the ability of connectionists to provide fruitful 
theories about cognitive processing (e.g., McCloskey, 1991).  Because of the problems of network inter-
pretation, McCloskey (1991) suggested “connectionist networks should not be viewed as theories of hu-
man cognitive functions, or as simulations of theories, or even as demonstrations of specific theoretical 
points” (p. 387).  Fortunately, connectionist researchers are up to this kind of challenge.  Several different 
approaches to interpreting the algorithmic structure of PDP networks have been described in the litera-
ture.  They are discussed in more detail in Chapter 12.  In short, network interpretation is both necessary 
and possible. 

 
8.3.5 Connectionism And Analysis: An Example 

 
To provide an example of connectionism and analysis, let us return to the spatial judgment net-

work of Dawson, Boechler and Valsangkar-Smyth (2000).  After they were able to successfully construct 
the network, their interest turned to the kinds of internal representations used by the network to generate 
its metric behavior.  In what way do the hidden units of this network represent the metric structure of a 
two-dimensional map of Alberta?  Have the hidden units developed a metric representation of space?  Or 
have the hidden units instead developed some complex nonmetric representation from which metric be-
havior can be derived?   

 
8.3.5.1 Relating The Map Of Alberta To Hidden Unit Connection Weights 
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Dawson, Boechler and Valsangkar-Smyth (2000) began by exploring the possibility that the net-
work might have developed internal representations similar in nature to those that have been attributed to 
cells in the hippocampus.  For example, consider the possibility that each hidden unit occupies a position 
in the map of Alberta, and uses its connection weights to represent the distances from the hidden unit to 
each of the Albertan cities.  If this hypothesis is correct, then one should be able to find a position for 
each hidden unit on the map of Alberta such that there is a substantial correlation between the unit’s con-
nection weights and the distances from each city to the hidden unit location. 

 
Dawson, Boechler and Valsangkar-Smyth (2000) used the Solver tool in Microsoft Excel to move 

each hidden unit to a latitude and longitude on the map of Alberta.  The spreadsheet that they designed 
computed the distance between the (current) position of the hidden unit and each of the 13 Albertan cit-
ies.  The spreadsheet then computed the correlation between these 13 distances and the 13 connection 
weights feeding into the hidden unit.  The Solver tool in the spreadsheet then changed the position of the 
hidden unit, finally stopping when it identified the position on the map that produced the highest correla-
tion between map distances and connection weights.  There was a very strong relationship between dis-
tances and connection weights, with the absolute values of the correlations ranging from 0.48 to 0.88. In 
other words, after this analysis was performed, Dawson, Boechler and Valsangkar-Smyth were able to 
create a map that not only contained the 13 cities, but which also contained the hidden units from their 
network. 

 
8.3.5.2 Relating Connection Weights To Hidden Unit MDS Spaces 
 
Dawson, Boechler and Valsangkar-Smyth's (2000) first analysis indicated that each hidden unit 

could be viewed as occupying a position on the map of Alberta, and that its connection weights were re-
lated to distances between the hidden unit and the 13 cities on the map.  However, while the correlation 
between map distances and connection weights were substantial, they were not as strong as might be 
expected.  They noted that one problem with the first analysis was that it imposes our notion of the space 
in question (i.e., the map of Alberta) onto the behavior of the hidden units. It does not permit the possibil-
ity that the hidden units are spatial, but the space to which they are sensitive is quite different from the 
space used to create the map.  There are at least two reasons to expect that the hidden units have a dis-
torted representation of the map. 

 
The first reason is theoretical.  If connection weights leading into a hidden unit represent distance, 

then these distances are dramatically transformed by the Gaussian activation function of the hidden unit 
when connection weight signals are converted into hidden unit activity.  This kind of transformation would 
be equivalent to a distortion of the map of Alberta. 

 
The second reason is empirical.  For any input pattern, a hidden unit’s activity can be viewed as 

being analogous to that hidden unit’s rating of the distance between cities.  If we examine hidden unit ac-
tivity to various pairs of cities, then we can see that the hidden unit’s “ratings” do not seem particularly 
accurate.  Consider, for example, hidden unit 2.  When the network is asked to rate the distance between 
Red Deer and Jasper, this unit generates an activation value of 0.69.  On the map of Alberta, the distance 
between Jasper and Red Deer is 413 km.  However, nearly identical behavior is produced in the unit by 
two other cities, Edmonton and Lloydminster, which are much closer together on the map (251 km).  
When these two cities are presented to the network an activation of 0.71is produced in hidden unit 2.   

 
If the hidden units are spatial in nature, but are dealing with a space that is quite different from the 

one that we might expect, then how should their behavior be analyzed?  One approach would be to con-
sider each hidden unit as being a subject in a distance rating experiment.  For each stimulus, the rating 
generated by the hidden unit is the hidden unit’s activity.  If all of these ratings are taken and organized 
them into tables, then MDS can be applied to this data.  This analysis determines the structure of the 
space that underlies the hidden units behavior, which can then be related to the connection weights that 
feed into each unit. 

 
Dawson, Boechler and Valsangkar-Smyth (2000) performed this analysis on the 13 X 13 “activity 

matrix” for each hidden unit, in which each row and each column corresponded to an Albertan city, and 
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each matrix entry aij was the hidden unit’s activation value when the network was asked to rate the dis-
tance between city i and city j.  They found that a two-dimensional plot provided a nearly perfect account 
of the activity matrix of each hidden unit. They then repeated the Solver analysis that was reported above.  
However, instead of using the map of Alberta, for each hidden unit they used the coordinates of the cities 
obtained from the MDS analysis of the unit’s activity matrix.  With these analyses, for each hidden unit 
they found a location in the MDS space that produced a near perfect correlation between distances and 
connection weights. 

 
8.3.5.3 Coarse Coding From Hidden Unit Activations To Distance Ratings 
 
Up to this point, we have seen evidence that the spatial judgment network developed a spatial 

representation of map locations, in which the weights that fed into a hidden unit encoded information 
about the distance between the hidden unit’s position in a two dimensional space and city locations in the 
same space.  However, we have not yet discussed how the network exploits the features detected by the 
hidden units to produce the desired ratings as output. 

 
We saw earlier that an individual unit’s responses to different stimuli were not necessarily accu-

rate.  For instance, when presented two cities that were relatively close together, a unit might generate 
internal activity very similar in value to that generated when presented two other cities that were much 
further apart.  To verify this claim quantitatively, Dawson, Boechler and Valsangkar-Smyth (2000) took the 
activity of each hidden unit and correlated it with the desired rating for the input patterns.  For units H0 
through H5, these correlations were –0.32, 0.04, 0.04, -0.10, 0,04, and 0.16.  It would appear that the ac-
tivities of individual hidden units were at best weakly related to the desired distance ratings. How is it pos-
sible for such inaccurate responses to result in accurate outputs from the network?  

 
The answer to this question is that the hidden unit activations in the network are a form of repre-

sentation called coarse coding.  In general, coarse coding means that an individual processor is sensitive 
to a broad range of features, or at least to a broad range of values of an individual feature (e.g., Church-
land & Sejnowski, 1992).  As a result, individual processors are not particularly useful or accurate feature 
detectors.  However, if different processors have overlapping sensitivities, then their outputs can be 
pooled, which can result in a highly useful and accurate representation of a specific feature.  Indeed, the 
pooling of activities of coarse-coded neurons is the generally accepted account of hyperacuity, in which 
the accuracy of a perceptual system is substantially greater than the accuracy of any of its individual 
components (e.g., Churchland & Sejnowski, 1992). 

 
The coarse coding that is used in the spatial judgment network can be thought of as follows:  

Each hidden unit occupies a different position on the map of Alberta.  When presented a pair of cities, 
each unit generates an activation value that reflects a rough estimate of the combined distance from the 
two cities to the hidden unit.  While each hidden unit by itself generates only a rough estimate, when all 
six hidden units are considered at the same time, a much more accurate estimate of the distance be-
tween the two cities is possible.  To demonstrate this, Dawson, Boechler and Valsangkar-Smyth (2000) 
used regression to predict the distance rating (an integer ranging from 0 to 10) from the activations gen-
erated in 6 of the hidden units by each of the 169 stimuli that were presented to the network during train-
ing.  The regression equation produced an R2 of 0.71. In other words, a linear combination of the hidden 
unit activities can by itself account for over 70% of the variance of the distance ratings.  After being 
trained to solve the problem, the network, in virtue of the nonlinear transformations performed by the 
Gaussian activation functions of its output units, can combine the hidden unit activities to account for 
100% of the distance ratings. 

 
8.3.6 Connectionism And Emergence: An Example 

 
Several different analyses of the internal structure of the spatial judgment network were reported 

above, and all of these analyses converged on one general finding: the hidden units of the network de-
veloped metric representations of space.  First, two-dimensional MDS analyses accounted for almost all 
of the variance in the activation matrix that was created for each hidden unit.  Second, if one assumed 
that each hidden unit occupied a location on the map of Alberta, one could find a location for each hidden 
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unit that produced a high correlation between the connection weights feeding into the hidden unit and the 
distances on the map between cities and the position of the hidden unit.  Third, if one replaced the map of 
Alberta with a customized two-dimensional space for each hidden unit (a space revealed by the MDS 
analyses), near perfect correlations between connection weights and distances in the space were re-
vealed. 

 
With these analyses completed, we can now return to the issue of connectionism, analysis, and 

emergence.  Specifically, now that a spatial judgment network has been synthesized, and now that its 
internal structure has been thoroughly analyzed, what are the implications of this simulation?  Dawson, 
Boechler and Valsangkar-Smyth (2000) discussed two general insights that were provided by their re-
search.  The first had to do with a controversy about how the hippocampus represents space.  The sec-
ond had to do with the relationship between metric representations and nonmetric behaviors.  These two 
issues are discussed in the sections that follow. 

 
8.3.6.1 Implications For The Hippocampal Cognitive Map 
 
The strong interest that neuroscientists have taken in the study of spatial behavior and cognitive 

maps can largely be traced back to the discovery of place cells in the hippocampus (O'Keefe & Dostrov-
sky, 1971).  The properties of place cells have been used as evidence for the neural basis of a cognitive 
map in the hippocampus (O'Keefe & Nadel, 1978).  This map was argued to be a Euclidean description of 
the environment based on an allocentric frame of reference.  In other words, locations in this map were 
defined in terms of the world, and not in terms of a coordinate system based upon (and moving with) the 
animal.  Additional support for this proposal came from the fact that lesions to the hippocampus produce 
deficits in a variety of spatial tasks (for an introduction, see Sherry & Healy, 1998).  Furthermore, robots 
that use a representational scheme based upon the properties of place cells can navigate successfully in 
their environment, indicating that the place cell architecture is a plausible proposal for a cognitive map 
(Burgess, Donnett, Jeffery, & O'Keefe, 1999).   

 
One common analogy used by researchers is that a cognitive map is like a graphical map 

(Kitchin, 1994).  “This does not mean that there must be a region in the brain onto which the environment 
is physically mapped, but rather that there will be a correspondence between input-output behaviors of 
the storage and retrieval functions of the two representations” (p. 4).  The aforementioned properties of 
place cells would appear to support this analogy.  One might plausibly expect that the cognitive map is a 
two-dimensional array in which each location in the map (i.e., each place in the external world) is associ-
ated with the firing of a particular place cell. 

 
However, anatomical evidence does not support this analogy.  First, there does not appear to be 

any regular topographic organization of place cells relative to either their positions within the hippocam-
pus or to the positions of their receptive fields with respect to the environment (Burgess et al., 1995; 
McNaughton et al., 1996).  Second, place cell receptive fields are at best locally metric (Touretzky et al., 
1994).  This is because one cannot recover information about bearing from place cell representations, 
and one cannot measure the distance between points that are more than about a dozen body lengths 
apart because of a lack of place cell receptive field overlap.  Some researchers now propose that the 
metric properties of the cognitive map emerge from the coordination of place cells with cells that deliver 
other kinds of spatial information, such as head direction cells which fire when an animal’s head is point-
ed in a particular direction, regardless of the animal’s location in space (McNaughton et al., 1996; Redish 
& Touretzky, 1999; Touretzky et al., 1994). 

 
Dawson, Boechler and Valsangkar-Smyth (2000) observed that the hidden units in the spatial 

judgment network also appear to be subject to the same limitations that have brought into question the 
ability of place cells to provide a metric representation of space.  First, because the hidden units were all 
connected to all of the input units, the network had no definite topographic organization.  Second, each 
hidden unit appeared to be at best locally metric.  While the input connections were correlated with dis-
tances on the map, the responses of individual hidden units did not provide an accurate spatial account of 
the map.  Nevertheless, the fact that the network could be trained to accurately generate the ratings indi-
cated that the responses of these locally metric, inaccurate processors represented accurate spatial in-
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formation about the entire map of Alberta.  This was possible because the network did not base its output 
on the behavior of a single hidden unit.  Instead, it relied on coarse coding, and generated its response on 
the basis of the activities of all six hidden units considered simultaneously. 

 
Dawson, Boechler and Valsangkar-Smyth (2000) noted that one implication of this coarse coding 

is that spatial relationships amongst locations in Alberta can be captured by a representational scheme 
that is not isomorphic to a graphical map.  In particular, if one views the hidden units as being analogous 
to place cells, then the network demonstrates that spatial relationships among 13 different landmarks can 
be represented by a system which assigns place cells to only 6 different map locations. 

 
The reason that this is possible is because the representational scheme discovered by the net-

work is allocentric, but in a fashion that might not be immediately expected.  Taken literally, the term allo-
centric means “centered on another”, but there are at least four distinct kinds of representations for which 
this would be true (Grush, 2000).  In two of these, the locations of objects are either specified with respect 
to one object in the environment (an object-centered reference frame) or with respect to a position in the 
environment at which no object is located (a virtual or neutral point of view).  The representation used in 
the PDP network is allocentric in this latter sense, because the positions of cities are represented relative 
to the positions of hidden units, and the hidden units are not positioned at city locations.  However, the 
network representation extends this notion of allocentric, because city locations are not encoded with re-
spect to a single virtual location, but instead with respect to a set of six different virtual positions, all of 
which have to be considered at the same time to accurately retrieve spatial information from the network 
(i.e., to judge the distance between cities).  Dawson, Boechler and Valsangkar-Smyth (2000) called this a 
coarse allocentric code. 

 
The major hypothesis about the hippocampus that was suggested by the spatial judgment net-

work is that place cells also implement a coarse allocentric code.  As a result, the place cells need not be 
organized topographically, because they don’t represent the environment in the same way as a graphical 
map.  Instead, locations of landmarks in the environment could be represented as a pattern of activity 
distributed over a number of different place cells.  If this were the case, then in spite of their individual 
limitations, coarse coding of place cell activities could be used to represent a detailed cognitive map with-
out necessarily being coordinated with other neural subsystems.  In other words, Dawson, Boechler and 
Valsangkar-Smyth's (2000) discovery of coarse allocentric coding in their network provides one plausible 
manner in which the spatial abilities of the hippocampus can be reconciled with its non-maplike organiza-
tion. 

 
8.3.6.1 Coarse Allocentric Coding And Nonmetric Judgments 
 
The spatial nature of the network’s internal representations is perhaps not surprising, given that 

the network was trained to internalize a metric space.  However, as was noted earlier in this chapter, 
there does exist a tension between the metric properties of a representation and the properties of the be-
havior that the representation mediates.  Specifically, is it possible for a metric representation to mediate 
nonmetric behavior?   

 
This issue is important, because the discovery that human similarity judgments were nonmetric 

had a severe impact on proposals about the representations that mediated this behavior.  Tversky and his 
colleagues conducted a number of experiments that demonstrated that similarity judgments were not met-
ric, because in different situations it could be shown that these judgments were not always symmetric, did 
not always conform to the minimality principle, and did not always conform to the triangle inequality 
(Tversky, 1977; Tversky & Gati, 1982).  As a result, many researchers completely abandoned the notion 
of the similarity space, and instead moved to feature based comparison models that could easily handle 
nonmetric regularities.  This was in spite of the fact that it is possible to elaborate a perfectly metric repre-
sentational space in such a way that it can be used to mediate nonmetric judgments.  For example, 
Krumhansl (1978, 1982) demonstrated that if one took a metric space and augmented the kind of opera-
tions that were applied to it one could easily account for asymmetric similarity judgments. 
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Dawson, Boechler and Valsangkar-Smyth's (2000) discovery of the coarse allocentric code was 
exciting because it raised the possibility of a metric representation that might be flexible enough to medi-
ate spatial judgments that were not completely metric.  In other words, they were interested in the possi-
bility that coarse allocentric coding could support nonmetric judgments without the need for additional 
rules or processes. 

 
One of the reasons for the rise in the popularity of connectionist networks over symbol-based 

models is that network models degrade gracefully and are damage resistant (McClelland, Rumelhart, & 
Hinton, 1986).  To say that a network degrades gracefully is to say that as noise is added to its inputs, its 
output responses become poorer, but it does not stop responding (Dawson, 1998).  The model deals as 
best it can with less than perfect signals.  To say that a network is damage resistant is to say that as 
noise is added to its internal structure (e.g., by damaging connections or by ablating hidden units), its 
output responses become poorer, but it still functions as well as it can.  Traditional symbol-based models 
do not degrade gracefully, and are not damage resistant. 

 
The damage resistance and graceful degradation of PDP networks is due to the redundancy of 

their internal representations when they employ coarse coding.  One further advantage that this kind of 
representation can provide, which is related to graceful degradation, is generalization.  When presented 
with a new stimulus – one that the network was never trained on – a network often can generate a plausi-
ble response, taking advantage of the similarity between the new stimulus and old stimuli, and the fact 
that such similarity can be easily exploited in redundant representations.  In fact, if too many hidden units 
are used, and if these units start to pay attention to specific stimuli, then generalization will be poorer.  
This is one aspect of what is called “the three bears” problem (Seidenberg & McClelland, 1989). 

 
In a second simulation, Dawson, Boechler and Valsangkar-Smyth (2000) were concerned with a 

different type of generalization – the generalization of representation type from one problem to another.  
Specifically, imagine if the spatial judgment network’s task was changed in such a way that the distance 
ratings violated one of the metric properties of space.  Could allocentric coarse coding still be used to rep-
resent a solution to the problem?  Or would a change in task result in a completely different representa-
tional approach?   

 
The problem that Dawson, Boechler and Valsangkar-Smyth (2000) trained a network to solve in 

the second simulation was a distance estimation task that was identical to the one that we have described 
above, with the exception that the network was trained to make different judgments when asked to judge 
the distance between a city and itself.  In the first simulation, such judgments obeyed the minimality prin-
ciple of metric space, and the network was trained to make a judgment of 0 when presented such stimuli.  
In the second simulation, the minimality principle was violated.  Instead of making a judgment of 0 when 
rating the distance of a city to itself, the network was trained to make a rating of 0, 1, or 2 depending upon 
the city.  

 
When the minimality constraint was violated in this way, Dawson, Boechler and Valsangkar-

Smyth (2000) found that the ratings task became more difficult.  In particular, the problem could not be 
solved when the network had six hidden units.  An additional hidden unit was required.  In spite of the 
task being more difficult, though, there was no evidence that the network created a qualitatively different 
representation to solve the problem.  Dawson, Boechler and Valsangkar analyzed this second network in 
the same fashion that they used to analyze the first network, and which was described above.  They 
found that the second network used allocentric coarse coding to make distance judgments.  Each hidden 
unit could be considered as occupying a position on the map of Alberta, and the weights feeding into 
each unit were correlated with the distances between the hidden units and the Albertan cities.  The re-
sponses of individual hidden units provided relatively inaccurate sensitivity to distance information.  How-
ever, when the responses of all seven hidden units were pooled, very accurate distance judgments were 
possible.  Finally, and most importantly, there was no evidence that any one of the hidden units had a 
special role in making the subset of judgments that defined the violation of the minimality principle. 

 
In particular, one possibility that Dawson, Boechler and Valsangkar-Smyth (2000) considered was 

that six of the hidden units in the new network were performing the same function as were the six in the 
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first network, and that the seventh hidden unit was a special purpose unit designed to deal with the non-
metric judgments taken from the diagonal of the new ratings matrix.  This was not the case – all seven 
hidden units could be described in the same general way, all seven could be positioned on a map of Al-
berta, and all seven were involved in coarse allocentric coding. 

 
8.3.6.3 Implications 
 
Earlier in this chapter, we briefly considered three different research areas related to spatial cog-

nition: similarity spaces, mental imagery, and cognitive maps.  For each of these areas, it was argued that 
there existed a tension between behavioral regularities and representational properties.  For example, 
consider the relationship between similarity judgments (which are strongly related to the distance judg-
ments used in the current study) and representational proposals.  In the beginning, similarity judgments 
were assumed to obey the metric properties of space, and as a result researchers proposed that these 
judgments were mediated by a metric spatial representation (Romney et al., 1972; Shepard et al., 1972).  
However, later research revealed that the judgments that subjects made were not always metric.  What 
were the representational implications due to these behavioral observations? 

 
One alternative was to completely abandon metric spatial representations, and to adopt represen-

tations that were less structured.  For example, some researchers replaced the similarity space with a 
proposal in which concepts were represented as sets of features, and nonmetric behavioral regularities 
emerged from the procedures used to compare feature sets (Malgady & Johnson, 1976; Ortony, 1979; 
Tversky, 1977; Tversky & Gati, 1982).  This approach has the advantage of being able to account for 
nonmetric behavioral regularities.  However, it has disadvantages as well.  The ability to fit nonmetric be-
havior emerges from manipulating constants in feature comparison equations.  These constants provide 
additional degrees of freedom that must be fit from study to study to predict human judgments.  Because 
of these additional degrees of freedom, this kind of theory is less powerful -- less constrained -- than the 
similarity space that it replaced (Pylyshyn, 1984). 

 
A second alternative was to modify the similarity space proposal in such a way that this metric 

space could mediate nonmetric behaviors.  For instance, Krumhansl (1978, 1982) modified the similarity 
space by including new rules that measured the density of points in the space, where density reflected 
the number of neighbors that were close to a point in the space. Krumhansl included density calculations 
in addition to distance in the rules that were used to compare different points in the space.  The inclusion 
of density permitted nonmetric judgments to emerge from the space.  This approach has the advantage of 
maintaining some of the attractive properties of the similarity space.  However, the density calculations 
also introduce new degrees of freedom that reduce the explanatory power of theory. 

 
A third example is provided by the synthetic approach taken by Dawson, Boechler and 

Valsangkar-Smyth (2000).  A model based on relatively simple building blocks, with few underlying repre-
sentational hypotheses, was trained to generate metric spatial judgments.  Once the model had been 
synthesized, they took great pains to analyze its internal structure.  The result was the discovery of a par-
ticular kind of representation, allocentric coarse coding, that would not have been an obvious proposal 
had our starting point been the analysis of behavior.  A second study demonstrated that this kind of rep-
resentation was also capable of mediating spatial judgments that violated the minimality principle of met-
ric space.  In other words, the synthetic approach utilized by Dawson, Boechler and Valsangkar-Smyth 
(2000) has shown how a connectionist representation can account for both metric and nonmetric regulari-
ties. 

 
8.4 SUMMARY AND CONCLUSIONS 

 
In Chapters 6 and 7, the synthetic approach was illustrated with examples that used robots, toy 

and otherwise.  Much of this research, which is now known as behavior-based robotics and embodied 
cognitive science, is aimed at challenging the assumption that cognition and intelligence is based upon 
mental representations.  While it is of considerable interest that many complicated behaviors can be pro-
duced by systems that only exploit visuomotor reflexes, many domains of cognitive science and psychol-
ogy are still likely to need to appeal to representations.  One question addressed in this chapter was 
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whether the synthetic approach could be employed in a fashion that still permitted representations to be 
explored. 

 
It was argued in this chapter that PDP models offered one plausible method for conducting psy-

chological research that was both synthetic and representational.  The synthetic component of this kind of 
research involves using components defined by a connectionist architecture to construct a network capa-
ble of solving some problem of interest.  Once the network has been constructed, its internal structure is 
analyzed in detail.  The purpose of this analysis is to discover the regularities in the training patterns that 
are used by the network to solve the problem, as well as the manner in which these regularities are rep-
resented in the network’s connections.  Once this analysis is complete, it is expected that the discovered 
regularities and representations will lead to unexpected insights into the problem.  In other words, in a 
connectionist synthetic psychology emergence will follow analysis. 

 
This chapter also presented one case study in synthetic psychology, the spatial judgment network 

of Dawson, Boechler and Valsangkar-Smyth (2000).  One reason for choosing this example was to show 
that fairly simple components could be used to construct a system capable of performing a task of psy-
chological interest.  A second reason for this example was to illustrate an instance of “representational 
emergence”.  When the spatial judgment network was originally created, the only general issue in mind 
was building a PDP system that could respond as if it had internalized a spatial map.  We were interested 
in identifying how such a map was internalized, but had no pet theory about its structure.  At the end of 
the analysis, when we had identified the coarse allocentric coding in the hidden units, we found that we 
had something to say about spatial representation in the hippocampus and about the ability to generate 
judgments that were nonmetric.  These insights were surprising to us, and demonstrate some of the pow-
er that can emerge from adopting a synthetic paradigm. 

 
We have now come to the end of the first phase of this book.  We have discussed different types 

of models, and have contrasted analytic and synthetic approaches.  We have ended with a case study 
that shows how connectionism can contribute to synthetic psychology.  In the remaining chapters, we will 
step back a bit and consider some of the basic properties of connectionism as an example medium in 
which synthetic psychology can be conducted.  In Chapters 9, 10, and 11 we consider three different 
“building blocks” for this enterprise, and show how these building blocks can be used to create networks 
of interest to psychologists.  In Chapter 12, we consider in detail three different approaches that can be 
used to analyze the representations that can be discovered in networks built from these general compo-
nents. 

 



 - 88 - 

Minds And Machines © M.R.W. Dawson 12/02/2016 

Chapter 9: Building Associations 
 
The first part of this book developed an argument that synthetic psychology was one approach 

that could be fruitfully explored in the study of mind.  In very general terms, the aim of synthetic psycholo-
gy is to build mental phenomena from the bottom up.  A synthetic psychologist could proceed by propos-
ing some basic “building blocks” to be used, and then by seeing what kinds of interesting and surprising 
phenomena could be created when these basic components are combined.  Some researchers have ar-
gued that the synthetic approach promises to provide theories of mental phenomena that are simpler than 
those that can be produced by applying more traditional analytic methodologies. 

 
The purpose of the current chapter is to begin our exploration of synthetic psychology by examin-

ing a proposal for a set of “building blocks”.  In this chapter, we will describe one key building block for 
connectionist models: the storing of an association between two patterns by modifying a set of connection 
weights.  We will see that a memory system that is created from this key component has some interesting 
properties.  But we will also see that there are many stimulus-response pairings that cannot be encoded 
in this kind of system.  As a result, additional building blocks must be proposed.  These additional building 
blocks will be introduced in Chapters 10 and 11. 

 
This chapter proceeds as follows.  First, it presents a brief historical overview of associationism.  

This is culminates in an account of William James’ theory of association, which is used to motivate a more 
modern account of associative mechanisms.  Second, it introduces this modern account by describing the 
properties of a particular connectionist network, called a distributed associative memory.  This account 
defines the properties of processing units, modifiable connections, and the general operations used to 
train the network and to retrieve associations that have been stored in it.  Third, the chapter describes a 
particular learning rule for this type of connectionist network, the Hebb rule.  Mathematical analyses and 
the results of computer simulations are used to show the advantages and disadvantages of this learning 
rule.  Fourth, a second training procedure, the delta rule, is defined in an attempt to overcome some of 
the problems that were uncovered with Hebb-style learning.  The chapter ends with some brief reflections 
about how one might use a computer simulation of a distributed associative memory to explore some is-
sues that have arisen in the modern study of association and learning. 

 
9.1 FROM ASSOCIATIONISM TO CONNECTIONISM 

 
In 1921, Howard Warren published A history of the association psychology, which traced associa-

tionism from Aristotle’s reflections on memory (B.C. 382 – 322) to the psychological theories proposed by 
Herbert Spencer and George Henry Lewes in the 1870s.   As far as Warren was concerned, association 
psychology in its most focused form ended at this time: “The association psychology culminated with 
Bain, Spencer, and Lewes.  The evolution doctrine of the two last writers affords a wider scope to the play 
of association; but at the same time it opens the door to other factors, which have tended to lessen the 
importance of association in the eyes of the empirical investigator” (Warren, 1921, p. 16).  Accordingly, 
Warren organized his history by considering four different periods of thought that ended with the work of a 
select group of 19th century thinkers.  

 
In this section of the chapter, I will provide a highly selective history of associationism, and I will 

organize this history by adopting Warren's (1921) method of considering different periods of thought.  
However, we will be parting company with Warren in two important ways.  First, we will consider some 
aspects of associationism that persisted beyond the era of Bain.  In particular, we will examine the asso-
ciationism of William James, a psychologist whose contributions are only briefly considered by Warren.  
Second, we will use James’ thoughts about associationism as a springboard to very modern association-
ist models in cognitive science.  In particular, we will see that James laid the foundation for a particular 
type of connectionist model, called a distributed associative memory.  Contrary to what Warren’s history 
implies, associationism has survived, and even flourished, into the new millennium. 
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9.1.1 Philosophical considerations 
 
A very long line of philosophers and psychologists are responsible for the development of associ-

ationism.  They studied associations empirically, through introspection. One of the main observations that 
introspection revealed was that there existed sequences of thought which were experienced during think-
ing.  Associationism grew out of the attempt to provide lawful accounts of these sequences of thought. 

 
9.1.1.1 Aristotelian Contributions 
  
The earliest detailed introspective account of such sequences of thought can be found in the writ-

ings of Aristotle.  In his short essay De memoria et reminiscentia, Aristotle provided an account of 
memory that “is fuller than that to be found in the best-known British empiricists” (Sorabji, 1972, p. 1).  In 
the early part of this essay, Aristotle argued that the contents of memory are essentially visual images 
that resemble the things being memorized.  “For it is clear that one must think of the affection, which is 
produced by means of perception in the soul and in that part of the body which contains the soul, as be-
ing like a sort of picture, the having of which we say is memory.  For the change that occurs marks in a 
sort of imprint, as it were, of the sense-image, as people do who seal things with signet rings” (p. 50). 

 
Later in the essay, Aristotle turned to the process of recollecting thoughts that have been remem-

bered.  His account of recollection has all of the elements of the association psychology from the 19th cen-
tury.  He focused upon the sequence of thought: “Acts of recollection happen because one change is of a 
nature to occur after another” (Sorabji, 1972, p.54).  A particular sequence of images occurs because ei-
ther this sequence is a natural consequence of the images, or because (through repetition) the sequence 
has been learned by habit.  Recall of a particular memory, then, is achieved by cuing that memory with 
the appropriate prior images.  “Whenever we recollect, then, we undergo one of the earlier changes, until 
we undergo the one after which the change in question habitually occurs.” 

 
For Aristotle, recollection by initiating a sequence of mental images was not a haphazard pro-

cess.  The first image in the sequence could be selected in such a way that the desired image would be 
recollected fairly easily, by taking advantage of possible relationships between the starting image and the 
image to be recalled.  Aristotle considered three different kinds of relationships between the starting im-
age and its successor: similarity, opposition, and (temporal) contiguity: "And this is exactly why we hunt 
for the successor, starting in our thoughts from the present or from something else, and from something 
similar, or opposite, or neighboring.  By this means recollection occurs" (Sorabji, 1972, p. 54). 

 
In Aristotle's account of recollection, we see three characteristics that recur in all the later theories 

that defined the association psychology.  First, there is the (introspective) observation that thought occurs 
in sequences.  Second, there is a claim about the nature of the mental entities that make up this se-
quence (e.g., mental images).  Third, there is a claim about lawful relationships between these entities, 
such that when one comes to mind, this relationship will lead to the recollection of the next component of 
the sequence.  These relationships are generally considered to be laws of association, and Aristotle's 
proposal of three such laws (which in later theories would be called the law of similarity, the law of con-
trast, and the law of contiguity or the law of habit) is completely consistent with proposals made centuries 
later. 

 
Later researchers accepted the main points of Aristotle's associationism with only minor qualifica-

tions.  For instance James (1890, p. 594) wrote, "Aristotle seems to have caught both the facts and the 
principle of explanation; but he did not expand his views."  However, Aristotle's observations on memory 
were essentially ignored (perhaps because they were not understood – see (Warren, 1921, p.28) -- for 
many centuries.  Advances in associationism did not occur until the 17th century. 

 
9.1.1.2 17th Century Associationism In Philosophy 
 
One prominent feature of Aristotle’s treatment of associationism was that he only applied the laws 

of association to one domain of experience, that of memory.  This feature was preserved through the 
middle ages.  “The many commentators on Aristotle during the middle ages took up the passage on recol-
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lection which has been quoted.  They discussed an amplified it, as they did every saying of the master, 
but without throwing any new light on association” (Warren, 1921, p. 30).  One reason for this very long 
period of dormancy was the fact that departures from Aristotle were akin to heresy: “Any freshness or 
originality was frowned upon; the only advances came from new interpretations – and these too often 
were misinterpretations” (p. 30). 

 
This situation began to change in the 17th century with the philosophical writings of Thomas 

Hobbes (b. 1588 – d. 1679).  Hobbes was particularly important for setting the stage to broaden the im-
port of association, by applying it to thought processes in general, and not just to memory in particular.  
He presented three separate themes that permeated the writings of those that followed him.  First, he dis-
tinguished sense (or sensations) from memory; memory was viewed as mental images of what was 
sensed.  Second, he noted that images are experienced in succession, and argued for the need to ex-
plain this succession.  Third, he attempted to use principles of association to explain sequences of 
thought. 

 
Hobbes’ work on this third issue was not particularly successful, but his work inspired later phi-

losophers who had greater success than did he.  “The British thinkers who followed him developed their 
systems of psychology along the lines that he marked out; the notion of association, which he did little 
more than outline, became more and more prominent as the analysis was perfected” (Warren, 1921, p. 
33). 

 
The most important philosopher who followed Hobbes in this era was John Locke (b. 1632 – d. 

1704).  Locke coined the phrase “association of ideas”, which first appeared as a chapter title in the fourth 
edition (1700) of An essay concerning human understanding.   Locke’s fame as a philosopher came late 
in his life; the first edition of this book was published in 1690 when he was 57 years old.  However, this 
fame and influence was long lasting, and his chapter on association launched British empiricism. 

 
Locke’s work was a reaction against the nativism espoused in the philosophy of Descartes, and 

was primarily concerned with establishing experience as the foundation of all thought.  Following Hobbes, 
Locke distinguished between ideas of sensation and ideas of reflection.  He was particularly interested in 
the composition of simple ideas into more complex ideas, as well as the sequence of appearance of ide-
as.  One reason for this interest was because these connections (from simple to complex, or from one 
idea to the next in a sequence) did not seem to necessarily reflect a natural order.  Instead, Locke real-
ized that these connections were due to experience.  “There is another connexion of ideas wholly owing 
to chance or custom: ideas that in themselves are not at all of kin, come to be so united in some men’s 
minds that it is very hard to separate them, they always keep in company, and the one no sooner at any 
time comes into the understanding but its associate appears with it; and if they are more than two that are 
thus united, the whole gang, always inseparable, show themselves together” (Locke, 1977, p. 219). 

 
Interestingly, while Locke anticipated the law of frequency that was later endorsed by J. S. Mill, 

and alluded to association by contiguity and by similarity, he did not explore specific associative laws.  
One reason for this may be that his primary goal was to argue for the existence of ideas formed by asso-
ciation; this was more important to him than an analysis of associative mechanisms.  A second reason 
may be because Locke was not in a position to offer any strong arguments in favor of any particular 
causal process underlying association.  After describing association as being responsible for a keyboard 
player retrieving a long sequence of finger movements during a performance, Locke noted “whether the 
natural cause of these ideas, as well as that regular dancing of his fingers, be the motion of his animal 
spirits, I will not determine, how probable soever, by this instance, it appears to be so” (Locke, 1977, p. 
220). 

 
It is clear that the primary result of 17th century philosophy’s analysis of association was to renew 

scholarly interest in this topic, and to set the stage for more technical advances that would come later.  
Issues that were pioneered by Aristotle once again became central concerns to philosophers, and did so 
in a context that permitted Aristotle’s views to be criticized and modified. 
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9.1.1.3 18th Century Philosophy And Associationism 
 
Locke’s immediate philosophical successor was the Bishop of Cloyne, George Berkeley (b. 1685 

– d. 1753).  Berkeley was primarily important for transforming the problem of knowledge from one that 
was essentially philosophical to one that was more consistent with the strong psychological overtones 
that marked theories of association that developed later.  Like Hobbes and Locke, Berkeley divided men-
tal content into ideas of sensation and into ideas of imagination, and was primarily interested in account-
ing for the natural succession of ideas.  He reiterated Aristotle’s law of contiguity, and extended it to ac-
count for associations involving different modes of sensation.  “From a frequently perceived connection, 
the immediate perception of ideas by one sense suggests to the mind others, perhaps belonging to an-
other sense, which are wont to be connected with them” (Warren, 1921, p. 41).  In other words, Berkeley 
– unlike Locke -- was one of the first philosophers after Aristotle to develop an account of “modes of as-
sociation”, which described the laws that determined how associations came to be. 

 
A more detailed and elaborate theory of modes of association was to be found in the work of phi-

losopher David Hume (b. 1711 – d. 1776).  Hume, like his predecessors, began by dividing experience 
into impressions and ideas, and viewed the latter as being weaker or less vivid copies of the former.  He 
then turned to consider principles that explained the connection between successive ideas. 

 
In his original treatment, Hume, who was likely unaware of similar ideas put forth by Aristotle, 

proposed three different laws of association: resemblance, contiguity in time or place, and cause or effect.  
“That these principles serve to connect ideas will not, I believe, be much doubted.  A picture naturally 
leads our thoughts to the original; the mention of one apartment in a building naturally introduces an en-
quiry or discourse concerning the others; and if we think of a wound, we can scarcely forbear reflecting on 
the pain which follows it” (Hume, 1952, p. 23).  Later, Hume argued that association by cause or effect 
could not be distinguished from association by contiguity, and thus settled on two associative laws: conti-
guity and resemblance (or similarity). 

 
Hume’s work on association was monumentally influential, but did have one shortcoming, in that 

Hume did not attempt to use his laws of association to account for all mental phenomena.  This was not 
attempted until the treatment of association offered by David Hartley (b. 1705 – d. 1757).  Hartley was not 
only able to show the broader implications of Hume’s theory, but also provided one of the earliest exam-
ples of an attempt to root association in terms of brain function.  Hartley constructed a theory of vibrations 
that attempted to draw a close correspondence between mental associations and neural activity.  Hartley 
saw contiguity as the primary source of associations, and ignored Hume’s law of resemblance.  He also 
anticipated the associationism of J.S. Mill by recognizing repetition as a source of association, or at least 
as a factor that could affect the strength of an association. 

 
9.1.1.4 19th Century Philosophy And Associationism  
 
The 19th century marked a period in which associationism evolved from a topic that was primarily 

philosophical into one that was predominately psychological.  In 1829, James Mill (b. 1773 – d. 1836) 
published his Analysis of the human mind.  The third chapter of this psychological text was on associa-
tionism.  Many of the ideas put forth in this chapter were familiar: Mill divided mentality into sensations 
and ideas, where ideas were once again proposed as being copies or traces of sensations.  Mill observed 
that sensations occur either simultaneously or in successive order, and that ideas presented themselves 
in the same sequence as did the sensations that they copied.  His associationism, like those of the phi-
losophers that we have already seen, attempted to account for the succession of ideas. 

 
The 19th century was also an era in which writers assumed the fundamental notions of associa-

tionism as a given, and turned to fleshing out the details.  For Mill, the only law of association was conti-
guity.  He explicitly denied Hume’s laws of cause or effect and resemblance.  Mill also emphasized the 
importance of individual associations varying in strength.  For Mill, association was essentially a mechani-
cal process by which complex ideas were created by associating simpler ideas together.  Because of his 
mechanical metaphor, emergence played no role in Mill’s associationism.  For Mill, a complex idea was 
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no more than the sum of its components, and if one understood these, then one should be able to com-
pletely understand the larger idea that they comprised. 

 
Mill’s ideas were challenged and modified by his own son, John Stuart Mill (b. 1806 – d. 1873).  

John Stuart Mill argued that ideas were indistinguishable from sensations, and were not just less vivid 
copies.  He then posited a completely different set of associative laws, which included a reintroduction of 
Hume’s law of similarity:  “The first is that similar ideas tend to excite one another.  The second is that 
when two impressions have been frequently experienced (or even though of) either simultaneously or in 
immediate succession, then whenever one of these impressions or the idea of it recurs, it tends to excite 
the idea of the other.  The third law is that greater intensity in either or both of the impressions is equiva-
lent, in rendering them excitable by one another, to a greater frequency of conjunction” (Warren, 1921, p. 
96). 

 
One of John Stuart Mill’s most interesting departures from his father’s associationism was replac-

ing a mechanistic account of complex ideas with an account that was described as a “mental chemistry”.  
In this mental chemistry, when complex ideas were created via association, the resulting whole was more 
than just the sum of its parts.  As a result, the laws governing the whole (e.g., successions to other ideas) 
could not be predicted by knowing the laws governing the simpler ideas that served as parts.  In other 
words, John Stuart Mill proposed an associationism that endorsed an early form of emergence. 

 
The associationism of Alexander Bain (b. 1818 – d. 1903) is, in many respects, a refinement of 

John Stuart Mill’s.  Bain invoked four different laws of association, and attempted to reduce all intellectual 
processes to these laws.  One of these laws was the law of contiguity, which has been present in every 
theory of association that we have reviewed.  A second was the law of similarity, which was revived from 
Hume by both Bain and J.S. Mill after being banished by James Mill.  The third was the law of compound 
association: “Past actions, sensations, thoughts, or emotions are recalled more easily, either through con-
tiguity or similarity, with more than one present object or impression” (Warren, 1921, pp. 107-108).  This 
law was an important precursor to William James’ treatment of associations between patterns, which we 
will consider in more detail shortly.  The fourth was the law of constructive imagination: “By means of as-
sociation the mind has the power to form new combinations or aggregates, different from any that have 
been presented to it in the course of experience” (p. 109).  This law represents an important psychologi-
cal contribution of Bain, in that he was attempting to explain creative thought in terms of associative prin-
ciples. 

 
9.1.2 Psychology, Associationism, and Connectionism 

 
Bain represents a bridge between philosophical and psychological treatments of association.  

Bain stood “exactly at a corner in the development of psychology, with philosophical psychology stretch-
ing out behind, and experimental physiological psychology lying ahead in a new direction.  The psycholo-
gists of the twentieth century can read much of Bain with hearty approval; perhaps John Locke could 
have done the same” (Boring, 1950, p. 240).  In this section, we will consider some of the key develop-
ments of the psychological associationism that was inspired by Bain’s work.  However, this review will be 
extremely selective, because we will use it to motivate a discussion of a very particular kind of connec-
tionist network. 

 
9.1.2.1 19th Century Contributions Of William James 
 
The pioneer of the “New Psychology” in North America was William James (b. 1842 – d. 1910).  

James created the first demonstrational psychology laboratory in North America, and in 1890 published a 
profoundly influential psychology text in two volumes, The Principles Of Psychology.  “The key to his in-
fluence lies…in his personality, his clarity of vision, and his remarkable felicity in literary style” (Boring, 
1950, p. 509). 

 
James’ treatment of association is found in Chapter 14 of The Principles Of Psychology.  He was 

in particular concerned about the fact that philosophical associationism had not made any serious pro-
posals concerning the causal mechanisms that instantiated modes of association.  For example, he offers 
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the following assessment of Bain: “His pages are painstaking and instructive from a descriptive point of 
view; though, after my own attempt to deal with the subject causally, I can hardly award to them any pro-
found explanatory value” (James, 1890, p. 601). 

 
James was of the opinion that explanatory accounts had eluded previous associationists because 

of a fatal flaw in their approach.  This flaw was the assumption that associations were made between 
mental contents (e.g., the images, reflections, or ideas that had been proposed by most of James’ prede-
cessors as being copies or traces of sensations).  James argued that if association was a mechanical 
process, then it must apply to objects and not ideas; he then proposed a particularly psychological theory 
by arguing that the objects being associated were brain states: “Association, so far as the word stands for 
an effect, is between THINGS THOUGHT OF – it is THNGS, not ideas, which are associated in the mind.  
We ought to talk of the association of objects, not of the association of ideas.  And so far as association 
stands for a cause, it is between processes in the brain – it is these which, by being associated in certain 
ways, determine what successive objects shall be thought” (James, 1890, p. 554). 

 
In terms of viewing association as an effect, James’ theory was not a radical departure from oth-

ers that we have considered in this chapter.  First, he was primarily concerned with providing an account 
of the succession of thoughts.  Second, his theory attempted to explain this succession via associative 
law.  For James, the only explanatory mode of association was contiguity, which he called the law of hab-
it.  While he admitted that other factors could be described as affecting association (similarity, vividness, 
recency, emotional congruity), he attempted to show how all of these could be explained in terms of con-
tiguity. 

 
James was able to reduce other laws of association to the law of contiguity when he departed 

from the traditional view of association as an effect, and replaced it with the view of association as a 
cause.  There are several central elements to his physiological account of association.  First, James rec-
ognized that one idea or event could be represented in the brain as a pattern of activity across a set of 
more than one neuron.  Second, he expressed his law of habit in terms of a process that affected the 
ease of transit of a nerve-current through a tract:  “The psychological law of objects thought of through 
their previous contiguity in thought or experience would thus be an effect, within the mind, of the physical 
fact that nerve-currents propagate themselves easiest through those tracts of conduction which have 
been already most in use” (James, 1890, p. 563).  Third, he viewed the succession of thoughts that one 
experiences as due to the fact that activity in one brain state (i.e., some set of neurons) leads to activity in 
some different brain state that had previously been associated with the first.  “When two elementary 
brain-processes have been active together or in immediate succession, one of them, on reoccurring, 
tends to propagate its excitement into the other” (p. 566).  Finally, James was predominately concerned 
with predicting which subsequent brain state would be activated by a prior brain state, given that one idea 
might be associated with a number of different ideas, other at different times or in different ways.  James 
attempted to explain this kind of variation by realizing that any given neuron would be receiving signals 
from a number of other neurons, and that its degree of activation would depend on an entire pattern of 
input, and not upon an association with a single incoming signal. “The amount of activity at any given 
point in the brain-cortex is the sum of the tendencies of all other points to discharge into it, such tenden-
cies being proportionate (1) to the number of times the excitement of each other point may have accom-
panied that of the point in question; (2) to the intensity of such excitements; and (3) to the absence of any 
rival point functionally disconnected with the first point, into which the discharges might be diverted” (p. 
567). 

 
The main physiological points of James’ theory of association are summarized in Figure 9-1, 

which is analogous to his own Figure 40 in his chapter on association (James, 1890) (p. 570).  The figure 
represents two ideas, one (A) being the last act of a dinner party, the other (B) being walking home 
through the frosty night.  Each of these ideas is represented in the brain as a pattern of activity in a set of 
neurons.  A is represented by activity in neurons a, b, c, d, and e; B is represented by neurons l, m, n, o, 
and p.  The association is made between A and B because A preceded B in the course of an evening.  As 
a result, the neurons representing A were active immediately prior to the activity of the neurons represent-
ing B, and the tracts connecting the neurons (represented as the lines in Figure 9-1) were modified ac-
cording to the law of habit.  The ability of A’s later activity to lead to the thought of B, is due to these modi-
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fied connections between the two sets of neurons.  “The thought of A must awaken that of B, because a, 
b, c, d, e, will each and all discharge into l through the paths by which their original discharge took place.  
Similarly they will discharge into m, n, o, and p; and these latter tracts will also each reinforce the other’s 
action because, in the experience B, they have already vibrated in unison” (p. 569). 

 
9.1.2.2 The Paired Associate Task 
 
The type of association envisioned 

by James, and illustrated in Figure 9-1, 
leads to one methodological topic that will 
be central to the simulations that will be in-
troduced later in the chapter.  In James’ ex-
ample, associative memory is viewed as 
having two different functional stages.  The 
first is learning, in which an association be-
tween two ideas is stored.  As we saw in the 
previous section, this occurs when two ideas 
(an input pattern and an output pattern) oc-
cur either simultaneously or in close succes-
sion to one another.  As a result of this co-
occurrence, the connections between the 
neurons representing both patterns are 
modified to permit easier transmission of 
“nerve-currents”.  The second stage is re-
call.  During this stage, only one of the two 
previous ideas is presented as input.  When 
its underlying neural processes become ac-
tive, they serve to activate those associated 
with the other idea (output), bringing it to 
mind. 

 
This two-stage account of associa-

tion was used to develop a particular para-
digm used to study human memory called the paired associate task.  This method of examining memory 
presents stimuli in a fashion similar to what would be the case if someone were learning the vocabulary of 
a foreign language (Kintsch, 1970).  Subjects learn a list of stimulus-response pairs.  Sometimes this 
learned via the “study-test method”.  With this method, subjects are presented both members of the pair 
at the same time, and attempt to remember the association between the two.  In the test phase of this 
method, subjects are only presented the stimulus, and must attempt to recall the associated response on 
their own.  The paired-associate learning task was used with great success to study the issue of whether 
learning was all-or-none or was instead due to an increment in continuously varying response strength. 

 
Mary Whiton Calkins (b. 1863 – d. 1930) was among the first generation of women to enter psy-

chology (Furumoto, 1980).  In 1896, she published a paper in Psychological Review that provided the first 
description of the paired associate task.  There is no doubt that she was inspired to invent this technique 
by considering ways in which James’ theory of association could be put to the test in an experimental la-
boratory. 

 
9.1.2.3 20th Century Models Of Distributed Memory 
 
After the cognitive revolution in the second half of the 20th century, many researchers turned to 

using computer simulations to study human memory processes.  In this section of the chapter, we will be 
interested in simulations that share two general characteristics.  First, they are designed to perform the 
paired associate task, and are generally trained using some variation of the study-test method.  Second, 
they are closely related to the kind of associative memory envisaged by James, and which was illustrated 
in Figure 9-1. 

Figure 9-1.  An associative 
memory in the spirit of James.  See text 

for details on how this systems was theo-
rized to work. 
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Some of the earliest research on parallel systems was concerned with the development of dis-

tributed memories capable of learning associations between pairs of input patterns (e.g. Steinbuch, 1961; 
Taylor, 1956), or of learning to associate an input pattern with a categorizing response (e.g., Rosenblatt, 
1962; Selfridge, 1956; Widrow & Hoff, 1960). The basic structure of this kind of connectionist network, 
which has come to be called the standard pattern associator (McClelland, 1986), is essentially identical to 
James’ memory that was illustrated in Figure 9-1. 

 
As will be detailed below, the standard pattern associator is constructed from the processing units 

and modifiable connections defined in the PDP architecture.  It consists of two sets of processing units; 
one is typically called the input set (corresponding to the units in A in Figure 9-1), the other the output set 
(i.e., the units in B in Figure 9-1).  During a learning stage, the activation states of the input processing 
units are used to represent a cue pattern and the activation states of the output processing units are used 
to represent a to-be-recalled pattern.  The connection weights are then modified to store the association 
between the two patterns.  The standard pattern associator is called a distributed memory because this 
association is stored throughout all the connections in the network, and because one set of connections 
can store several different associations.  During the recall stage, a cue pattern is presented to the net-
work by activating the input units.  This causes signals to be sent through the connections in the network.  
These signals, in accord with James’ theory, activate the output processors.  If the memory is functioning 
properly, then the pattern of activation in the output units will be the pattern that was originally associated 
with the cue pattern. 

 
9.2 BUILDING AN ASSOCIATIVE MEMORY 

 
Up to this point in the chapter, we have reviewed a history of associationism that has culminated 

in the standard pattern associator.  The remainder of this chapter is intended to provide a technical ac-
count of this kind of memory system.   

 
9.2.1 Defining the problem  

 
The purpose of the computer simulation is to build a memory system that is capable of storing 

associations between pairs of items.  During a learning phase, the system will be presented pairs of stim-
uli.  For each pair, it will determine how they are to be associated together, and store this association in 
memory.  During a recall phase, the system will be presented with only one member of a pair.  Using this 
member as a cue, it will use its memory to attempt to recall the other member of the pair to the best of its 
ability.  In order to create a system that will behave in this fashion, we will construct a very simple connec-
tionist network.  The network will consist of an input “bank” of processing units, an output bank of pro-
cessing units, and a set of modifiable connections between these two banks.  The basic design of the 
network was illustrated in Figure 9-1.  As we will see, several independent associations can be stored in 
the same set of connection weights. 

 
9.2.2 The Network Architecture 

 
9.2.2.1 Processing Units 
 
Ultimately, both the input units and the output units can be considered as sets of numbers, with 

each number representing a property of an individual unit (e.g., its internal level of activity), and with the 
entire set of numbers representing a pattern across a whole bank of units (e.g., the pattern of activity of 
the bank of input units).  It will be useful to represent these sets of numbers as vectors, because linear 
algebra provides an extremely compact and useful notation for exploring the properties of distributed as-
sociative memories and of other connectionist networks.   

 
For example, we might represent the activity of input unit 1 with the numerical value a1, the activi-

ty of input unit 2 with the numerical value a2, and so on.  The set of activities for all of the input units could 
be represented as the vector a, whose first entry would be the value a1, whose second entry would be the 
value a2, and so on.  By convention, when we talk about the vector a, we will assume that it is a column 
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vector.  This means that when all of the values of the vector are listed out, they are strung out vertically in 
a column, as is shown in Figure 9-2.  In some cases, the operations of linear algebra assume that a vec-
tor is a row vector, which means that when its values are listed out, they are strung out horizontally in a 
row, as is also shown in Figure 9-3.  The operation that converts a column vector into a row vector is 
called transposition.  Because of this, if we were to indicate that a vector was a row vector, then we would 
do so with a notation that included a superscript “T”, to explicitly indicate that the vector had been trans-
posed.  For instance, if vector a is a column vector of unit activities, then vector aT would be a row vector 
of the same numerical activities. 

 
In order to represent the properties of banks 

of units as vectors, we need to define some equations 
that dictate what numerical values should be inserted 
into the vectors.  Any processing unit in a connection-
ist network can be described using three different 
mathematical equations.  The first equation is the net 
input function, which describes how a processing unit 
computes the total signal coming into it from other 
processors in the network.  The second equation is 
the activation function, which determines how a pro-
cessing unit converts this input signal into a number 
that represents its internal level of activity.  The third 
equation is the output function, which defines how a 
processor’s internal level of activity is converted into a 
numerical signal that can be sent through connections 
to other processors in the network.  When these three 
equations are used to describe the processors used in 
our memory network, it will become apparent that they 

are particularly simple. 
 
In the distributed associative memory network that we are constructing, the activity values of the 

input units are always set by the programmer, who simply turns each input unit on to the desired level of 
activity (i.e., the level of activity that represents information about one member of the to-be-associated 
pairs of patterns).  For the sake of consistency with later chapters, we will describe this in terms of a net 
input function.  Specifically, the net input for input unit i (neti) is equal to the environmental stimulation for 
that input unit (ei): 

 
neti = ei     Equation 9-1 

 
The input processors in the distributed associative memory are particularly simple because after 

their net input is computed, its value is used as the value of the processor’s internal activity and as the 
value that the processor outputs to the output units.  Mathematically speaking, the activation function and 
the output function for the input units are both identity functions.  That is, the internal activity of input unit i 
(ai) is defined as: 

 
ai = neti    Equation 9-2 

 
Similarly, the activity that input unit i sends to other units (oi) is defined as: 
 

oi = ai     Equation 9-3 
 
During the learning phase, the output units are treated exactly as are the input units.  That is, the 

programmer sets their activity values to represent the other member of the to-be-associated pair.  Be-
cause of this, during learning, the output units can be described using exactly the same equations that 
were used to describe the input units (i.e., Equations 9-1, 9-2, and 9-3).  During the recall phase, the out-
put units have their net input determined by signals that are sent from the input units, and therefore re-
quire a slightly more elaborate net input equation. 

Figure 9-2.  The inner product (see 
Equation 9-5) of the row vector aT and the 
column vector a is a single number, which 
is the sum of the products of the entries of 

the two vectors. 
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Imagine a very simple network in which there are 8 different input units, and only 1 output unit.  

Each of the input units is linked to the output unit by a connection.  Each connection is weighted, where a 
connection weight is simply some numerical value.  When a numerical signal is sent through a connec-
tion, the connection scales the signal by multiplying it by the value of its connection weight.  Let us repre-
sent the weight of the connection between input unit 1 and the output unit as w1, between input unit 2 and 
the output unit as w2, and so on.  During recall in this simple network, each of the input units will be send-
ing a signal to the output unit.  Input unit 1 will be sending the signal o1, input unit 2 will be sending the 
signal o2, and so on.  The signal o1 will be multiplied by the weight value w1 before it reaches the output 
unit.  So part of the signal that reaches the output unit will be the value o1w1.  Following the same logic for 
the other input units, the output unit will also be receiving the signal o2w2, o3w3, and so on.  In other 
words, the total signal for the output unit – its net input – will be: 

 
     net1 = o1w1 +o2w2 + o3w3 + … + o8w8 

= oiwi      Equation 9-4 
 
Linear algebra can be used to make this equation more compact.  (For an excellent introduction 

to linear algebra that is framed in the context of connectionist networks, the reader is referred to Jordan, 
1986).  Let us take the signals being output by the input units and represent them as the row vector o, 
and let us take the set of connection weights between the input units and the output units and represent 
them as the column vector w.  These two vectors can be combined using an operation called the inner 
product or the dot product (see Figure 9-2).  The result of this operation is a single number (net1, repre-
senting the net input for output unit 1) whose value is defined in Equation 9-4 – in fact, Equation 9-4 
shows how an inner product is to be computed.  In the notation of linear algebra, the inner product that 
defines the net input for the output unit is: 

 
net1 = oT  w    Equation 9-5 

 
 One way to remember that the result of an inner product like Equation 9-5 is a single number is 

to note the number of rows in the first component (oT is a row vector, and therefore has only one row) and 
to note the number of columns in the second component (w is a column vector, and therefore has only 
one column).  The result of the operation will have the same number of rows as the first component, and 
the same number of columns as the second component.  In other words, the result of an inner product will 
be a single number – a vector with only one row and only one column. 

 
The inner product described in Equation 9-5 defines the net input for a single output unit.  We will 

see in later chapters that the inner product is a standard net input function for all of the processors in 
more sophisticated connectionist networks. 

 
9.2.2.2 Modifiable Connections 
 
In the previous section, when we defined the net input function for a single output unit during re-

call, we represented the set of connection weights from a bank of input units to the output unit as a vec-
tor.  Our goal in designing the distributive associative memory is to have a system that uses more than 
one output unit, so that it can recall a complete pattern of activity.  It stands to reason that we would need 
to represent the connection weights for this more complicated memory with a set of weight vectors, with 
each vector in the set holding the connection weights associated with one of the output units. 

 
In linear algebra, this set of vectors would be represented as a single entity called a matrix.  If our 

memory had n input units, and m output units, then all of the connection weights between the input and 
output processors would be represented by one weight matrix, W, which would have n rows and m col-
umns.  Each entry in this matrix, wij, would contain a number representing the weight of the connection 
from input unit i to output unit j.  

 
By representing all of the connection weights with the matrix W, we can take advantage of linear 

algebra to create a very compact mathematical description of how weights are modified, and we can also 
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define very simple equations that describe how information stored in this matrix can be retrieved when the 
memory system is presented with a cue.  When the distributed associative memory stores associations 
between patterns, it does so by modifying the strengths of its connection weights.  This is done in two 
steps.   

 
First, the memory computes changes in weights that are required to represent the association be-

tween the pair of patterns presented to it during a learning trial.  Later in this chapter we will discuss two 
different equations that could be used to compute the desired weight changes.  In this first step, all of the 
desired weight changes are stored in the matrix t+1, where the subscript t+1 indicates the learning trial 
during which the changes have been computed.  This matrix has the same number of rows and columns 
as does matrix W, and each entry ij in this matrix represents the value by which the connection weight 
between input unit i and output unit j should be changed. 

 
Second, the memory uses the matrix t+1 to change the existing connection weights.  Let us use 

the subscript t to represent the network’s connection weights at a particular trial of learning.  Using the 
current weights, represented in the matrix Wt, and the desired weight changes, stored in the matrix t+1, 

the goal is to compute the new values of weights, which will be stored in the matrix Wt+1.  This is done by 
computing the sum of the matrices that represent the current weights and the desired weight changes: 
Wt+1 = Wt + t+1.  Every value wij at row i and column j of the new weight matrix is simply equal to the sum 
of the value wij in matrix Wt and of the value ij in matrix t+1. 

 
With this notation, learning can be described as a series of matrix additions.  Imagine that prior to 

learning, our memory system is truly a “blank slate”, because all of its connection weights are equal to 
zero.  The null matrix, 0, is the special matrix that has every value in it equal to zero.  So at time 0, before 
learning as started, we could declare that W0 = 0.  At learning trial 1, the new weights (W1) are equal to 
the old weights (the null matrix) plus the desired weight changes (1).  At learning trial 2, the new weights 
(W2) are equal to the old weights (W1) plus the desired weight changes (2).  As can be seen from Table 
9-1, this kind of learning can continue for as many trials as is desired.  Furthermore, Table 9-1 demon-
strates that at any point in time after learning has begun, the memory’s connection weights are essentially 
the sum of a series of matrices each of which contains the weight changes that are desired to store an 
association between a pair of stimuli. 

 
Trial 

(t+1) 
Equation Describing Weight Values 

0 W0 = 0 
1 W1 = W0 + 1 = 0 + 1  = 1 
2 W2 = W1 + 2 = (1)+ 2 
3 W3 = W2 + 3 = (1 + 2) + 3 
4 W4 = W3 + 4 = (1 + 2 + 3) + 4 

Table 9-1. Associative learning described a series of matrix additions. 
 
9.2.2.3 The Retrieval Operation 
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Before introducing a specific equation for 

calculating the association between pairs of stim-
uli, let us assume that we have a distributed 
memory that has already undergone some train- ing, 
and therefore has a pre-existing set of connec- tion 
weights that are represented in the matrix W.  What 
we would like to do is to present a vector of ac- tivity 
to the input units of this memory that will be used 
as a cue to retrieve some information, which will also 
be represented as a vector of activity in the 
memory’s output units.  To define this kind of re-
trieval mathematically, let the column vector c rep-
resent the cue pattern, and let the column vector r rep-
resent the recalled pattern.  In linear algebra, the 
equation for recall from the distributed associa- tive 
memory is: 

 
r = Wc  Equation 9-6 
 

In other words, if one takes the matrix of weights that 
have been produced by learning, and uses this ma-
trix to premultiply the cue pattern’s vector, the result 
will be a column vector that holds the recalled pat-
tern. 

 
For those unfamiliar with linear algebra, let us 

briefly examine the logic of Equation 9-6.  When re-
trieving information from the distributed associa- tive 
memory, the input units are activated, and send sig-
nals through weighted connections to the output units.  
The output units use these signals to compute their 
net input, which is also equal to their activation and 
to their output, as indicated in Equations 9-2 and 9-3.  We saw earlier that the net input for a single output 
unit was the inner product between a vector of weights and a vector of activities.  It stands to reason, 
then, that in order to compute the net input for several different output units, we will have to compute a 
series of different inner products. 

 
The notation in Equation 9-6 represents performing a series of inner products.  Each entry in the 

recall vector r is the inner product between the cue vector and one of the rows of the weight matrix.  For 
example, the second entry in r is equal to the inner product between the second row of W and the column 
vector c (see Figure 9-4A).  Similarly, the third entry in r is the inner product between the third row of W 
and the vector c (see Figure 9-4B). This operation is consistent with the rule of thumb that we intro-
duced earlier when discussing the inner product.  The matrix W will have m rows, and the vector c has 1 
column.  So, we expect the result of Equation 9-6 to be a vector with m rows and 1 column – in other 
words, a column vector of the same size as c. 

 
9.2.2.4 Hebb-Style Learning 
 
Up to this point, we have described how vectors are used to represent properties of processing 

units, how matrices are used to represent connection weights, how linear algebra provides a mathemati-
cal operation that uses a cue vector to retrieve a recall vector from a matrix of existing weights, and how 
associative learning can be described in generic terms as a series of sums of matrices.  The only remain-
ing piece of information required for a complete description of a distributed associative memory is a spe-
cific equation that defines how the desired weight changes are to be computed and stored in the matrix 
t+1.  In this section, we will introduce one simple and historically important learning rule, called the Hebb 

Figure 9-4.  Recall as the 
premultiplication of a column vector by 

a matrix. (A) The second entry of the 
recall vector is the inner product of the 

second row of the matrix with the vector 
(see grey). (B) Similar logic defines the 

third entry of the recall vector. 
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rule.  Later in this chapter, we will explore the Hebb rule’s advantages and disadvantages, and use its 
disadvantages to motivate a second learning rule. 

 
Donald Hebb (1904-1985) was one of the most influential figures in psychology (Klein, 1999).  

Hebb’s seminal contribution to psychology was his book The Organization of Behavior: A Neuropsycho-
logical Theory (Hebb, 1949).  At the time that this book was published, physiological psychology was in 
decline because of the popularity of behaviorism.  Hebb’s book reversed this trend by attempting to ex-
plain behavior by appealing to properties of the nervous system.  The book “wielded a kind of magic in 
the years after its appearance.  It attracted many brilliant scientists into psychology, made McGill Univer-
sity a North American Mecca for scientists interested in brain mechanisms of behavior, led to many im-
portant discoveries, and steered contemporary psychology onto a more fruitful path” (Klein, 1999, p. 2). 

 
One of the central ideas that made Hebb's (1949) work so influential was the notion of a cell as-

sembly.  “The general idea is an old one, that any two cells or systems of cells that are repeatedly active 
at the same time will tend to become ‘associated’, so that activity in one facilitates activity in the other” (p. 
70).  The result of this kind of process is the creation of coordinated systems, or assemblies, of cells that 
act in sympathy with one another.  Activity in one of the cells would lead to activity in the other cells that 
were part of the assembly.  Hebb emphasized the utility of this kind of biological construct for explaining a 
variety of perceptual and motivational phenomena. 

 
A crucial component of cell assembly theory was an account of how assemblies came into exist-

ence.  Hebb (1949) is perhaps most famous for his statement of a principle of synaptic change for the 
creation of cell assemblies: “When an axon of cell A is near enough to excite a cell B and repeatedly or 
persistently takes part in firing it, some growth process or metabolic change takes place in one or both 
cells such that A’s efficiency, as one of the cells firing B, is increased” (p. 62).  Hebb believed that the 
mechanism underlying the change in the strength of the synapse between the two neurons was an in-
crease in the area of contact between the two, but such hypotheses could not be tested at the time his 
work was published.  Advances in neuroscience have led to a discovery of a phenomenon, called long-
term potentiation, that is often cited as a biologically plausible instantiation of Hebb’s theory (e.g., Brown, 
1990; Martinez & Derrick, 1996). 

 
In the late 1950s, the advent of digital computers enabled researchers to use simulations to ex-

plore the advantages and disadvantages of Hebb's (1949) theory of synaptic change.  In one famous 
study, Rochester, Holland, Haibt, and Duda (1956) simulated a network of 69 simple neurons, with each 
neuron connected to 10 others.  Rochester et al. updated connection weights using a modified version of 
Hebb’s proposal.  While the general spirit of the proposal was maintained, when weights were updated, 
they were normalized to prevent them from growing out of bounds.  What this meant was that if the 
strength of one connection were increased, then the strength of other connections would be decreased at 
the same time.  As well, Rochester et al. introduced the notion of “neural fatigue”, which meant that one of 
their simulated neurons was less likely to fire if it had recently been active.  After running this simulation, 
Rochester et al. examined the connection weights that emerged in an attempt to identify whatever cell 
assemblies had emerged.  They found no evidence for the existence of cell assemblies in their simula-
tion, and concluded that Hebb’s theory as stated was not sufficient for their production. 

 
Rochester et al. (1956) developed a second simulation using an unpublished modification of 

Hebb’s theory that was proposed by Milner, and which later appeared in Psychological Review (Milner, 
1957).  In Hebb’s original theory, and in Rochester et al.’s first simulation, there were no inhibitory con-
nections.  All of the connection weights (and all of the neural signals) in the simulation were positive and 
excitatory.  Milner’s proposal was to include inhibitory connections in the theory, under the assumption 
that there would be excitatory connections within a cell assembly, but activity in one cell assembly would 
tend to decrease activity in other cell assemblies via inhibitory signals.  This proposal – endorsed by 
Hebb in a revision of his original theory (Hebb, 1959) – led to a simulation that did produce evidence of 
the emergence of cell assemblies. 

 
In modern connectionist simulations, the goal of Hebb-style learning is not specifically to create 

cell assemblies, but is instead to create associations between patterns of activity, so that later when one 
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pattern of activity is presented, the other pattern will be recalled.  In other words, modern Hebb-style 
learning is one approach to defining “association by contiguity” or “the law of habit”.  Nevertheless, inhibi-
tion is an important component of this type of learning, and is included in a distributed associative 
memory in two different ways. 

 
First, and consistent with proposals described above, connections between processing units can 

either be excitatory (i.e., have a positive connection weight) or be inhibitory (i.e., have a negative connec-
tion weight).  Second, and deviating from research in the 1950s, processing units can themselves be 
sending a signal that is excitatory (i.e., positive processing unit activity) or inhibitory (i.e., negative pro-
cessing unit activity).  In many respects, these assumptions violate Hebb’s attempt to develop a biologi-
cally plausible account of behavior.  For instance, in the version of the distributed associative memory 
that we will develop below, at one moment a processing unit (or connection) can be excitatory, but at an-
other moment the same unit (or connection) can be inhibitory.  This kind of proposal is biologically im-
plausible (Crick & Asanuma, 1986).  However, it leads to a very simple mathematical description of Hebb-
style learning, as we will see shortly. 

 
As was noted above, Hebb's (1949) basic idea about learning was that if an input neuron and an 

output neuron were both active at the same time, then the synapse between them should be strength-
ened.  “The assumption, in brief, is that a growth process accompanying synaptic activity makes the syn-
apse more readily traversed” (p. 60).  The logic of this proposal was that with the strengthening of the 
synapse, in situations in which the input neuron became active, there would be an increased likelihood of 
the output neuron becoming active as well.  This is because the output neuron would receive increased 
stimulation (via the reinforced synapse) from the input neuron. 

 
In modern variations of Hebb-style learning, particularly those based upon the assumption that 

processor activity can be either inhibitory or excitatory, the goal of connection weight changes is not to 
increase the likelihood of activity in an output unit.  Rather, the goal is to change the weight in such a way 
that the relationship between input and output unit activities is enhanced.  In other words, if at some 
learning trial an input unit is in one state x, and the output unit is in some other state y, then the connec-
tion weight should be changed so that later if the input unit returns to state x, then its signal through the 
connection should increase the likelihood of recreating state y in the output unit. 

 
Hebb's (1949) view of learning is an example of enhancing one aspect of this relationship.  To 

place his original proposal in the more modern context of a connectionist network, it was assumed that if 
an input unit and an output unit were both excited (positive activity), then the weight of the connection 
between them should be made more excitatory (i.e., more positive).  Later, if the input unit exhibits posi-
tive activity, this would lead to a more positive signal (the positive activity multiplied by the more excitatory 
connection weight) being sent to the output unit, which would increase the net input to the output unit, and 
which would in turn increase the likelihood that the output unit would also exhibit positive activity. 

 
Importantly, connection weights can be changed to enhance other relationships between input 

and output unit activities.  For example, consider the situation where both an input unit and an output unit 
were inhibited (negative activity).  To increase the probability that this pattern would occur later, one 
would again make the weight of the connection between them more excitatory.  Later, if the input unit ex-
hibits negative activity, this would lead to a more negative signal (the negative activity multiplied by the 
more excitatory connection weight) being sent to the output unit, which would decrease the net input to 
the output unit.  As a result, the output unit would be more likely to assume negative activity.  Similarly, 
imagine the situation in which the input unit was inhibited, but the output unit was excited.  To increase 
the probability that this pattern would occur later, one would make the weight of the connection between 
the two units more inhibitory.  Later, if the input unit exhibits negative activity, this would lead to a more 
positive signal (the negative activity multiplied by the more inhibitory connection weight) being sent to the 
output unit, which would increase the net input to the output unit.  As a result, the output unit would be 
more likely to assume positive activity. Similar logic would dictate that if the input unit was excited and the 
output unit was inhibited at the same time, then the connection between them should again be made 
more inhibitory.  Table 9-2 summarizes the desired direction of weight changes given the possible states 
of connected input and output units. 
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Activity Of Input Unit Activity Of Output Unit Direction Of Desired Weight Change 

Positive Positive Positive 
Negative Negative Positive 
Negative Positive Negative 
Positive Negative Negative 
Table 9-2. The direction of weight changes that will enhance the relationship be-

tween patterns of input and output unit activities. 
 
What remains is to convert the qualitative account of desired weight changes that is given in Ta-

ble 9-2 into a quantitative equation that will generate numbers that can be used to fill in the values of the 
matrix t+1 during learning.  An examination of the table provides a clear indication of the kind of mathe-
matical operation to use.  Note that if one were to take the value (i.e., the mathematical sign) of each of 
the first two columns and multiply them together, then the result would be the value in the third column of 
the table.  In modern Hebb-style learning, the basic assumption is that the desired weight change for the 
connection between input unit i and output unit j is equal to the product of the activities of the two units: 

 
ij = ai  ai     Equation 9-7 

 
Equation 9-7 has two main advantages.  First, under the assumption that unit activities can have 

negative or positive values, this equation creates weight changes of the desired sign according to Table 
9-2.  Second, this equation generates weight changes that reflect the relative amount of activity in both 
units.  Imagine that the two processing units were both exhibiting positive activities, but that the two activi-
ties were very weak (e.g., values of, say, 0.05).  It would seem plausible in this situation to not make a 
very large change to the connection weight.  Equation 9-7 accomplishes this.  For example, when two 
fractional positive values are multiplied together, as would be the case in our imagined situation, the re-
sulting connection weight change is positive, but is also very small.  Conversely, if both processing units 
were exhibiting very large activities, then it stands to reason that the connection between them should be 
changed a great deal.  Again, Equation 9-7 automatically accomplishes this. 

 
One minor modification to Equation 9-7 permits the exploration or manipulation of a richer notion 

of learning.  One can imagine some situations in which a system is capable of learning a great deal, and 
other situations in which a system is less capable of learning.  For instance, my kids are more likely to 
learn things in school when they are rested than when they are tired. In Hebb-style learning, such general 
effects can be modeled by using a learning rate, which is a constant used to scale the result of Equation 
9-7 up.  Traditionally, the Greek letter  represents the learning rate.  When  is small or fractional, the 
desired weight changes will be small, which is analogous to the situation in which a tired child is trying to 
learn.  When  is large, the desired weight changes will be amplified, which is analogous to the situation 
in which a rested child is trying to learn.  This is all accomplished by multiplying the desired weight 
changes by the learning rate, as is indicated in Equation 9-8: 

 
ij  =  (ai  ai )    Equation 9-8 

  
To bring this discussion to a close, Equation 9-

8 defines how Hebb-style learning can be used to 
compute the desired change for a single weight in the 
distributed associative memory.  Linear algebra pro-
vides a very compact notation for defining every entry 
in the matrix t+1.  Remember the rule of thumb that 
claimed that the result of combining two vectors to-
gether had as many rows as the first vector in the 
combination, and had as many columns as the second 
vector.  We used this rule of thumb to predict that 
when the inner product was computed (e.g., Equation 
9-5) the result would be a number (i.e., a vector with 

Figure 9-5.  Using the outer prod-
uct to define the desired weight changes 
in accordance with Hebb-style learning. 
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one row and one column.  Imagine we had two vectors, c and d, and combined them in the reverse order 
than that used in Equation 9-5.  In other words, what if they were multiplied together in an expression in 
which the transposed vector was the second component, instead of being the first: d  cT?  Using our rule 
of thumb, we would not predict that we would get a single number.  Instead, we would predict that the 
result of this equation would be a full matrix with as many rows as were in vector d, and as many columns 
as were in cT. This matrix-producing operation is called the outer product (Figure 9-5). 

 
The outer product is used to define how all of the desired weight changes for the distributed as-

sociative memory are to be calculated.  Imagine that vector d represents some pattern of activity that has 
been presented to the output units of the memory, and that vector c represents some pattern of activity 
that has been presented to the input units of the memory.  The desired weight changes are defined as: 

 
t+1 =  (d  cT)    Equation 9-9 

 
The calculation of the outer product is illustrated in Figure 9-5.  Every entry ij in the matrix t+1 is 

equal to the value ci multiplied by the value dj.  This is the outer product.  The result of this operation is 
then scaled by the learning rate, by multiplying it by the learning rate constant . 

 
9.2.3 Behavior Of The Distributed Associative Memory 
 

9.2.3.1 Computational Account Of The Model 
 
Dawson (1998) has argued that one of the key approaches taken by cognitive scientists to ex-

plain an information processing system is computational.  In adopting the computational approach, one 
formally defines some characteristics of interest in a system (i.e., in some mathematical or logical nota-
tion).  Then one uses formal operations to explore the properties of the system, typically by constructing 
mathematical or logical proofs. 

 
One of the reasons that linear algebra was used to define the properties of the distributed associ-

ative memory in the previous sections was because it permits us to examine the system computationally.  
In particular, we can quickly manipulate the memory system’s equations to generate proofs about its abil-
ity to function.  We can also use the equations to determine whether there are some general situations in 
which it will fail to operate as intended. 

 
As the first step in the computational analysis of a distributed associative memory governed by 

Hebb-style learning, let us make some simplifying assumptions.  First, let us assume during learning that 
 has a value of 1.  Because of this, it will be omitted from the learning equations.  This is only being done 
to simplify the equations. 

 
The second assumption involves the properties of the to-be-learned vectors that will be used in 

the equations below.  Let us imagine that there are four of these vectors: a, b, c, and d.  We will assume 
that this set of vectors is orthonormal.  At a general level, what this assumption means is that each of 
these vectors has a length of 1.00, and is completely uncorrelated with the other three vectors in the set.  
Mathematically, this assumption involves assuming certain properties are true of the inner products of the 
vectors in this set.  In particular, it is assumed that if one takes the inner product of a vector with itself, the 
result will be equal to 1.  However, if the inner product is taken between a vector and a different member 
of the set, the result will be equal to 0.  For example, this assumption means that aT  a = 1, but that aT  
b = 0, aT  c = 0, and aT  d = 0.  The importance of this second assumption will be apparent shortly. 

 
Now let us define a simple learning sequence in which the distributed associative memory first 

learns the association between a and b by computing the outer product b  aT and then learns the asso-
ciation between c and d by computing the outer product d  cT.  This process of learning is detailed in 
Table 9-3, which is essentially the same as Table 9-1 with a few more specific details added because of 
our knowledge of which vectors are being learned at each trial: 
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Trial (t+1) Operation Equation Describing Weight Values 
0 Start with the 0 matrix W0 = 0 
1 Associate a with b W1 = W0 + 1 

         = 0 + (b  aT) 
     = (b  aT) 

2 Associate c with d W2 = W1 + 2  

         = (b  aT)+ 2 

     = (b  aT)+ (d  cT) 
Table 9-2. Learning two pairs of vectors 

  
Now that the distributed memory has learned two different associations, we can use linear alge-

bra to predict its ability to recall remembered information.  In this example, information is retrieved from 
the memory system is achieved by presenting either vector a or vector c as a cue and using the retrieval 
operation that was defined in Equation 9-6.  If recall is correct, then when the vector a is presented as a 
cue, the vector b should be retrieved; when c is the cue, d should be retrieved.  Table 9-3 provides the 
mathematical details about recall from the memory.  It takes Equation 9-6, and replaces the weight matrix 
with the more detailed expression for the weights that was provided in Table 9-2.  It then works the cue 
vector into the parentheses.  When this is done, two inner products are revealed.  Because of our as-
sumption that the set of vectors is orthonormal, one of the inner products works out to 0, canceling out a 
vector.  The other inner product works out to 1.  As a result, correct recall is achieved. 

 
Cue Recall Equation Comments 

a r  = W2a 
   = ((b  aT)+ (d  cT))a 
   = b  aT a + d  cT  a 
   = b  (aT a) + d  (cT  a) 
   = b(1) + d(0) 
   = b 

Equation 9-6 
Expand W2 from Table 9-2 
Move vector a into the parentheses 
Identify the inner products with parentheses 
Compute inner products (orthonormal assumption) 
b is correctly recalled 

c r  = W2c 
   = ((b  aT)+ (d  cT))c 
   = b  aT c + d  cT  c 
   = b  (aT c) + d  (cT  c) 
   = b(0) + d(1) 
   = d 

Equation 9-6 
Expand W2 from Table 9-2 
Move vector c into the parentheses 
Identify the inner products with parentheses 
Compute inner products (orthonormal assumption) 
d is correctly recalled 

Table 9-3. Correct recall of different associations from the same memory.
 
The equations that we have just been manipulating in Tables 9-2 and 9-3 make two important 

points.  First, they have shown that when we make a particular assumption about the relationships be-
tween the patterns being associated, Hebb-style learning works.  Furthermore, they show that this is ac-
complished with a single set of connections between processing units.  The weight matrix W2 is a single 
entity, but from Table 9-3 it is clear that it holds information about the associations between a and b and 
between c and d.  Second, these equations demonstrate a computational analysis (Dawson, 1998) of this 
kind of memory system.  We have been able to use mathematics to demonstrate correct learning and 
recall; we did not need to program a simulation of this system to investigate these properties. 

 
Computational analyses can also be used to demonstrate some of the problems with Hebb-style 

learning.  The assumption that the set of to-be-associated vectors is orthonormal is extremely strong.  
What it amounts to is the claim that there can be absolutely no correlation between different patterns at 
all.  If we were to be learning associations between entities in the world, then this assumption would be 
very limiting.  For instance, in many cases we would expect there to be similarities or correlations be-
tween these objects.  Indeed, one would expect – as did many of the associationists – that such correla-
tions would be an important aid to memory. 
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To examine the effect of correlation on Hebb-style learning, let us make a slight modification to 
our orthonormality assumption.  We will again be interested in learning associations between four differ-
ent vectors, a, b, c, and d.  We will assume once again that the inner product of any of these vectors with 
itself will result in a value of 1.  We will also assume that a, b, and d are uncorrelated, so that the inner 
product of one of these vectors with one of the other two in this group of three will result in a value of 0.  
All of these assumptions were used in our previous analyses.  Our change in assumptions will involve 
vector c.  We will assume that this vector is still not correlated with vectors b or d, but that it does have a 
strong correlation with vector a.  In particular, we will assume that the inner product of c with a is equal to 
½.  

 
Table 9-4 provides the equations for recall with our change in assumption about the relationship 

between c and a.  In this case, because these two vectors are correlated, their inner product does not 
equal 0, and as a result does not completely cancel out part of the recall equation.  As a result, there is 
noise or error added to the recall.  Instead of recalling b when presented a as a cue, the memory recalls b 
plus some added noise: b + ½d.  Instead of recalling d when presented c as a cue, the memory recalls d 
plus some added noise: d + ½b.  The amount of noise that is evident in the recall is exactly equal to the 
correlation between c and a.  If this correlation were to increase, then the amount of noise in the recalled 
vectors would also increase.  If this correlation were to decrease, then the amount of noise in the recalled 
vectors would also decrease.  It is only when this correlation is equal to 0 that there is no noise and recall 
is perfect. 

 
 
T

he line-
ar alge-
bra that 

we 
have 

just re-
viewed 

has 
shown 

that 
Hebb-

style 
learning 

of associations has problems when the to-be-associated patterns are correlated with one another.  This 
provides one strong suggestion that a different approach to learning associations should be considered if 
one is interested in training a distributed associative memory.  In the next section, we will explore Hebb-
style learning with a computer simulation in an attempt to identify some further problems.  Later, these 
problems will lead to a reformulation of the rule that we use to modify connections in the memory system.  

 
9.2.3.2 Observing The Behavior 
 
The preceding sections have provided a mathematical description of a distributed associative 

memory, a formal definition of one method for storing associations in this memory, and mathematical 
proofs that show situations in which this memory works perfectly, as well as circumstances in which this 
memory does not function as well as desired.  In this section, we will examine this same memory and 
learning rule, but instead of working with the system computationally, we will work with it algorithmically 
by observing the performance of a computer simulation. 

 
Given the mathematical understanding of the memory that we have already achieved, one might 

wonder about the need for creating a computer simulation.  However, a working computer simulation can 
quickly shed some light on practical issues that are not explicitly addressed in mathematical proofs.  How 
fast is this type of learning when the memory is simulated on a digital computer?  How is performance 
affected when the size of the memory grows?  How does the learning rate affect performance?  “Behavior 

Cue Recall Equation Comments 
a r  = W2a 

   = ((b  aT)+ (d  cT))a 
   = b  aT a + d  cT  a 
   = b  (aT a) + d  (cT  a) 
   = b(1) + d(½) 
    b 

Equation 9-6 
Expand W2 from Table 9-2 
Move vector a into the parentheses 
Identify the inner products with parentheses 
Compute inner products  
b is not correctly recalled! 

c r  = W2c 
   = ((b  aT)+ (d  cT))c 
   = b  aT c + d  cT  c 
   = b  (aT c) + d  (cT  c) 
   = b(½) + d(1) 
    d 

Equation 9-6 
Expand W2 from Table 9-2 
Move vector c into the parentheses 
Identify the inner products with parentheses 
Compute inner products  
d is not correctly recalled! 

Table 9-4. Incorrect recall due to correlation between c and a. 
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is sometimes explainable in retrospect, but it is necessary to do the numerical experiments to see if ideas 
are actually workable, or if unforeseen problems appear.  They often do.  As only one example, there are 
a number of learning rules that can be proved to work mathematically.  Unfortunately, when simulations 
are done, learning times are found to be enormous, totally outside the boundaries of practicality.  Or the 
results are immensely sensitive to noise, or error, or to values of particular parameters” (Anderson & 
Rosenfeld, 1988, p. 65). 

 
We have developed a simulation tool that was programmed in Visual Basic 6.0 as an instructional 

tool to be used to explore a distributed associative memory.  This software is available, free of charge, 
from the website that provides supplementary material for this book: 
http://www.bcp.psych.ualberta/~mike/book2/.  This software comes with a number of example files that 
can be used to examine the advantages and disadvantages of distributed associative memories, and will 
save the results in a variety of formats (text files, Microsoft Excel spreadsheets) for later exploration and 
analysis.  The reader can also use the instructions to create their own training sets in a format that can be 
read by the network. 

 
One can use this software to empirically verify the computational claims that were made earlier.  

For instance, in two of the example training sets that are provided with the software, eight different paired 
associates are created from an orthonormal set of vectors.  If these stimuli are presented 10 times to a 
distributed associative memory, associated using the Hebb rule, with a learning rate of 0.1, the network 
will be able to perform perfect recall for each stimulus.  However, if correlations exist between two or 
more of the vectors used to create the stimuli, then the total network error will never reach zero no matter 
what the learning rate is, or how many stimulus presentations are made.  

 
An examination of the weight matrix that is produced when the memory learns associations be-

tween vectors that are variable (e.g., whose values are a complex mix of negative and positive fractional 
values) indicates that the system is creating representations that are indeed distributed.  We know from 
the recall performance of the network that these weights are storing information about eight different as-
sociations.  However, in looking at these weights, we do not see any evidence that these associations are 
stored locally.  For instance, it does not appear that one row of the weight matrix stores information about 
one association, and that another row stores information about a different association.  All of the weights 
have been affected by training, and information about all eight associations is distributed throughout the 
entire weight matrix.  If the structure of this network was to be interpreted, mere inspection would not do 
the job. 

 
The software can also be used to reveal a different problem with Hebb learning.  Imagine training 

the memory with a set of orthonormal patterns, with a learning rate of 0.1.  Learning is evident early in 
training, because the sum of squared network error – computed over all outputs and all patterns – steadi-
ly decreases, reaching a value of 0 by the 10th epoch.  However, additional training beyond this point ac-
tually causes error to increase with each epoch. Our general sense about learning is that this shouldn’t be 
happening.  We would normally expect that more learning should result in better performance.  So, if 
learning is operating the way that we would expect, then SSE should not increase.  This unfortunate find-
ing is due to the fact that Hebb learning modifies weights after each stimulus presentation, even when the 
weights should not be changed.  In other words, Hebb learning does not use any feedback about the er-
rors that the network is making.  If it did, then this would prevent it from making unnecessary changes to 
its weights, and from undoing the learning that it has already accomplished. 
 

9.3 BEYOND THE LIMITATIONS OF HEBB LEARNING 
 

9.3.1 The Limitations Of Hebb Learning 
 
There are three general reasons that the Hebb learning rule has enjoyed a great deal of populari-

ty amongst researchers who are interested in developing theories of associative memory.  First, we saw 
in the historical review of associationism that one of the constants from one theory to the next was the 
inclusion of the law of contiguity.  The Hebb rule is an elegant statement of this fundamental mode of as-
sociation.  Second, in modern cognitive science there is an increasing desire to relate properties of func-
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tional theories to neural mechanisms (Dawson, 1998).  The Hebb rule is one of the few biologically plau-
sible learning rules.  Many researchers have taken pains to point out the similarities between Hebb’s ac-
count of learning and the biological mechanisms that govern long-term potentiation in the brain (Brown, 
1990; Cotman, Monaghan, & Ganong, 1988; Martinez & Derrick, 1996).  Third, even when memory sys-
tems trained by Hebb-style learning rules make mistakes, these mistakes are interesting, because in 
many cases they are analogous to the kinds of errors that one finds in human experiments on associative 
learning (Eich, 1982; Murdock, 1982, 1997). 

 
In spite of these attractions, the theoretical and empirical evidence that we have collected earlier 

in this chapter points to some severe limitations of a distributed associative memory that is trained by the 
Hebb rule.  First, the memory only works well when the stimuli being associated are completely uncorre-
lated.  As soon as the orthonormality assumption is violated, one cannot guarantee that the memory will 
recall the correct response when given a cue.  Second, the Hebb rule is not sensitive to the performance 
of the memory system.  This means that the Hebb rule will modify network connections even in situations 
where these modifications are not required because perfect recall has been achieved. 

 
9.3.2 Overcoming The Limitations 

 
The combination of these problems with Hebb learning and the general attractiveness of this 

learning rule suggests that we should attempt to explore some ways in which the rule can be improved 
without throwing away many of its attractive properties.  The purpose of this section is to describe such a 
refinement, and to define a new rule called the delta rule.  We will see that the delta rule ultimately relies 
on association by contiguity, and therefore maintains many of the essential properties of the Hebb rule.  
However, the delta rule is explicitly designed to teach a network by providing it feedback about the kinds 
of errors that it makes.  As a result, the delta rule provides one approach to overcoming some of the limi-
tations of Hebb learning that we have already encountered. 

 
9.3.2.1 Supervised Learning 
 
In connectionist research, a common distinction is made between unsupervised learning and su-

pervised learning.  In unsupervised learning, a network modifies its connection weights in an attempt to 
remember regularities that it has discovered in its environment.  However, it never receives any infor-
mation about what some programmer might think are desirable regularities.  It therefore also never re-
ceives any feedback about whether its responses are correct or incorrect.  In this regard, Hebb learning is 
an example of unsupervised learning.  The fact that Hebb learning does not take into account errors that 
are being made by a network accounts for problems like the increase in network SSE that was discussed 
above. 

 
In supervised learning, the goal of learning is for a network to generate a set of responses that 

are desired by a programmer (or a teacher).  When the network generates a response to a stimulus, this 
observed response is compared to a desired response, which is often called the target response.  Typi-
cally, one compares these two responses by subtracting the observed response (0) from the target re-
sponse (T) for each output unit in the network.  That is, the error for output unit i (i) is: 

 
I = Ti - Oi     Equation 9-10 

 
One of the advantages of supervised learning is that learning is only driven by mistakes.  This 

implies two different things.  First, if no mistake is made, then no learning will occur, because no learning 
is required.  Second, the degree of learning should be proportional to the degree of error.  If a system 
makes a very large error, then there should be very large changes to its connection weights.  However, if 
a system makes a very small error, then there should be a correspondingly small change to its connection 
weights.  If we could replace the Hebb rule with a supervised learning rule that operated in this fashion, 
then we would definitely be in a position to solve one of the problems with Hebb learning that we have 
already identified.  To be more specific, if our distributed associative memory was supervised when it 
learned, then once total SSE had dropped to 0, no more connection weight changes would occur. 
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The question is how to reformulate the Hebb rule in such a way that it can be converted from an 
unsupervised learning rule to a supervised learning rule.  As a first pass at the logic of this reformulation, 
consider Table 9-5, which is a variation of Table 9-2.  The purpose of Table 9-5 is to consider the activity 
in a single input unit, treating it for the sake of simplicity as being merely positive or negative.  This input 
unit is connected to a single output unit, and the error for this unit has been calculated according to equa-
tion 9-10 after some pattern has been presented to the network.  Again, for simplicity’s sake, we consider 
the result of this calculation to be a value that is positive, negative, or equal to zero.  The table lays out 
the possible combinations of input values and error values in order to make clear what would need to 
happen to the weight of the connection between the two units in order to reduce the error that was pro-
duced the next time that the pattern was presented to the network.  

 
Activity Of  
Input Unit 

T - O Implication Operation To 
 Reduce Error 

Direction Of Desired  
Weight Change 

Positive Positive T > O  O Positive 
Positive Negative T < O  O Negative 
Positive Zero T = O None Zero 
Negative Positive T > O  O Negative 
Negative Negative T < O  O Positive 
Negative Zero T = O None Zero 

Table 9-5. The logic of weight changes during supervised learning. T represents the 
target value for an output unit, and O represents the observed value for the output 

unit.  See text for further details.
 
For example, consider the first three rows of the table, for which the input unit has been activated 

with some positive value.  In the first case, the error value is positive.  This means that the target activity 
is greater than the observed activity.  In order to reduce error, this means that the observed activity must 
be increased.  For this pattern, this could be accomplished by making the connection weight more posi-
tive, because this would amplify the positive signal being sent by the input unit.  In the second case, the 
target activity is smaller than the observed activity, which means that the observed activity has to be 
made smaller to reduce error.  This would be accomplished by making the connection weight more nega-
tive, because this would attenuate the positive signal being sent by the input unit.  In the third case, the 
target activity is equal to the observed activity, which indicates that no change should be made at all to 
the connection weight. 

 
Similar logic can be followed for the remaining three rows in the table.  However, because in 

these instances the input unit activity is negative, the change to the connection weight will be opposite in 
direction to the changes that were just described.  In the first case, the connection weight must be made 
more negative in order to amplify (i.e., make more positive) the negative signal being sent by the input 
unit.  In the second case, the connection weight must be made more positive in order to attenuate (i.e., 
make more negative) the negative signal coming from the input unit.  Of course, in the third case there 
again would be no change made to the connection weight because there is zero error being generated by 
the output unit. 

 
Earlier in this chapter, we motivated the rule for Hebb-style learning by observing that if we multi-

plied the first two columns of Table 9-2 together, the result would be the third column.  A similar situation 
now arises in our discussion of supervised learning.  If one were to take the first two columns of Table 9-5 
and multiply them together, the result would be the last column of the table, which indicates the direction 
of weight change to make in order to reduce error.  This inspires the following learning rule for a single 
connection between input unit i and output unit j: 

 
ij = ai (Tj - ai)    Equation 9-11 

 
where ij is the desired weight change, is the ai activity of the input unit, Tj is the target activity for the out-
put unit, and ai is the observed activity in the output unit. 
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Equation 9-11 has two very nice properties that suggest that it is an excellent choice for a super-
vised learning rule for connections in a distributed associative memory.  First, the equation changes the 
weight in the direction that is required to reduce error, because the equation is consistent with the logic 
that we worked through when discussing Table 9-5.  Second, it is sensitive to amount of error.  If the val-
ue of Tj - ai is large, then the change in the weight will be large.  If the value is small, then the change in 
the weight will be small.  If the value is zero, then – crucially – there will be no change in weight.  This 
equation places a natural brake on the learning process, solving one of the problems that we identified 
with the Hebb rule. 

 
9.3.2.2 The Delta Rule 
 
The final step in defining a supervised learning rule for the distributed associative memory is to 

take Equation 9-11 and modify it by including a learning rate, and by expressing it in terms of linear alge-
bra so that we can use one equation to define the changes for all the weights in a network that consists of 
multiple input and output units.  When we defined the Hebb rule, we used the outer product of two vectors 
– scaled by a learning rate – to define the matrix of weight changes t+1.  We can also follow this proce-
dure for defining our supervised learning rule, which is called the delta rule.  Let us assume that vector cT 
represents some pattern of activity that has been presented to the input units of the memory.  Let us also 
assume that the vector t (for target) defines the vector that should be correctly recalled from the memory 
when c  is used as the cue in Equation 9-6.  Let vector o (for observed) be the actual activity that is gen-
erated in the output units when c is the cue.  The desired weight changes, scaled by the learning rate , 
are defined as: 

 
t+1 =  ((t - o)  cT)   Equation 9-12 

 
The expression t – o in Equation 9-12 is the difference between two vectors.  The result of this 

operation will be another vector, with the same number of entries that would be found in either vector t or 
vector o.  Let us name this third vector , to represent the fact that it is a vector of error values.  Con-
sistent with our definition of error in Equation 9-10, each entry i in this vector is equal to the value (ti – oi).  
With this definition of the error vector, we can rewrite Equation 9-12 as: 

 
t+1 =  (  cT)    Equation 9-13 

 
Equation 9-13 is important in that it makes very explicit the relationship between the delta rule 

and the Hebb rule.  If you compare it to Equation 9-9, you will see that the two learning rules are very sim-
ilar.  The delta rule essentially involves Hebb learning, but this learning is not carried out until after a cou-
ple of preliminary steps have been taken.  First, a cue vector is presented to the existing memory to see 
what vector would be recalled from the memory if no weight changes were made at all.  Second, an error 
vector is computed by subtracting this observed recall vector from the target vector.  Third, Hebb learning 
is performed, but the association that is learned is between the cue vector and the error vector.  The point 
of doing this – as was explained in our discussion of Table 9-5 – is to only make changes in weights that 
are necessary to reduce error.  If the error vector is full of zeroes, then no weight changes will be made 
when Equation 9-13 (or 9-12) is applied. 

 
9.3.2.3 The Power Of The Delta Rule 
 
In this section, we are going to briefly examine the performance of the delta rule, and compare it 

to the performance of Hebb learning, by repeating the four simulation experiments that were described 
earlier.  It is also possible to compare the two rules by doing a computational analysis of the delta rule, 
and comparing the conclusions drawn from that analysis to those that we drew after working through the 
proofs about the abilities of Hebb learning.  While this isn’t done in the current chapter, mathematical ex-
aminations of the delta rule are available in the literature.  Stone (1986) provides a particularly good 
treatment. 
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When the delta rule is used to train the distributed memory on the associations between patterns 
constructed from an orthonormal set of patterns, using the same learning rate as was used with the Hebb 
rule, the network will converge to a solution.  However, it usually takes longer than is observed with the 
Hebb rule.  However, if training is continued, the delta rule continues to improve performance.  In other 
words, this particular memory system is performing in a fashion that is in more accordance with our intui-
tions:  when the memory has more repetitions on the paired associates, its performance improves.  Fur-
thermore, performance does not get worse with additional training! 

 
If one plots network SSE as a function of epochs when the delta rule is used, then one sees an 

important emergent property.  Network SSE decreases exponentially, with a great deal of learning occur-
ring early in training, but with learning slowing down as training proceeds.  This is to be expected because 
the amount of learning depends upon the amount of error that the network is making (see Equation 9-12).  
As the network learns more, its error is reduced, and as a result learning slows down.  We saw this pat-
tern earlier in Chapter 4 when we discussed mathematical models of learning in general, and the 
Rescorla-Wagner learning rule (Rescorla & Wagner, 1972) in particular.  One of the important findings 
that demonstrated a strong relationship between connectionism and mathematical models in psychology 
was a proof that showed that learning rules like the delta rule are indeed equivalent to the Rescorla-
Wagner rule (Sutton & Barto, 1981). 

 
One of the interesting and important properties of the delta rule is that it is more powerful than 

Hebb learning.  Because the rule works explicitly to reduce output unit error, it turns out that there are 
some associations that can be stored in a network using the delta rule, but which cannot be stored if the 
network is trained using the Hebb rule.  For instance, we created a set of linear independent vectors were 
to use to define patterns to be associated.  Linearly independent vectors are correlated with one another, 
but you cannot express one of these vectors as a weighted sum of any of the other vectors in a set.  
When the Hebb rule is used to train a network to associate vectors of this type, perfect learning never 
occurs.  However, when this set of associations is trained using the delta rule, the network is able to learn 
the problem.  In one simulation, after 775 iterations network SSE has dropped below 0.01, and the train-
ing was stopped.  With this small level of total error, network performance is near perfect for all eight 
stimulus-response pairs.   

 
How is it possible for the delta rule to come up with a set of connection weights that can store 

these eight associates, while this was not possible when the Hebb rule was used to train the network?  
One empirical clue to this additional power comes from examining the connection weights in the network 
at the end of training.  For simpler problems (i.e., learning associations involving orthonormal vectors), the 
matrices of connection weights that resulted were symmetric, and the same set of weights is produced by 
either learning rule.  In a symmetric matrix the value in cell wij is the same as the value found in cell wji.  
For linearly independent vectors, though, the delta rule produces a weight matrix that is not symmetric at 
all.  The ability of the delta rule to create a set of connection weights that are not symmetric means that it 
can store a wider range of associations than can be learned via the Hebb rule.  This is because the Hebb 
rule is constrained to always produce a symmetric set of connection weights. 

 
This is not to say that the delta rule is all-powerful, however.  Computational analyses of this rule 

have demonstrated that it permits associations to be learned when some correlations exist between vec-
tors, but it is unable to learn associations when other correlations exist.  In particular, the delta rule is not 
capable of correctly recalling associations when the training set is linearly dependent.  We ran one simu-
lation of this for 20,000 epochs.  However, after all of this training, the network had not converged upon a 
solution.   By the end of the first 1000 sweeps of training, total error had dropped to about 0.544.  Further 
training did not lead to any noticeable improvement.  (However, further training also did not lead to the 
network performing any poorer, which demonstrates again one advantage of the delta rule over the Hebb 
rule.) 

 
9.4 ASSOCIATIVE MEMORY AND SYNTHETIC PSYCHOLOGY 

 
The primary goal of describing the distributed associative memory in this chapter was to introduce 

some basic notions about connectionist models.  We will see in the chapters that follow that many ad-
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vances in connectionist architectures can be described as elaborations of some of the concepts that were 
introduced in this chapter.  However, it is important to realize that distributed associative memories are 
interesting in their own light, and can be used to synthetically explore some issues in the psychology of 
learning and memory. 

 
One key area of research is the study of associative learning in animals.  Throughout the history 

of this topic, the underlying assumption has been that the discovery of elementary associative laws that 
govern animal learning can be used to aid in the understanding of more complex types of learning and 
cognition observed in humans.  However, the current state of this field would suggest that these associa-
tive laws are complex, and a surprising variety of theories have been proposed in recent years.  For ex-
ample, it is frequently argued that there are a number of regularities in learning that cannot be explained 
by the Rescorla-Wagner model (Miller, Barnet, & Grahame, 1995).  Because of this, many different mod-
els have been proposed in an attempt to either broaden the scope of the Rescorla-Wagner model, or to 
replace it with a theory that has been derived from an alternative framework (for reviews see Pearce & 
Bouton, 2001; Wasserman & Miller, 1997).  “Other cognitive processes such as attention, memory, and 
information processing are now being invoked to help explain the facts of associative learning.  The next 
several years of research will be exciting ones, as neuroscientists and cognitive scientists join experi-
mental psychologists in an interdisciplinary attack on the challenging problems of associative learning and 
behavior change” (Wasserman & Miller, 1997, p. 598). 

 
With respect to this interdisciplinary research program, distributed associative memories may 

provide an interesting environment in which new ideas about associative learning can be explored.  For 
instance, we noted earlier that the delta rule has been proven to be formally equivalent to the Rescorla-
Wagner rule (Sutton & Barto, 1981).  Presumably, this implies that it too suffers from the same limitations 
that have been motivating new theories about associative learning in animals.  Can these new theories be 
implemented in the contiguity-based scheme that we have been developing in this framework?  Can at-
tentional modulations be added to a distributed associative memory by manipulating stimulus encodings, 
and then applying something like the delta rule? 

 
There has also been a considerable amount of interest in using models like the one that has been 

introduced in this chapter to account for a number of different regularities in human memory (Anderson, 
Silverstein, Ritz, & Jones, 1977; Eich, 1982; Hinton & Anderson, 1981; Murdock, 1982, 1985; Pike, 1984).  
One reason for this interest has been the fact that when distributed memories make errors, these errors 
are systematic, and can be related back to the kinds of errors that are made by human subjects in asso-
ciative memory experiments.  For example, we saw earlier that under certain conditions a distributed as-
sociative memory will generate responses that represent “blends” of different memories.  Memory models 
of this type also exhibit emergent behaviors that suggest that they provide an excellent environment in 
which human associative memory can be explored.  “Current connectionist models have been successful 
in accounting for a range of basic phenomena such as the effect of contingency on associative learning, 
as well as more complex effects such as enhanced responding to an unseen prototype pattern and partial 
memory for the training items” (Shanks, 1995, p. 151). 

 
Interestingly, one of the primary attractions of distributed associative memories has been the fact 

that they offer theories that appear to be more biologically plausible than their competitors (Hinton & An-
derson, 1981; Shanks, 1997).  Indeed, many researchers have recently been interested in taking net-
works like the ones that have been described in this chapter, or more sophisticated networks, and using 
these simulations to study neural mechanisms of learning and memory (Brown, 1990; Cotman et al., 
1988; Foster, Ainsworth, Faratin, & Shapiro, 1997; Gluck & Myers, 1997; Lynch, 1986; Martinez & Der-
rick, 1996). 

 
The reason for this interest has been the discovery of a particular neural phenomenon, called 

long-term potentiation.  Long-term potentiation is the long-lasting increase of synaptic efficiency that oc-
curs when two connected neurons are active (or nearing activity) at roughly the same time.  This increase 
in efficiency appears to be related to the properties of a particular receptor mechanism, the NMDA recep-
tor.  It also appears to be related behaviorally to memory and spatial learning mediated by the hippocam-
pus, because chemicals that block NMDA receptors disrupt these behaviors.  In short, the biochemical 
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study of long-term potentiation appears to be revealing the mechanisms that underlie the kind of neural 
changes that motivated theories of association by both James (1890) and Hebb (1949). 

 
However, with this increased understanding of long-term potentiation, and with an emerging and 

detailed understanding of neural mechanisms, there has also been an increased need to propose more 
sophisticated models of synaptic change.  Brown et al. (1990) note that there have been anywhere from 
50 to 100 theories of this type, and proceed to review only a subset of these.  They classify them as being 
Hebbian algorithms, generalized Hebbian algorithms, and global control algorithms.  Again, one question 
to ask is how might this more sophisticated rules be incorporated into the models that have been de-
scribed in the current chapter.  Do these rules result in solving some problems that were not solved by the 
delta rule?  If implemented, do these rules lead to behavioral results that are more or less consistent with 
the performance of human subjects in memory experiments? 

 
One theme that seems to be emerging in even this cursory glance at the current state of research 

related to distributed associative memories is that, while interesting, the versions of the networks that 
were described in this chapter are not as powerful as would seem to be required to keep up with advanc-
es in the field.  What general approach could be used to increase the power of these networks?  In the 
next two chapters, we will consider two very basic – but critical – modifications.  In Chapter 10, we will 
consider some of the implications of changing the activation function from being linear (as is the case in 
Equation 9-2) to being nonlinear.  In Chapter 11, we will consider how the use of a nonlinear activation 
function permits even more power through the use of additional layers of processing units separating 
network input from network output. 

 

Chapter 10: Making Decisions 
 
 In the most general sense, a psychological theory attempts to explain the relationship between 

stimuli and responses.  One psychological theory differs from another in terms of the “machinery” that it 
proposes for converting inputs into outputs.  For example, behaviorism argued that environmental stimuli 
alone could dictate behavioral responses, and did not propose any additional intervening causal varia-
bles.  In contrast, cognitivism argued that environmental stimuli were transformed into numerous interven-
ing representational states, and that behavioral responses were dictated by these intermediate represen-
tations.  As a result, for a cognitivist, behavior did not directly depend upon the environment. 

 
As we will to see in more detail below, the main source of the weakness in a distributed associa-

tive memory is analogous to the difference between behaviorist theory and cognitivist theory.  In particu-
lar, a simple distributed associative memory attempts to represent association as a direct link between 
stimulus and response.  While some interesting relationships can be modeled in this way, these relation-
ships are still quite simple.  More complicated relationships cannot be captured unless intervening pro-
cessing units, used to transform input patterns into intermediate representational states, are added to the 
associative memory. 

 
 

10.1 THE LIMITS OF LINEARITY 
 
10.1.1 A Chain Of Distributed Memories 

 
Connectionist models are often described as being neuronally inspired.  What this means is that 

connectionist theorists often look to properties of the brain in order to discover new methods for pro-
cessing information. 

 
One brain property that is critical for the search for additional power in an associative memory is 

that cortical tissue is organized into different layers of interconnected neurons.  Human neocortex, which 
is the neural basis for most of our complex cognitive and perceptual processing, can be viewed as a thin 
sheet of tissue that is arranged into six different layers (labeled with the Roman numeral I through VI).  
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The fourth layer in this arrangement is itself characterized as being organized into three different sublay-
ers (Iva, Ivb, and Ivc)  (Kuffler, Nicholls, & Martin, 1984).  For the most part, neural processes run up and 
down through these layers at right angles to the cortical surface.  Each layer can be characterized as hav-
ing neurons that have different functional properties.  For instance, in visual cortex, neurons whose recep-
tive fields lead them to be classified as simple cells are found in Layer IV, and project to complex cells in 
Layers II and III.  These complex cells in turn provide the major output to other cortical areas, as well as 
into Layer V of visual cortex.  The projections of one layer into another are consistent with a functional 
account of how a complicated receptive field for a neuron can be constructed by combining simpler re-
ceptive fields from neurons that are located in a more peripheral layer.  This kind of hierarchical construc-
tion of the ability to detect complexity provides one rational for incorporating multiple layers of processors 
into a distributed associative memory. 

 
The layering of the neocortex provides one obvious approach to improving a distributed associa-

tive memory.  Instead of having direct connections between input units and output units, we could include 
one or more layers of intermediate processing units.  The functional role of these intermediate layers of 
“hidden” units would be to transform the pattern of activity in the input units.  For instance, hidden units 
might detect complex features that characterize important properties of input patterns, just as complex 
cells detect have complicated receptive fields in virtue of their ability to combine the inputs of cells that 
have simpler receptive fields.  Perhaps the identification of more complex features would in turn permit 
the distributed associative memory to store more complicated associations, and possibly enable the 
memory to store arbitrary associations between inputs and outputs. 

 
A first pass at adding layers of processors to a distributed associative memory can be based on 

the linear algebra that we already have seen in Chapter 9.  Imagine a distributed associative memory that 
consists three different layers of processing units: a layer of input units (whose activity can be represent-
ed by the vector i), an intermediate layer of “hidden” units (represented by the vector h), and a layer of 
output units (represented by the vector o).  Let us assume that some learning has already occurred in this 
memory, so that associations between at least one input pattern and one output pattern have been stored 
in this memory.  This information would be stored in a matrix X of weights representing connection 
strengths between the input units and the hidden units, and in a second matrix Y of weights representing 
connection strengths between the hidden units and the output units. 

 
Recall from this memory would proceed as follows.  First, a cue pattern would be used to set the 

values of the input units.  This in turn would cause a signal to be sent through the first layer of connection 
weights to produce a vector of activities in the hidden units.  This second vector of hidden unit activity, h, 
would serve as an intermediate cue pattern that would serve as an input signal to the second set of con-
nection weights.  This signal would produce activity in the output units (the vector o), which would repre-
sent the network’s response to the original cue pattern.  Mathematically, this sequence of recall opera-
tions would be written as follows: 

 
o = Y(Xi) = Yh   Equation 10-1 

 
This equation is equal to a chain consisting of two applications of the recall equation that was de-

fined in the previous chapter.  
 

10.1.2 Removing The Links Of The Chain 
 
However, a closer look at equation 10-1 will show that the sequence of recall operations that it 

represents does not increase the power of this two-layer memory system beyond that which would be 
found in a single-layer distributed associative memory.  One important operation in linear algebra is multi-
plying two matrices together.  For example, one could multiply some matrix Y and some matrix X together 
to produce a third matrix, which we can represent as matrix P (for “product”).  Each entry in row i and col-
umn j of matrix P is equal to the inner product between row i of matrix Y and column j of matrix X (for de-
tails see Jordan, 1986). 
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In Equation 10-1, the parentheses represent that our emphasis on an initial operation, which is to 
send an input vector through matrix X to create a cue vector c.  However, we could rearrange the paren-
theses in this equation to emphasize a different initial operation, which is the matrix multiplication of the 
two sets of connection weights, as is shown in Equation 10-2: 

 
o = (YX)i = Pi = Yh = Y(Xi)  Equation 10-2 

 
What this second equation shows is that we could take the two sets of connection weights, X and 

Y, and multiply them together to create a new matrix P.  The recall operation defined earlier in Equation 
10-1 is mathematically identical to sending input vector i as a signal through matrix P.  In other words, 
linear algebra is showing us that we can replace our two-layer distributed associative memory with a dif-
ferent memory that uses only one set of connection weights – just as we saw in Chapter 9 – and which 
would generate exactly the same responses as our two-layer system.  This proves that we are not adding 
any power to the distributed associative memory with our second set of connection weights.  Our two-
layer distributed associative memory is mathematically equivalent to a single-layer memory, and is there-
fore subject to exactly the same limitations.  “For linear systems at least, the distinction between two-layer 
systems and one-layer systems is more apparent than real.  The two systems are identical in the sense 
that they compute the same function.  Of course, they may have different internal dynamics and therefore 
take different amounts of time to compute their outputs” (Jordan, 1986, p. 397). 

 
10.2 A FUNDAMENTAL NONLINEARITY 

 
10.2.1 The Need For Nonlinearity  

 
Equation 10-2 proved that a two-layer distributed associative memory could be collapsed into a 

single-layer network with identical computational power.  Why is this collapse possible?  In Chapter 3 of 
this book, we encountered some of the properties of linear systems, and argued that linearity is responsi-
ble for the fact that some psychological models fail to surprise us.  We saw that in a linear system the be-
havior of the whole system is equal exactly to the combined behaviors of the system’s components.  It is 
exactly this notion of linearity that is responsible for the collapse of the two-layer system into a single-
layer memory.  The linear nature of the distributed associative memory is reflected in the operations – 
written in linear algebra -- described in Equation 10-2.  In order to prevent the collapse of a linear chain of 
operations into a single operation that reflects the total effects of all the links in the chain, some sort of 
nonlinearity has to be introduced.  In the next section we consider one neuronally inspired candidate for 
this nonlinearity. 

 
10.2.2 The All-Or-None Law 

 
How do neurons process information?  Very generally, neurons begin to process information by 

detecting inputs that stimulate, and travel through, their dendrites.  These inputs are weak electrical sig-
nals, called graded potentials, whose quality deteriorates as they travel towards the body or soma of the 
neuron.  However, if enough of these weak graded potentials arrive at the soma at the same time, then 
their cumulative effect disrupts the resting electrical state of the neuron.  This results in a massive depo-
larization of the membrane of the neuron's axon, called an action potential, which travels along the axon 
to eventually stimulate some other neuron. 

 
A crucial property of the action potential is that it is an all-or-none phenomenon.  While the grad-

ed potentials that travel through dendrites gradually decrease in intensity over time and distance, the de-
polarization that defines an action potential does not.  An action potential is an electrical signal of con-
stant intensity.  The fact that neurons generate action potentials of fixed intensity is one of the fundamen-
tal discoveries of neuroscience, and has been called the all-or-none law.  “The all-or-none law guarantees 
that once an action potential is generated it is always full size, minimizing the possibility that information 
will be lost along the way” (Levitan & Kaczmarek, 1991, p. 43). 

 
In Chapter 9, the activity in an output unit was exactly equal to its net input.  When net input was 

small, output activity was small.  When net input was medium, output activity was medium. When net in-
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put was large, output activity was large.  This was because the relationship between net input and output 
unit activity was linear.  In contrast, if we had a neuron as an output unit, then there would not be a linear 
relationship between net input and activity.  When net input was small, activity would be small in the 
sense that no action potential would be generated.  However, as net input gradually changed from being 
small to medium, activity would not change -- the output unit would still fail to generate an action potential.  
It is only in the case that the net input became sufficiently large then action potential would be generated. 

 
Figure 10-1 illustrates the difference between the relationship between net input and activity for 

the standard output unit of a distributed associative memory (Figure 10-1a) and for a neuron of the type 
that was described above (Figure 10-1b).  In the former case, the linear relationship between net input 
and activity is evident as a straight line drawn on the graph.  In the latter case, the relationship is nonline-
ar and discontinuous.  For a wide range of small net inputs, activity is equal to zero.  When net input be-
comes sufficiently large, activity is suddenly jumps to a value of one.  However, activity remains at one for 
a wide range of large net inputs.  This represents the nonlinearity that is consistent with the all-or-none 
law. 

 
In 1943, McCulloch and Pitts published a pio-

neering article entitled in the Bulletin of Mathematical 
Biophysics.  The purpose of this manuscript was to pro-
vide a mathematical account of the basic information 
processing carried out by neuron.  McCulloch and Pitts 
ignored the detailed biology of neural function, and in-
stead described neurons very abstractly as devices that 
made true or false logical assertions about input infor-
mation.  The logical description of neurons was made 
possible by recognizing the binary nature of the action 
potential.  "The all-or-none law of nervous activity is suf-
ficient to ensure that the activity of any neuron may be 
represented as a proposition.  Physiological relations 
existing among nervous activities correspond, of course, 
to relations among the propositions; and the utility of the 
representation depends upon the identity of these rela-
tions with those of the logical propositions.  To each re-
action of any neuron there is a corresponding assertion 
of a simple proposition." (McCulloch & Pitts, 1988, p. 
21).  

 
McCulloch and Pitts fleshed out this insight by 

designing sixteen different kinds of logical neurons, each 
one asserting the truth or falsehood of a logical opera-

tion performed on two input variables.  They were able to show that a network comprised of many of 
these neurons arranged in a systematic fashion had enormous computational power.  For instance, they 
were able to prove that they could construct a network that was equivalent in power to a universal Turing 
machine. “Thus in psychology, introspective, behavioristic or physiological, the fundamental relations are 
those of two-valued logic” (p. 38). 

 
While the architecture designed by McCulloch and Pitts was both enormously powerful, it did suf-

fer from one major drawback.  A McCulloch-Pitts network was not adaptive: in order to create a working 
network, one had to program it by choosing and “wiring” together all of the processors by hand. A McCul-
loch-Pitts network was built; it was not taught.  Later, other researchers developed networks that included 
a nonlinear activation function to instantiate the all-or-none law, and to ensure that network outputs could 
be assigned a logical interpretation.  However, these networks differed from those designed by McCulloch 
and Pitts in that their connection weights were modified by a learning rule.  One such architecture was the 
perceptron proposed by Rosenblatt (1962). 

 

Figure 10-1.  
Illustrations of activation functions.  

(A) A linear function. (B) Threshold function.  
(C) Logistic function.  (D) Gaussian function. 
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10.3 BUILDING A PERCEPTRON: A NONLINEAR ASSOCIATIVE MEMORY 
 
Rosenblatt’s (1962) perceptron was designed to be a model of brain function. "By ‘brain model’ 

we shall mean any theoretical system which attempts to explain the psychological functioning of a brain in 
terms of known laws of physics and mathematics, and known facts of neuroanatomy and physiology"  (p. 
3).  Rosenblatt realized that there were two different kinds of brain model that could be developed. 

 
The first kind of model was called monotypic.  In developing a monotypic model, a researcher is 

primarily interested in creating a device capable of carrying out an input/output mapping.  As a result, the 
researcher's first step is to define the desired mapping as accurately as possible.  Then, a system is con-
structed to compute this mapping, usually under the constraint that the components of the system should 
be analogous to biological components.  For Rosenblatt, a McCulloch-Pitts network was the prototypical 
example of a monotypic model. 

 
The second kind of model was called genotypic.  In a monotypic model, the properties of all of the 

components and the properties of their interconnections are all specified in advance in order to compute a 
single pre-specified function as accurately as possible.  This is not the case for the genotypic model.  In 
the genotypic model, the properties of the components might be specified in advance, but the organiza-
tion of these components into a system was not.  Instead, general principles were applied to the model in 
order to evolve its organization.  As a result, instead of producing a single model capable of computing a 
single function, the genotypic approach was capable of generating a number of different models, each 
with their own unique organization, but all capable of solving the same problem.  "The genotypic ap-
proach, then, is concerned with the properties of systems which conform to designated laws of organiza-
tion, rather then with the logical function realized by a particular system" (Rosenblatt, 1962, p. 20).  The 
perceptron was Rosenblatt's example of the genotypic model. 

 
It is interesting to note the Rosenblatt's (1962) distinction between monotypic and genotypic 

models bear some resemblance to the distinction between analytic and synthetic models that has been a 
theme of the current book. “In the monotypic approach, the functional properties are generally postulated 
as a starting point.  In the genotypic approach, they are the end-objective of analysis, and the physical 
system itself (or the statistical properties of the class of systems) constitutes the starting point” (p.20).  
Because of this difference, and because of the fact that the perceptron is viewed as being genotypic, the 
perceptron was thought of as a medium in which one could explore issues concerning types of organiza-
tion, hypothetical memory mechanisms, and biological models.  "The model is not a terminal result, but a 
starting point for exploratory analysis of its behavior" (p. 28). The sections that follow describe the com-
ponents of a perceptron, and some general principles that can be used to organize these components 
into a system capable of performing some task of interest. 

 
10.3.1 From Distributed Associative Memory To The Perceptron  

 
The perceptron is very similar to the distributed associated memory.  It too consists of a bank of 

input units, a bank of one or more output units, and a set of modifiable connections that link every input 
unit to every output unit.  A learning rule is used to modify the connection weights in order to train the 
perceptron to create an association between an input pattern and an output pattern.  The only crucial dif-
ference between the two architectures is the fact that the output units in a perceptron use a nonlinear ac-
tivation function.  As was discussed earlier, the purpose of the nonlinear activation function is to model 
the all-or-none law governing the generation of action potentials. 

 
The nonlinear activation function in the output units of a perceptron leads to a slight difference in 

interpreting the kind of task that a perceptron should be trained to perform.  The output units of a percep-
tron are trained to generate a response that will be interpreted as being either on or off.  This means that 
the output units can be assigned a logical interpretation, in the sense of McCulloch and Pitts.  As a result, 
while a perceptron can be viewed as a kind of associative memory, the kinds of associations that it learns 
to make will usually be interpreted in a different fashion than were the associations that were described in 
the previous chapter.  The logical nature of an output unit’s activity means that a perceptron is usually 
described as a device that makes decisions – it classifies input patterns.  The nonlinear activation func-
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tion in perceptron is used to assign input patterns to a particular category, where this assignment is all or 
none. 

 
For example, consider a simple kind of problem called the majority problem.  In a majority prob-

lem, a perceptron would have N input units, and a single output unit.  If the majority of the input units were 
turned on, then the output unit of the perceptron would be trained to turn on to those patterns.  If less than 
the majority of the input units were turned on, then the output unit of the perceptron would be trained to 
turn off.  Imagine that N was equal to 5.  In this case, whenever three, four, or five of the input units were 
activated, then the perceptron would be trained to turn on.  If zero, one, or two of the input units were ac-
tivated, then the perceptron would be trained to turn off.  Thus while it is perfectly legitimate to view the 
perceptron as learning to associate one kind of response with some inputs, and a different kind of re-
sponse with others, more specifically we can say that the perceptron has learned to decide that some 
patterns have the majority of their input units turned on, while others do not.  Our account of the percep-
tron as a pattern classifier is almost completely due to the fact that it uses a nonlinear activation function 
that is binary in nature. 

 
10.3.2 The Perceptron’s Architecture 

 
10.3.2.1 Processing Units 
 
The input units in a perceptron are identical in nature to the input units for the distributed associa-

tive memory that was described in Chapter 9.  The input units are used to represent patterns that are to 
be presented as stimuli to the perceptron.  The activities of the input units can either be binary or continu-
ous, depending on the desired interpretation of what each input unit represents.  Input unit activities can 
be used to represent features that are either very simple ore very complicated, depending on the problem 
to be presented to the network.  As an example of a simple input, an input unit could be turned on or off to 
represent whether some simple stimulus was present or absent in the environment.  This is the kind of 
representation that is used below when perceptrons are related to serious of animal learning. 

 
The output units in a perceptron represent an elaboration of the output units in a distributed asso-

ciative memory.  The two are identical with respect to their net input function.  The output units in a per-
ceptron calculate their net input by summing the signal being sent by each input unit after the signal has 
been scaled by a connection weight.  Mathematically, this can be described as computing the inner prod-
uct of a vector that represents the input pattern and a vector that represents the weights of the connec-
tions between each input unit and the output unit.  The difference between the output units in the two dif-
ferent kinds of networks is with respect to the activation function that is used to convert net input into in-
ternal activity.  In the distributed associative memory, output activity was made equal to net input, which 
established a linear relationship between the two.  In the perceptron, net input is "squashed" into the 
range between 0 and 1 by passing it into a nonlinear activation function.  In the current chapter, we will 
consider three different kinds of nonlinear activation functions to be used in the output units of a percep-
tron. 

 
The first nonlinear activation function to consider was used by Rosenblatt (1962), and is called 

the step function.  The step function represents a nonlinear and discontinuous description of the all-or-
none law governing the action potential.  Let some output unit j have some threshold value j.  If the net 
input is less than this value, then the unit’s activity will be equal to 0.  If the net input is equal to or greater 
than j, then the unit’s activity will be equal to 1.  A graph of the step function was presented earlier in 
Figure 10-1b. 

 
The second nonlinear activation function to consider is one that is quite commonly used in mod-

ern connectionist networks.  It represents a continuous approximation of the step function.  A continuous 
approximation of the step function is an important tool in connectionism because it permits calculus to be 
used to derive more powerful learning rules, as we will see below. 

 
The approximation of the step function that we will be using is the logistic equation.  When 

graphed, the logistic equation is a sigmoid-shaped line that reaches an asymptote of 0 as net input ap-
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proaches negative infinity, and reaches an asymptote of 1 as net input approaches positive infinity.  A 
graph of this function was presented earlier in Figure 10-1c.  The logistic equation that we will be using is 
written as follows: 

 
f(neti) = 1 / (1 + exp (-neti + j))  Equation 10-3 

 
 In this equation, f(neti) is the activation being calculated for output unit i, neti is the net input for that out-
put unit, and j is called the bias of the output unit.  When the net input to the logistic equation is equal to 
the bias (i.e., equal to j), the activity that is generated is equal to 0.5.  Because of this, it is typical to con-
sider the bias of the logistic activation function as being analogous to the threshold of the step function. 
 

Both the step function and the logistic equation are attempts to model the all-or-none law govern-
ing the generation of action potentials.  Ballard (1986) has used the term integration device to describe 
neurons whose activation as a function of net input is sigmoid in nature.  He points out that cells that be-
have in this fashion are commonly found in the oculomotor system of the mammalian brain.  However, 
Ballard has also observed that not all neurons respond in a sigmoid fashion to net input.  For instance, 
cone cells in the retina are tuned to particular ranges of light wavelength.  Such a neuron will generate a 
strong response to a wavelength that has a value that falls in a narrow intermediate range.  If the wave-
length is too short to fall in this range, then the cone cell will not respond.  Such behavior would also be 
expected of an integration device.  However, unlike an integration device, if the wavelength is too long to 
fall in this range, then the cone cell will also not respond.  Ballard calls neurons that behave like this value 
units.  The activation function for a value unit, when plotted against net input, is bell shaped as is illustrat-
ed in Figure 10-1d. 

 
The third nonlinear activation function that we will be considering for a perceptron is the bell 

shaped function that is characteristic of a value unit.  Don Schopflocher and myself first described net-
works of value units in 1992, and networks of value units have been central to my research since that 
time.  The particular equation that we use to describe the activation of a value unit is the Gaussian equa-
tion: 

 
G(neti) = exp (-(neti - j)

2)  Equation 10-4 
 

In this equation, G(neti) is the activation being calculated for output unit i, neti is the net input for that out-
put unit, and  is the mean of the Gaussian.  When the net input to the Gaussian equation is equal to the 
mean (i.e., equal to j), the activity that is generated is equal to 1.0.  As a result, j can be thought of as 
being similar to the bias of the logistic or the threshold of the step function. 

 
10.3.2.2 Modifiable Connections 
 
In a perceptron, input units are connected to output units by connections that have modifiable 

weights.  These modifiable connections are identical in nature to those that were described for the distrib-
uted associative memory in Chapter 9.  An input unit sends a numerical signal through a connection.  The 
connection takes the signal and multiplies it by the connection weight before the signal reaches the output 
unit at the other end of the connection.  If the connection is weak, then the absolute value of the connec-
tion weight will be near zero.  As the connection grows stronger, the absolute value of the connection 
weight will grow larger.  If the connection weight is positive, then the connection is excitatory.  If the con-
nection weight is negative, then the connection is inhibitory.  Associations between input patterns and 
output unit responses are stored as a set of connection weights.  A learning rule, which will be described 
in more detail below, is used to modify connection weights in order to create these associations. 

 
10.3.2.3 Decision: The Retrieval Operation 
 
Once associations have been stored in the connection weights of a perceptron, one can present 

a cue stimulus to the perceptron in order to retrieve information from it.  As was discussed above, the 
nonlinear – or decisive -- nature of the perceptron's output means that information retrieval is usually not 
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viewed as a memory operation, but is instead interpreted as a classification operation.  Regardless of the 
interpretation, the response of the perceptron is computed as follows: First, the cue pattern is used to ac-
tivate the input units.  Second, the activity from the input units is sent through the connections of the per-
ceptron, and is modified by the connection weights at the same time.  Third, each output unit in the per-
ceptron calculates its net input.  Fourth, each output unit in the perceptron passes its net input into a non-
linear activation function to calculate unit activity.  The activity that is computed for each output unit repre-
sents the perceptron’s response to the stimulus that was presented. 

 
10.3.3 Learning With Nonlinearity 

 
How are connection weights modified in a memory system that uses nonlinear activation func-

tions?  In the sections that follow, we will consider three different learning rules.  Each of these learning 
rules is associated with one of the three activation functions that were described above.  While there are 
important technical differences between each of these learning rules, it will be apparent that they all share 
a general format.  Each learning rule defines a change in a connection weight as being the product of 
three different numbers: a learning rate, the activity of the unit at the input end of the connection, and the 
error of the unit at the output end of the connection. 

 
10.3.3.1 Rosenblatt’s Learning Rule 
 
The first learning rule that we will consider is a rule that Rosenblatt used to train perceptrons that 

used the step function to activate the output units.  The logic of this learning rule is that connection weight 
modifications are contingent upon network performance.  Let us define the error of some output unit j as 
the value (tj – aj), where tj  is the desired or target value of the output, and aj is the actual activity that the 
output unit generates.  In calculating (tj – aj) there are three possible outcomes.  First, the value of (tj – aj) 
could be equal to 0.  In this case, the output unit has generated the correct response to an input pattern 
and no connection weight changes are required.  Second, the value of (tj – aj) could be equal to 1.  In this 
case, the output unit has generated an error by turning off when it was desired that the unit actually turn 
on.  In order to deal with this situation, it is necessary to increase the net input to the output unit.  This 
could be accomplished by increasing the size of the connection weights.  Third, the value of (tj – aj) could 
be equal to -1.  In this case, the output unit has made an error by turning on when it should have turned 
off.  The remedy for this problem would be to decrease the unit’s net input by subtracting from the values 
of the connection weights. 

 
An examination of the three possible values for error, and of the resulting change that these val-

ues imply for connection weights, indicates that the delta rule that was described in Chapter 9 could be 
used as a learning rule for a perceptron based upon the step function.  The value of the error term (tj – aj) 
provides the direction of change required in the connection weights in order to reduce error if error oc-
curs.  In other words, Rosenblatt's learning rule for a perceptron is identical to the delta rule that we have 
already seen.  Mathematically, the desired change to the weight connecting input unit i to output unit j can 
be expressed as: 

 
wij = (tj – aj) ai   Equation 10-5 

 
In equation 10-5,  is a learning rate that will ordinarily range between 0 and1, (tj – aj) is the error calcu-
lated for output unit j, under the assumption that aj is calculated using the step function, and ai is the activ-
ity of input unit i. 
 

An output unit that uses the step function can be described as a classifier that makes a single 
straight cut through a pattern space.  Each input pattern is represented as a point in that pattern space, 
with the position of each point being defined by the activity of each input unit.  The input unit activities are 
used to define coordinates in the pattern space.  Patterns that fall on one side of the cut the output unit 
makes will result in the output unit turning off.  Patterns that fall on the other side of the cut will result in 
the output unit turning on.  When a perceptron’s weights are trained using equation 10-5, the result is that 
the cut through pattern space made by the output unit is rotated.  However, to solve some problems we 
also need to be able to translate this cut through space instead of just rotating it.  In order to translate the 
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cut, we need to be able to modify the threshold j of the output unit.  This can easily be done by assuming 
that the threshold is the value of the connection weight that comes from an additional input unit that is 
always on.  With this interpretation, the desired change in the threshold j of some output unit j can be 
defined as: 

 
j =  (tj – aj) 1    Equation 10-6 

 
The delta rule, when applied to a perceptron, is very powerful.  Rosenblatt used it to derive his 

famous perceptron convergence theorem.  This theorem proved that if a solution to a pattern classifica-
tion problem could be represented in the connection weights of a perceptron, then the delta rule was 
guaranteed to find a set of connection weights that solved the problem.  For our purposes, the fact that 
the delta rule can be used to train a perceptron also provides additional evidence about the similarity be-
tween perceptrons and distributed associative memories. 

 
10.3.3.2 The Gradient Descent Rule 
 
Imagine being at the southwest corner of Sir Winston Churchill Square in Edmonton.  This square 

is a small downtown park that is a city block wide and long.  If I wanted to meet someone at the northeast 
corner of the square, the shortest route to the meeting place would be for me to walk in a straight line di-
agonally through the park, from the southwest to the northeast.  However, this isn’t the only route that 
could be taken.  Perhaps, for some unknown reason, I feel compelled to remain on the city sidewalks.  
Because of this compulsion, I could reach the meeting place by walking one block north, and then one 
block east.  I could also go to my destination by walking one block east, and then one block north.  How-
ever, by restricting myself to moving in only certain directions, both of these routes are longer than the 
one that I would have taken had I permitted myself to walk through the park.  A slave to my compulsion, I 
arrive at my desired destination, but I take longer than was necessary. 

 
Rosenblatt (1962) proved that the delta rule is guaranteed to find a solution to a pattern classifica-

tion problem, provided that it is possible for the solution to be represented in a perceptron’s weights.  
However, this does not mean that this rule is the most efficient one to use.  In fact, the delta rule is re-
stricted in a manner that is very similar to my example of walking around the park instead of through it. 

 
The potential inefficiency of the delta rule becomes evident when we think about what weight 

changes that it permits during learning.  Imagine that the input units of some perceptron are only activat-
ed with values of 0 or 1 for some problem of interest, and that the output units of this perceptron employ 
the step function.  If this perceptron is trained with the delta rule, then this means that when a weight is 
changed, it will only be changed in one of two ways.  One change would be to add the value of the learn-
ing rate  to the weight, while the other change would be to subtract  from the weight.  No other changes 
are possible, given the equations that were provided in Section 10.3.3.1. 

 
The problem with this is that in some cases, the shortest route to a desired destination – that is, 

the fastest way to learn to perfectly classify the input patterns – might be if the weights were changed in a 
“diagonal” direction, by a value of ½ , or ¼ , or some other value.  However, speeding up learning in 
this way is not possible because the delta rule restricts us to moving in a “city block” direction of . 

 
In order to have greater flexibility in the way in which weights are to be changed, the first thing 

that we need is to have greater flexibility in assigning activation values to our output units.  The step func-
tion is the primary source of restriction on the delta rule, because when an output unit can only take on 
one of two possible activation values, this in turn restricts the possible values for unit error.  To remove 
this source of restriction, we can approximate the step function with a continuous function, such as the 
logistic equation that was described earlier.  Because of its continuous nature, an output unit that uses 
the logistic can generate an activity value that can be any real number in the range between 0 and 1.  In 
turn, this means that when output unit error is measured by the expression (tj – aj), it will not be restricted 
to returning values of –1, 0, or 1.  Instead, output unit error will be any real number in the range between 
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–1 and 1.  The fact that our error values fall in a continuous range is what provides us with the opportunity 
to optimize the rate of learning by moving weights in a “diagonal” direction. 

 
However, the flexibility to change weights in a continuous range, instead of in just two directions, 

presents a different problem.  With all of the possible values that are now available to modify a weight at 
any given time, which value is the best one to use?  Which weight change will reduce output error by the 
largest amount?  The continuous nature of the logistic activation function provides us with an opportunity 
to use calculus to answer this question. 

 
Rumelhart, Hinton, and Williams (1986) defined the total error for a network with logistic output 

units as the sum of squared error, E, where the squared error is totaled over every output unit and every 
pattern in the training set: 

 
E = ½ (tjp – ajp)

2    Equation 10-7 
 
In this equation, tjp represents the target activity for output unit j when it is presented pattern p, and ajp rep-
resents the observed activity for output unit j when it is presented pattern p.  The first summation sign is 
performed over the total number of patterns in the training set, and the second summation sign is per-
formed over the total number of output units in the perceptron. 
 

With network error defined as above, and with a continuous activation function, Rumelhart, Hin-
ton, and Williams (1986) were in a position to use calculus to determine how a weight should be altered in 
order to decrease error.  They derived equations that determined how a change in a weight changed the 
net input to an output unit, how the resulting change in net input affected the output unit’s activity, and 
how altering the output unit’s activity affected error as defined in Equation 10-7.  They then used these 
equations to define how to change a weight, when a given pattern has been presented, in order to have 
the maximum effect of learning.  This definition was a new statement of the error for an output unit j, 
which we will represent as j.  They found that the fastest way to decrease network error was to take the 
error that was used in the delta rule, and to multiply this error by the first derivative of the logistic equa-
tion, f’(netj).  The first derivative of the logistic equation is equal to the value aj (1 – aj).  So, the new equa-
tion for output unit error was: 

 
j = (tj – aj) f’(netj)  = (tj – aj) aj (1 – aj)   Equation 10-8 

 
A new learning rule for a perceptron that uses the logistic activation function can be defined by 

inserting the error term from Equation 10-8 into the delta rule equation.  This results in what we will call 
the gradient descent rule for training a perceptron: 

 
wij =  j ai =  (tj – aj) aj (1 – aj) ai   Equation 10-9 

 
As was the case with the delta rule, the bias of the logistic can also be modified by the learning 

rule.  To do this, the bias is treated as if it were equal to the weight of a connection between the output 
unit and an additional input unit that is always activated with a value of 1 for every training pattern in the 
training set.  With this assumption, the gradient descent rule for modifying bias can be stated as: 

 
j =  j 1 =  (tj – aj) aj (1 – aj) 1   Equation 10-10 

 
What is the purpose of multiplying the output unit’s error value by the derivative of the activation 

function before modifying the weight?  At any point in time during learning, a perceptron can be repre-
sented as a single point or location on a surface.  The coordinates of the location are given by the current 
values of all of the perceptron’s weights (and of its bias).  Each point on this surface has a height, which 
is equal to the value of total network error.  One can think about learning as a process that moves the 
perceptron along this error surface, always seeking a minimum error value.  Every time that the percep-
tron changes its connection weights, it takes a step “downhill” on the error surface, moving to a location 
that has lower height (i.e., a lower error value).  The size of the step that is taken is determined by the 
size of the learning rate.  The direction in which the step is taken is dictated by the error calculated for an 
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output unit.  In order to minimize total network error as quickly as possible, it is desirable that at each step 
the perceptron move in the direction that is the steepest “downhill”.  The first derivative of the activation 
function is the part of the equation that determines the direction from the current location on the space 
that has the steepest downhill slope. By multiplying output unit error by the derivative, the network is per-
mitted to take the shortest “diagonal” path along the error surface.  This is why Equation 10-9 is called a 
gradient descent rule – it results in the perceptron navigating a gradient surface by moving, step by step, 
in the steepest downhill direction.  This is also why the gradient descent rule is more flexible than the del-
ta rule. 

 
10.3.3.3 Perceptrons And Linear Nonseparability 
 
We saw earlier that Rosenblatt’s (1962) perceptron convergence theorem was a proof that the 

delta rule was guaranteed to find the set of weights required for a perceptron to solve a problem, provided 
that the problem was one that could be represented in a perceptron’s weights.  What this implies is that 
there must be some problems that a perceptron cannot solve, no matter how much training it receives.  
What sorts of problems are these?  What are the formal limitations of a perceptron? 

 
In Section 10.3.3.1, the delta rule was described as a technique for changing the position of a cut 

through a pattern space that separated different groups of input patterns.  In this pattern space, each pat-
tern is represented as a point whose coordinates are determined by the activity of each input unit.   The 
perceptron can be described as a system that makes a single, straight cut through this space to separate 
the patterns that turn the output unit off from the patterns that turn the output unit on.  When an input pat-
tern falls on one side of the cut, its net input to the output unit is below threshold.  When an input pattern 
falls on the other side of the cut, its net input to the output unit is above threshold.  When a perceptron’s 
weights are changed, the position of the cut is rotated around in the space, and when its threshold is 
changed, the position of the cut is translated through the space.  Learning, then, is a process by which 
the perceptron finds where it should make a cut through the pattern space to solve a desired problem. 

 
When the output unit of a perceptron employs the logistic equation, a similar story can be told.  

Because the logistic function is a continuous approximation of the step function, it too can be described 
as an equation that is used to make a single straight cut through the pattern space to separate one class 
of patterns from another.  Weight changes rotate the cut, and changes in bias translate the cut. 

 
As a result of this description, it can be said that a perceptron that uses either the step function or 

the logistic function can only represent solutions to problems for which all of the “off” patterns can be sep-
arated from all of the “on” patterns by a single straight cut through a pattern space.  If a problem can be 
solved in this fashion, then it is called linearly separable.  Perceptrons are formally limited to solving line-
arly separable problems. 

 
 This is not to say that the set of linearly separable problems is either small or uninteresting.  For 

instance, consider the domain of two-valued logic that McCulloch and Pitts (1988) argued provided the 
core of any psychological theory.  Imagine having a perceptron for dealing with this logical domain.  It will 
have one output unit, used to represent whether some logical relationship is either true or false.  It will 
also have two input units, used to represent the truth or falsehood of two different input variables (x and 
y).  In this situation, there are four possible input patterns (x and y both false, x true and y false, x false 
and y true, x and y both true) that are represented in the four columns on the left of Table 10-1.  In this 
situation, there are also 16 possible patterns of response made by the output unit to the four input pat-
terns, ranging from turning off to all four to turning on to all four.  These possibilities are represented in 
the bottom 16 rows of Table 10-1.  The pattern of responses in each of these rows defines a truth table 
for a particular logical relationship between two variables.  Of all of these possible logical relationships, 14 
are linearly separable, and as a result can be learned by a perceptron (Quinlan, 1991, p. 17).  This indi-
cates that perceptrons have a high degree of logical power. 

 
Inputs Pattern 1 Pattern 2 Pattern 3 Pattern 4 

X 0 0 1 1 
Y 0 1 0 1 
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 Output 1 Output 2 Output 3 Output 4 
Contradiction 0 0 0 0 

~x ~y 1 0 0 0 
~x y 0 1 0 0 

~x 1 1 0 0 
x ~y 0 0 1 0 

~y 1 0 1 0 
x  y 0 1 1 0 

~(x  y) 1 1 1 0 
x  y 0 0 0 1 

~(x  y) 1 0 0 1 
Y 0 1 0 1 

x  y 1 1 0 1 
X 0 0 1 1 

y  x 1 0 1 1 
x   y 0 1 1 1 

Tautology 1 1 1 1 
10-1.  Logical operations on two input variables. 

 
However, this logical power is not complete.  There are two logical relations in this table that are 

not linearly separable, and as a result cannot be realized as primitive operations by a perceptron.  The 
first is the exclusive-or (XOR) relationship x  y, which amounts the statement in English “x or else y”.  For XOR, 
the output unit must turn on when only one input unit is activated, and must turn off when either both input units are 
off, or when both input units are on.  The second is the identity function that is the negation of XOR, and is represent-
ed as ~(x  y).  In English it can be stated as “both or else neither”.  It is the opposite of XOR, in the sense that the 
output unit must turn on when either both input units are off, or when both input units are on, but must turn off when 
only one input unit has been activated. 

 
Why is a relationship like XOR not linearly separable?  One way to answer this question is to try 

to design a perceptron to compute XOR, and see why it fails.  When computing XOR, if both input units 
are off, the output unit must turn off.  To accomplish this, we need to set the threshold of the output unit 
high enough above zero to ensure that the output unit will not turn on to the net input of zero.  This is be-
cause net input of zero will be produced when both input units are off, regardless of what the connection 
weights are.  So, for a first step, let us set the output unit’s threshold equal to 0.5. 

 
For two of the input patterns of the XOR problem, only one of the two input units is on, and the 

output unit is required to turn on to each of these patterns.  This can be accomplished in our second de-
sign step by keeping the output unit’s threshold at 0.5, and by setting both of the connection weights 
equal to +1.  Under these conditions, when only one of the input units is activated, the net input to the 
output unit will be equal to 1.  Because this is greater than the threshold of 0.5, the output unit will gener-
ate an activity of 1 when only one input unit is turned on. 

 
With a threshold of 0.5, and two weights of +1, the output unit will generate the correct response 

for three of XOR’s possible input patterns.  However, this configuration will not permit a correct response 
to the fourth.  For the fourth pattern, in which both input units are turned on, the net input will be even 
stronger – equal to 2 – and as a result will be even further above threshold than was the case for the two 
patterns that involve activating only one input unit.  As a result, the output unit will turn on.  However, this 
is an incorrect response, because the output unit is required to turn off to this pattern.   

 
This last scenario provides one sense about why XOR is not a linearly separable problem.  It 

shows that a single cut – represented in this case by a single threshold – is not sufficient to separate the 
“off” patterns from the “on” patterns.  The threshold of 0.5 separates the two patterns in which only one 
input unit is on from the one pattern in which both inputs are off.  However, it does not separate them 
from the one pattern in which both inputs are on.  In order to do this, a second cut would be required, 
which is why the problem is not linearly separable.  For instance, if we could define a unit that had two 
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thresholds, and that would only turn on to net inputs that were between the two thresholds, then the XOR 
problem could be solved.  A second threshold equal to 1.5 would suffice to deal with XOR.  However, a 
second threshold is not a possibility when the output units of a perceptron use either the step function or 
the logistic function. 

 
The inability of perceptrons to represent solutions to linearly nonseparable problems was a se-

vere blow to research on artificial neural networks.  Minsky and Papert (1988) provided a detailed math-
ematical analysis of what perceptrons could and could not do in the late 1960s.  They were able to prove 
that a number of discriminations that could easily be made by humans, such as detecting whether a figure 
was connected or not, were linearly nonseparable, and were therefore beyond the ken of perceptron sim-
ulations.  This led to a dramatic decrease in interest in this type of modeling. Artificial neural networks did 
not regain widespread popularity until the mind 1980s, when learning rules for training more complex ar-
chitectures, were discovered. 

 
10.3.3.4 The Dawson-Schopflocher Learning Rule 
 
The standard approach to dealing with linearly nonseparable problems such as XOR is to adopt a 

more complicated architecture that includes layers of processors.  The idea in using this architecture is 
that intermediate processing units can detect patterns in the input that can be used to modify or “gate” the 
direct effects of the inputs on the output unit.  “Of the 16 possible logical functions of neurons with two 
inputs, two functions cannot be calculated by any one neuron.  They are the exclusion ‘or’, ‘A or else B’, 
and ‘both or else neither’ – the ‘if and only if’ of logic.  Both limitations point to a third possibility in the in-
teraction of neurons, and both are easily explained if impulses from one source can gate those from an-
other so as to prevent their reaching the output neuron” (McCulloch, 1988, p. 12).  The basic properties of 
so-called multilayer perceptrons are dealt with in detail in the next chapter. 

 
 A less standard approach is to modify the activation function of the perceptron, and to replace the 
step function or the logistic function with a function that can be described in qualitative terms as having 
two different thresholds, and which leads to an “on” response when the net input falls between the two 
thresholds.  This was the architectural move made by Dawson and Schopflocher (1992) when they de-
veloped a rule for the training of networks of value units.  In a perceptron that uses value units, the output 
units will employ an activation function like the Gaussian that was defined in Equation 10-4.  Because this 
function is “tuned” or “bell shaped”, as was illustrated in Figure 10-1, it can be thought of as providing an 
output unit with two functions, and as a result should be capable of solving a problem like XOR. 
 

How would one train a perceptron whose output units are value units?  The first plausible ap-
proach would be to adopt the gradient descent rule.  To do this, one would define a new error term by 
taking Equation 10-8 and replacing the first derivative of the logistic (f’(netj)) with the first derivative of the 
Gaussian (G’(netj)), which is equal to -2(netj)G(netj) = -2(netj) (exp(-(neti - j)

2)).  However, Dawson 
and Schopflocher found that when they did this, learning was very inconsistent.  In some cases, training 
proceeded very quickly.  However, in the majority of cases, the network did not learn to solve the prob-
lem.  Instead, its connection weights were changed in such a way that the network learned to turn off to 
all of the training patterns by moving all of the net inputs into one of the tails of the Gaussian function. 

 
To correct this problem, Dawson and Schopflocher (1992) elaborated the equation for total net-

work error by adding a heuristic component to Equation 10-7.  This heuristic component was designed to 
keep some of the net inputs in the middle of the Gaussian function.  It was a statement that asserted that 
when the desired activation value for output unit j was 1, the error term should include an attempt to min-
imize the difference between the net input to the unit netj and the unit’s mean j.  Their elaborated ex-
pression for total network error was: 

 
E = ½ (tpj – apj)

2 + ½  tpj (netpj - j)
2  Equation 10-11 

 
After defining this elaborated error term, Dawson and Schopflocher (1992) used calculus to de-

termine what kind of weight change was required to decrease total network error.  As was the case for the 
derivation of the gradient descent rule, this resulted in a new expression for output unit error to be includ-
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ed in an expression that was similar to the delta rule.  However, because their elaborated error expres-
sion had two components, Dawson and Schopflocher found that the error for an output value unit also 
had two components. 

 
The first component was identical to the expression in the gradient descent rule that defined the 

term pj, with the exception that it used the first derivative of the Gaussian instead of the logistic: 
 
pj = (tpj – apj) G’(net pj)  = (tpj – apj) (-2(netpj) (exp(-(netpj - pj)

2)))  Equation 10-12 
 
The second component was represented with the term j, and was the part of output unit error 

that was related to the heuristic information that Dawson and Schopflocher (1992) added to the equation 
for total network error.  The equation for this error term was: 

 
pj = tpj (netpj - j)     Equation 10-13 

 
The complete expression for an output unit’s error was found to be the difference between these 

two expressions of error, and Dawson and Schopflocher discovered that a learning rule for a network of 
value units was defined by a gradient descent rule that used this more complex measure of output unit 
error: 

 
wij = (j - j)ai      Equation 10-14 

 
Similarly, Dawson and Schopflocher (1992) that the mean of an output unit’s Gaussian could also 

be trained.  This was done by assuming that the value j was the weight from an additional input unit that 
was always turned on.  This assumption results in a learning expression very similar to the ones that were 
provided earlier for training the threshold of a step function or the bias of a logistic function: 

 
 = (j - j)      Equation 10-15 

 
In summary, Dawson and Schopflocher (1992) demonstrated that a perceptron with output units 

that used the Gaussian activation function could be trained with a variant of the gradient descent rule that 
was derived for integration devices.  The learning rule that they developed differed from the more tradi-
tional gradient descent rule in only two ways.  First, it used the first derivative of the Gaussian equation.  
Second, it used an elaborated expression for output unit error, which included a heuristic component that 
is not found in the traditional gradient descent rule. 

 
There are both advantages and disadvantages associated with using value units as the outputs in 

a perceptron.  On the one hand, this kind of perceptron is capable of solving some linearly nonseparable 
problems.  For instance, it can solve XOR, and can also detect connectedness in the figures that Minsky 
and Papert (1988, p. 13) used to examine the limitations of more traditional perceptrons.  As well, Daw-
son and Schopflocher (1992) also found that their learning rule led to very fast learning for a number of 
benchmark problems. 

 
On the other hand, a perceptron constructed from value units is also subject to limitations.  When 

the activation function is the Gaussian defined in Equation 10-4, there is a very narrow gap between the 
two thresholds that can be assigned.  In other words, while this Gaussian makes two parallel cuts through 
a pattern space, these two cuts are very close together.  Because of this, it cannot solve all of the logic 
problems in Table 10-1 (at least when the inputs to the problems are encoded with 0 and 1).  For exam-
ple, it cannot solve x   y because it cannot arrange its two cuts so that all three “on” patterns for this problem fall 
between them.  As a result, there is still a need for the multilayer architectures that will be described in the next chap-
ter. 

 
10.3.3.5 Exploring The Three Learning Rules 
 
The website of supplementary material (www.bcp.psych.ualberta.ca/~mike/Book2) for this book 

provides a program called “Rosenblatt”.  This program can be used to train perceptrons using any of the 
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three learning rules that were described above.  The program also comes with a number of example train-
ing files, including ones for all of the logic problems from Table 10-1.  The reader is invited to use this 
program to explore the relative merits and limitations of these three different kinds of perceptrons.  Some 
suggestions for exploring the properties of perceptrons are included in the manual that describes how to 
use the program, which is also available at that website. 

 
10.4 THE PSYCHOLOGY OF PERCEPTRONS 

 
Modern cognitive science has very little interest in the perceptron.  Primarily, this is because per-

ceptrons are generally restricted to solving linearly separable problems, although we saw above that this 
could be circumvented to a certain degree by adopting a Gaussian activation function.  This restriction 
means that perceptrons are inappropriate models for a wide range of cognitive phenomena, because per-
ceptrons are not powerful enough to capture them.  Nevertheless, there is some mileage to be gained by 
considering the kinds of contributions perceptrons could make to some areas of cognitive science or psy-
chology.  This is consistent with the general perspective on synthetic psychology that I would like to 
communicate to my students.  When you have a set of building blocks, no matter how small that set is, it 
can still be fruitful to ask what can be done with it.  At this point in the chapter, we are armed with two 
basic connectionist building blocks.  The first is the storing of associations in modifiable connection 
weights. The second is the use of nonlinear activation functions in output units.  In the sections that fol-
low, we will see that the perceptron can use these two building blocks to make some interesting contribu-
tions to a modern debate in the study of discrimination learning. 

 
10.4.1 Supervised Learning And Classical Conditioning 

 
In Chapter 4, we were introduced to the notion of classical conditioning.  At the start of a classical 

conditioning experiment, a conditioned stimulus (CS) will not elicit a desired response.  However, if it is 
repeatedly paired with an unconditional stimulus (US) it does elicit the desired response without the need 
of training, then eventually the conditioned stimulus will become capable of eliciting the response as well.  
One account of classical conditioning considers the product of learning to be a stronger association be-
tween the conditioned stimulus and the response. 

 
With a little imagination, one can see how classical conditioning could be represented in a per-

ceptron.  Each input unit of the perceptron can be used to represent the presence or absence of a par-
ticular conditioned stimulus.  If the stimulus is present, then its input unit will be turned on.  Otherwise, the 
input unit will be turned off.  The response that is being conditioned must be the activity of the output unit 
of the perceptron; this response will either be present or absent.  (All of the networks that we will consider 
below will have only one output unit.)  The pairing of a conditioned stimulus with an unconditioned stimu-
lus is represented by using target values to train the perceptron to make desired responses.  The results 
of learning are the changes of weights in the perceptron, which represent changes in association between 
conditioned stimuli and the response. 

 
By thinking about a perceptron in this way, and placing it in the context of classical conditioning, 

we can begin to see that there may be important relationships between the learning rules used to train 
perceptrons and the regularities that govern associative learning in humans and animals.  As a matter of 
fact, by drawing the parallel between perceptrons and classical conditioning, Sutton and Barto (1981) 
were able to prove that there is a formal equivalence between the delta rule and the Rescorla-Wagner 
learning rule that was discussed earlier in Chapter 4.  In short, a rule that can be used to train a percep-
tron must be viewed as a plausible theory of classical conditioning.  Furthermore, one can use a percep-
tron as a simulation in order to explore potential empirical relationships between perceptron learning and 
animal learning. 

 
10.4.2 The Patterning Problem 

 
10.4.2.1 Patterning Problems In Classical Conditioning 
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One example of the kind of learning that could be accomplished by a perceptron is called discrim-
ination learning.  In discrimination learning, an animal is trained to make a response to one stimulus, and 
to not make the response to a different stimulus.  This learning requires that the animal discriminate be-
tween the two different stimuli.  For example, an animal might be presented two different sounds, such as 
a pure tone (stimulus A) and white noise (stimulus B), and the trained to press a bar when stimulus A is 
heard, but not when stimulus B is heard.  For learning theorists, this kind of training would be represented 
as [A+, B-].  This kind of training could be accomplished in a perceptron as follows: first, the perceptron 
would have two input units, one to represent the presence or absence of stimulus A, the other to repre-
sent the presence or absence of stimulus B.  Second, a learning rule would be used to train the percep-
tron to turn on to stimulus A, and to turn off to stimulus B. 

 
Discrimination learning is of interest to modern researchers because it can be used to study how 

animals learn to respond to combinations of stimuli.  One learning paradigm that focuses upon stimulus 
combinations is the patterning experiment.  In a patterning experiment, an animal learns to respond in 
one fashion to a single stimulus, and to respond in the opposite fashion when stimuli are combined.  In 
positive patterning, the animal is trained not to respond to single stimuli and to respond to their conjunc-
tion [A-, B-, AB+].  In negative patterning, the animal is trained to respond to single stimuli, and not to re-
spond to their conjunction [A+, B+, AB-]. 

 
The basic perceptron model of classical conditioning that is illustrated in  

Figure 10-2a represents one possible theory of patterning, called the configural approach.  “According to 
this view, subjects represent compound stimuli holistically and as being different from but similar to their 
components” (Delamater, Sosa, & Katz, 1999, p. 98).  The basic perceptron model is configural in the 
sense that the net input to the output unit is a holistic representation that would have to distinguish com-
pound stimuli from their components.  However, the fact that this particular type of theory can be ex-
pressed in the form of a perceptron is not advantageous.  Modern learning theorists usually begin by 
pointing out that a theory that can be expressed in this way, such as the Rescorla-Wagner model, is not 
powerful enough to account for negative patterning.  The reason for making this claim is that learning 
theorists equate negative patterning with the XOR problem, which we have already seen cannot be 
solved by a perceptron that uses a step function or a logistic function in its output unit. “This is not a prob-
lem that is unique to this particular theory.  There has been other attempts to develop a single layer learn-
ing networks, and it has long been appreciated that they are unable to solve negative patterning discrimi-
nations, or, as it is more generally known, the exclusive-or problem” (Pearce, 1997, p. 131).   

 

 

Because of this limitation, learning theorists who are interested in connectionism adopt two differ-
ent approaches to elaborating the configural model that is illustrated in Figure 10-2a.  The first is the ele-
mental approach, in which an additional input unit is used to represent the presence of conjoined stimuli.  
This is shown in Figure 10-2b. The logic of this approach is that there is something unique in the conjunc-
tion of stimuli, and this uniqueness can serve by itself as an additional conditioned stimulus or cue.  The 

Figure 10-2.  Three examples of network models of conditioning paradigms. (A) A 
configural model.  (B) An elemental model.  (C) A multi-layered model. 



 - 128 - 

Minds And Machines © M.R.W. Dawson 12/02/2016 

second is what I will call the multilayer approach.  “According to this approach, it is assumed that condi-
tioned stimulus representations change during conditioning, and that configural and/or elemental solu-
tions develop according to the nature of the task” (Delamater, Sosa, & Katz, 1999, p. 98). One example of 
a multilayer approach would be to add hidden units to the perceptron, as is shown in Figure 10-2c.  Such 
a system “assumes that these ‘unique cues’ or ‘configural stimuli’ are not present from the outset of train-
ing but rather are themselves the product of learning.” 

 
Unfortunately, there is a serious flaw in the argument that a perceptron is incapable of handling 

negative patterning, and that as a result a model of the form of Figure 10-2a is not appropriate for study-
ing this kind of learning.  If negative patterning is defined as responding in particular ways to three differ-
ent stimulus conditions, as is represented in the expression [A+, B+, AB-], then negative patterning is not 
identical to XOR.  As a matter of fact, learning to respond [A+, B+, AB-] turns out to be a linearly separa-
ble problem whose solution can be represented by any of the perceptron types that we have described in 
this chapter.   

 
The reason for this is that the expression [A+, B+, AB-] does not include a fourth stimulus condi-

tion, in which the animal learns not to respond when neither stimulus is present.  When learning theorists 
say that a perceptron cannot learn negative patterning, they really intend to define negative patterning as 
[~A~B-, A~B+, ~AB+, AB-], where ~A represents the absence of A, and ~B represent the absence of B. 
Importantly, this is not a minor semantic point.  This is because when connectionist models are used to 
explore negative patterning, the network is not trained to not respond in a null condition in which no condi-
tioned stimuli are presented.  The connectionist models are instead trained on patterns that corresponds 
to the traditional definition of negative patterning, that is [A+, B+, AB-].  Because of this, learning theorists 
are exploring negative patterning with connectionist networks that are more powerful than necessary.  To 
demonstrate this, let us consider a recent experiment that adopted the multilayer approach, and then let 
us demonstrate that a variety of simpler perceptrons could have also been exploited quite usefully. 
 

10.4.2.2 A Multilayer Account Of Negative Patterning 
 
Delamater, Sosa, and Katz (1999) reported an interesting study in which an attempt was made to 

relate the learning of a PDP network to the kind of learning observed in an experiment involving animals.  
The general focus of this study was learning to respond to combinations of stimuli.  In particular, the study 
was interested in determining how pre-training to discriminate between stimuli affected later learning in 
positive and negative patterning paradigms. 

 
Delamater, Sosa and Katz (1999) were in particular interested in exploring the properties of a 

configural model of patterning in which configural representations emerged because of learning.  As a 
result, they explored patterning using a multilayer PDP network of the type illustrated in Figure 10-2c.  
Their particular network had six different input units.  Four of these were used to encode the presence of 
four different stimuli (A, B, C, or D).  The other two were used to represent stimulus type.  Both stimuli A 
and B were of type X.   So, whenever either of these two stimuli was presented to the network, the input 
unit representing type X was also turned on.  Similarly, stimuli C and D were of type Y; this was repre-
sented by also activating the sixth input unit whenever C or D was presented to the network.  The network 
also had one output unit and four intermediate or ‘hidden’ units; all of these units employed the logistic 
activation function. 

 
Delamater, Sosa and Katz (1999) used this type of network because they wanted to explore the 

effect on patterning of representations that emerged in the intermediate layers of processors during a pre-
training period.  In the first phase of their experiment, the network was trained, using four different input 
patterns, to make discriminations between the four different individual stimuli (AX+, BX-, CY+, DY-). In 
other words, it was reinforced (i.e., trained to activate) to stimuli A and C, and not reinforced (i.e., trained 
to turn off) to stimuli B and D.  With this pattern of responding, the network was discriminating, because it 
was generating different responses to the two X-type stimuli, as well as to the two Y-type stimuli.  Once a 
network had learned to make these discriminations, it was placed in one of four different post-training 
conditions, each of which involved training the network with three different input patterns. 
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Two of these conditions required the network to undergo a period of positive patterning.  In one, 
this positive patterning involved the stimuli that had been previously reinforced in the pre-training (AX-, 
CY-, AXCY+).  In the other, positive patterning was based on the stimuli that had not been previously re-
inforced (BX-, DY-, BXDY+).  Delamater, Sosa and Katz (1999) found that learning in the first condition 
was much faster than learning in the second condition, which indicated that previous reinforcement creat-
ed internal representations that aided later positive patterning. 

 
The other two post-training conditions in their study involved negative patterning.  In one, the 

negative patterning was based on the previously reinforced stimuli (AX+, CY+, AXCY-).  In the other, it 
was based on the stimuli that had not been previously reinforced (BX+, DY+, BXDY-).  Delamater, Sosa 
and Katz (1999) found that learning in the first condition was slower than learning in the second, which 
demonstrated that previous reinforcement created internal representations that hindered later negative 
patterning. 

 
What was particularly interesting about the Delamater, Sosa and Katz (1999) study was that after 

examining the performance of their networks, they proceeded to conduct a parallel animal learning study 
to determine whether pre-training affected animal patterning in the same way that it affected network pat-
terning.  In a pre-training phase, Sprague-Dawley rats learned to discriminate between two different 
sounds (tone vs. white noise) and between two different visual stimuli (steady light vs. flashing light).  The 
rats then underwent a post-training patterning phase, in which they were placed in either a negative or a 
positive patterning paradigm, which involved either the stimuli that had been reinforced in the pre-training 
phase or the stimuli that had not been reinforced. 

 
Interestingly, the results of the Delamater, Sosa and Katz (1999) animal study were quite different 

from the predictions made on the basis of the performance of their PDP network.  First, for the rats there 
was strong evidence that previous reinforcement of stimuli aided negative patterning – a result that was 
completely opposite to the prediction made by the network.  Second, there was at best weak evidence 
that previous reinforcement aided positive patterning.  “The present data suggest that if changes in the 
internal representations of stimuli occur throughout training, they do not do so in the manner anticipated 
by the standard multi-layered network” (p. 108). 

 
10.4.3.3 Perceptrons And Patterning 
 
Why are the results of Delamater, Sosa and Katz’s (1999) network markedly different from the re-

sults of their animal study?  One possible answer to this question is that the multilayer network that they 
used was far too powerful for the patterning problems that they studied.  As was noted earlier, learning 
theorists assume that perceptron-like systems are incapable of learning patterning problems because 
these problems are assumed to be linearly nonseparable.  However, the patterning problems used by 
Delamater, Sosa and Katz (e.g., AX+, CY+, AXCY-), are not linearly separable, and can in fact be learned 
by a perceptron.  As a result, any one of the hidden units in their network was capable of learning the pre-
training patterns, as well as any of the four post-training patterning problems.  Is it possible that a simpler 
network – a perceptron – could generate results that were more similar to those observed in the animal 
learning experiment?  To explore this question, and to demonstrate the adequacy of perceptrons pattern-
ing (as defined by learning theorists), we replicated the network portion of the Delamater, Sosa and Katz 
study.  However, instead of using a multilayer approach, we used a number of different perceptrons.  
These networks were used to study predictions from both the configural type of model illustrated in Figure 
10-2a, and the elemental type of model illustrated in Figure 10-2b. 

 
For the configural models, we presented stimuli to the perceptrons using the same coding 

scheme that was employed by Delamater, Sosa and Katz (1999).  There were six input units, four for rep-
resenting the presence or absence of four different stimuli (A, B, C, D), and two for representing stimulus 
type (X, Y).   

 
For the elemental models, we adopted an encoding scheme of the type described by Pearce 

(1997, p. ??).  This scheme used the same six input units that were used in the configural representation, 
plus an additional two units that were used to represent the two possible “unique cues” provided by com-
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binations of stimuli in the patterning experiment.  One of these units represented the cue AXCY, while the 
other represented the cue BXDY.  When combined stimuli were presented to the networks during pattern-
ing, five of the eight input units were turned on – four representing the individual stimuli and their type, 
and the fifth representing the unique configural cue.  For instance, when AXCY was the stimulus being 
presented, the units for A, X, C, Y, and AXCY were all turned on; the units for B, D, and BXDY were 
turned off.  When individual stimuli were presented, only two units were turned on – the one representing 
the stimulus, and the other representing the stimulus’ type. 

 
We conducted our experiment as follows:  First, we trained a network until it converged on the 

pre-training task that was used by Delamater, Sosa and Katz (1999).  The training was conducted using 
the default options that are available with the Rosenblatt perceptron program, and usually was completed 
after 140 to 150 training epochs.  Second, the network was then trained without resetting its weights on 
one of Delamater, Sosa and Katz’s post-training patterning experiments.  We trained ten different net-
works in each of the four post-training conditions that were described earlier, and computed the average 
number of sweeps for a perceptron to converge on this second task as our dependent measure. 

 
In our first study, we used the gradient descent rule to train a perceptron whose output unit was 

defined by the logistic activation function.  For the configural encoding, such a perceptron is equivalent to 
one of the hidden units in the Delamater, Sosa and Katz (1999) network.  Table 10-2 presents the aver-
age results of this experiment for both types of stimulus encoding.  There are a number of conclusions 
that can be drawn from this table.  First, the patterning problems used by Delamater, Sosa and Katz to 
train their multi-layered network were obviously not linearly separable, because they can all be learned by 
a perceptron.  Second, the elemental encoding leads to much faster learning, in general, than does the 
configural encoding.  This is not surprising, because when configural encoding is used, the network has 
to develop an internal representation that distinguishes single stimuli from combined stimuli, while a 
unique cue for this is already available to the networks in the elemental encoding conditions.  Third, re-
gardless of the type of encoding that was used, previous reinforcement helped positive patterning, and 
hindered negative patterning.  This pattern is identical to what Delamater, Sosa and Katz (1999) observed 
in their multi-layered network, but is quite different from the pattern that they observed in their animal 
studies. 

 
 Elemental Encoding Configural Encoding 

Positive 
Patterning 

Negative 
Patterning 

Positive 
Patterning 

Negative 
Patterning 

Previously Reinforced 226.1 287.8 656.3 837.1 
Not Previously Rein-

forced 
292.7 226.1 829.8 656.8 

Table 10-2.  Average number of epochs for pre-trained perceptrons to converge to solu-
tions of patterning problems.  Each cell represents an average of 10 different simulations. 

 
Why does previous reinforcement aid positive patterning, and hinder negative patterning?  One 

way to answer this question is to examine the total sum of squared error of the network on a patterning 
task, before any training on the second task has begun.  This will provide an indication about what state 
the network is in after the pre-training has been completed.  Table 10-3 presents network SSE on the pat-
terning task for all of the conditions in the first simulation study.  This table shows, for both versions of 
problem encoding, that previous reinforcement leads to higher initial error for the positive patterning task, 
but not for the negative patterning task.   
Similarly, negative patterning begins with higher error in the condition that uses stimuli that were not pre-
viously reinforced in comparison with positive patterning.  That the conditions that begin with higher de-
grees of error lead to faster training on the patterning problem might seem counterintuitive, but is perfectly 
consistent with the gradient descent learning rule.  Equation 10-9 indicates that one of the elements that 
drive weight changes is network error, and when error is higher, more learning will occur.  Thus it is per-
fectly reasonable to find that the patterning training that begins with a higher degree of error will also be 
associated with faster learning. 

 

Gradient Descent Error Elemental Encoding Configural Encoding 
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 Positive 
Patterning 

Negative 
Patterning 

Positive 
Patterning 

Negative 
Patterning 

Previously Reinforced 1.62 0.99 1.62 1.00 
Not Previously Rein-

forced 
0.99 1.62 1.00 1.62 

10-3.  Average sum of squared error for pre-trained perceptrons on patterning problems 
before training on the patterning problems has begun.  Each cell represents an average of 

10 different simulations. 
 
What produces the pattern of errors provided in Table 10-3?  Let us take one perceptron trained 

with the configural encoding as a test case.  After 140 sweeps of pre-training (i.e., after each of the four 
training patterns was presented 140 times), the network had learned to generate a response of 0.9 to two 
of the stimuli (AX, CY) and to produce a response of 0.1 to the other two (BX, DY) to be consistent with 
the desired pattern of responses (i.e., AX+, BX-, CY+, DY-).  The network structure that resulted from this 
training was quite straightforward.  First, the bias of the output unit was near zero (-0.06).  Second, the 
weights from the input units representing stimuli were fairly large, with absolute values over 2.  For the 
two stimuli to which the network was to respond to (A, C), the weights were 2.22 and 2.23 respectively.  
For the two stimuli to which the network was not to respond to (B, D), the weights were both equal to –
2.18.  Third, the two input units used to code stimulus type (X, Y) both had near zero weights equal to 
0.04.  This indicates that these two units provided redundant information that was not required by the per-
ceptron to learn the pre-training discrimination. 

 
This pattern of connectivity leads directly to the errors that were presented in Table 10-3.  For ex-

ample, consider positive patterning.  After the pre-training, when the network is then given the positive 
patterning stimuli that involve stimuli that were not reinforced (BX-, DY-, BXDY+), the network already 
responds correctly to the first two patterns (responses to both were equal to 0.1).  For the third pattern, 
which involves turning input units B and D both on, a much stronger negative signal is sent to the output 
unit, which leads to an even smaller response (0.01). Thus almost all of the error for this condition in Ta-
ble 10-3 is due to turning off BXDY, which is a response opposite to that which was desired.  In contrast, 
when the network is given the positive patterning task involving stimuli that were previously reinforced 
(AX-, CY-, AXCY+), more errors will be made.  Because of the pre-training, the network has learned to 
turn on to AX and CY, which is the incorrect response to both of these patterns.  However, for the third 
pattern both A and C are turned. This produces a larger net input because of the perceptron’s positive 
connection weights, and the network generates its strongest response to this pattern (0.99), which is cor-
rect.  Therefore for this cell in Table 10-3, almost all of the squared error reflects incorrect responses to 
the individual stimuli. 

 
Now consider the errors produced by this perceptron for the two negative patterning conditions.  

When given the patterns involving stimuli that have already been reinforced (AX+, CY+, AXCY-), the net-
work has already learned to respond correctly to the first two patterns. It generates an even stronger “on” 
response (0.99) to the third pattern, because it uses two input units that have very positive connection 
weights.  This is incorrect, and is responsible for almost all of the squared error seen in the corresponding 
cell in Table 10-3.  When presented patterns involving stimuli that have not been previously reinforced 
(BX+, DY+, BXDY-), the network has learned to make incorrect responses (equal to 0.1) to the first two 
stimuli.  However, because the third is a compound stimulus that involves sending signals through two 
strongly negative weights, the output unit generates a very weak response of 0.01, which is correct.  Thus 
almost all of the error in the corresponding cell of Table 10-3 is due to incorrect responding to the individ-
ual stimuli. 

 
 Interestingly, exactly the same story could be told to explain the pattern of errors found for the 

perceptron that used elemental encoding to represent the input patterns.  This is because when one of 
these perceptrons is given the pre-training task, the six connection weights that it shares with a configu-
ral-encoding perceptron are nearly identical in weight.  Furthermore, the two additional connection 
weights associated with the two units that represent unique compound stimuli (AXBY and BXDY) have 
nearly zero weights.  For instance, in one network, the weights for these two additional input units were –
0.091 and 0.062 respectively.  In other words, the information provided by the elemental encoding of the 
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pre-training patterns is redundant with other information in the training set, and is not used by the net-
work. 

 
In accounting for the errors in Table 10-3, we saw that in some instances a network’s response 

was more extreme (a stronger “on” or “off”) to a compound stimulus than to either of the individual stimuli 
that make up the compound.  This is analogous to an effect called summation that is found in animal 
learning experiments.  For example, Delamater, Sosa and Katz (1999) found that after pre-training, ani-
mals placed in a negative patterning condition started off by generating stronger responses to compound 
stimuli than to individual stimuli.  Finding evidence of summation in perceptrons using either type of stimu-
lus encoding is interesting, because it is generally assumed that summation can easily be explained by 
elemental theories, but not by configural theories.  One of our contributions to this topic in animal learning 
that comes from using perceptron models of patterning is that configural encoding can elicit summation. 

 
Summation can also be used to motivate the use of other perceptrons to model patterning.  One 

account of summation due to pre-training that was also explored experimentally by Delamater, Sosa, and 
Katz (1999) was that “reinforced stimuli are processed more effectively than non-reinforced stimuli” (p. 
109).  Differential processing of “on” and “off” stimuli can be explored in a perceptron by using the Gauss-
ian activation function.  This is because when this activation function is employed, “on” patterns carry 
more information than “off” patterns, where information is measured using standard mathematical models 
of information.  This difference in the amount of information is because only a very narrow range of net 
inputs can be used to turn a value unit “on”, while a very large range of net inputs can be used to turn it 
“off”.  This is different than the sigmoid, because for an integration device, the range of net inputs that can 
be used to turn the unit “off” is equal to the range that can be used to turn it “on”. 

 
With this reasoning in mind, the second simulation experiment that was conducted was identical 

to the first, with the exception that the perceptrons used a value unit as their output processor, and were 
trained using the Dawson-Schopflocher learning rule.  The training parameters that were used were the 
default values that are set by the Rosenblatt program when this learning rule is selected.  For positive 
patterning, previously reinforced stimuli led to convergence in an average of 50.3 epochs, while not previ-
ously reinforced stimuli led to convergence in an average of 28.1 epochs.  For negative patterning, the 
reinforcement conditions led to near identical results (55.4 and 54.7 epochs respectively). As was the 
case in the previous simulation study, the connection weights revealed that there was no essential differ-
ence between the networks trained with configural encoding and those trained with elemental encoding.  
As a result, only the configural encoding results are reported.  However, to keep these results as compa-
rable as possible to those found by Delamater, Sosa and Katz (1999), input units representing stimulus 
types X and Y were still included. 
 

These results provide some interesting findings relative to those that were presented in Table 10-
2.  First, learning in all four patterning conditions was much faster.  This is not surprising, given that Daw-
son and Schopflocher (1992) reported that their learning rule led to faster learning for a wide range of 
problems in comparison to standard gradient descent methods.  Second, the pattern of results is quite 
different.  For this perceptron, pre-training had very little effect on negative patterning.  However, the pre-
training produced much faster learning in positive conditioning when the stimuli were not previously rein-
forced, in comparison to the condition in which stimuli had been previously reinforced.  Third, while this 
pattern of results is quite different than those found in Table 10-2, it is still markedly at odds with the re-
sults obtained by Delamater, Sosa and Katz (1999) in their animal experiments.  The same can be said 
for this type of perceptron when elemental coding is used, for it produces results that are nearly identical 
to those in Table 10-2. 

 
The simulation studies reported to this point in the chapter have shown that patterning problems 

defined by learning theorists such as Delamater, Sosa, and Katz (1999), are linearly separable, and can 
be handled by a perceptron.  However, they have also shown that the kind of learning demonstrated by 
these perceptrons does not resemble the kind of learning demonstrated by animals placed in patterning 
paradigms.  Why is this the case? 
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The logic of the simulation studies was to take the training sets that Delamater, Sosa, and Katz 
(1999) used, and to show that perceptrons could handle them.  An equally plausible approach would be 
to take training sets that they didn’t actually use, but intended to use.  We saw earlier that learning theo-
rists assume that patterning problems are not linearly separable, because they are equivalent to logical 
problems like XOR.  One further simulation study that could be conducted would be to add a null training 
pattern to the pre-training and to each of the post-training problem sets.  This null pattern would be de-
fined by turning all of the input units off (indicating that no stimuli were present at all).  The networks 
would then be trained to turn off to this null pattern.  The addition of this null stimulus to each of the four 
patterning conditions would convert them from being linearly separable problems to being linearly non-
separable, which is already assumed learning theorists to be the case.  The addition of the null stimulus 
to all five training sets would ensure that the network behaves the way that animals behave – that is, the 
network will learn not to respond in the absence of any stimuli at all. 

 
Typically, the addition of a training pattern to make a problem logically equivalent to XOR takes it 

beyond the ability of the perceptron, and into the realm of the multi-layered networks that will be de-
scribed in the next chapter.  However, we saw earlier that a perceptron that uses a value unit to generate 
responses is capable of representing a solution to XOR.  So, in the final simulation study, such a percep-
tron was run in a version of the Delamater, Sosa, and Katz (1999) that included a null pattern in each of 
the five training sets.  As was the case in the previous simulation, this network was trained using the de-
fault settings that the Rosenblatt program provides for the Dawson-Schopflocher training rule.  The re-
sults of this final simulation are as follows.  For positive patterning, previously reinforced stimuli con-
verged after an average of 51.3 epochs, while stimuli that were not previously reinforced converged after 
an average of 50.7 epochs.  For negative patterning, previously reinforced stimuli converged after an av-
erage of only 2.3 epochs, while stimuli that were not previously reinforced converged after an average of 
22.5 epochs. 

 
The results of the final simulation are qualitatively very similar to results obtained by Delamater, 

Sosa and Katz (1999) in their animal experiments.  They found a very weak effect of previous reinforce-
ment on positive patterning; for some blocks of training, they found no statistically significant effects of 
previous reinforcement.  There is no statistical difference between the two positive patterning conditions 
in the final simulation.  Delamater, Sosa, and Katz also found that previous reinforcement strongly facili-
tated negative patterning, in comparison to negative patterning that involved stimuli that were not previ-
ously reinforced.  This effect too is evident in this final set of results. 

 
10.4.3.4 Summary And Implications 
 
We have seen in the previous sections that while learning theorists assume that patterning is log-

ically equivalent to XOR, their operationalization of patterning is not.  Because the “null pattern” is usually 
excluded from the definition of patterning, it is not linearly separable, and can be modeled using percep-
trons.   This was demonstrated above by showing that the six-hidden unit network used by Delamater, 
Sosa, and Katz (1999) in one simulation study could be replaced by a number of different perceptron ar-
chitectures.  These perceptron simulations demonstrated that summation could also be found in a config-
ural theory of patterning, and suggest that perceptrons offer an interesting medium in which to make con-
tributions to theories about patterning. 

 
Of course, for the linearly separable version of the patterning problem, none of the perceptrons 

that were described above generated results that were similar to those observed by Delamater, Sosa, 
and Katz (1999) in their animal experiments.  However, neither did the multi-layered network that they 
used!  In a final simulation, the patterning problems were operationalized in a format that ensured that 
they were logically equivalent to XOR.  When this experiment was conducted on a network that used a 
Gaussian activation function in its output unit, the results looked much closer to those found in the animal 
experiments. 

 
What are the implications of the simulations that are described above?  On the one hand, if ani-

mal learning theorists wish to operationalize patterning by excluding the “null pattern”, then they should 
acknowledge that patterning can be performed by perceptrons, and they should avoid trying to model pat-
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terning using networks that are far more complicated than necessary.  On the other hand, if the linear 
nonseparability of patterning is a critical feature, then learning theorists should make sure that they opera-
tionalize patterning in a nonseparable format when they conduct their simulations and generate their the-
ories.  Perhaps the Delamater, Sosa, and Katz (1999) network would have generated results more similar 
to the animal data had it been also been trained with a “null pattern” in its training sets. 

 
10.5 THE NEED FOR LAYERS 

 
In spite of these interesting results, it must be acknowledged that perceptrons are indeed limited 

in power.  As a result, if we want to use connectionism as a technique in which to explore complex phe-
nomena in synthetic psychology, then we must move to more powerful architectures.  Our final building 
block to consider is the one that we failed to realize earlier – the creation of networks that have multiple 
layers of connections.  However, now that we are armed with the nonlinear activation functions that have 
been introduced in the current chapter, we are in a position to successfully create multi-layer networks. 
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Chapter 11: Sequences of Decisions 
 
 The previous two chapters have introduced two of the major building blocks of a connectionist 

synthetic psychology.  The first was storing associations in the weights of connections between pro-
cessing units.  The second was using nonlinear activation functions in processing units, which provided 
them the ability to make the kinds of decisions that could be described in two-valued logic.  The purpose 
of the current chapter is to introduce a third major building block – the use of multiple layers of processing 
units to create a chain of decisions that link input patterns to output responses. 

 
11.1 THE LOGIC OF LAYERS 

 
In many respects, perceptrons and multilayered perceptrons share a number of properties.  Both 

have a layer of input units that are used to receive stimulus patterns from the environment.  Both have a 
layer of output units that employ nonlinear activation functions, and which are usually used to generate a 
response that can be interpreted as a classification of a presented pattern.  Both use learning rules to 
store associations between input and output patterns by modifying connection weights.  The one crucial 
difference between the two kinds of networks involves what happens to the signals from the input units 
before they reach the layer of output units.  In a perceptron, the signal is not modified at all, because 
there are direct connections between input and output units.  In contrast, in a multilayered perceptron the 
signal from the input units is modified by at least one layer of intermediate or “hidden” units before reach-
ing the output units. 

 
The addition of hidden units provides connectionist networks with incredible power, at least in 

principle.  In Chapter 10, we saw that perceptrons were subject to definite computational limitations.  For 
instance, none of the perceptrons that we described were able to represent the correct responses to all of 
the logic problems that were presented in Table 10-1.  In contrast, multilayered networks have been 
proven to be capable of representing any computable mapping between inputs and outputs.  Lippmann 
(1987) was able to show that a network with two layers of hidden units could carve arbitrarily shaped de-
cision regions in a pattern space, and therefore could be considered an arbitrary pattern classifier.  Sev-
eral researchers have proven that networks with a single layer of hidden units can approximate any con-
tinuous function, over a finite range, to an arbitrary degree of precision (e.g., Cybenko, 1989; Hornik, 
Stinchcombe & White, 1989).  Finally, there exist both old (McCulloch & Pitts, 1943) and modern (e.g., 
Siegelmann, 1999) proofs that multilayered networks have the same computational power as a universal 
Turing machine.  It is clear that the addition of intermediate processing units provides networks with a 
formidable increase in computational power.  Why is this the case?  What is it that hidden units do? 

 
11.1.1 Hidden Units Detect Higher-Order Features 

 
To consider one fashion in which hidden units can extend the computational power of a network, 

let us return to one logic problem that provides difficulty for a traditional perceptron.  In the Exclusive Or 
(XOR) problem, a network that has one output unit and two input units is presented one of four different 
problems.  It must learn to turn its output unit off to two of these patterns ([0,0] and [1,1]) and to turn its 
output unit on to the other two ([0,1] and [1,0]).  We saw in Chapter 10 that a traditional perceptron could 
not represent a solution to this problem, because the problem is not linearly separable.  To solve XOR, 
two cuts must be made in the pattern space that contains the four different patterns.  One of these cuts 
separates [0,0] from the two patterns that cause the network to turn on.  The other separates [1,1] from 
these same two patterns.  Because in a traditional perceptron the output unit can make only a single cut 
in the pattern space, it cannot learn to correctly respond to all four of these patterns. 

 
How might we make this problem linearly separable?  One approach would be to elaborate the 

input patterns, by adding a third input (Rumelhart, Hinton, & Williams, 1986b).  This third input would pull 
the four patterns apart in a three-dimensional pattern space, and would make them linearly separable.  
One sensible approach to creating a third input would base it on a feature computed from the two “true” 
inputs.  For example, we could make the third feature the logical AND of the two input units, which would 
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only be true of the fourth pattern, because AND is only true when both of its inputs are also true.  This 
would mean that our four input patterns would become [0,0,0], [0,1,0], [1,0,0], and [1,1,1], where the first 
two values are the original inputs, and the third is the AND of these inputs.  A perceptron could learn to 
respond to these four patterns correctly, because they are linearly separable. 

 
Of course, it would be much easier if we could design a network architecture that could figure out 

on its own what kind of additional features are necessary to convert a linearly nonseparable problem into 
one that is linearly separable.  One reason for this is that it may be difficult, in advance, to determine what 
additional features are needed.  A second reason for this is because if we are interested in using net-
works to provide us with insights about complex phenomena, then it is better to let the network discover 
regularities entirely on its own, instead of depending upon our guidance. 

 
For the XOR problem, one kind of architecture that could 

learn to elaborate the inputs on its own is illustrated in Figure 11-
1a.  It has two input units that are directly connected to a sin-
gle output unit, which is equivalent to the traditional percep- tron 
architecture.  It differs from a perceptron by having an addi- tional 
hidden unit.  This hidden unit receives input from the two input 
units, activates to their combined signal, and then passes this 
activation on to the output unit.  Imagine that when this archi- tec-
ture was trained, this hidden unit learned to compute AND.  Be-
cause of this, it would not turn on to the first three patterns of XOR 
([0,0], [0,1], and [1,0]).  So, for these first three patterns, the net-
work would in essence be behaving like a traditional percep- tron, 
and could use the direct connections between inputs and out-
put to learn to turn off to the first pattern, and on to the sec- ond 
two.  For the pattern [1,1], the AND-detecting hidden unit 
would activate.  If this hidden unit had a strong inhibitory con-
nection to the output unit, then it could use its activity to send a 
signal that would turn the output unit off, regardless of the other 
(excitatory) signals that the output unit would be receiving from the two input units.  In other words, the 
network in Figure 11-1a is capable of representing a solution to XOR. 

 
The Figure 11-1a network provides us with one example of the role of a hidden unit in a multi-

layered network.  One function that such units can serve is to detect more complex features that depend 
on some or all of the input units.  These features can in turn be used to modify the response of the output 
units.  One way in which these additional features increase the overall power of the network is by expand-
ing the pattern space.  In the XOR example, detecting the AND property would add a third dimension to 
the pattern space, and would arrange the four patterns in this space in such a way that they were linearly 
separable. 
 
11.1.2 Hidden Units Transform Pattern Spaces 

 
The network illustrated in Figure 11-1a is not the only multilayered network that is capable of rep-

resenting a solution to XOR.  A second architecture that can solve this problem is illustrated in Figure 11-
1b.  This kind of network is more removed from the traditional perceptron than was the network in Figure 
11-1a, and typifies the kind of multilayered network that is almost always employed in modern connec-
tionist simulations.  One of its key features is that it does not have direct connections between the input 
and output units.  Instead, the signals from the input units are only sent to the hidden units.  The hidden 
units process these signals, activate in a particular fashion, and are the only units responsible for sending 
signals on to the output unit. 

 
How could these two hidden units solve XOR?  If both of the units use the logistic activation func-

tion, then each of these hidden units is by itself equivalent to a traditional perceptron, and cannot solve 
XOR alone.  However, the two hidden units could solve different parts of the XOR problem.  The output 
unit could then combine the two partial solutions to solve the whole XOR unit. 

Figure 11-1.  Two multi-
layer perceptrons for XOR.  

There are direct connections 
between input and output units 

in A, but not in B. 
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Consider the first hidden unit.  Imagine that it learned to turn off to three of the patterns: [0,0], 

[1,1], and [0,1], and that it only turned on to the pattern [1,0].  This would mean that is had learned to per-
form the logical operation x  ~y.  Now imagine that the other hidden unit had learned to perform the 
complementary operation ~x  y, by turning on to the pattern [0,1], and turning off to the other three pat-
terns. 

 
By having these two hidden units perform these two logical operations on the input patterns, they 

transform or “morph” the pattern space.  When the input units deliver [0,0] to the hidden units, they in turn 
deliver the pattern [0,0] to the output unit, because both hidden units will turn off.  When the input units 
deliver [0,1] or [1,0] to the hidden units, the hidden units will also deliver [0,1] or [1,0] to the output unit.  
However, when the input units deliver [1,1], the hidden units transform this into a different pattern that is 
passed on to the output unit: [0,0]!  In other words, the hidden units have essentially folded the pattern 
space, so that the input pattern [1,1] becomes the pattern [0,0].  The output unit only has to learn to deal 
with three patterns (off to [0,0], on to [0,1] or [1,0]), and so the hidden units have reshaped the pattern 
space to convert XOR into a linearly separable problem. 

 
This example demonstrates another interpretation of how hidden units increase the power of an 

artificial neural network.  Hidden units can transform the pattern space, moving input patterns to different 
positions in the transformed space.  This transformation can be performed in such a way that a problem 
that is linearly nonseparable in the pattern space defined by the input units becomes linearly separable in 
the new space defined by the output units. 

 
It is important to note that both of the interpretations of the role of hidden units are essentially the 

same.  For instance, while it is perfectly appropriate to describe the two hidden units in Figure 11-1b as 
transforming the input pattern space, it is also appropriate to describe them as computing more complex 
features from the input values (i.e., as computing x  ~y and ~x  y).  Depending on the particular net-
work of interest, one approach to explaining what hidden units do might be easier to formulate than the 
other. 

 
11.2 TRAINING MULTILAYERED NETWORKS 

 
Since 1943, it has been known that multilayered networks are far more powerful than percep-

trons; McCulloch and Pitts proved that a multilayered network could be equivalent in power to a universal 
Turing machine.  Why, then, were far simpler networks of such interest to researchers in the late 1950s 
and early 1960s?  Why did Rosenblatt (1962) bother to investigate perceptrons, given that more powerful 
networks had been developed decades earlier? 

 
The reason that simpler networks were explored is that there is a difference between building a 

powerful network and training a powerful network.  Multilayered McCulloch-Pitts networks had been de-
veloped, but had to be hand wired.  Researchers were unable to train such networks.  Learning rules like 
those developed by Rosenblatt (1962) emerged as researchers explored ways in which associations 
could be stored in the connection weights of networks that used nonlinear activation functions.  However, 
while these rules could be used to train perceptrons, they were unable to train the connection weights in a 
multilayered network.  Indeed, after Minsky and Papert (1988) published the first edition of their critique of 
perceptron research in 1969, interest in artificial neural networks waned dramatically (e.g., Medler, 1998).  
It was not until the mid 1980s that there was a resurgence of interest in connectionist research.  This was 
almost completely due to the discovery of new, more powerful, learning rules that were capable of training 
all of the weights in a multilayered network. 

 
11.2.1 The Credit Assignment Problem  

 
What is so difficult about training a multilayered network?  To demonstrate the difficulty, let us 

take the network illustrated in Figure 11-1b, and let us imagine training it to solve XOR using the gradient 
descent rule that was discussed in the previous chapter. 
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To begin this training, we initialize the weights and biases of the networks to random values.  We 
then select one of the XOR patterns, and present it to the input units.  This results in a net input being 
computed by both hidden units, which each use the logistic activation function to compute their activity.  
These activation values are then sent through the next layer of connections to create the net input for the 
output unit, which then uses the logistic activation function to compute a level of activity.  The activity pro-
duced by the output unit is the network’s response to this first pattern, which can be compared to the de-
sired response.  This comparison allows us to compute the error for the output unit.  After we have se-
lected some value for the learning rate , we can compute the desired weight change for the two connec-
tions leading into the output unit.  Using the gradient descent rule from Equation 10-9, the weight changes 
become the learning rate multiplied by the output unit’s error (scaled by the first derivative) multiplied by 
the activation value of a hidden unit.  Equation 10-10 can be used to modify the bias of the output unit.  
Up to this point, everything seems to be going quite smoothly, and there does not appear to be any rea-
son that the learning rules from Chapter 10 cannot be used to train this network. 

 
Unfortunately, this optimistic outlook changes when we consider the next necessary step in train-

ing our network: modifying the connection weights between the hidden units and the input units.  Accord-
ing to the learning rules that were described last chapter, these weights will be changed by using the tri-
ple product of a learning rate, a hidden unit error, and an input unit activity.  However, we only have two 
of these values -- the learning rate and the input unit activity.  We are missing a necessary ingredient, 
hidden unit error. 

 
Why are we missing this value?  For the output unit, we know how to define error, because it is 

equal to the difference between the actual response of the output unit and the desired response.  We do 
not have a similar error term for a hidden unit, because we do not know what the desired responses for 
each hidden unit should be.  Indeed, the whole idea of training a multilayered network on a problem of 
interest is because we are looking for emergent properties in the hidden layers.  We would like the net-
work to surprise by finding a novel or interesting representation that can be used to solve the problem.  
Because we are looking for surprises here, we have no a priori method of defining hidden unit error. 

 
The absence of hidden unit error is related to the credit assignment problem (Minsky, 1963).  “In 

playing a complex game such as chess or checkers, or in writing a computer program, one has a definite 
success criterion–the game is won or lost. But in the course of play, each ultimate success (or failure) is 
associated with a vast number of internal decisions. If the run is successful, how can we assign credit for 
the success among the multitude of decisions?” The version of this problem that faced neural network 
researchers prior to the 1980s was that they could not assign the appropriate “credit” to each hidden unit 
for its contribution to output unit error.  In connectionist networks, the inability to assign such credit trans-
lated into an inability to train any the weights that feed into a layer of hidden units. 

 
11.2.2 Error Backpropagation 

 
Connectionism was reborn in the mid 1980s for two reasons.  First, many researchers were dis-

satisfied with the state of classical in cognitive science.  These researchers believed that classical re-
search had failed to deliver its promised advances, because discrete rules and representations were not 
thought to be appropriate for modeling many cognitive phenomena.  Second, accompanying their dissat-
isfaction were significant advances in connectionist learning algorithms.  In particular, a solution to the 
credit assignment problem was discovered, giving researchers the ability to train multilayered networks. 

 
Rumelhart, Hinton, and Williams (1986) were able to solve the credit assignment problem after 

they decided to use the logistic equation to approximate the step function that was used in older connec-
tionist architectures such as McCulloch-Pitts networks and perceptrons.  We saw in Chapter 10 that this 
allowed them to use calculus to determine how to change the weights that fed into a network’s output 
units.  Their learning rule was similar to the delta rule, in that any weight change was defined as the triple 
product of a learning rate, the error of the unit at the output end of the connection, and the activity of the 
unit at the input end of the connection.  Their advance over the delta rule was a refined definition of out-
put unit error, which could be used to accelerate learning.  The error for any output unit i, represented by 
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the term j, was defined in Equation 10-8 as the desired activity of the output unit minus the actual activity 
of the output unit, scaled by the derivative of the logistic: 

 
j = (tj – aj) f’(netj)  = (tj – aj) aj (1 – aj)   Equation 11-1 

 
Rumelhart, Hinton, and Williams (1986) also used calculus to determine how network error could 

be altered by changes in a hidden unit’s weight.  In essence, their equations defined hidden unit error.  
They discovered that the error for any hidden unit was the sum of the error for each output unit (i.e., error 
as defined in Equation 11-1) scaled by the connection weight between each output unit and the hidden 
unit.  This summed error was then scaled by the derivative computed for the hidden unit’s activation func-
tion.  To be more precise, let us define the error for hidden unit x, which we will represent as x.  Let the 
weight between this hidden unit and output unit i be represented as wxi.  The total error for the hidden unit 
is defined in Equation 11-2, where the sum is taken over the total number of output units connected to the 
hidden unit: 

 
x = ( wxi i) f’(netj)  = ( wxi i) aj (1 – aj)   Equation 11-2 

 
What this equation indicated was that the error for any hidden unit in a multiple-layer network 

could be considered as a signal that was sent to the hidden unit from the output units.  The raw signal 
from each output unit was its error.  This raw signal was then scaled by the weight between the output 
unit and the hidden unit, and the hidden unit’s error was the “net input” of this error signal – the inner 
product of the vector of output unit errors and the vector of weights from the output units to the hidden 
unit.  Because this error term could easily be viewed as a signal being sent backwards from the output 
units to the hidden units, the learning rule that was developed by Rumelhart, Hinton, and Williams (1986) 
became known as the “error backpropagation” rule. 

 
11.2.3 The Generalized Delta Rule 

 
With hidden unit error defined as in Equation 11-2, Rumelhart, Hinton, and Williams (1986) were 

in a position to modify all of the weights in a multilayered network.  In their algorithm, every weight was 
changed by adding to it a value that was the product of a learning rate, an error term, and an activation 
value, as was the case in the delta rule that we first saw in Chapter 9.  Because of this, the error back-
propagation rule is also known as the generalized delta rule. 

 
 For any pattern, the generalized delta rule involves two phases of processing.  The first phase is 
the forward propagation of the signal.  The input units are activated with some stimulus pattern, which 
causes activation to arise first in the network’s hidden units, and then in the network’s output units.  This 
observed activation is compared to the desired activation, and an error value is computed for every output 
unit (i.e., the difference between the desired and the observed activations). 
 
 The second phase of processing in the generalized delta rule is the backward propagation of er-
ror.  This involves a number of different steps.  First, the output unit error terms are multiplied by the de-
rivative of the logistic equation.  Second, the weights of the connection weights are modified according to 
Equation 11-3, where wij is the weight of the connection between output unit i and hidden unit j, j is the 
error for output unit i, and ai is the activation of hidden unit j to the pattern that was presented: 
 

wij =  j ai   Equation 11-3 
 
Note that this equation is identical to Equation 10-9, and only differs from it in the assumption that the 
connection weight is between an output unit and a hidden unit.  In other words, the connection weights 
feeding into the output units in a multilayered network are trained in exactly the same fashion as was de-
scribed in Chapter 10. 
 

Once the output unit weights have been modified, the third step in error backpropagation can be 
performed.  In this step, hidden unit errors are calculated using Equation 11-2.  In other words, each out-
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put unit sends its error term through the modified connection weights, whose weights are used to scale 
these error signals.  Each hidden unit adds up these incoming, weighted, error signals to determine what 
its own error should be. 

 
The fourth step in this phase of the generalized delta rule is to modify the weights that feed into 

the hidden units.  This is also accomplished via Equation 11-3, using the appropriate activation value, and 
using hidden unit error instead of output unit error.  In most typical networks, this means that the input unit 
activities will be used.  However, in some networks, there is more than one layer of hidden units.  One of 
the advantages of the generalized delta rule is that the equations that have been described above can be 
iterated through more than one hidden unit layer.  In this case, the errors that have been calculated for 
one layer of hidden units can be propagated backwards to the next, after the connection weights between 
them have been modified.  This process continues until all of the connection weights in the network have 
been modified.  Then, the next pattern is presented to the network, and the two phases of the generalized 
delta rule are repeated. 

 
The paragraphs above have described how the generalized delta rule is applied to the connection 

weights in a network.  Of course, once a unit’s error term has been calculated, the bias of that unit can be 
modified as well.  This is done in exactly the same fashion as was described in the previous chapter, by 
applying Equation 10-10.  This is the case whether the unit is an output unit or a hidden unit. 

 
11.2.4 The Dawson-Schopflocher Rule 

 
Dawson and Schopflocher (1992) modified the generalized delta rule to train networks of value 

units.  In Chapter 10, we saw that the training of perceptrons that used value units required two main 
changes to the gradient descent rule.  First, an elaborated definition of overall network error is required.  
Second, the derivative of the Gaussian had to be substituted into any equation that ordinarily used the 
derivative of the logistic, because value units us the Gaussian activation function. 

 
Provided that these changes are also used for multilayered networks, Dawson and 

Schopflocher’s (1992) method for training networks of value units is exactly the same as the generalized 
delta rule.  In their learning rule, output unit errors are calculated (using their elaborated definition of er-
ror), and weights and biases are changed, in exactly the same fashion that was described in Chapter 10.  
Hidden unit errors can then be calculated in exactly the same fashion that was used in the generalized 
delta rule (i.e., Equation 11-2), with the exception that the error term is scaled by the derivative of the 
Gaussian equation.  Hidden unit weights can then be modified using Equation 11-3.  In other words, the 
only difference between the two learning rules is the definition of output unit error.  This permits training 
hybrid multilayer perceptrons that contain both integration devices and value units. 

 
Dawson and Schopflocher (1992) demonstrated that networks of value units had many ad-

vantages over networks of integration devices by studying a set of benchmark pattern recognition prob-
lems.  In general, networks of value units learned to solve these problems significantly faster, and re-
quired fewer hidden units to classify patterns.  These two advantages are due to the use of the elaborated 
error term and to the fact that value units carve two “cuts” through a pattern space, instead of just one.  In 
the next chapter, we will also see that networks of value units also have emergent properties that en-
hance the process of network analysis. 

 
However, networks of value units do not have universal advantages over networks of integration 

devices.  As a result, all the different kinds of networks that can be trained with variations of the general-
ized delta rule should be viewed as available tools in a toolbox, and a researcher should explore the ar-
chitecture of a multilayer network to determine what kind of network is best for the problem at hand. 

 
11.2.5 Exploring Learning In Multilayered Networks 

 
The website of supplementary material (www.bcp.psych.ualberta.ca/~mike/Book2) for this book 

provides a program called “Rumelhart”.  This program can be used to train multilayer using either of the 
learning rules that were described above.  The program also permits the training of hybrid networks, in 
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which one layer of processing units are integration devices, and another layer of processors are value 
units.  Furthermore, the program permits the user to decide whether or not to include direction connec-
tions between input and output units.  The program also comes with a number of example training files, 
including ones for all of the case studies that are introduced below.  The reader is invited to use this pro-
gram to explore the relative merits and limitations of the different kinds of multilayer perceptrons. 

 
11.3 A SIMPLE CASE STUDY: EXCLUSIVE OR 

 
There are many different learning rules available for training multilayer networks.  Furthermore, 

there is a vast array of different activation functions that are also in use (e.g., Duch & Jankowski, 1999).  
The purpose of this chapter is not to provide an exhaustive introduction to training multilayer perceptrons; 
the reader interested in more extensive treatments of this type has other resources to explore (e.g., De 
Wilde, 1997; Hagan, Demuth, & Beale, 1996; Kasabov, 1996; Ripley, 1996; Rojas, 1996; Shepard, 1997).  
Instead, this chapter introduces multilayer perceptrons as a plausible medium for exploring synthetic psy-
chology.  The remainder of this chapter attempts to accomplish this goal by describing some example 
simulations.  To begin, let us return to XOR. 

 
11.3.1 Using Hidden Units To Detect Additional Features  

 
In our first XOR simulation using multilayer perceptrons, we decided to use a network of integra-

tion devices that had only one hidden unit, as well as direct connections between its two input units and 
its one output unit.  In other words, this network had the appearance of the one illustrated in Figure 11-1a, 
and both its output unit and its hidden unit used the logistic activation function. 

 
When we trained this network, all of the connection weights were initialized by randomly selecting 

numbers from the range –0.1 to +0.1. Unit biases were initialized at 0.0.  The network was then trained 
using the generalized delta rule, with a learning rate of 0.9.  The order of pattern presentation was ran-
domized every epoch.  This means that prior to training the network, the order of the four stimulus pat-
terns was randomized.  Then each pattern was presented once in this random order, and connection 
weights and biases were updated with each presentation.  Once each of the patterns had been present-
ed, the order of the patterns was randomized again prior to the next epoch of training. 

 
The network converged to a solution to the XOR problem after 1197 epochs – that is, after each 

of the four training patterns had been trained 1197 times.  At this time, the network generated a “hit” to 
each pattern when it was presented.  At the start of training, the minimum squared error for defining a “hit” 
was set at the value of 0.01.  This means that when the network converged, the output unit generated an 
activation value of 0.9 or higher for the two patterns whose desired response was 1, and it generated an 
activation value of 0.1 or lower for the two patterns whose desired response was 0.  The total squared 
error for the network (summing over all of the training patterns) after it converged was 0.031. 

 
After this training, the network had the following structure:  The bias of the output unit was –3.13, 

and the bias of the hidden unit was –2.68.  The connection weight from the hidden unit to the output unit 
was 10.45.  The connection weights from each of the input units to the output unit were both equal to –
4.76, and the weights from each of the input units to the hidden unit were both equal to 6.57. 

 
How does a network with this structure solve XOR?  Let us start by considering the hidden unit.  It 

generates an activation of 0.98 to all of the patterns except the one in which both input units are off.  To 
this latter pattern, it generates a response of 0.06.  Thus, it would appear that this unit is detecting the x  
y relationship that was defined earlier in Table 10-1.  How does the network convert the ability to compute 
OR into the more sophisticated ability to compute XOR?  It does so via the combination of the input unit 
signals and the hidden unit signal when the output unit computes its net input. 

 
To be more precise, consider the first pattern [0, 0].  This pattern fails to generate a response in 

the hidden unit, and sends no signal to the output unit.  As a result, the output unit’s net input is zero, and 
it (correctly) fails to respond.  Now, consider either pattern in which one input unit is on, and the other is 
off.  Either of these patterns will activate the hidden unit, which in turn will send a signal with a value over 
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10 to the output unit.  The one input unit that is on, however, will also send an inhibitory signal of nearly –
5 to the output unit.  So, the net input of the output unit to either of these patterns will be about equal to 5, 
which is high enough to (correctly) turn the output unit on to either of these two patterns.  Finally, consider 
the pattern [1, 1].  This pattern causes the hidden unit to send a signal of 10 to the output unit.  However, 
because both of the input units are sending inhibitory signals of nearly –5 to the output unit at the same 
time, the signal from the hidden unit is essentially canceled, and the output unit (correctly) fails to turn on.  
In short, negative signals from the two input units, combined with a hidden unit that detects an additional 
feature, permits this multilayer perceptron to compute XOR. 

 
One reason that this network is interesting is because it is completely different from the hypothet-

ical network that was described in section 11.1.1 that solved XOR by detecting the AND feature with its 
single hidden unit.  Clearly, there is more than one way for a network of this general type to detect addi-
tional features to solve this problem.  Training a number of different networks, with different random 
starts, would lead to the discovery of a number of different solutions to the problem.  Networks are capa-
ble of discovering solutions to problems that can be unanticipated by researchers.  These surprises will 
provide the core discoveries for synthetic psychologists who use connectionist networks. 

 
11.3.2 Using Hidden Units To Transform The Pattern Space 

 
In our second simulation, we used a network with the architecture illustrated in Figure 11-1b.  The 

network used two hidden units and one output unit, all of which were integration devices.  There were no 
direct connections between the input and output units in this study.  The network was trained using exact-
ly the same settings that were used in Section 11.3.1.  It converged to a solution after 1218 epochs, with 
a total squared error of 0.032. 

 
At the end of training, the network had the following structure:  The bias of the output unit was 

equal to –3.01, the bias of hidden unit 1 was –2.19, and the bias of hidden unit 2 was –4.78.  The connec-
tion weight from hidden unit 1 to the output unit was 6.70, and the connection weight from hidden unit 2 to 
the output unit was –7.11.  The connection weights from the input units to hidden unit 1 were 5.95 and 
5.91; the weights from the input units to hidden unit 2 were 3.18 and 3.17. 

 
How does this network structure solve XOR?  First, let us consider an interpretation of the role of 

each hidden unit.  Hidden unit 1 was an x  y detector, responding in the same fashion as the hidden unit 
in the previous network: generating a near 0 response to [0, 0] and a near 1 response to the other three 
patterns.  In contrast, hidden unit 2 was an x  y detector, only generating a high degree of activity to the 
pattern [1, 1], and generating very weak activity to the other three patterns.   

 
These two detectors can be used to solve XOR by folding the pattern space.  For the pattern [0, 

0], both hidden units are off, resulting in a near zero net input for the output unit, which results in it cor-
rectly turning off.  For the pattern [0, 1] and the pattern [1, 0], hidden unit 1 responds, but hidden unit 2 
does not.  As a result, the output unit receives a strong excitatory signal from the hidden unit that is on, 
and correctly activates.  For the final pattern [1, 1], both of the hidden units are activated.  The excitatory 
signal sent by hidden unit 1 to the output unit is nullified by a stronger inhibitory signal that is sent to the 
output unit by hidden unit 2.  As a result, the output unit does not turn on.  The competition between the 
two activated hidden units has caused the stimulus [1, 1] to generate a similar output unit signal to that 
which is generated by the pattern [0, 0], which is equivalent to folding the pattern space so that both of 
these points occupy the same position. 

 
Again, as we saw in section 11.3.1, the features that the network has used to fold the pattern 

space are quite different from the features that were discussed for the hypothetical network that was dis-
cussed earlier in this chapter.  There is obviously more than one way in which the XOR pattern space can 
be transformed to become linearly separable, which highlights the need for network analysis and interpre-
tation. 

 
11.4 A SECOND CASE STUDY: CLASSIFYING MUSICAL CHORDS 

 



 - 143 - 

Minds And Machines © M.R.W. Dawson 12/02/2016 

We saw earlier that, in principle, multilayer perceptrons have the computational power of univer-
sal Turing machines.  Because of this, they certainly have the capability of dealing with problems that are 
far more complicated – and psychologically relevant -- than XOR.  Indeed, we have already seen one ex-
ample of this in Chapter 8 when a multilayer perceptron was trained to internalize a spatial map of the 
province of Alberta.  Connectionist models are attractive because you can train a network to solve any 
pattern recognition problem of interest, provided that you can formulate some coding scheme that can be 
presented to a network.  This section provides one example of this. 

 
11.4.1 Defining The Problem 

 
Imagine a small piano keyboard consisting of only 24 keys, black and white.  The first twelve keys 

of this mini-piano represent the following notes: A, A, B, C, C, D, D, E, F, F, G, and G.  In this pat-
tern, every note paired with the  symbol corresponds to a black key on the keyboard, and all of the other 
notes correspond to white keys.  (For the sake of simplicity, we only use the  symbol in this example, 
and pretend that we cannot represent black keys with the  symbol, such as representing the note A as 
B.)  Moving from the left to right in this pattern, each note is a semitone higher than the note on its left.  
The thirteenth key on this keyboard plays another A that is an octave higher than the A that started the 
keyboard.  From this thirteenth key to the last (twenty-fourth) key on the piano, the pattern of notes is re-
peated.  So, while there are 24 different keys on this keyboard, they are only associated with 12 different 
note names, and each note is repeated an octave higher than its first instance.  Each of these 12 different 
notes can serve as the starting note, or root, of a major scale.  For instance, we could have a scale in the 
key of A-major that starts on the root A, a scale in the key of A-major that starts on the root A, and so 
on, up to the key of G-major.   

 
For any scale that we choose, there exists a basic harmonic structure.  Harmony is the combina-

tion two or more notes into a compound in which all of the notes are played at the same time. To our 
ears, some of these combinations are dissonant – they simply don’t sound right.  Others, however, are 
consonant, and are the basis of Western music (Jourdain, 1997). 

 
For example, let us consider the C-major scale.  One important, consonant, harmonic combina-

tion for this scale is the major chord that can be built upon its root, which is C.  The most common version 
of this chord is the C-major triad.  This is the set of notes C, E, and G that are the first, third and fifth notes 
in the C-major scale.  We could convert this into a four-note chord (a tetrachord) by adding the C that is 
an octave higher than the root note of this triad (i.e., by using the notes C, E, G, and C).  On our key-
board, we could play this chord by finding the lowest C on it, and then play it along with the other three 
notes that make up this chord.  We will call this the root position of the chord.  However, we could play 
this chord in other ways too.  For instance, we could start with the lowest E on the keyboard, and play the 
notes E, G, C, and E, where the last E is an octave higher than the first.  In this version of the chord, the 
same notes are being played, but they are arranged in a different order.  This order is called the first in-
version of C-major.  We could also start with the lowest G that we can find on the keyboard, and play the 
notes G, C, E, and G.  This is called the second inversion of the chord. 

 
All of the chords that could be created from the above description are major.  With a slight 

change, any major chord can be converted into a different kind of chord, called a minor chord that is as-
sociated with a minor scale.  To convert a major chord into a minor chord, first take the major chord in 
root position.  Then, take the second note in the chord, and lower it by a semitone.  For instance, the C-
major chord (C, E, G, and C) can be converted into the c-minor chord (C, D, G, and C) by lowering the E 
by a semitone to the note D.  As was the case for the major chords, we can write minor chords in first- 
and second-inversions as well.  The first inversion of c-minor is D, G, C, and D, and the second inver-
sion of c-minor is G, C, D, and G. 

 
Other harmonic patterns are available as well.  For example, every major scale is associated with 

a dominant chord.  A dominant chord is created as follows:  First, take a major scale of interest.  Let us 
choose C-major as our example.  Second, find the fifth note in this major scale, which is known as the 
dominant.  The dominant of C-major is the note G.  Third, build a major triad that has this dominant note 
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as its root.  The major triad for G is G, B, and D.  Finally, add a fourth note that is three semitones (i.e., 
three piano keys on our keyboard) higher than the highest note in this triad.  In our example, the note F is 
three semitones higher than D.  So, the dominant chord for the key of C-major is the four note pattern G, 
B, D, and F.   

 
As was the case with the major and minor chords, you can arrange the same notes into different 

orders to produce various inversions of dominant sevenths.  To do this, you take the lowest note of one 
pattern, and move it an octave higher to become the highest note of the inverted pattern.  Following this 
rule, for the dominant chord of C-major, the first inversion is B, D, F, and G; the second inversion is D, F, 
G, and B; the third inversion is F, G, B, and D.  On our keyboard, we are able to take one of these pat-
terns (i.e., the root, first-, second-, or third-inversion) and repeat it, so that one version is a full octave 
higher than the other.  In other words, we are able to play five different versions of any dominant chord on 
our 24-key piano. 

 
Each major scale has its own dominant chord.  Similarly, each minor scale has its own tetrachord 

that is called diminished.  The diminished chord for a minor scale is created as follows:  First, take a minor 
scale of interest.  Let us choose c-minor as our example.  Second, take the note that is a semitone lower 
than the root of this scale.  The note C is a semitone lower than C, which is the root of c-minor.  From 
this selected note, add a second note that is three semitones (three piano keys) higher; then add a third 
that is six semitones higher; finally add a fourth note that is nine semitones higher.  For c-minor, the four 
notes selected according to this procedure are C, D, F, and A.   

 
This pattern is the diminished chord of this minor scale. As was the case for dominant chords, we 

can create different inversions of a diminished chord.  For the diminished chord of c-minor, the first in-
version is D, F, A, and C; the second inversion is F, A, C, and D; the third inversion is A, C, D, and 
F.  When we “fit” the diminished chords onto our mini-piano, we will be able to find room to repeat one of 
these patterns a full octave higher.  So, for any minor key, we can play five different versions of its dimin-
ished chord on our imaginary keyboard. 

 
All of the harmonic structures that have been described above are crucial elements to musical 

understanding and performance.  For instance, I am currently learning to play the piano.  As part of my 
training in musical theory, I have to learn how to classify any of these chord structures when they are pre-
sented in written form – identifying the type of chord (e.g., dominant seventh), the key that the chord is 
associated with (e.g., C-major), and the pattern of the chord (e.g., second inversion).  As part of my tech-
nical training, I have to learn how to play all of these chords for a wide variety of keys with both hands.  
As part of my ear training, I have to learn to recognize the difference in sound between a major chord, a 
minor chord, a dominant seventh, and a diminished seventh.  All of these are fairly complicated and chal-
lenging tasks – as my piano teacher, Marg Tompkins, is painfully aware from hearing me perform!  From 
the perspective of cognitive science, any challenging task that can be accomplished by humans is a task 
worthy of further exploration.  This leads to the following question:  would it be possible to train a network 
to identify the different kinds of chords that could be “played” on our imaginary keyboard? 

 
All that stands in the way of answering these questions is translating the information that was 

provided above into a training set that can be presented to a network.  There are a number of different 
ways of doing this.  The following paragraphs describe one straightforward encoding that we used to de-
velop a network capable of recognizing the four different types of tetrachords, and also suggest some 
possible alternatives. 

 
First, consider the encoding of the network’s responses.  Ultimately, we want a trained network to 

be capable of distinguishing between four different kinds of chords – major, minor, dominant, and dimin-
ished.  We built a network with four output units, each of which was associated with one of the four chord 
types.  The network is trained to turn the correct output unit on when presented a representation of the 
chord.  Other approaches would be interesting to explore, too.  For example, because we want the net-
work to make four different responses, we really only require two output units, which are capable of rep-
resenting four different states ([0, 0] for major, [0, 1] for dominant, [1, 0] for minor, and [1, 1] for dimin-
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ished).  It would be interesting to see whether changing the representation of the network’s responses 
affected its internal representations of chord structures.  For instance, in the two-output unit encoding that 
was just suggested, the desired value of the first output unit reflects the fact that dominant chords are re-
lated to major scales, and that diminished chords are related to minor scales. 

 
Second, consider how to encode the stimuli that are to be presented to the network.  We adopted 

a very simple, local, encoding by providing the network with 24 different input units, each one represent-
ing a different key on our mini-piano.  A “note” was presented to the network by turning the unit associat-
ed with its key on, indicating that the key was pressed down.  For any of the stimuli that were presented 
to the network, four input units were turned on, and all of the others were turned off.  Again, there are al-
ternative encodings that are more sophisticated, and it would be very interesting to explore how these 
might affect network performance and structure.  For instance, any sound that would be generated by a 
single key of our mini-piano would be a sine wave of a particular amplitude and frequency, and would al-
so produce resonant vibrations in other piano components.  This would result in other sine waves, of 
higher frequencies and diminishing amplitudes, being added to our primary sine wave (Jourdain, 1997).  
We could represent a stimulus by having different input units correspond to different sine wave frequen-
cies, and by using input values to represent the amplitude. 

 
Once an encoding for network inputs and outputs has been chosen, all that remains is to create a 

training set.  We created a training set based on the 12 different notes that formed the basis for the first 
octave of our mini-piano.  For each of these 12 notes, we began by treating it as the root of a major scale.  
We then created three different major chords for this scale (root position, first-inversion, second inver-
sion).  We also created five different dominants for this scale (root position, first inversion, second inver-
sion, third inversion, and one of these four chords repeated an octave higher, depending on how the 
chords could be fit onto the mini-piano).  In other words, for each of the 12 possible major key signatures, 
we created three different major chords and five different dominants, resulting in 96 different patterns. 

 
We then took each of the twelve notes again, but treated them as the root of a minor scale.  For 

each of these, we created three different minor chords (root position, first-inversion, second inversion).  
We also created five different diminished chords (root position, first inversion, second inversion, third in-
version, and one of these four chords repeated an octave higher, depending on how the chords could be 
fit onto the mini-piano).  This resulted in another 96 different training patterns, for a total of 192 training 
patterns in the training set.  All of the stimuli that we defined were tetrachords (instead of triads), so that 
the network could not use the number of activated input units as a cue to distinguish  a major or minor 
triad from a dominant or a diminished, which are always defined with four notes.  The network was then 
trained to recognize what type of chord was being presented, regardless of the key that the chord was 
based on, or of how the chord was inverted. 

 
11.4.2 Classifying Chords With A Network 

 
In our use of the Rumelhart program to train a network to classify musical chords, we decided to 

make all of the output and hidden processors value units.  The network was trained with a learning rate of 
0.01.  The connection weight values were randomly selected from between –0.1 and +0.1, and the biases 
of all the units were initialized to a value of 0.  As was the case for the XOR networks described earlier, 
the minimum squared error to define a “hit” was 0.01.  A network that used four hidden units converged to 
a solution – hits on every training pattern – after 11,643 epochs.  The order of pattern presentation was 
randomized after every epoch.  When the network converged, its total sum of squared error was 0.101, 
which is quite small, considering that this value is summed over 192 different training patterns. 

 
The network that was produced by this training is quite a bit more complicated than the XOR net-

works that were described above.  One cannot simply look at the connection weights to determine how it 
functions, because with 24 input units, 4 hidden units, and 192 training patterns, there is far too much da-
ta to process.  A proper interpretation of this network is delayed until Chapter 12.  However, there are 
some core characteristics of this network that might suggest specific avenues that could be explored 
when the network’s structure was investigated. 
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For example, one wonders if there is any significance to the fact that four hidden units were re-
quired by this network to classify the chords.  In this training set, the number four is important in more 
than one way.  First, there are four different types of chords.  Is it possible that the different hidden units 
are each capturing a characteristic of one of these chords?  Second, four notes define each chord.  Per-
haps each hidden unit detects the position of a note on a key, and uses this information to help the net-
work to cope with the different inversion.  A detailed investigation of such possibilities would require us to 
examine the responses of the hidden units to different kinds of patterns, the relative values of the connec-
tion weights that feed into the hidden units, as well as of the weights that feed into the output units.  One 
of the goals of analyzing such properties would be to discover how the network represented the musical 
characteristics that defined each type of chord.  Is this representation surprising or interesting?  Is it pos-
sible that people use this representation too?  Does the representation reveal anything surprising about 
the mathematical relationships between different kinds of chords or scales?  Once answers to these kind 
of representational questions are hunted down, one would be in a position to explore whether or not the 
network’s representations change when a different input and/or output encoding is employed. 

 
11.5 A THIRD CASE STUDY: FROM CONNECTIONISM TO SELECTIONISM 

 
Since its birth in the mid 1950s, cognitive science has been guided by the digital computer meta-

phor, and has developed functionalist theories that have largely (and deliberately) ignored the neural ba-
ses of mental phenomena (Calvin, 1996; Clark, 1989; Edelman, 1992).  More recently, a strong reaction 
against this practice has produced two biologically inspired theories of cognition, instructionism and selec-
tionism.  While both of these approaches have emerged as challengers to classical cognitive science, 
they have also been placed in an unfortunate competition with each other.  There is a general view that 
instructionist and selectionist theories are mutually incompatible (Edelman, 1987; Piattelli-Palmarini, 
1989). Below, with the goal of providing another example of how multilayered networks might contribute 
to synthetic psychology, some computer simulations are described to demonstrate that this is not neces-
sarily the case.  These simulations show that that it might be possible to incorporate the main ideas of 
selectionism into an instructionist framework. 

 
11.5.1 Instructionist Versus Selectionist Theories  

 
Instructionist theories view cognition as the ultimate product of neuronal growth.  In its most ex-

treme form, the developing brain is viewed as initially being a tabula rasa (Pinker, 2002).  As the result of 
interactions with an environment, neural structure emerges via the growth and/or strengthening of neu-
rons and synapses.  “Many neuroscientists equate learning with the forming of associations, and look for 
an associative bond in the physiology of neurons and synapses, ignoring other kinds of computation that 
might implement learning in the brain” (p. 21). 

 
Connectionist networks can easily be cast as examples of instructionism.  Prior to training, con-

nections among processing units are essentially structureless, because initial connection weights are 
usually small and random.  During training, connection weights grow in size, structure is "written" by the 
environment into the network, and the network develops into a system capable of computing a specific 
function.  “The connectionists, of course, do not believe in a blank slate, but they do believe in the closest 
mechanistic equivalent, a general-purpose learning device” (Pinker, 2002, p. 78). 

 
Instructionist theories have both advantages and disadvantages.  On the one hand, they have 

been highly formalized, and through this formalization have been explored in detail using computer simu-
lation methods and also have been linked to well-established theories of pattern recognition and machine 
learning (e.g., Pao, 1989; Ripley, 1996).  On the other hand, this formalization may have been purchased 
at the expense of their biological relevance.  Many neuroscientists have raised serious questions about 
the neural plausibility of instructionist theories like PDP networks (e.g., Calvin, 1996; Douglas & Martin, 
1991). 

 
In contrast to instructionism, selectionist theories of cognition deny that the brain is a structure-

less tabula rasa.  Instead, selectionists assume that the initial stages of brain development involve the 
generation of a large and varied amount of structure.  This structure provides a preexisting repertoire of 
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responses to be elicited by the environment.  The interaction between the environment and preexisting 
structure selects some structures as being more appropriate than others, and this in turn modifies the un-
derlying neural architecture.  "After initial selection, certain cell groups in the repertoire have a higher 
probability than others of being selected by a similar or identical signal pattern" (Edelman & Mountcastle, 
1978, p. 60). 

 
Selectionist theories are inspired by immunology (e.g., Cziko, 1995).  In response to an infection, 

biological systems produce enormous amounts of antibodies.  Any antibody can be considered as a spe-
cific three-dimensional label whose shape binds with the shape of an antigen.  Once labeled in this fash-
ion, the antigen becomes a target of other mechanisms that will destroy it.  Importantly, antibodies can be 
produced to completely novel artificial substances.  This suggests that there is no limit to the range of dif-
ferent antibodies than an organism can create.  How is this possible? 

 
One theory was instructionist in nature (Cziko, 1995).  Antigens were assumed to serve as physi-

cal templates that could be used to create corresponding antibodies because of direct contact with the 
immune system.  However, this theory encountered many difficulties.  For example, because of the rapid 
immune response to an infection, antibodies will quickly outnumber antigens.  This seems impossible if 
antigens are to serve as templates for antibody construction.  Furthermore, the immune system has a 
memory – it will respond more quickly and effectively to an infection that it has faced before than to a 
novel infection. 

 
Jerne (1967) provided an alternative selectionist theory of the immune response.  According to 

his theory, an animal initially possesses a relatively small number of individual antibodies, but within this 
small number there is an incredible diversity of different antibody types.  Essentially, the animal starts with 
a repertoire of antibodies that is capable of dealing with any possible future infection.  When an infection 
is encountered, a particular (pre-existing) antibody will bind to the antigen.  When this binding occurs, the 
antibody produces a large number of copies of itself.  “It follows that an animal cannot be stimulated to 
make specific antibodies, unless it has already made antibodies of this specificity before the antigen ar-
rives.  It can thus be concluded that antibody formation is a selective process and that instructive theories 
of antibody formation are wrong” (p. 201). 

 
Jerne (1967) first drew the link between selection in immunology and neural adaptation.  “Looking 

back into the history of biology, it appears that wherever a phenomenon resembles learning, an instruc-
tive theory was first proposed to account for the underlying mechanisms.  In every case, this was later 
replaced by a selective theory. […] Antibody formation that was thought to be based on instruction by the 
antigen is now found to result from the selection of already existing patterns.  It thus remains to be asked 
if learning by the central nervous system might not also be a selective process; i.e., perhaps learning is 
not learning either” (p. 204).  Piattelli-Palmarini (1989, p. 2) provides a more modern example of agree-
ment with this sentiment: “I, for one, see no advantage in the preservation of the term learning.  We agree 
with those who maintain that we would gain in clarity if the scientific use of the term were simply discon-
tinued.” 

 
Selectionist theories also have both advantages and disadvantages.  On the one hand, selection-

ist theories maintain a high degree of biological plausibility.  For instance, they appear to be extremely 
consistent with measurements of neural development.  Several researchers have observed that in the 
first year of human life there is a dramatic increase in both the number of neurons and in synaptic density, 
but that this is followed by a longer period of time in which both of these factors demonstrate substantial 
declines (see Sporns & Tononi, 1994).  This is predicted by selectionist theories in which early neuronal 
growth provides a large repertoire of neural circuits that is later pruned by environmental exposure. 

 
On the other hand, the strong biological nature of selectionist theories has worked against their 

formalization.  While computer simulations have been used to study some selectionist predictions (e.g., 
Edelman, 1987, 1988, 1989, 1992), they have not successfully modeled some of the higher-order phe-
nomena that PDP models have been used to study.  As a result, selectionist theories have not had a 
strong impact on cognitive science. In their acknowledgement that selectionist theories have not taken 
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advantage of possible modeling strategies, Changeux and Dehaene (1993, p. 384) point out that "the 
crucial issue remains to find a learning rule coherent with such a Darwinian picture." 

 
Our hypothesis was that the learning rule being sought by selectionist researchers might in fact 

be the kind of rule that has already been established in instructionist models.  Specifically, there is no 
reason in principle why procedures used to train PDP models, such as the generalized delta rule, cannot 
be used in a selectionist paradigm.  My students and I began to wonder what would happen with connec-
tionist learning if we provided a network with more hidden units that it needed to solve a problem, and if 
we initialized the connection weights with values that were much more structured than is traditionally the 
case.  We adopted a synthetic approach to explore these musings. 
 
11.5.2 A Connectionist Formulation Of Selectionism 

 
Our research began by considering what would have to be done in order for a learning rule to al-

ter a PDP network in accordance with selectionist assumptions. For selectionism to work, systems must 
possess a great deal of initial structure that can be selected as needed by environmental pressures. If a 
connectionist network was a) provided many more hidden units than would ordinarily be required, and b) 
provided initial connection weights they were not near-zero, but instead were much larger, and exhibited 
high variability, then it might be possible to use a rule like the generalized delta rule to select useful, 
preexisting processing units from a pre-structured network. 

 
In the experiments that we report below, one of our independent variables concerned the distribu-

tion from which connection weights were randomly sampled prior to the training of the network.  This ma-
nipulation was used to insert initial structure into the PDP networks prior to training.  In the control condi-
tion, all of the weights were initialized by randomly sampling values from a rectangular distribution that 
ranged from -1 to +1.  Structure was added to initial weights by changing the variability (but not the mean) 
of this distribution.  This was accomplished by inserting a "gap" in the distribution.  In one experimental 
condition, this gap resulted in weights being selected from the range -2 to -1, and +1 to +2, but not from 
the range -1 to +1.  In a second experimental condition, this gap resulted in weights being selected from 
the range -3 to -2, and +2 to +3, but not from the range -2 to +2.  The rationale underlying these condi-
tions was that structure would be supplied to the network by ensuring that all weights began at values that 
were much more extreme than in the control condition.  Furthermore, the larger the “gap” in the distribu-
tion from which weights were selected, the higher the variability of the weights.  High variability is often 
used as an index of a high degree of structure in such statistical techniques as factor analysis (e.g., Kai-
ser, 1958). 

 
Our second independent variable was the number of hidden units available in the network prior to 

training.  In one condition, there were as many hidden units as there were input units.  For all of the prob-
lems that we studied, this would be a sufficient number of units for a network to represent a solution.  In a 
second condition, there were twice as many hidden units as there were input units.  In a third condition, 
there were three times as many hidden units as there were input units.  The basic idea behind these ma-
nipulations was to increase the repertoire of hidden unit responses prior to training.  As the number of 
hidden units is increased, so does the potential number of different internal responses to stimulus pat-
terns.  This is particularly true when this manipulation is combined with one in which the initial connection 
weights are highly structured. 

 
Our basic assumption was that in networks in which initial connection weights were highly struc-

tured, and in which there was a large number of preexisting hidden units, the application of the general-
ized delta rule would essentially serve as a selectionist mechanism.  In other words, rather than "growing" 
a network for solving the task -- which is the instructionist view of PDP modeling -- the learning rule would 
select the appropriate hidden units from the large number that were available.  One consequence of this 
should be a dramatic increase in learning speed.  However, this should only occur under the appropriate 
combination of the two independent variables.  Our first simulations attempted to determine whether this 
interaction between independent variables would appear. 
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11.5.3 A Case Study: The Parity Problem 
 
11.5.3.1 Defining The Problem 
 
The first experiment was designed to test whether the selectionist approach to PDP networks 

would provide any benefits for the learning of a particularly difficult pattern recognition problem, the parity 
problem.  In the parity problem, a network has a single output unit, and it has N  input units.  Each input 
unit is a bit that can either be on or off.  The network is trained to detect whether an odd number of its 
input bits are active.  If this is the case, then the network turns its output unit on.  If even numbers of input 
units are active, then the network turns its output unit off. 

 
The parity problem is an extremely difficult benchmark for a PDP network. This is because pat-

terns that are very near one another in the pattern space require the network to make opposite respons-
es.  For example, in the 5-bit parity problem the points representing the patterns [1, 0, 0, 1, 1] and [1, 0, 0, 
1, 0] would be very near to one another in five-dimensional pattern space, because there is only one dif-
ference between them (the last bit).  However, this tiny difference in the patterns makes a big difference 
in a network’s response, because it must identify the first pattern as having odd parity, and it must identify 
the second pattern as not having odd parity.  Because nearest neighbors require opposite responses, a 
network must partition a pattern space into a complex set of decision regions in order to solve the parity 
problem. 

 
As a result, when processors in PDP networks use the logistic activation function, at least N hid-

den units are required to represent the solution to an N-bit parity problem.  In practice, as N reaches the 
value of 7 or 8, we have found that this minimal network has a great deal of difficulty converging (see also 
Tesauro & Janssens, 1988).  We were interested in whether the performance of a standard network on 
this difficult problem could be improved by training it from a selectionist perspective. 

 
11.5.3.2 Manipulating The Number Of Hidden Units 
 
Each network had one output unit, which was trained to activate when an odd parity problem was 

presented to the input units, and to fail to activate when an even parity problem was presented to the in-
put units.  The output unit was a value unit that used the Gaussian activation function. 

 
Three different versions of the parity problem were examined.  In the 5-parity problem, the net-

work had 5 input units, and the training set consisted of all of the 32 binary patterns that could be repre-
sented by these units.  In the 7-parity problem the network had 7 input units and a training set of 128 pos-
sible binary inputs.  In the 9-parity problem, the network had 9 input units and a training set of 512 possi-
ble binary inputs.  For each version of the parity problem, three different sizes of networks were trained.  
One had the same number of hidden units as there were input units.  A second had twice as many hidden 
units as there were input units.  A third had three times as many hidden units as there were input units.  In 
all of these different conditions, all of the hidden units were value units. 

 
11.5.3.3 Manipulating The Initial Structure Of Connection Weights 
 
For each network trained on a parity problem, three different starting conditions were examined.  

The first was a "low structure" condition.  In this condition, all of the connection weights in the network 
were initialized by randomly sampling from the range -1 to +1.  The second was a "medium structure" 
condition.  In this condition, all of the connection weights were initialised by randomly sampling from the 
range -2 to -1 and 1 to 2.  The third was a "high structure" condition. In this condition, all of the connection 
weights were initialised by randomly sampling from the range -3 to -2 and 2 to 3.  In all three of these 
conditions, the bias of each processing unit was initialised with a value of 0.  With this structure manipula-
tion, the mean of the sampling distribution was held constant, but the variance of the distribution was in-
creased.  In general, as structure increased because of changes in the sampling distribution, the initial 
weights in the to-be-trained network were more extreme. 
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11.5.3.4 Training The Networks 
 
This experiment had a 3 X 3 X 3 factorial design.  The first factor was size of problem (5-parity, 7-

parity, 9-parity).  The second factor was the number of hidden units (N, 2N, 3N).  The third factor was the 
structure in the sampling distribution used to initialize connection weights (low structure, medium struc-
ture, high structure).  In this design, there are 27 different cells.  In each cell, 20 different networks were 
trained, each randomly initialized in accordance with the constraints imposed by the structure manipula-
tion.  Each of these different networks (540 in total) represented a different "subject" in the experiment.  
The dependent measure for the study was the number of training epochs required for a network to solve 
the parity problem. 

 
Each network was trained with the Dawson and Schopflocher rule (1992).  Network connections 

were updated after every pattern presentation, using a learning rate of 0.001.  One epoch involved the 
presentation of every possible input pattern to the network.  The order of pattern presentation was ran-
domized every epoch.  Networks were said to have converged on a solution to the problem when a "hit" 
was recorded for the output unit for every pattern presented during the epoch.  A "hit" was defined as out-
put unit activity of 0.9 or greater when the desired output was 1.0, or as output unit activity of 0.1 or less 
when the desired output was 0.0.  If convergence was not achieved after 10,000 epochs, then training 
was stopped, and the value of 10,000 was entered as the dependent measure. 

 
11.5.3.4 The Potential Power Of Selectionism 
 
If connectionist networks can instantiate selectionist principles, then there should be significant in-

teractions between the manipulations of structure and number of hidden units.  In particular, fast learning 
of the parity problems should require a combination of high structure and a high number of hidden units. 

 

 
Structure 

Low Medium High 

Number 
Of  

Hidden 
Units 

N
10,000 
(0.00) 

9190.90 
(2553.26) 

10,000 
(0.00) 

2N 
9887.35 
(503.79) 

4218.90 
(2650.38) 

2840.70 
(4257.08) 

3N 
10,000 
(0.00) 

849.05 
(361.79) 

88.75 
(44.65) 

Table 11-1. Mean epochs to converge on the 9-bit 
parity problem, with standard deviations in paren-

theses.  Each cell is represents the mean from train-
ing 20 different networks. 

 
 This is exactly the kind of pattern that emerges from the results of this first simulation.  Table 11-

1 provides the results for the 9-bit parity problem; similar patterns of results were observed for the two 
other versions of the parity problem that were examined.  From the table, it can be seen that the slowest 
learning occurs in situations in which there is a combination of low structure and a small number of hid-
den units.  The fastest learning occurs in the condition for which there was high structure and a large 
numbers of hidden units.  However, even when the number of hidden units is high, this is not by itself 
enough to guarantee fast learning.  Looking across the last row of the table, it can be seen that when the 
number of hidden units was held constant at 3N (i.e., held at 27 for the 9-bit version of the parity prob-
lem), structure is still required.  The low structure condition in this row never led to a learned solution 
(which is why the average sweeps to completion is 10,000 with zero standard deviation).  When medium 
structure is used for this number of hidden units, on average the problem is learned in well under 1000 
epochs.  When high structure is used, learning is accomplished in well under 100 epochs.   

 
A statistical analysis of all of the results of this simulation, using analysis of variance on all 27 

cells of the experimental design, confirmed the regularities that were revealed in Table 11-1.  Most im-
portantly, there was a significant interaction between the number of hidden units and the level of struc-
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ture.  In general, this emerges because the effect of structure is amplified by increasing the number of 
hidden units, as we saw in Table 11-1.  Here, when the number of hidden units is at the minimum, there is 
essentially no effect of structure.  However, as the number of hidden units is increased, the differences 
between the means of the different structure conditions become quite large. 

 
One concern with the simulation described above is it could be argued that the increased learning 

speed observed was not due to selectionist principles. Rather, the fast learning speed might merely be a 
reflection of the large connection weights that accompanied the large gaps in a high-structured network. 
Network structure might not have contributed to the improvements in learning the parity problems. 

 
We ran a second simulation to determine whether the results above were indeed due to the 

amount of initial structure, or were simply due to the presence of large weights. The second simulation 
was identical to the first, with the exception of how the connection weights were initialized. Instead of im-
posing a gap (structure) in the sampling range, the random sampling of connection weights in this exper-
iment spanned across the entire sampling distribution (i.e. from –1 to +1, -2 to +2, and –3 to +3), without 
leaving a gap in the middle. 

 

 
Connection Weight Range 

Narrow Medium Wide 

Number 
Of  

Hidden 
Units 

N
9983.70 
(72.90) 

10,000 
(0.00) 

10,000 
(0.00) 

2N 
9529.25 

(1457.69) 
10,000 
(0.00) 

10,000 
(0.00) 

3N 
10,000 
(0.00) 

10,000 
(0.00) 

10,000 
(0.00) 

Table 11-2. Mean epochs to converge on the 9-bit par-
ity problem in the second simulation, with standard 
deviations in parentheses.  Each cell is represents 

the mean from training 20 different networks. 
 
The results of the second simulation were markedly different from the first.  Table 11-2 presents 

the mean sweeps to convergence for the 9-bit parity problems, and can be compared to Table 11-1.  
First, learning this particular version of the parity problem proved enormously difficult in this study.  In 
most of the cells, networks reliably failed to converge on a solution after 10,000 epochs.  Second, when 
learning did occur, it did so for conditions in which there were fewer hidden units, and the range from 
which connection weights were selected was narrow.  Clearly having a wider range of connection weights 
is not sufficient to account for the results of the first simulation, because if this were so, then Tables 11-1 
and 11-2 would have been very similar in appearance.  Analysis of variance of the full set of data for the 
second simulation confirmed this interpretation.  It would appear that the results of the first simulation de-
pend upon the presence of structure – a gap in the sampling distribution.  This is consistent with are con-
sistent with a selectionist perspective. 

 
11.5.3.5 The Need For Future Research 
 
The experimental results above are a first step towards demonstrating that there exists an inter-

esting possibility for a convergence between selectionism and connectionism.  However, a great deal 
more research is required before this convergence is demonstrated conclusively.  The simulations above 
provided a result that was consistent with the hypothesis that the learning rule was being used to select 
pre-existing structure from the network, and that this dramatically aided the network in finding a solution 
to the problem.  However, this was only demonstrated with one problem (parity), and with one architec-
ture (value units).  Clearly, more research needs to be conducted to explore whether these results gener-
alize to other problems and architectures. 

 
As well, the manipulation of structure was very coarse in the above simulations.  Other manipula-

tions are worthy of exploration.  For instance, perhaps the networks could be provided with specific struc-
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tures or circuits, designed for accomplishing particular tasks, rather than just a random assortment of 
connection weights that are mathematically structured.  “A system assembled out of beefed-up subnet-
works could escape all of the criticisms.  But then we would no longer be talking about a generic neural 
network!” (Pinker, 2002, p. 82).  However, rather than viewing this development as an abandonment of 
connectionism, we could more positively view it as an evolution of connectionism into a more powerful, 
fully formalized, selectionist theory.  
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Chapter 12: From Synthesis To Analysis 
 

The three previous chapters have each introduced a fundamental building block of connectionist 
modeling: storing associations between patterns in sets of connection weights, using nonlinear activation 
functions to make decisions, and training networks that are composed of multiple layers of nonlinear pro-
cessors.  Together, these three components provide the capability to train multilayer perceptrons to solve 
problems of interest to us.  In principle, multilayer perceptrons are tremendously powerful, and represent 
a single kind of tool with which an enormous diversity of modeling can be performed.  We saw in Chapter 
11 that all that is really required to begin a modeling project is some method for encoding input and output 
patterns in a format that can be processed by a connectionist network. 

 
However, the ability to define a training set, and to use something like the generalized delta rule 

to create a network capable of correctly responding to it, is not sufficient for us to practice synthetic psy-
chology.  This is because if connectionist models are going to inform cognitive science, then they will not 
do so by merely being brought into existence.  We have already seen that multilayer perceptrons are as 
powerful, in principle, as universal Turing machines.  Because these models are so powerful, we should 
always be able to train some kind of network to solve a problem, and we should never be surprised by the 
simple creation of a network.  Instead, connectionist models will have to surprise and inform us by telling 
us something new about a problem that they learned to solve.  In order for us to find out this kind of in-
formation, we have to momentarily abandon synthesis, and we must instead perform an analysis of the 
internal structure of our models.  By taking a network apart, and by understanding the kinds of regularities 
that it uses to solve a problem, we will be able to make contributions to psychology and cognitive science. 

 
The purpose of this chapter is to provide an introduction to some methods for interpreting the in-

ternal structure of connectionist networks.  This chapter proceeds as follows:  First, a case study of a 
model from Chapter 11 will illustrate the kind of information that is available when a network is interpret-
ed, and will also demonstrate the kind of insights that network analysis can provide.  Second, we will con-
sider some of the emergent properties of value unit networks, and demonstrate how these properties 
have led to novel techniques for network analysis.  Again, case studies will be used to make these points.  
Third, we will illustrate the relevance of this approach to synthetic psychology by briefly sampling some 
previous research in which network interpretation was used to contribute to debates in cognitive science. 

 
12.1 REPRESENTING MUSICAL CHORDS IN A PDP NETWORK 

 
In Chapter 11, we introduced an example problem in which a connectionist network was trained 

to classify musical chords.  The network that was described had 24 input units, each of which represented 
a key or note on a mini-piano.  The network had 4 output units, each of which was used by the network to 
represent a different kind of musical chord – major, minor, dominant, or diminished.  The network used 4 
hidden units to successfully classify 192 different chords, each of which was defined by four different 
notes.  The network was able to identify chord type independent of what scale the chord was related to, 
and independent of what inversion was used to represent the order of the notes that made up the chord. 

 
In order to solve this problem, the internal structure of this network must represent some basic in-

formation about music.  What kind of knowledge does this network have?  Does the network pay attention 
to the same kinds of regularities that are emphasized when a person learns to play piano?  Or has the 
network instead discovered a different set of musical properties?  In order to answer these sorts of ques-
tions, we must treat the network as a special set of data, and we must analyze this data in order to de-
termine the nature of the network’s internal structure.  When this kind of analysis succeeds, we will un-
derstand what features the hidden units detect, and we will know how these features are represented.  
We will also comprehend how output units combine these features to make correct responses. 

 
12.1.1 Linear Analysis Of Hidden Unit Responses 
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The network that learned to classify musical chords did not have any direct connections between 
its input units and its output units.  We saw in Chapter 11 that one way in which to view such a network is 
that its hidden units transform or fold the pattern space that the network is learning to classify.  With re-
spect to the input unit encoding, the pattern space is not linearly separable.  However, when the hidden 
units detect regularities in the input patterns, they transform the input encoding into a new encoding that 
is simpler, and which (for many problems) is often linearly separable.  If the hidden unit representation is 
linearly separable, or if it is at least simpler than the input layer representation of patterns, then linear 
models of data can often reveal a great deal of information about how a network functions. 

 
In order to explore this possibility, we performed discriminant analysis on the music chord net-

work.  The discriminant analysis of a data set delivers equations that can be used to classify patterns 
(e.g., Klecka, 1980).  These equations take the values of variables as input, and combine them as a 
weighted, linear sum that is essentially identical to the multiple regression method that was discussed in 
Chapter 3.  The result of summing these weighted predictors determines what category an input pattern 
belongs to.  In our discriminant analysis, the input variables were the activation values of the hidden units 
to the input patterns.  In other words, instead of having 192 different patterns defined by 24 input varia-
bles (i.e., the original training set), we represented each of the 192 patterns as the set of 4 hidden unit 
activation values.  In our discriminant analysis, we used these hidden unit activities to predict the type of 
chord that was being detected. 

 
The results of a discriminant analysis that used all four hidden unit activities as predictor variables 

indicated that the hidden units had indeed simplified the pattern space.  It was able to use these activities 
to predict chord type with 98% accuracy.  To be more specific, it generated a set of equations that cor-
rectly classified all of the diminished, dominant, and minor chords.  These functions also correctly classi-
fied 33 of the 36 major chords.  The only problem that this analysis had was that 3 of the major chords 
were misclassified as being minor chords. 

 
Even more interesting results were obtained when discriminant analysis was performed using a 

smaller number of predictor variables.  When only the activations of hidden units 2 and 4 were used as 
predictors, discriminant analysis was still extremely successful, classifying the chords with 94% accuracy.  
Again, all of the diminished, dominant, and minor chords were correctly classified, even though only two 
predictors were being used.  25 of the major chords were also correctly classified.  The remaining 11 ma-
jor chords were misclassified as being minor chords. 

 
How do only two hidden units transform the 192 input patterns in order to provide this high degree 

of accuracy in classification?  Figure 12-1 illustrates how hidden units 2 and 4 organize the input patterns.  
This graph is a scatterplot of the 192 chords, where the x-position of a chord in the graph is provided by 
the activity of hidden unit 2, and the y-position of a chord in the graph is provided by the activity of hidden 
unit 4.  It can be seen from this graph that there are really only four different combinations of hidden unit 
activity, and that these combinations correspond nearly perfectly with the four different kinds of chords in 
the training set.  If both hidden units are activated with values of near 1.00, then this indicates that the 
chord is diminished (Type 4 on the graph).  If one of the hidden units has an activation of near 1.00, and 
the other has an activation of approximately 0.5 or 0.6, then the chord is dominant (Type 3 on the graph).  
If one of the hidden units has a fairly high activation (0.6 or higher), and the other has near zero activa-
tion, then the chord is minor – except for 12 major chords that fall in this region of the graph (Type 2 on 
the graph).  If both hidden units have near zero activity, then the chord is major (Type 1 on the graph). 
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Figure 12-1.  Music chords as represented by the activities of 
hidden units 2 and 4.  Circles represent major chords, Xs represent mi-

nors, +s represent dominants, and triangles represent diminished 
chords. The diagonal lines represent cuts that could be made by output 

units to separate the different chord types from one another. 
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Figure 12-1 also 
shows how the output units 
could exploit the hidden unit 
representation of the input 
patterns.  Recall that in this 
particular network all four of 
the output units were value 
units.  A value unit carves two 
parallel slices through a pat-
tern space.  If Figure 12-1 
was a pattern space for the 
output units, then each of 
these units could carve this 
space in such a way that cor-
rect responses would be 
made.  This would be accom-
plished by having each output 
unit arrange its cuts in a diag-
onal direction on the graph, 
going downward from left to 
right.  As can be seen from 
the diagonal lines that have 
been added to Figure 12-1, 
these cuts could be arranged 
in such a way that only one 
kind of symbol would fall be-
tween them.  The only excep-
tion to this claim is that in Fig-
ure 12-1, 12 of the major 
chords would incorrectly fall 
into the region that is occu-
pied by all of the minor 
chords.  Thus this graphical 
account of how these two hid-
den units represent musical 
chords is slightly less accu-
rate than discriminant analysis, because it would make 12 mistakes instead of 12. 

 
Figure 12-1, and the discriminant analysis of hidden unit responses, is interesting and important 

for two different reasons.  First, these analyses raise two interrelated questions about hidden unit repre-
sentations.  What kind of musical regularities do hidden units 2 and 4 detect, such that these two hidden 
units are able to solve most of the chord problem by themselves?  And what is special about the 11 or 12 
chords that do not appear to be handled by these two hidden units (and are therefore likely handled by 
hidden units 1 and 3)?  Second, because a two-unit representation can solve most of the problem, these 
results strongly suggest that we should concentrate our interpretative efforts on hidden units 2 and 4.  In 
the next section, we turn to examining the connection weights between these two hidden units and the 24 
input units. 
 
12.1.2 Representation Of Notes By Connection Weights 

 
In the previous section, a general understanding of the chord classification network was provided 

by the study of one kind of data, hidden unit activities.  The values of the connection weights that feed 
into processors represent a second type of data that can be extremely helpful in the task of network anal-
ysis. 
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For example, consider the two hidden units that appear to be capable of solving most of the chord 
classification problem.  After discriminant analysis had indicated the importance of these two units, we 
looked at them more closely by examining their connection weights.  Recall that each of these units had 
24 different incoming connections, each associated with one of the “piano keys” on our imaginary mini-
piano.  In order to solve this particular problem, it seemed reasonable to expect that these connection 
weights had to represent some property about the different notes that the network was being presented, 
and that the hidden units represented the structure of a chord by combining this property from the four 
notes that could be presented to it by any one of the training patterns. 

 
In examining the connection weights of both 

hidden units, we observed an extremely regular pat-
tern.  For hidden unit 2, the connection weight as-
sociated with the lowest A that could be present- ed 
was a strong negative.  The next connection 
weight (A#) was a weaker negative value, about half 
the weight of the first.  The third connection 
weight (B) was a strong positive value, and the 
fourth connection weight (C) was a positive val- ue 
that was about half the weight of the third.  This same pattern then repeated itself for each set of four 
notes through to the end of the input units.  Hidden unit 4 had exactly the same pattern, but it was shifted 
one note to the right.  The first connection weight was a weak negative, the second a strong positive, the 
third a weak negative, and the fourth a strong negative.  This pattern repeated itself again and again 
through the input patterns.  In both of these patterns, identical notes (that is, notes that are an octave 
apart, or separated by twelve keys on the mini-piano) were given exactly the same connection weight.  
Table 12-1 provides the value of the connection weight associated with each note by both of the hidden 
units. 

 
It is useful to consider the connection weights from Table 12-1 as representing “note names” that 

are assigned by the hidden units.  One interesting property of the table is that it shows that notes for 
which musicians would provide different names are all given the same name by the hidden units.  For 
example, three notes that we would ordinarily treat as being different are A, C#, and F.  However, hidden 
unit 2 gives all three of these notes the same weight or “name” (-0.29), as does hidden unit 4 (-0.17).  An 
examination of the table shows that there are three other sets of different note names that are treated as 
being equivalent as far as these two hidden units are concerned. 

 
 What is special about these different notes that leads them to be treated in an identical fashion 

by these hidden units?  One important property for each set of three note names in Table 12-1 is that the 
notes are equally spaced on the keyboard.  For instance, C# is four piano keys higher than A, and F is 
four piano keys higher than A.  This four-key spacing is true of each set of note names in the table.  Why 
is this property important?  In all four types of chords, one will never find three different notes that are 
equally spaced four piano keys apart from one another.  What this means is that, for example, the net-
work will never see a pattern in which A, C#, and F are all presented together in the same chord.  These 
three notes are never found together in any major, minor, dominant, or diminished chord.  The same is 
true for the three other sets of three notes in Table 12-1.  Thus, in certain respects it makes sense for the 
network to give each note the same “name”.  This is because the network will never have to differentiate 
between all three notes at the same time. 

 
Of course, the network is not presented single notes as stimuli, but is instead presented four 

notes at the same time.  Table 12-1 can also be used to provide some insight into why the notes are as-
signed these particular connection weights, and suggest how the network represents individual chords. 

 
For example, we have already noted that the network will never be presented the three notes that 

fall into a single cell in Table 12-1 at the same time.  However, it is possible for the network to see a pat-
tern in which one note from each of the four different note groups is presented.  For example, one valid 
stimulus that was presented to the network was B, D, F, and G#.  This can be translated into the note 
“names” of hidden unit 2 as the pattern 0.28, -.13, -0.29, and 0.15.  In terms of the connection weights of 

Note Name Hidden Unit 2 Hidden Unit 4
A, C#, F -0.29 -0.17 

A#, D, F# -0.13 0.31 
B, D#, G 0.28 0.14 
C, E, G# 0.15 -0.29 
Table 12-1.  Correspondence between note 

names and connection weight values for two 
hidden units in the chord classification net-

work. 
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hidden unit 4, this chord can also be written as the pattern 0.14, 0.31, -0.17, and –0.29.  If one computes 
the sum of the four names (i.e., connection weights) from hidden unit 2 (as would be the case when the 
hidden unit calculates its net input function), then the result would be 0.01, which is nearly identical to the 
bias of –0.01 for that unit.  Similarly, if the four values from hidden unit 4 are added together, then the re-
sult is –0.01, which is nearly identical to that unit’s bias of –0.03.  Because for this chord the two net in-
puts are nearly identical to the respective biases, both hidden units would generate activation values of 
nearly 1.00.  From Figure 12-1, we can see that this would indicate that this chord was diminished.  In-
deed, all of the diminished chords from the training set can be defined by taking one note from each of 
the four different groups in Table 12-1.  As a result, any diminished chord will result in a near-zero net 
input for each hidden unit, which will in turn result in a high activation value for both hidden units.  This is 
how these two units represent the fact that a presented chord is diminished in nature. 

 
In general, it appears that the network has 

selected the connection weights that are listed in Ta-
ble 12-1 as the “names” for different notes be-
cause individual chords are represented as the sum 
of these names (i.e., when net input is comput- ed), 
and these particular weight values enable the hid-
den units to generate unique patterns of net in- puts 
to each chord type.  This is illustrated in Table 12-
2.  It provides the different net input values that are 
observed in the two hidden units for the different 
types of chords, including the 12 major chords that are incorrectly classified as being minor.  There are 
several observations that can be made from this table. 

 
First, the net inputs that are calculated fall into a very small number of categories.  For example, 

when hidden unit 2 is presented a dominant chord, then it will compute one of only four net input values: -
0.15, 0.15, -0.45, 0.45.  When we note that the symmetric bell shape of the Gaussian activation function 
essentially ignores the sign of the net input, we can further reduce the number of net input values that are 
generated to the chord types.  For instance, that when hidden unit 2 is presented a dominant chord, it 
really only generates two net input values, 0.15 and 0.45, because it treats negative and positive values 
as being identical when they are passed into its activation function. 

 
Second, the fact that the hidden units generate more than one net input to the same kind of chord 

would indicate that as far as the hidden units are concerned, there is some additional structure within 
chord type.  For example, Table 12-2 suggests that the two hidden units are sensitive to four different 
subclasses of minor chords.  What are these subclasses?  This question can be answered simply by in-
specting the properties of the different minor chords that are associated with each net input class.  Hidden 
unit 2 generates a net input of ±0.16 to the minor chords that are first and second inversions, and that 
start with the note A#, D, or F#, or with the note C, E, or G#.  These two different sets of notes are the 
ones that are assigned positive weights or names, as indicated in Table 12-1.  It generates a net input of 
±1.00 to the minor chords that are first and second inversions, and that start with a note that is assigned a 
negative weight (i.e., B, D#, or G; A, C#, or F).  It generates a net input of ±0.30 to minor chords in root 
position whose starting note is from the group A, C#, or F, or from the other group B, D#, or G.  Finally, it 
generates a net input of ±0.84 to minor chords in root position whose starting note is from the group A#, 
D, or F#, or from the other group C, E, or G#.  In short, by examining the net input calculated by this unit, 
we can see that it can be used to predict the form of the chord (root position, first inversion, second inver-
sion), as well as the note class (i.e., the row in Table 12-1) from which the chord’s starting note is taken.  
A similar organization of chords is obtained by examining the net inputs of hidden unit 4. 

 
A third observation to make about Table 12-2 is to draw attention to an additional fact that the ta-

ble does not make explicit.  We have seen that the two hidden units each generate four different kinds of 
net input responses to minor chords.  However, it is not the case that we will observe all possible combi-
nations of classes when we examine the relationship between the net inputs of the two hidden units.  For 
example, when hidden unit 2 generates a net input that falls into the class ±0.16, then hidden unit 4 will 
only generate a net input that falls into the class ±1.05.  No other combinations are observed.  Such con-

Chord Type Hidden Unit 2 Hidden Unit 4
Major ±0.72 ±0.72, ±0.80 

Incorrect  
Major 

±0.28, ±0.85 ±0.30, ±0.91 

Minor 
±0.16, ±0.30, 
±0.85, ±1.00 

±0.13, ±0.30, 
±0.90, ±1.05 

Dominant ±0.15, ±0.45 ±0.14, ±0.45 
Diminished 0.01 -0.01 
Table 12-2.  Correspondence between chord 

types and net input values for two hidden 
units in the chord classification network. 
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straints on the combinations of net inputs ultimately result in the highly striated appearance of the trans-
formed pattern space that was graphed in Figure 12-1. 

 
12.1.3 Problems With Major Chords, And How To Solve Them 

 
The previous section has detailed how hidden units 2 and 4 represent musical regularities.  

These hidden units appear to have a much different view.  They represent the input patterns using only 4 
different note names, with each note repeated six different times, and with 4 piano keys separating re-
peated notes.  By representing the individual note “names” with carefully chosen connection weights, 
these units use the sum of the four note names (i.e., net inputs) to represent whole chords.  The net in-
puts produced by each chord type produce characteristic activity in the two hidden units, which in turn can 
be used to classify chords (see Figure 12-1).  Furthermore, variations in net input (and therefore varia-
tions in hidden unit activity) are associated with specific chord structures within a chord class (e.g., type of 
inversion, type of note upon which the chord begins). 

 
While this representation of musical knowledge is rich and interesting, it is not complete – even 

for the pattern set that the network was trained to classify.  There are a handful of major chords that are 
not correctly represented by this four-note musical system.  Why is this representation unable to deal with 
these major chords?  How do the other two hidden units in the network correct this deficiency? 

 
The first step in answering these two questions involves identifying the major chords that are mis-

classified by hidden units 2 and 4.  When this is done, it becomes clear that the errors made by these two 
hidden units are extremely systematic.  Recall from our description of the chord classification problem in 
Chapter 11 that our mini-piano was based upon a musical system that used 12 different note names (A, 
A#, B, C and so on up to G#).  A major chord in root position could be built upon any one of these 12 dif-
ferent note names, and then this chord could be rearranged to produce its first or second inversion.  
When hidden unit activities are examined, it becomes clear that the type of representation used by hidden 
units 2 and 4 only fails for the second inversion of the major chord based on each of these 12 notes (i.e., 
the second inversion of the major chord based on A, the second inversion of the major chord based on 
A#, and so on up to the second inversion of the major chord based on G#). 

 
Why does this representation fail for the second inversion of major chords?  This can be an-

swered by considering one major chord as an example.  Let us take the root position of the major chord 
based on the note C, which uses the four notes C, E, G, and C.  If we used the connection weights for 
these notes that are assigned by hidden unit 2 (see Table 12-1), this pattern can be represented as the 
four values 0.15, 0.15, 0.28, and 0.15, which sum to a total of 0.73.  Importantly in this root position pat-
tern, three of these connection weights are identical.  The first inversion of this major chord is the pattern 
E, G, C, and E.  When represented in terms of hidden unit 2 weights, this pattern uses exactly the same 
numbers as were observed for the root position version of the chord, but the numbers are arranged in a 
different order (0.15, 0.28, 0.15, and 0.15).  Obviously the sum of weights for the first inversion is identical 
to the sum that was computed for the root form of the chord, because both chords are defined by the 
same set of numbers.  This is not true for the second inversion of a major chord.  The second inversion of 
the example chord is G, C, E, and G.  In this form of the chord, the note that is repeated (G) corresponds 
to the one connection weight that is different from the others in the previous two examples.  As a result, 
the hidden unit 2 representation of this chord uses the values 0.28, 0.15, 0.15, and 0.28.  Because one of 
the weights is not repeated in this pattern three times, the sum of their values is 0.86 instead of 0.73.  
This net input value is characteristic of all of the minor chords, and as a result the second inversion of the 
major chord is misclassified. 

 
It turns out that the properties of this example apply to all of the different major chords that can be 

presented to the network.  Chords in the root position and in the first inversion are represented as three 
identical weights combined with an additional different weight, and therefore produce the same net input.  
However, in the second inversion, the representation changes so that the chord is represented as two 
pairs of different weights.  This results in a change in net input, such that the net input is more similar to 
that produced by a minor chord than that produced by a major chord. 
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Interestingly, the success of the representation used by hidden units 2 and 4 is so great that 
when the network learns, it does not abandon this approach, even though it does not work for all of the 
patterns.  What it does instead is maintain this general representation in these two hidden units, and then 
it customizes the weights of the other two hidden units so that they are extremely specialized, and can 
handle the exceptions that are not captured by hidden units 2 and 4.  In particular, hidden unit 1 only 
generates an activation of near 1.00 for 11 patterns, which all turn out to be second inversions of major 
chords.  Hidden unit 3 turns on to almost any pattern – except for the one remaining second inversion of a 
major chord that hidden unit 1’s specialized weights cannot capture!  By turning off to this one pattern, 
hidden unit 3 can be used to turn the major chord output unit on, because the output unit’s net input is 
decreased by this one event (or more properly this one absence of an event) by just the right amount to 
turn the unit on when this one chord is presented to the network. 

 
12.1.4 Implications Of The Interpretation 

 
The analysis of the chord classification network illustrates two main themes that lie at the heart of 

network analysis.  The first theme is methodological.  Ultimately, there are only two kinds of data that are 
available for network analysis: the responses of processing units to individual patterns, and the values of 
network connection weights.  Network analysis is based on applying different interpretative strategies to 
these two different sorts of data.  This might involve a variety of different approaches, ranging from in-
specting particular values of weights or activations, to applying multivariate statistics to find regularities in 
either type of data.  There is likely no single type of analysis that will work for every network.  My own 
feeling is that every time one learns a new statistical technique, one is armed with a new tool that is likely 
to shed light upon the internal structure of some network of interest.  In my lab, as our experience with 
network interpretation grows, we find that there are a few approaches (which are described below) that 
we are likely to try, because we have had success with them in the past.  However, we have also found 
that in many cases an approach that was successfully used to interpret one network provides very little 
insight into the structure of another.  There is no single recipe for interpreting networks. 

 
One reason that no single interpretative technique applies to all networks is that the approach 

one takes to analyze a network is usually guided by an understanding of the properties of the problem 
that the network was presented.  In other words, one often uses knowledge about possible regularities in 
a training set to generate hypotheses about the kinds of properties that a network might be exploiting.  
For example, in the interpretation of the chord classification network, we realize that different types of 
chords are based on different intervals or spacing between the notes in the chord.  It makes sense to see 
whether the network is sensitive to this kind of information.  It was hypotheses of this sort that led us to 
realize that individual connection weights could be viewed as being note “names”, and that the regular 
spacing of these names (i.e., four piano keys apart) was a crucial feature of the representations used by 
hidden units 2 and 4. 

 
The second theme illustrated by the interpretation of this particular network concerns the kinds of 

information that the analysis might provide.  It should be obvious from the preceding pages that network 
analysis involves a fairly focused treatment of the properties of a particular model.  However, the surpris-
es that this treatment reveals are not really properties of the network itself, but rather are properties of the 
domain about which the network was trained.  For example, in the example that we have considered, we 
learned of a particularly elegant, novel, and compact representation of chord structure – a representation 
in which one replaced a 12-note system with a different system that used only 4 notes.  While this repre-
sentation was certainly a property of the network, what it tells us about the network is less important than 
what it tells us about the structure of music. 

 
This point is particularly important when models are viewed as contributing to synthetic psycholo-

gy.  Network analysis provides us with new and surprising insights about the structure of some domain of 
knowledge, and about how this structure might be represented.  For example, our network analysis indi-
cated that a distributed representation in which two hidden units cooperated could be used to identify al-
most all of the chord types, and that a small set of special chords (the second inversions of majors) had to 
be treated as special cases.  Furthermore, it revealed a novel set of equivalence classes of notes, where 
individual notes that we would ordinarily treat as being different could be provided the same name (i.e., 
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Table 12-1).  Synthetic psychologists can use these sorts of surprises to generate hypotheses that can be 
studied using the more traditional techniques of experimental psychology.  Do humans treat second in-
versions of major chords as being qualitatively different than any other kind of chord?  Is there any evi-
dence to indicate that A, C#, and F are represented as being the same note?  There is an old view in em-
piricist psychology that says that a theory is only as good as the number of new experiments that it points 
to.  The analysis of models that were created by adopting a synthetic approach is certainly a rich source 
of new hypotheses about domains of interest. 

 
12.2 INTERPRETING THE INTERNAL STRUCTURE OF VALUE UNIT NETWORKS 

 
It has been argued that connectionism’s potential contributions to cognitive science are limited by 

the fact that these networks are either difficult to interpret, or that interpretations are rarely reported in the 
literature (e.g., Dawson & Shamanski, 1994; McCloskey, 1991; Mozer & Smolensky, 1989).  Connection-
ists have responded to this kind of challenge by proposing a diverse range of approaches to the interpre-
tation of the internal structure of their networks (e.g., Alexander & Mozer, 1995; Andrews, Diedrich & Tick-
le, 1995; Craven & Shavlik, 1994; Duch, Adamczak, & Grabczewski, 1996; Duch, Adamczak, 
Grabczewski, Ishikawa & Ueda, 1997; Fu, 1994; Hanson & Burr, 1990; Omlin & Giles, 1996; Thrun, 
1995).  In recent years in my own laboratory we have been exploring a variety of techniques for interpret-
ing the internal structure of value unit networks.  The purpose of this section of the paper is to introduce 
these methods. 

 
12.2.1 Identifying Trigger Features In Integration Device Networks 

 
How does the brain encode our experiences?  Many contemporary neuroscientists believe that 

the brain uses representations that depend upon the signals of large numbers of simultaneously active 
neurons (for an overview see Pouget, Dayan, & Zemel, 2000).  “A singular neuron for each concept is 
rendered implausible in most vertebrates by the neurophysiological evidence that has accumulated since 
1928, when the first recordings from sensory nerves revealed a broad range of sensitivity. […] This isn’t to 
say that a particular interneuron might not come to specialize in some unique combination – but it’s so 
hard to find narrow specialists, insensitive to all else” (Calvin, 1996, p. 12-13). 

 
However, the view that neural representations depend upon the action of large populations of 

cells is not universal.  For well over half a century, neuroscientists have attempted to understand the biol-
ogy of vision by mapping the receptive fields of individual neurons in the visual system (e.g., Hubel & 
Wiesel, 1959; Lettvin, Maturana, McCulloch & Pitts, 1959).  Their results suggest that it may be possible 
to describe a neuron as being sensitive to a “trigger feature”, which, when detected, produces maximum 
activity in the cell.  Furthermore, the more central the neuron is located in the visual system, the more 
complex and abstract its trigger feature is likely to be (see Kandel, Schwartz & Jessel, 1991, Chapters 28-
30). 

 
Such results led Barlow (1972) to propose his neuron doctrine for perceptual psychology.  “The 

central proposition is that our perceptions are caused by the activity of a rather small number of neurons 
selected from a very large population of predominantly silent cells.  The activity of each single cell is thus 
an important perceptual event and it is thought to be related quite simply to our subjective experience” (p. 
371).  What this central proposition leads to is the view that in order to determine the role of a specific 
neuron in the visual system, one must find its trigger feature – the stimulus pattern that best matches the 
cell’s receptive field.  “A description of that activity of a single nerve cell which is transmitted to and influ-
ences other nerve cells, and of a nerve cell’s response to such influences from other cells, is a complete 
enough description for functional understanding of the nervous system” (p. 380). 

 
Whether the neuron doctrine is true of the brain is a controversial issue.  However, this issue is 

independent of the possibility that the neuron doctrine can be usefully applied to connectionist networks.  
First, these networks are acknowledged to be far simpler than brains (e.g., Douglas & Martin, 1991), and 
thus might be more amenable to an analysis that tries to identify trigger features.  Second, in many cases 
the training sets that are presented to networks are simple in nature (for instance, involving a binary rep-
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resentation of input patterns, as was the case in the chord classification network), and this too might allow 
trigger feature identification to be successful. 

 
How would one apply the neuron doctrine to connectionist networks?  One approach would be 

purely empirical in nature.  A trained network would be viewed as being no different from a biological sys-
tem, and would therefore be studied using techniques analogous to those used by neuroscientists to ex-
plore the receptive fields of visual neurons. 

 
Moorhead, Haig, and Clement (1989) provided one example of this approach.  They used the 

generalized delta rule to train a multilayer perceptron to detect the presence of horizontal or vertical edg-
es or bars.  In other words, the output units in their network were trained to respond as if they were simple 
cells in the visual cortex.  Their network had two independent banks of 25 input units per bank, where one 
bank represented the “off” signals coming from a 5 X 5 array of neurons performing a difference of 
Gaussian filtering, and the other bank represented the “on” signals coming from this same set of filters.  
These two sets of processors represented the results of filtering a much larger raw image (21 X 21 pix-
els), where each raw image was a line or edge that passed through the center of the display at a specific 
orientation.  The question of interest was whether the hidden units developed biologically plausible recep-
tive fields.  Moorhead, Haig, and Clement borrowed a technique from neuroscience to answer this ques-
tion.  They spot-mapped the receptive fields of the hidden units by presenting a small 3 X 3 stimulus, 
which was either bright or dark, at every possible position in the 21 X 21 raw image array.  Each raw 
“spot” image was filtered in the same manner as were the original stimuli, and the responses of the hid-
den units were recorded to each spot.  They then graphed the receptive field by plotting hidden unit activi-
ty at the coordinates of each spot stimulus.  Moorhead, Haig, and Clement had hoped to find that these 
receptive fields would have a center-surround appearance, but this was not what they observed in most 
of their hidden units.  “There is no direct equivalence between the retinogeniculo striate pathway and a 
neural network which has been trained to respond in a manner similar to simple cells” (p. 802). 

 
A second example of this empirical approach is found in Zipser and Andersen (1988).   They 

used a network to explore how the location of a target on the retina could be combined with information 
about gaze direction to transform the coordinates of a target into head-centered space.  This kind of task 
is important because it is one approach to generating a stable representation of the world in which objects 
maintain a constant position even as we look around, changing the projection of objects on our eyes.  The 
input units encoded the location of targets on a retina that was defined as an 8 X 8 grid of processors.  
Each processor was tuned to generate a maximum response when a target spot was presented at its lo-
cation, but would also generate a weaker response if the target were presented at a neighboring location.  
A second set of input units encoded eye position information.  Signals from these two sets of input units 
were sent to a set of 25 hidden units, which in turn fed into an array of output units that represented target 
position in a normalized coordinate system.  The network learned to make these transformations very 
quickly.  At the end of training, Zipser and Andersen spot-mapped the hidden units.  They did this by pre-
senting a target spot at each of 17 different locations while eye coordinates were held fixed.  This proce-
dure was analogous to a study in which the responses of neurons in the parietal cortex of monkeys were 
measured when the monkeys fixated on one stimulus location while targets were presented to others.  
After spot-mapping the network, the hidden unit responses were normalized so that the maximum re-
sponse always was assigned a value of 1; this procedure was also applied to the single-cell recording 
data taken from the monkeys.  Zipser and Andersen found a striking resemblance between the receptive 
fields of the hidden units and the receptive fields of the neurons, suggesting that these neurons are being 
used to transform coordinate systems. 

 
A second approach to identifying the trigger features in a connectionist network is analytic, and 

depends upon the activation function that is used by the hidden units.  To be more precise, if a hidden 
unit uses the logistic activation function (or some similar monotonic activation function), then one can 
identify the stimulus that best matches the receptive field of the hidden unit simply by inspecting its con-
nection weights. 

 
Assume that a hidden processing unit uses a monotonic activation function like the logistic, and 

computes its net input by summing the weighted signals that it receives from the input units.  The trigger 
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feature for this unit is the input stimulus that produces the maximum activation in the unit.  Because the 
activation function is monotonic, this also means that the trigger feature is the input stimulus that produc-
es the highest net input.  What stimulus will do this?  If we know what the highest and lowest possible 
activation values for the input units are, we can inspect the connection weights and define the trigger fea-
ture.  We simply assign the highest possible input value to each connection that has a positive weight, 
and the lowest possible input value to each connection that has a negative weight.  The resulting pattern 
of high and low inputs is the trigger feature for that unit. 

 
Dawson, Kremer, and Gannon (1994) used this analytic rule to define the trigger features for a 

network that was similar in spirit to the vision network studied by Moorhead, Haig, and Clement (1989).  
Their network was an 11 X 11 array of input units that could be turned either on or off.  These inputs fed 
into a 9 X 9 array of hidden units.  In one condition, each hidden unit only received input from a small 3 X 
3 window of input units.  Dawson, Kremer and Gannon presented horizontal or vertical bars at all possible 
positions in their input array.  Their network had two output units that were trained to be analogous to 
complex cells in the visual cortex – one unit was trained to turn on to any vertical bar, while the other unit 
was trained to turn on to any horizontal bar.  They inspected the connection weights to identify the trigger 
features for each hidden unit in accordance with the rule described in the previous paragraph.  They dis-
covered a significant number of the hidden units had developed receptive fields that were analogous to 
those of simple cells.  This was not the case in a second network in which every hidden unit was con-
nected to every input unit.  Dawson, Kremer and Gannon argued that biologically plausible receptive 
fields might be obtained by imposing constraints on network connections, and suggested that failure to do 
so might be one reason that Moorhead, Haig, and Clement did not find the receptive fields that they were 
interested in. 

 
12.2.2 Families Of Trigger Features In Value Units 

 
Dawson, Kremer, and Gannon (1994) demonstrated the utility of an analytic definition of the trig-

ger feature of an integration device.  Can one define the trigger feature of a value unit in a similar way? 
 
For the sake of simplicity, let us assume that we are working with a value unit with  set to 0 in its 

Gaussian activation function.  Following Barlow’s (1972) neuron doctrine, the trigger feature for this unit 
will be the feature that produces the maximum activation.  For this value unit, this will occur when the net 
input to the unit is equal to 0 (i.e., equal to the value of ).  When will the net input be equal to 0?  Recall 
that for the kinds of networks that we have been discussing in this book, the net input function is the inner 
product between a vector that represents a stimulus and a vector that represents the connection weights 
that fan into the unit.  So, the net input will be equal to 0 when this inner product is equal to 0.  However, 
when an inner product is equal to 0, this means that the two vectors being combined are orthogonal to 
one another, with an angle of 90 between them.   In other words, the trigger feature for a value unit is an 
input pattern that is orthogonal to the connection weights of the unit. 

 
This definition has an extremely important implication.  In principle, there will not be only one in-

put pattern that is orthogonal to a unit’s connection weights.  The connection weights of a value unit can 
be viewed as being analogous to a surface normal in computer vision (e.g., Marr, 1982).  A surface nor-
mal is a vector that is perpendicular to a plane; the direction in which the surface normal is pointed pro-
vides the orientation of the plane in space.  What the connection weights of a value unit do is provide the 
orientation of a hyperplane in hyperspace.  Any vector that falls flat along this hyperplane will be perpen-
dicular to the connection weights, and will therefore serve as a trigger feature.  Many, many different vec-
tors can fall along this hyperplane.  As a result, we must conclude that a value unit does not have a single 
trigger feature, but that many different input vectors – each related to one another in a very restricted way 
– are trigger features for this kind of unit. 

 
One further consequence of this analysis of value unit trigger features is that there will be other 

families of input patterns as well.  These will be patterns that fall into the same hyperplane, but the hyper-
plane will not be orthogonal to the vector of connection weights.  One consequence of this is that all of 
these patterns will produce identical net inputs, but these net inputs will be some value that is not equal to 
.  McCaughan, Medler, and Dawson (1999) discuss the geometry of this observation in more detail. 



 - 163 - 

Minds And Machines © M.R.W. Dawson 12/02/2016 

 
What are the consequences of this analysis of value units?  First, because of their activation func-

tion, value units are best thought of as orienting some hyperplane in hyperspace that defines its trigger 
features.  All of the input vectors that fall into this plane will produce the same net input, and will also re-
sult in maximum activation in the value unit.  Other input patterns will fall into other hyperplanes that are 
at different orientations.  These patterns will also produce identical net inputs, which will lead to identical 
activations.  However, these will have different values from the net inputs/activations generated by the 
trigger features.  What all of this implies is that if one trains a network of value units, and then measures 
the responses of its hidden units to all of the members of the training set, the hidden unit activations 
should be highly organized.  Instead of having a rectangular distribution of activation values, one set of 
patterns will all generate one activation value, another set will generate a different activation value, and 
so on.  This is the basis of the banding phenomenon that was described in Chapter 2.  By identifying the 
sets of patterns that all produce the same levels of activation values in a hidden value unit, and by exam-
ining the features that these patterns have in common, we can develop a very rich account of the kinds of 
features that the hidden units are exploiting (Berkeley, Dawson, Medler, Schopflocher & Hornsby, 1995).  
The next section provides an example of this kind of interpretation in action. 
  
12.2.3 Identifying Local Features In A Network Of Value Units 

 
12.2.3.1 Problem Definition  
 
The monks problems are a set of three different artificial training sets that have been used as a 

standard benchmark for comparing different machine learning algorithms (Thrun et al., 1991).  Six differ-
ent features define the appearance of each monk in the problem set.  They can have one of three possi-
ble head shapes and one of three possible body shapes.  They can be holding one of three different ob-
jects.  They can wear a jacket that is one of four different colors.  They may or may not be smiling.  They 
may or may not be wearing a tie.  The full datasets that define the monks problems can be obtained from 
the UCI Machine Learning Repository (Blake & Merz, 1998). 

 
In the first monks problem, an input pattern belongs to the target category if it is consistent with 

the following rule: ((head shape = body shape) or (jacket color = red)). In the training set, half of the pat-
terns belong to the target category.  Typically when this problem is studied a system is first trained on 124 
of these patterns, and its performance is then tested on the remaining stimuli.  Because our interest was 
in network interpretation, we did not follow this practice.  Instead, we trained a network to correctly classi-
fy all 432 monks that can be created by combining the values of the six different features. 

 
12.2.3.2 Network Architecture And Problem Encoding 
 
In this example, a value unit network was trained to solve the first monks problem.  It consisted of 

one output value unit and two hidden value units.  The output unit was trained to turn on when the net-
work was presented a pattern that belonged to the target category, and to turn off to any other pattern. 15 
input units were used to encode the input patterns using a local coding scheme.   

 
The local coding scheme worked as follows.  The first three input units represented head shape.  

If this shape was round, then only the first input unit was turned on.  If this shape was square, then only 
the second input unit was turned on.  If this shape was octagon, then only the third input unit was turned 
on.  The next three input units encoded body shape using exactly the same scheme.  The seventh input 
unit was turned on if the monk was smiling, and was turned off otherwise.  The next three input units rep-
resented whether the monk was holding a sword, a balloon, or a flag by turning the corresponding unit on, 
and turning the other two units off.  The next four input units represented jacket color (red, yellow, green, 
or blue) by turning the appropriate unit on, and the other three units off.  The final output unit was turned 
on if the monk wore a tie, and was turned off otherwise. 

 
12.2.3.3 Training The Network 
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The training set consisted of all 432 patterns of the first monks problem, and the network was 
trained using the Rumelhart software that was discussed in Chapter 11. The network was started in a 
random state, with each connection weight being randomly selected from the range -0.1 to 0.1.  Unit bi-
ases were set equal to 0.00 throughout training.  The network was trained using Dawson and 
Schopflocher's (1992) learning rule for value units, with a learning rate of 0.01.    The order of pattern 
presentation was randomized every epoch.  Convergence was operationalized as training the network 
into a state in which a "hit" would be achieved for every pattern.  A hit was defined as an output unit re-
sponse of 0.90 or greater when the desired response is 1, or as an output unit response of 0.10 or less 
when the desired response is 0. Convergence was achieved after only 22 epochs of training. 

 
After the network converged, the Rumelhart software was used to plot the jittered density plots of 

its two hidden units.  A jittered density plot is one kind of scatterplot.  Each point on the jittered density 
plot represents the hidden unit activity that is produced when one of the training patterns is presented.  
The x-coordinate of the point represents the activation value.  The y-coordinate of the point is a randomly 
selected value, which is used to minimize the overlap of points that generate the same hidden unit activi-
ty.  Berkeley et al. (1995) reported that while jittered density plots for integration devices are usually 
smeared, jittered density plots for value units are often highly structured, and are organized into distinct 
bands (see also Dawson, 1998, Chapter 5).  The reasons for this were discussed in the previous section 
on trigger features. 

 
The jittered density plots for the two hidden units in this monks problem network were distinctly 

banded.  The first hidden unit had 3 bands.  For this unit, 228 of the patterns generated an activity of 0.00 
(band H1 A), 60 of the patterns generated an activity between 0.11 and 0.22 (band H1 B), and the re-
maining 144 patterns generated an activity of 1.00 (band H1 C).  The second hidden unit was also orga-
nized into 3 distinct bands.   96 of the patterns generated an activity of 0.00 (band H2 A), 192 of the pat-
terns generated an activity between 0.06 and 0.13 (band H2 B), and the remaining 144 patterns generat-
ed an activity between 0.99 and 1.00 (band H2 C).  No other activation values were observed in either 
hidden unit.  

 
12.2.3.4 Identifying Definite Features Associated With Bands 
 
How are these bands uses to interpret the inner workings of a trained network?  Berkeley et al. 

(1995) reasoned that for a subset of training patterns to all fall into the same band, they must share some 
input features in common.  In order to identify what these shared features are, you look at only the subset 
of patterns that belong to a band of interest.  Each of these patterns is defined as a set of input values.  
Descriptive statistics are performed on these input values.  If these statistics show that a property is true 
of all of the patterns that belong to the band, then this property is called a definite feature, and is used to 
interpret the network.  There are two different kinds of definite features that can be discovered in this way. 

 
Berkeley et al. (1995) called the first a definite unary feature.  A definite unary feature occurs 

when one of the input units has the same value for all of the patterns that belong to a band.  When de-
scriptive statistics are performed, this is revealed when the standard deviation of that feature for the set of 
patterns is equal to zero.  In the monks network, one example of a definite unary feature is found in band 
H1 C.  In this band, input unit 11 is always equal to 0 for each of the 144 patterns in the band.  As this unit 
represents the jacket color red, this feature is important, because it indicates that for these patterns, jack-
et color is never red, and therefore none of these patterns belong to the target category. 

 
Berkeley et al. (1995) called the second a definite binary feature.  A definite binary feature occurs 

when two input units are in a constant relationship for all of the patterns that belong to a band.  What this 
means is that while the individual values of the input units vary in the band, the relationship between the 
two remains the same.  In particular, the two input units will either have identical values, or they will have 
opposite values, when inputs are encoded in a binary format.  A definite binary feature is revealed when 
one takes all of the patterns that fall into a band, and computes the correlations between the values of the 
input units.  For binary encoding, if a correlation of 1.00 is found between two input units, then this indi-
cates that the two units always have the same value.  If a correlation of –1.00 is found then this indicates 
that the two units always have the opposite value.  Band H1 C in the monks network also provides an 
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example of a definite binary feature.  For the 144 patterns in this band, the correlation between the values 
of input unit 3 and input unit 6 is equal to –1.00.  This indicates that these two input units never have the 
same value – when input unit 3 is set to 1, input unit 6 is set to 0; when input unit 3 is set to 0, input unit 6 
is set to 1.  This feature is important, because input unit 3 represents octagonal head shape, and input 
unit 6 represents octagonal body shape.  If these two units are never equal for all 144 patterns in this 
band, then head shape and body shape are never the same for any of these patterns.  This provides an-
other reason for why these 144 patterns do not conform to the rule that defines the patterns that belong to 
the target category. 

 
Table 12- 3 

provides the defi- nite 
features that were 
identified in all 6 
bands that were ob-
served in this net-
work.  One thing that 
immediately be-
comes apparent from 
examining this ta-
ble is that both hid-
den units can be seen as devices that respond to properties that rule out the possibility that a pattern be-
longs to the target class.  If a pattern generates high activity in either (or both) hidden units, then it will fall 
into band C.  All of the patterns that belong to band C in either unit have the wrong jacket color, and the 
wrong relationship between head and body shape, to turn the output unit on.  When we examine the con-
nection weights from the two hidden units to the output unit, we find further support for this interpretation.  
The connection weight from hidden unit 1 is 0.84, and the weight from hidden unit 2 is 0.96, while the bias 
of the output unit is equal to 0.00.  So, if one or both of the hidden units activates, the net input will be too 
high to turn the output unit on.  The output unit will only respond if both hidden units have very low activity 
– that is, if both of them have failed to detect any reason that a pattern should not be put into the target 
category. 

 
Four of the six bands described in Table 12-3 provide definite features that have useful local in-

terpretations.  What this means is that by examining these features by themselves, in the context of the 
input encoding, meaning can be assigned to them.  Furthermore, this assigned meaning is relevant for 
describing how the network generates a correct response.  However, the other two bands (H1 A and H2 
B) do not appear to have this property.  While both bands are associated with definite binary features, 
these features by themselves do not appear to be sufficient to support a decision about whether a pattern 
belongs to the target category. 

 
For example, an examination of band H1 A reveals that input units 3 and 6 have the same value.  

This indicates that for the patterns that fall into this band, head shape and body shape are either both oc-
tagonal, or are both not octagonal.  In this latter case, it is possible that head and body shape are differ-
ent – one could be round, the other square, and both would not be octagonal.  So, by itself, this definite 
feature is not completely useful.  Exactly the same observation can be made for band H1 B.  For the pat-
tern that fall into this band, head shape and body shape are either both square, or are both not square, 
and this regularity is not by itself a sufficient condition for making an output response. 

 
Why then are these two hidden units detecting these two features?  The answer to this question 

is that these two bands are not being used locally and independently to guide the network’s response.  
Instead, these two bands are detecting two features that can be used in combination to make a judgment 
about an input pattern.  There are some patterns that, when presented, will cause activity that will fall into 
band H1 A and into band H2 B at the same time.  For these patterns, it will be the case that input 3 = in-
put 6, and that input 2 = input 5.  If both of these properties are true, then it must follow that head shape 
and body shape are equal, and that the pattern belongs to the target category.  It is impossible to define a 
pattern in this training set in which both of these equalities hold, but head shape and body shape differ. 

 

Unit Band Definite Feature Interpretation Implication
 
 

H1 

A Input 3 = Input 6 Eh? Eh? 
B Input 11 = 1 

Inputs 12, 13, 14 = 0 
Jacket red In target class 

C Input 11 = 0 
Input 3  Input 6 

Jacket not red 
Different body and head shapes 

Not in target class 

 
 

H2 

A Input 11 = 1 
Inputs 12, 13, 14 = 0 

Jacket red In target class 

B Input 2 = Input 5 Eh? Eh? 
C Input 11 = 0 

Input 2  Input 5 
Jacket not red 
Different body and head shapes 

Not in target class 

Table 12-3.  Definite features in the bands of the monks network.
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These two bands therefore encode a useful and interpretable feature, but the meaning of this fea-
ture is distributed over different bands that are found in different hidden units.  Thus these bands do not 
provide local features.  Dawson and Piercey (2001) have shown that in many cases the bands found in 
value units encode distributed features.  As a result, the kind of local analysis that was demonstrated in 
Table 12-3, which was characteristic of my lab’s early research on network interpretation (e.g., Berkeley 
et al., 1995; Dawson, Medler & Berkeley, 1997), is often not going to be appropriate.  A different kind of 
analysis, which is geared at discovering interpretations that are distributed across hidden units, is re-
quired.  This alternative approach to network analysis is described in the next section. 
 
12.2.4 Identifying Distributed Features In A Network Of Value Units 

 
12.2.4.1 Problem Definition  
 
In order to demonstrate the discovery of distributed features in a network of value units, let us 

consider another classification problem that is used as a benchmark in the machine learning literature.  
The problem that we will use is the zoo database that is also available from the UCI Machine Learning 
Repository (Blake & Merz, 1998). 

 
The zoo database consists of 101 different animals, each described by 16 different features.  

Most of the features are coded as being true or false (hair, feathers, eggs, milk, airborne, aquatic, preda-
tor, toothed, backbone, breathes, venomous, fins, tail, domestic, catsize).  One of the features (legs) is 
represented as a number indicating how many legs an animal has. 

 
The task of a system that is presented the zoo database is to use these 16 features to classify 

each of the patterns into one of seven different animal types.  41 of the animals belong to the type 
“mammal”, 20 to the type “bird”, 5 to the type “reptile”, 13 to the type “fish”, 4 to the type “amphibians”, 8 
to the type “insect”, and a varied assortment of 10 animals belong to the type “invertebrate” (clam, crab, 
crayfish, lobster, octopus, scorpion, seawasp, slug, starfish, worm). 

 
12.2.4.2 Network Architecture 
 
A value unit network was trained to categorize the different animals in the zoo database.  It con-

sisted of seven output value units, each of which represented one of the different animal types.  When an 
animal of a particular type was presented, the network’s task was to turn on the corresponding output 
unit, and to turn all of the other output units off.  The network also had three hidden value units.  16 input 
units were used to encode the input patterns.  Of these units, 15 were either turned on or off to represent 
the presence or absence of the feature that each unit represented.  The 16th unit was assigned a value of 
0, 2, 4, 6, or 8 to indicate the number of legs that a particular animal had. 

 
12.2.4.3 Training The Network  
 
 The network was trained using the Rumelhart software. It was started in a random state, with 

each connection weight being randomly selected from the range -0.1 to 0.1, and with each unit bias (i.e., 
) being started at 0.00.  Unit biases were modified during learning.  The network was trained using Daw-
son and Schopflocher's (1992) learning rule for value units, with a learning rate of 0.01.    The order of 
pattern presentation was randomized every epoch.  The network was trained until a "hit" was obtained for 
every pattern.  A hit was defined as an output unit response of 0.90 or greater when the desired response 
is 1, or as an output unit response of 0.10 or less when the desired response is 0. Convergence was 
achieved after 1101 epochs of training. 

 
The purpose of training this demonstration network was to provide an example of how one might 

proceed to discover definite features that are not local, but are instead distributed across hidden units.  
Our favored technique for identifying such features is to use cluster analysis.  The next section provides a 
brief introduction to cluster analysis, and in particular identifies one practical problem that is faced when-
ever any cluster analysis is performed.    The section that follows offers one solution to this problem that 
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is possible when neural networks are being analyzed.  With these two points out of the way, the chapter 
returns to this network, and demonstrates how cluster analysis can be performed on it. 

 
12.2.4.4 Activations, Cluster Analysis, And The Number Of Clusters Problem 
 
Cluster analysis is a method for dividing a set of n observations into g groups (Ripley, 1996). For 

example, k-means is the name of a statistical method that partitions data into a prespecified (k) number of 
groups by minimizing the sum of squared distances from each data point to the center of its assigned 
cluster (Aldenderfer & Blashfield, 1984).  In other words, when clustering is performed by k-means, stimuli 
that are assigned to the same cluster are nearer to each other than they are to stimuli that are assigned 
to different clusters. 

 
Cluster analysis would appear to be an ideal approach for taking the activations of hidden units to 

input patterns, and grouping different patterns into meaningful groups.  All of the patterns that are as-
signed to the same group would be related in the sense that they produced similar patterns of activation 
across a group of hidden units.  After patterns were assigned to groups on this basis, we could search for 
definite features amongst all of the patterns that belonged to the same cluster.  This would provide a 
method for discovering features that were distributed across hidden units.  The banding of hidden units 
would still be important, because the more structured the raw data is, the more successful cluster analysis 
should be.  

 
Given that the primary goal of cluster analysis is to assign data to groups, an obvious question to 

ask is “How many groups should be used?” Unfortunately, no single method for determining the optimal 
number of clusters in a data set has been agreed upon (Aldenderfer & Blashfield, 1984; Everitt, 1980; 
Gorsuch, 1983).  This is reflected in the fact that many different methods exist for dealing with this issue. 

 
One approach to the number of clusters problem is to have an objective and automatic decision 

rule, which typically involves the examination of some quantitative aspect of the clustering algorithm’s 
performance as a function of the number of groups to which data has been assigned.  For example, Milli-
gan and Cooper (1985) used Monte Carlo methods to examine the performance of 30 such rules on da-
tasets with known, error-free clustering structure.  Another approach to the number of components prob-
lem is more subjective, often utilizing graphs and requiring the user to make a judgment based on the 
appearance of a curve.  For example, Aldenderfer and Blashfield (1984, pp. 54-56) describe a variant of 
the scree test (Cattell, 1978) that can be applied to cluster analysis.  Other subjective methods include 
deciding on the number of clusters after simply inspecting scatterplots of the raw data (e.g. Ripley, 1996, 
p. 313).  In general, most cluster analysts recommend some combination of formal and graphical meth-
ods to arrive at the most reliable solution to the number of clusters problem, although the specific meth-
ods are not agreed upon (e.g., Aldenderfer & Blashfield, 1984; Sarle, 1994).  Indeed, a variety of different 
approaches may be applied because in the end any methods used will be “judged by their results; a suc-
cessful clustering produces groups which can be interpreted by domain experts” (Ripley, 1996, p. 311). 

 
Why has no single solution to the number of clusters problem emerged?  Aldenderfer and Blash-

field (1984) point out two main difficulties that have not been overcome.  The first is the fact that it is ex-
tremely difficult to create an appropriate null hypothesis (e.g., an operationalization of “structureless da-
ta”) against which methods for determining the appropriate number of clusters can be compared.  The 
second is that multivariate data distributions are typically very complex and potentially mixed, and as a 
result “it is unreasonable to assume that formal tests of clustering ability are likely to be developed” (p. 
54). 

 
While these two points provide excellent reasons for the failure to develop a general solution to 

the number of clusters problem, they do not rule out the possibility for identifying a solution to this prob-
lem that can be usefully applied to a specific domain.  The hidden unit activities of a trained connectionist 
network represent one specific domain in which this problem can be solved.  The next section will de-
scribe a heuristic, objective rule for determining how many clusters should be used to organize the data 
that is obtained when a set of hidden units are wiretapped. 
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12.2.4.5 Solving The Number Of Clusters Problem 
 
Consider a network that has been successfully trained to map each member of a stimulus set to 

the correct member of a response set. For example, in a moment we will return to an analysis of the value 
unit network that learned to assign the 101 different animals to 7 different categories on the basis of the 
input features. As was noted earlier, one approach to determining how the network performs this map-
ping, or to determining the nature of the internal representations used by the network, is to measure hid-
den unit activities produced in the network by each of the training patterns.  This would produce a set of 
hidden unit activity vectors that could then be examined with k-means cluster analysis.  The point of this 
analysis would be to reduce this potentially large number of vectors into a much smaller number of clus-
ters.  Furthermore, these clusters should be interpretable – by examining the properties of each cluster, 
one should be able to determine how the trained network actually translated input features into an output 
response. 

 
How many clusters should the set of hidden unit activity vectors be assigned to?  The answer to 

this question depends upon one piece of heuristic information that we have about the domain that is be-
ing clustered: there is a correct mapping from hidden unit activity vectors to output responses.  We know 
that this must be true, because if the network has correctly learned the task that it was presented, then 
the network itself has discovered one such mapping.  This knowledge can be used as follows: we should 
extract the smallest number of clusters such that every hidden unit activity vector assigned to the same 
cluster produces the same output response in the network.  In other words, every pattern that is assigned 
to the same cluster should produce the same output response in the network if all of the patterns in the 
cluster truly belong together.  We should find the smallest number of clusters for which this property is 
true. 

 
In practice, the following procedure can be followed to implement this rule.  Assume that a net-

work has been trained to correctly classify a set of input patterns, and that the hidden unit activity vectors 
for each of these patterns have been recorded.  Perform a k-means cluster analysis of these vectors.  
Once complete, create a two-way frequency table for the data.  This table should record the number of 
instances in each cluster that correspond to each possible output vector for the network.  For example, in 
the zoo network, this table would indicate how many patterns that fell into cluster x were mammals, how 
many patterns that fell into cluster x were birds, and so on.  By examining this table, determine whether 
another k-means analysis is required (an analysis involving partitioning the data into a larger number of 
clusters).  If the cluster analysis is incomplete, then there will be more than one non-zero entry in at least 
one of its rows, indicating that members of the same cluster map onto two (or more) different network re-
sponses.  In this case, another cluster analysis should be performed, with patterns being assigned to at 
least one additional cluster.  This process is repeated until each row of the frequency table has only one 
non-zero entry per row, indicating a unique mapping from clusters of hidden unit activity vectors to net-
work responses.  An interpretation of these clusters should indicate the nature of the internal representa-
tions used by the network to produce its stimulus/response mapping. 

 
12.2.4.6 Cluster Analysis Of The Zoo Network 
 
We analyzed the zoo network by performing k-means cluster analysis on the set of hidden unit 

activities that were obtained by wiretapping the network. The results were surprisingly simple – when the 
hidden unit activities were assigned to 7 different clusters, each cluster was “pure” in the sense that every 
member in a cluster was associated with the same network response.  According to the stopping rule that 
was introduced in the previous section, this is the desired number of clusters for our analysis.  No addi-
tional cluster analysis was required. 

 
It should be pointed out that while this particular analysis worked with the minimum number of 

clusters possible, this is usually not the case.  It is more typical to have to assign hidden unit activities to 
more clusters than there are types of network responses, because each cluster captures important dis-
tinctions between patterns that lead to the same response.  For example, in one analysis performed by 
Dawson, Medler, McCaughan, Willson, and Carbonaro (2000), there were 9 different responses that were 
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possible from a network that classified mushrooms as being edible or poisonous, and that also provided a 
reason for making this judgment.  However, hidden unit activities had to be assigned to 13 different clus-
ters before each cluster was “pure”.  Furthermore, the cluster analysis of the hidden unit activities gener-
ated a much simpler solution than does a cluster analysis that classifies animals in terms of the 16 differ-
ent features that are input to the animal.  Even when k-means clustering assigns patterns to 25 different 
clusters, some of the clusters are not pure.  Clearly the hidden units have discovered regularities in the 
data that are both powerful and simplifying. 

 
 
A

fter 
hid-
den 
unit 
ac-
tivi-
ties 
hav

e 
bee

n 
as-

sign
ed 
to 

clus-
ter, 
the 

next 
step 
is to 
iden

tify definite features associated with each cluster.  We do this by applying the same techniques that were 
reported in the analysis of the monks network.  However, instead of computing descriptive statistics for 
patterns that fall into a particular band on a hidden unit, we now apply these statistics to the subsets of 
patterns that all belong to the same cluster.  Table 12-4 provides the definite features that were obtained 
for each cluster. 

 
 

Cluster Type H1 H2 H3 Unary Features Binary Features 
1 Mammal 0.93 0.00 0.87 ~feathers, milk, backbone 

breathes, ~venomous 
eggs  toothed 

2 Fish 0.00 1.00 0.88 ~hair, ~feathers, eggs, ~milk, 
~airborne, aquatic, backbone, 

~breathes, fins, 0 legs, tail 

 

3 Bird 0.94 0.99 0.02 ~hair, feathers, eggs, ~milk, 
backbone, breathes, ~fins, 2 

legs, tail 

 

4 Other 0.17 0.66 0.01 ~hair, ~feathers, ~milk, 
~airborne, ~toothed, 

~backbone, ~fins, ~domestic 

eggs  tail 

5 Reptile 0.01 0.16 0.98 ~hair, ~feathers, ~milk, 
~airborne, backbone, ~fins, tail, 

~domestic 

Aquatic  breathes, predator  
catsize, eggs  aquatic, eggs  
breathes, predator = toothed, 

toothed  catsize 

6 Insect 0.88 0.22 0.00 ~feathers, eggs, ~milk, 
~aquatic, ~toothed, ~backbone, 

breathes, ~fins, 6 legs, ~tail, 
~catsize 

 

7 Amphibian 0.00 0.15 0.33 ~hair, ~feathers, eggs, ~milk, 
~airborne, aquatic, toothed, 
backbone, breathes, ~fins, 4 

legs, ~domestic, ~catsize 

 

Table 12-4.  Feature analysis of the clusters taken from the zoo network. The average activity pro-
duced in each hidden unit by the patterns in the cluster is given, along with the definite unary and 

binary features that were revealed by descriptive statistics. 
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It is important to 

note that these defi-
nite features only emerge 
by simulta- neously con-
sidering the patterns in terms of the activations that they produce in all three hidden units.  If the activa-
tions of individual units are considered separately, then it is very difficult to grasp the kinds of features 
that a particular hidden unit is detecting.  This is because the units are not working to detect features lo-
cally, but are instead working cooperatively to represent distributed features.  At the level of individual 
hidden units, because these units are not working as local feature detectors, very disparate combinations 
of animal properties can have the same effect on a hidden unit. 

 
For example, let us consider how hidden unit 1 treats birds and insects.  From Table 12-4 it can 

be seen that both of these animal types produce very similar activity in the hidden unit.  If we examine the 
definite features associated with both types of animal, we see that they only differ in terms of three fea-
tures: feathers, backbone, and legs.  Birds have feathers, a backbone, and two legs; insects have no 
feathers and backbone, but have two legs.  How is it possible that these differences in features can still 
result in having a similar effect on hidden unit 1?  An examination of connection weights points to an an-
swer.  The weights from these three features that feed into hidden unit 1 are –1.12 for feathers, 0.54 for 
backbone, and –0.15 for number of legs.  Considering these three features alone – the only features that 
distinguish all birds from all insects in the training set – we can determine that different combinations pro-
duce similar contributions to net input.  For birds, the contribution to net input is (1 * -1.12) + (1 * 0.54) + 
(2 * -0.15) =  -0.88.  If we take away feathers and backbone, but compensate by adding more legs, we 
can get nearly exactly the same contribution to net input for insects: (0 * -1.12) + (0 * 0.54) + (6 * -0.15) =  
-0.90.  In other words, extremely different combinations of unrelated features provide the same effect on 
the hidden unit.  For this reason, interpreting the kinds of features represented by individual units is not 
particularly fruitful for this network.  Instead, one can only make sense of the network by interpreting fea-
tures associated with animals that produce particular effects on all three hidden units. 

 
How, then, does this distributed representation of features by the hidden units get converted into 

appropriate output unit responses?  The activity produced in each hidden unit by a pattern provides three 
coordinates to locate that pattern as a point in a transformed pattern space.  The hidden units work in co-
ordination to place patterns that share the definite features listed in Table 12-4 in very similar locations in 

Figure 12-2.  The pattern space for the zoo problem after the 16 
input features have been transformed into activation values in three hid-

den units.
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this space.  This can be seen in Figure 12-2.  Because the hidden units geometrically arrange the animals 
is this neat way, the output units can adjust their hidden units so that a particular cluster of points falls into 
their receptive fields, and the units will only turn on to one cluster that has been isolated in this fashion. 

 
12.3 NETWORK INTERPRETATION AND SYNTHETIC PSYCHOLOGY 

 
In this chapter, we have focused on introducing techniques for interpreting networks of value 

units.  We have seen different approaches demonstrated on three different networks.  In this final section 
of this chapter, we will briefly review the results of some applications of these approaches that have ap-
peared in the synthetic psychology literature.  These examples have been organized into three different 
categories.  First, a network that was interpreted by examining local features associated with bands is 
discussed.  This interpretation is analogous to the monks network analysis that was described above.  
Second, some networks that were interpreted by examining features distributed across hidden units are 
reviewed.  These networks were explored using the clustering techniques that were demonstrated for the 
zoo network.  Finally, a network that was explored by examining the structure of its connection weights is 
given a brief overview.  The techniques used for this network are most similar to the ones that were used 
to investigate the chord classification network at the start of this chapter. 

 
12.3.1 Interpretations Based On Finding Local Features In Bands 

 
12.3.1.1 The Wason Card Selection Problem 

 
One task that is famous in cognitive psychology is Wason's (1966) selection task. The Wason se-

lection task is typically viewed as a problem in hypothesis testing and deductive reasoning. In standard 
form, it consists of presenting a participant with an abstract conditional rule of the form, If p then q, and 
four cards displaying the categories of p, not-p, q, and not-q.  For example, a subject might be given the 
rule “If there is a vowel on one side of the card, then there is an even number on the other side of the 
card”, and might see four cards: “E”, “K”, “4” and “7”.  Although participants can see only one side of each 
card, they are told that each card has another category on its flip side. Participants are then instructed to 
test the truth of the rule by selecting the fewest possible cards from the set of four.  In other words, they 
have to choose the smallest number of cards such that if these cards were flipped over, and their other 
side examine, this evidence would either prove or falsify the rule.  According to formal methods of as-
sessing the truth of a conditional rule, only an instance of a p together with a not-q can falsify the rule 
(Garnham & Oakhill, 1994). Hence, participants need to choose the p and the not-q cards (i.e., “K” and 
“7” in our example) because only these cards can provide information that disproves the rule. 

 
The Wason selection task appears to be a simple problem, but this simplicity is deceptive, be-

cause participants usually get it wrong (for a review see Evans, Newstead, & Byrne, 1993). For instance, 
an average of only 10 percent of participants select the correct cards. In contrast, an average of 90 per-
cent of participants make either incomplete selections by choosing only the p card or incorrect selections 
by choosing the q card along with the p card.  For this reason, the selection task has been studied exten-
sively since it first appeared in the literature. 

 
In one recent examination of the selection task, Leighton and Dawson (2001) adopted a synthetic 

approach, and trained connectionist networks to choose relevant cards.  Three different networks were 
created.  One generated the correct responses as dictated by logic.  A second network generated one of 
the incorrect responses often observed in humans, and just selected the p card.  A third simulation gen-
erated another common human error, and selected the p and the q cards.  In these networks, the first four 
input units were used to encode a logical rule in binary notation, and four sets of three input units (for a 
total of 16 units in all) were used to represent the cards that were presented to the network.  Eight differ-
ent conditional rules were developed, and all combinations of four different types of cards (with two cards 
per card type) were created, which resulted in a training set of 3072 different patterns.  The networks 
each had four different output units, one for each card.  If an output unit was turned on, then this indicated 
that the network would flip this card over to test the rule that is was presented. 
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After the networks were trained, the hidden units were wiretapped, and the results of this wiretap-
ping were plotted using jittered density plots.  One example of this analysis was performed on the eight 
hidden units that were used by the network that was trained to generate logically correct responses to the 
selection task.  For this network (as well as the other two described in the paper), the jittered density plots 
were highly banded.  Furthermore, Leighton and Dawson (2001) noted that pairs of hidden units had very 
similar plots.  A large number of definite features were identified for all of the bands of all of the hidden 
units.  An examination of definite features associated with correlated pairs of hidden units indicated that 
pairs of hidden units controlled each output unit.  One of the units was highly sensitive to the type of rule 
that was being presented to the network, and both units were only sensitive to patterns that indicated that 
a particular output unit should be turned on.  In other words, each pair of hidden units used definite fea-
tures that focused on rule properties that were correlated with turning only one of the cards over. 

 
One interesting question that Leighton and Dawson (2001) also explored with their networks was 

task complexity.  Perhaps human subjects make certain kinds of responses because these involve a 
smaller computational load.  They found that when a network was only required to turn one card over, the 
problem was simpler – only two hidden units were required.  Eight hidden units were required for both 
networks that had to turn two cards over.  However, the one network that turned two cards over to make 
logically incorrect responses was sensitive to a much simpler set of definite features.  The result of all of 
these analyses and comparisons between networks resulted in an inductive theory of Wason task reason-
ing, in contrast to more typical deductive theories. 
 
12.3.2 Interpretations Based On Finding Features Distributed Across Hidden Units 

 
Many of the early analyses of networks in my laboratory were based on methods that focused on 

identify local features associated with bands.  For example, this kind of analysis of a network trained to 
classify logical syllogisms revealed a set of internal rules that were very classical in nature, and which 
were used to argue for similarities between connectionist and symbolic models of cognition (e.g., Berke-
ley et al., 1995; Dawson, 1998; Dawson, Medler, & Berkeley, 1997).  However, our experiences with net-
work analysis have indicated that the reliable identification of local features is more the exception than the 
rule.  Instead, we have found that we are much more likely to discover distributed features in networks, as 
is indicated by the case studies that are described below. 

 
12.3.2.1 The Mushroom Problem   

 
The mushroom problem is another benchmark training set for machine learning Schlimmer, 

1987), and can also be obtained from the UCI Machine Learning Repository (Blake & Merz, 1998).  It 
consists of 8124 different patterns, each defined as a set of 21 different features.  The task is to use these 
features to decide whether a mushroom is edible or not. 

 
In one study, Dawson et al. (2000) trained a network of value units to solve the mushroom prob-

lem.  The network had one output unit, four hidden units, and 21 input units (one for each input feature).  
After training was successfully completed, they “wiretapped" the responses of the hidden units to each of 
the training patterns.  K-means cluster analysis was then performed.  Dawson et al. used the heuristic 
stopping rule described in this chapter to determine that the data should be assigned to 13 different clus-
ters.  They then identified the definite features associated with each cluster. 

 
After identifying definite features, Dawson et al. (2000) proceeded to use them to provide a con-

cise description of how the network was classifying mushrooms.  First, they represented the possible fea-
ture values associated with each cluster as a vector of 119 entries, because when considering the differ-
ent values for the 21 different features, 119 different values are possible.  If a feature value belonged to 
the cluster, then it was given a value of 1 in the vector; otherwise it was given a value of –1.  Second, 
they performed a discriminant analysis using these vectors.  The 119 features in the vectors were used 
as predictors, and the predicted variable was networked response -- whether the feature vector was as-
sociated with mushrooms that were affable or not.  They found that a simple discriminant function that 
used only seven feature values (cap color = cinnamon, odor = anise, gill color = white, stalk color above 
ring = white, ring type = evanescent, habitat = meadows, habitat = woods) could correctly classify every 
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pattern in the training set.  It would appear to the hidden units were collectively representing the presence 
or absence of these features, and that the output units used this distributed representation to solve the 
mushroom problem.  This analysis resulted in a completely novel account of how the mushroom problem 
could be solved, and the nature of this account is arguably more psychologically plausible than accounts 
derived from traditional methods in machine learning, such as decision trees. 

 
12.3.2.2 The Mushroom Problem With Extra Outputs 

 
Dawson et al. (2000) also interpreted a network of value units trained a variation of the mushroom 

problem.  This variation involved extra output learning, in which the network not only had to use an output 
unit to represent whether a mushroom was edible or not, but also had to use other output units to repre-
sent the reason for this decision.  This network used 21 input units, 5 hidden units, and 10 output units.  
The first output unit indicated if the mushroom was edible.  The remaining nine output units each repre-
sented a reason for making a decision, where each reason corresponded to a particular terminal branch 
in a classical decision tree that was created by applying traditional machine learning techniques to the 
mushroom problem dataset.  The purpose of this second network was to determine whether the decision 
tree could be translated into a network using standard connectionist training techniques. 

 
After training, the responses of the 5 hidden units to each of the 8124 patterns were recorded, 

and k-means cluster analysis was conducted.  After applying the heuristic stopping rule that has been 
described in this chapter, it was determined that the patterns of hidden unit activities should be assigned 
to 12 different clusters.  As was the case in the previous analysis, each of these clusters was associated 
with a definite set of mushroom features.  However, this was not the most interesting analysis that could 
be performed using these clusters.  Instead, Dawson et al. (2000) translated the classical decision tree 
into a set of nine condition-action rules that defined a small production system.  They then demonstrated 
a unique mapping in which all of the patterns that belonged to a particular cluster map directly onto one of 
these productions.  In other words, they were able to show that when the 5 hidden units had a particular 
pattern of activity -- a pattern that could be assigned to one of the clusters -- this could be translated into 
a claim that the network was executing a specific production rule.  Dawson et al. (2000) used this result to 
argue that connectionist models and classical symbolic models of the type are not only extremely similar, 
but are identical, at least from the perspective of how some philosophers of science view theories.  This 
claim about theory identify depends on the ability to translate one kind of theory into another.  Many 
would argue that this is not possible if the two theories are fundamentally different. 

 
12.3.3 Interpretations Based On Other Techniques. 
 

There may be instances for which the two types of approaches that have been illustrated in the 
two preceding sections simply don’t work.  For example, in some cases when a value unit network is deal-
ing with continuous inputs, the jittered density plots do not band (e.g., Dawson et al., 1994).  In other cas-
es, a network of value units might be better viewed as a function approximation network.  In this case, 
distributed features can be hard to find (e.g., Zimmerman, 1999).  In situations like this, other interpreta-
tive techniques need to be explored.  Usually, these techniques involve taking different approaches to 
discovering regularities that are present in hidden unit activities, connection weights, or both. 

 
We have already seen a detailed account of this final type of analysis in Chapter 8.  When Daw-

son, Boechler, and Valsangkar-Smyth (2000) analyzed a network that had been trained to make spatial 
judgments, they had to explore specific relationships between geographic distances and connection 
weights.  This required them to view hidden units as occupying particular places on a map, and as a re-
sult forced them to use optimization techniques to determine where on the map hidden units could be lo-
cated.  The results of this approach, as was detailed in Chapter 8, were the discovery of a particular type 
of encoding (coarse allocentric representation of space) that could be related to some theoretical issues 
in the cognitive map literature.  A second implication of this research, in the context of the current chapter, 
is to emphasize the point that there is no single technique for network analysis.  Many different analytic 
approaches may need to be explored before a network reveals its internal secrets. 
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Chapter 13: From Here To Synthetic 
Psychology 

 
 
We have now come the end of this introduction to the synthetic approach in psychology and 

cognitive science.  Let us take a moment to review some of the main themes that this book has covered, 
and to consider where one might proceed from here. 

 
Models have had an important role to play in both psychology and cognitive science.  In Chapter 

2, we saw that the reason for this is that models offer many advantages.  They help to provide a rigorous 
specification of a theory, by making terms more precise, by providing new tools for studying concepts, 
and by revealing hidden assumptions.  They permit complex domains to be studied, in some cases 
providing insights where techniques such as mathematics fail.  They also provide a medium in which a 
researcher can be provided surprising insights into a phenomenon.  While we also saw that all of these 
advantages do not come without having other potential costs, these advantages make modeling both a 
plausible and fruitful endeavor. 

 
However, modeling is not a homogenous practice.  There are many different kinds of models that 

are available to researchers, and these were overviewed in Chapters 3 through 5.  We identified three 
different classes of models: models of data, mathematical models, and computer simulations.  We com-
pared and contrasted these different types of models in terms of a number of basic properties.  Does the 
model attempt to fit pre-existing measurements?  Is the model linear?  Does the model depend upon 
some goodness of fit metric?  Can the model surprise us?  Does the model behave, or does it merely 
summarize or describe behavior?   

 
As we moved from Chapter 3 to Chapter 5, we saw a transformation in these properties.  For ex-

ample, models of data fit pre-existing measurements, are usually linear, live or die by their goodness of fit 
to data, do not provide surprises, and do not behave.  In contrast, computer simulations need not fit pre-
existing data, usually have important nonlinear components, do not depend on fitting data, are designed 
to surprise us, and actually behave.  In short, there is more to modeling that describing some data that 
has already been collected by some statistical equation. 

 
The implications of this observation were explored in Chapters 6 and 7.  Given that we can create 

models that behave, one approach to modeling is to assume some basic components, and to use these 
components to construct a behaving system.  If the right kinds of components have been selected, then 
the behavior should be both surprising and interesting.  From this synthetic approach, one main purpose 
of a model is to show how a set of interesting components can behave.  The model’s behavior becomes 
the primary data of interest. 

 
Why is this approach to modeling attractive?  One of the main reasons is Braitenberg’s (1984) 

law of uphill analysis and downhill synthesis.  If an interesting set of nonlinear components are put to-
gether, and if these components are placed in a complex or interesting environment, then the expected 
result is that the synthesized system will generate more complicated behavior than one would have pre-
dicted on the basis of the known properties of the components.  Furthermore, because the system was 
constructed, then the expectation is that the researcher who built it will have a ready explanation for these 
surprises.  In short, Braitenberg’s position was that synthetic psychology should lead to simpler theories 
of complex phenomena. 

 
However, Chapter 8 argued that Braitenberg’s (1984) position does not seem to be completely 

correct.  In many cases, it is possible to construct a system that surprises, but to also be in a position 
where an understanding of that system is not readily available.  It was then claimed that for synthetic psy-
chology to work, one certainly has to synthesize models that behave.  However, it is inevitable that once 
these models are constructed, researchers will have to adopt an analytic approach to derive theories that 
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explain their performance.  While it is likely that this analysis will be immeasurably aided by having built a 
system, this step is both necessary and can be complex.  This point was illustrated by an example analy-
sis of a connectionist network that had learned to make spatial judgments about cities in Alberta. 

 
Indeed, connectionism provides one rich medium in which synthetic psychology can be practiced 

and explored.  In Chapters 9, 10, and 11 we discussed connectionist modeling in terms of three general 
synthetic building blocks.  The first was the storing of associations between stimuli and responses in a set 
of modifiable connection weights.  The second was the incorporation of nonlinear activation functions into 
the processing units from which the networks were constructed.  The third was the development of learn-
ing rules that were capable of chaining layers of nonlinear processors together to make sequences of de-
cisions.  In each chapter, we saw how these different building blocks provided tools that could be applied 
to psychological problems.  We also saw, in Chapter 11, that when these three building blocks were com-
bined together, extremely powerful models were possible. 

 
Nevertheless, once these models are synthesized, they must still be analyzed in order to provide 

psychological explanations.  Chapter 12 illustrated this by discussing some of the general techniques that 
could be used to interpret the internal structure of one type of connectionist architecture, networks of val-
ue units.  Three different techniques were explored.  The first was the examination of connection weights 
and hidden unit responses.  The second was the discovery of local features associated with bands that 
are often found in the jittered density plots of wiretapped hidden units.  The third was the use of cluster 
analysis to identify definite features that are distributed across activity patterns in more than one hidden 
unit. 

 
It is hoped that this discussion of connectionism and synthetic psychology can provide the reader 

with the inspiration to explore new phenomena by adopting the synthetic approach.  Some of this explora-
tion can be conducted with the software that has been developed in my lab during the creation of this 
manuscript.  Other connectionist environments might prove more powerful and useful, particularly as the 
complexity or size of problems of interest increases.  Of course, connectionism is not the only medium in 
which this kind of exploration can be conducted – symbolic models in artificial intelligence, genetic algo-
rithms, artificial life simulations, and behavior-based robotics are also candidates that have been explored 
by many researchers.  Regardless of the medium, though, the approach will still be the same.  Choose 
some components.  Build something with them.  Watch your creation behave, searching for emerging 
surprises.  Finally, explain these surprises by performing an analysis of the structure of the system that 
you built. 
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