Veek 2: Nonlinearity, o Decisions	r Making
•Building Associations	
•Delta Learning	
•Making Decisions	
-Linear Activation Func	tion
-Nonlinear Activation F	unctions
-Perceptrons, Pros and	Cons

Course Trajectory		
When	What	
Weeks 1-3	Basics of three architectures (DAM, perceptron, MLP)	
Weeks 4-6	Cognitive science of DAMs and perceptrons	
Week 7	Connectionism and Cognitive Psychology	
Weeks 8-10	Interpreting MLPs	
Weeks 11-13	Case studies (interpretations, applications, architectures)	

Chapter 9 Discussion

d Machin

- Questions?
- Important Terms
 Association
 - Associationism
 - Distributed associative memory
 - Processing unit
 - Modifiable connection
 - Net input function
 - Hebb learning
 - Delta rule
- General ideas are more important than the math, but the math can be useful

Distributed Associative Memory

b

Output

p

- Modern views of neural association involve the strengthening of synapses (both excitatory and inhibitory) as well as the weakening of synapses
- These two processes have been combined to create many interesting models of distributed associative memory

Hidden Unit #fail

- Linear algebra shows that these sequences can be reduced to a memory with one layer of connections
- In other words, the sequences don't add power to a linear system
- $r = W_1(W_2c) = (W_1W_2)c$
- r = Xc

Why Won't Hidden Units Work? For layers to add something that can't be removed by linear algebra, a nonlinear transformation of net input must be provided In short, we need to use a nonlinear activation function in our processors Fortunately, many are available An each permits a unit to be interpreted as making a decision

Perceptron Performance

- Let's use a perceptron program to explore some of the issues raised this lecture
 - Ability to perform beyond DAM
 - Ability to deal with most of
 - Boolean logic – Integration device vs. value unit
 - power in terms of small, linearly nonseparable problems Limitations still exist – we will need to
- add layers of nonlinear processors to deal with them – and will talk about how to do this later in this course

