
WORKSHEET FOR EXERCISES FROM CHAPTER 21 
 
RECORD YOUR DATA FROM THE FIRST STUDY IN TABLE 21-1 
 

 
Run 

Number 

Number 
Of Hidden 

Units 

 
 

Converged? 

 
Total 

Sweeps 
1 5 Yes 362 
2 5 Yes 1236 
3 5 Yes 1120 
4 5 Yes 594 
5 5 Yes 450 
6 4 Yes 927 
7 4 Yes 603 
8 4 Yes 794 
9 4 Yes 489 
10 4 Yes 405 
11 3 No 5000 
12 3 Yes 713 
13 3 Yes 683 
14 3 Yes 976 
15 3 Yes 1177 
16 2 No 5000 
17 2 No 5000 
18 2 No 5000 
19 2 No 5000 
20 2 Yes 3432 

Table 21-1. Record for the results of the first simulation. 
 
EXERCISE 21.1 

 
1. On the basis of the results that you have recorded in Table 21-1, what would 

you conclude about the number of hidden value units that are required to 
solve this problem?  What evidence would you use to defend this conclusion? 

 
This problem can be very reliably solved by a network with 3 hidden value units.  It is 
also possible to solve the problem with as few as 2 hidden units, because one did.  
However, for such a small network, this is a much more difficult problem – it might be 
difficult to get a decent number of successful replications with this few hidden units. 
 

2. Examine the “sweeps to converge” column for the simulations that converged 
in Table 21-1.  Can you make any conclusions about what the effect of 
reducing the number of hidden units is on the amount of time that is 
required to learn the problem?  If you believe that there is an effect, then 
why do you think this effect emerges? 

 



From the data above, the 5 hidden unit network appeared to be the fastest, and there was 
a definite slowing through the table.  However, the trend is not particularly strong, as 
quick solutions were obtained in all conditions except for the 2 hidden unit one.  Several 
more replications in each condition would be required to statistically verify this trend.  If 
it exists, though, it suggests that as a network becomes more “optimal”, it is more 
difficult for the network to solve the problem. 
 
 
 
 
 

3. Imagine that you wanted to determine how many hidden units are required 
to solve this problem without conducting an experiment like the one that you 
have just performed. Speculate about how you might predict the minimum 
number of hidden units that are required. 

 
For a small dimensional problem, one might draw a pattern space for the training set, and 
draw cuts through the pattern space that separated the on patterns from the off patterns.  
A pattern space for 5-parity is given below.  Note from this pattern space that one could 
use 3 hidden units to capture the white patterns in the space, or the black patterns in the 
space. 

 
 
 
 
 
 
 
CREATE YOUR VERSION OF TABLE 21-2 BY RECORDING DATA FOR THE SECOND SIMULATION 
 

Run 
Number 

Total  
Sweeps 

 
Converged? 

SSE  
At End 

Misses  
At End 

1 15,000 No 3.01 13 



2 15,000 No 3.35 13 
3 15,000 No 0.88 5 
4 7175 Yes! 0.05 0 
5 15,000 No 4.77 22 
6 15,000 No 3.6 4 
7 15,000 No 3.78 17 
8 15,000 No 0.94 6 
9 15,000 No 0.89 5 
10 15,000 No 4.54 20 

Table 21-2. Record of your data for the second exercise. 
 
EXERCISE 21.2 
 

1. From your simulation records, what would you estimate the probability of 
having a network converge to a solution when these settings are used? 

 
Again, there is a very low probability of achieving a solution.  From the data above, I 
would have to estimate a 10% chance of convergence. 
 
 

2. Can you explain why in the majority of runs the network fails to solve this 
problem, but in some cases a solution is found?  What is the difference 
between runs that might affect whether the network will converge or not? 

 
The problem that the network has is that there are a number of different local minima that 
it can fall into.  As can be seen from the table above, there are several different network 
states that are repeated when the network stalls.  It would appear that the network needs a 
very precise set of starting weights – which randomly only occur 10% of the time – to 
avoid these local minima and find the global error minimum for the problem. 
 

3. How many hidden value units would you now say are required to solve the 5-
bit parity problem? 

 
While I have demonstrated above that 2 units can solve the problem, this is rare.  If I was 
running many networks on this problem, and needed a high number of convergences, I 
would be tempted to use a 3 hidden unit network. 
 

4. Assuming that you were able to train a network to solve the problem, 
examine its connection weights and biases, as well as the responses of the two 
hidden units to each pattern that was presented.  Can you explain how this 
network is solving the parity problem?  If you cannot come up with an 
explanation – and it might be difficult! – can you describe the source of the 
problem? 

 
The one 2-hidden unit network that I found has a very interesting structure.  The connection 
weights that feed into the network are very regular, as shown in the table below: 
 



Pattern HID  1 HID  2 
 Bias -0.04 1.47 
IN  1 -0.52 -0.65 
IN  2 0.48 -0.96 
IN  3 0.52 0.65 
IN  4 0.54 2.27 
IN  5 -0.54 -2.29 

 
The one 2-hidden unit network that I found has a very interesting structure.  Note for hidden unit 
1, all of the connection weights are nearly equal in weight, but some are negative.  The bias is 
zero.  This means that for many patterns in which an even number of bits are turned on – but not 
all – the unit will turn on.  It will turn on when the “negative” inputs cancel the “positive” inputs.  A 
similar organization is evident in hidden unit 2, but it is a bit more complicated, because the bias 
is much larger, and the pairing of weights is more intricate – some weights are repeated, but not 
all of the weights have the same value.  Together, these units will generate either a 1 or a 0 to 
any even parity pattern.  Interestingly, an odd parity pattern will generate a weak intermediate 
response in both hidden units.  As a result, if you plot the patterns in a space defined by hidden 
unit activity, the odd parity patterns lie in the middle of two areas of even parity patterns.  A single 
output value unit can easily make the two required cuts in this hidden unit space to correctly 
classify the patterns, as is shown in the figure below: 

 

 
 

  




