PSYCO 452

Week 7: The Analog Perceptron

eIntuitive Statistics

*Digital vs Analog Perceptrons
*Bayesian Probability

*Bayes’ Theorem and Networks
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Week 7 Connectionism and Cognitive
Psychology
Weeks 8-10 Interpreting MLPs
Weeks 11-13 Case studies (interpretations,

applications, architectures)

Laplace’s Demon

* To an agent with knowledge of all
causal relationships "nothing would
be uncertain and the future, as the
past, would be present to its eyes”
(Laplace, 1814).

* Imperfect, humans must accept and
adapt to uncertainty

» Probability theory is a means for
doing this

* “The theory of probabilities is at
bottom nothing but common sense
reduced to calculus; it enables us to
appreciate with exactness that which
accurate minds feel with a sort of
instinct for which oftimes they are
unable to account.”

The Intuitive Statistician

probability and statistics to define
norms to which human reasoning
can be compared

“[Our] psychological research
consists of examining the relation
between inferences made by man
and corresponding optimal
inferences as would be made by
‘statistical man’” (Peterson &
Beach, 1967, p. 29)
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Lee Roy Beach

Probability Theory Is Key

« Egon Brunswik used probabilistic
notions as the keys to his lens
theory

Egon Brunswik

agent

Stray Causes Stray Effects

Figure 1-1. Brunswik's lens model of the mapping between the worid and actions upen it This
figure is & variation of Brunswik (1952) Figure 1

Digital Perceptron

The traditional Output
perceptron has digital

output and is

equivalent to a

trainable McCulloch-

Pitts neuron

Activation fl.mction is w, W,
a step function or
Heaviside equation
with threshold 6




The Logistic Equation

* But modern perceptrons typically use an analog
activation function, the logistic

« Typically connectionists ignore this, and treat it as
digital, by training outputs to the extremes of the
logisitc
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Analog Behavior

« But the analog nature
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of a modern
perceptron?

Perceptron As Lens

« We can use the analog perceptron as a candidate
architecture for Brunswik’s probabilistic lens model
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Figure 1.6, The basic components of a perceptron, placed in the context of Brunswik's lens
model from Figure 1-1. See text for details.

a priori Probability

* One class of probability
problems are a priori
problems

* Knowing the cause, you
make an inference about
future events

* Example:
— Cause:

+ box of marbles, 25% white, 75%
black, sampled one at a time with
replacement

— Inference:

+ What is likelihood of drawing
WWWBB when 5 selections are
made from the box?

a posteriori Probability

* The inverse probability problem is to
reason backwards from event to its
(unknown) cause

« Example:

— Evidence:
« Draw WWWBB marbles
— Hypothesis about cause:

* What is likelihood draw came from bag of marbles,
25% white, 75% black? 3

¢ That is, what is P(H|E)?

. Infgeneral, one must consider the
different a posteriori probabilities of a
number of different competing
hypothesis

* Simplest case — 2 hypotheses

Bayes’ Rule

< In the simplest case, consider probabilities involving
two hypothetical causes, H and ~H
* The posterior probability P(H|E) is given by a simple
ratio:
P(E|H) - P(H)

(PEIH) - P(H)) + (P(E|~H) - P(~H))
1

P(HIE) =

T PEIH) P(~H)
L+ =pEm P

Thomas Bayes




Case Study: Contingency

« According to contingency theory,
learning occurs when stimulus
provides information about the
likelihood of a certain event
occurring

« Simple contiguity is not enough

* “The notion of contingency differs
from that of pairings in that the R
former includes not only what is ey
paired with the CS but also what is N
not paired with the CS” (Rescorla,
1967, p. 76).

Robert Rescorla

Measuring Contingency

¢ In the simplest scenario, summarized
by a 2X2 contingency table,
contingency between variables is
defined by AP

e AP =P(H|E) - P(H|~E) = a/(a+b) — c/(c+d)
= (ad — bc)/((a + b)(c + d))

* Perceptrons compute AP if activity is -
analog (and logistic)! W

H ~H
E a b
~E c d

Lorraine Allan

Bayes’ Rule In Action

* What is probability that a patient has breast cancer given that
their mammogram was positive?

* Note that this problem is based on a contingency table!
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PEIHPH)  14,pidlatbiced
a+c)\a+b+c+d

P(HIE) = 0.0776699029126214

H ~H
E a=8 b =95
~E c=2 d = 895

The Posterior Perceptron

¢ Train the simplest perceptron Output (H or ~H)
on the 1000 patterns defined by

the cancer contingency table
« At the end of training:
— w = 3.4656832744007
— 6=-5.94807103049533
— Input on: 0.0771021239932535
— Input off: 0.00260407305517532 w
— Difference between these two

activities is AP
* Posterior perceptron learns to .

approximately agree with
Bayes’ rule! Input (E or ~E)

Is The Perceptron Bayesian?

» Empirically, the simplest Output (H or ~H)
perceptron learns to behave
like Bayes’ rule
* Are the two formally
equivalent?
« This issue can be explored
using the contingency table to 23

act as a link between the
logistic and Bayes’ rule

Input (E or ~E)

Equating Output With Input On

« Take the empirical link between perceptron behavior
and Bayes’ rule, and express it formally for when E is
true:
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Equating Output With Input Off

« Take the empirical link between perceptron behavior

and Bayes’ rule, and express it formally for when E is
false:

il 1 1 1
PH|E)=——=—1_= =
- d . PGEI~H)P(~H) d \,(_b+d
Lte 1+(?) TTP(~E|H)P(H) 1+(E:3) (u+g1—g+d)

a+c)\a+b+c+d

d
em®=2
(4

6 = In(c) — In(d)

Bayesian Perceptron

We can translate Bayes’ rule into the weight and bias

of the posterior perceptron

« Formal equivalence!

* Ideal
— w = 3.6292411877942051550032412410499
— 0=-6.1036765377149100613613316417894
— W + 0 = -2.4744353499207049063580904007395 . .8

* Observed Example

— w = 3.4656832744007

— 0=-5.94807103049533

— w+6=-2.48238775609463

Finding Weight

« The previous equations related network bias to
Bayes’ rule. We can use it to solve for the
connection weight value too:

w = 1In(a) —In(b) — 6
=In(a) — In(b) — In(c)

+ In(d)
= In(ad) — In(bc)

A ad
_nbc

Extending Bayes’ Theorem

« Bayes’ theorem can be extended to cases in which
more than one source of evidence is being used to
signal probability

Tabie 4-3. General form of a 2X2X2 conringency table for twa signals (X, Y) that can lead to @ reward (R). Each fowercase letter in a cellstands for @
frequency. For instance, a is the number of times that there is a reward when X and ¥ are both true, while € is the number of times that there is no
reward when X and Y are both true
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P(XnY|H) P(H
PHIXNnY) = ( Ii) - P( ) (4-4)
(P NYIH)-P(H)) + (P(X N YI~H) - P(~H))

Naive Bayes

* The math of the extended Bayes’ theorem can be

simplified by making it ‘blind’ to interactions between
variables

* This equation is called naive Bayes
« Compare this to Equation 4-4

PHIX 1Y) P(X|H)P(Y|H) - P(H) 4.5
xXny)= 2
! (P(X|H)-P(Y|H)-P(H)) + (P(X|~H) - P(Y|~H) - P(~H)) RS

Perceptron Interpretation

« Formal analyses provide similar interpretations to the
two-variable Bayesian perceptron




Three Cue Test Case

« Train perceptrons where probability of reward is
signaled by three cues

* In some conditions let two cues interact (AND, XOR)

« Also manipulate reward probability associated with
the interaction Seeking Rewards In An Uncertain World
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Perceptron Performance

« Perceptrons, not surprisingly, have trouble with
interactions, particularly when reward probability
makes conditional dependence very hard
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Human Performance

* Human performance on an analogous task is very
similar, suggesting that during probability learning
people are like naive Bayesians!
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