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PSYCO 452
Week 2: Nonlinearity, or Making 

Decisions

•Building Associations
•Hebb Learning

•Delta Learning

•Making Decisions

–Linear Activation Function

–Nonlinear Activation Functions

–Perceptrons, Pros and Cons

Course Trajectory

When What

Weeks 1-3
Basics of three architectures (DAM, 

perceptron, MLP)

Weeks 4-6
Cognitive science of DAMs and 

perceptrons

Week 7
Connectionism and Cognitive 

Psychology

Weeks 8-10 Interpreting MLPs

Weeks 11-13
Case studies (interpretations, 
applications, architectures)

• Questions?

• Important Terms
– Association

– Associationism

– Distributed associative memory

– Processing unit

– Modifiable connection

– Net input function

– Hebb learning

– Delta rule

• General ideas are more important than 
the math, but the math can be useful

Chapter 9 Discussion

• Modern views of neural 
association involve the 
strengthening of synapses 
(both excitatory and 
inhibitory) as well as the 
weakening of synapses

• These two processes have 
been combined to create 
many interesting models of 
distributed associative 
memory

Distributed Associative Memory

• Hebb rule has many problems
– Only learns orthogonal 

patterns
– Produces error when 

overtraining
– Unable to deal with linear 

dependence
• The delta rule overcomes many of 

these problems
– Can deal with some correlated 

patterns
– Only modifies weights when 

errors exist
– Still cannot deal with linear 

dependence

Problems With These Memories

• One possibility for 
overcoming these 
problems would be to 
build a more powerful 
network

• For example, perhaps a 
layer of hidden units 
would serve the purpose

• In this chain, the output of 
one DAM would be 
passed along as input to 
another, so that layers of 
connections would be 
exploited

Distributed Associative Memory Sequences
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• Linear algebra shows that 
these sequences can be 
reduced to a memory with 
one layer of connections

• In other words, the 
sequences don’t add 
power to a linear system

• r = W1(W2c) = (W1W2)c 

• r = Xc

Hidden Unit #fail

• For layers to add something 
that can’t be removed by 
linear algebra, a nonlinear 
transformation of net input 
must be provided

• In short, we need to use a 
nonlinear activation function 
in our processors

• Fortunately, many are 
available

• An each permits a unit to be 
interpreted as making a 
decision

Why Won’t Hidden Units Work?

Threshold Device

• Monotonic

• Discontinuous

• Analogous to “all or 
none” law in neurons

• Used by Rosenblatt 
in the perceptron

Integration Device

• Continuous
• Monotonic
• Approximates the 

step function
• Permits calculus to 

be used to derive 
step function
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Value Unit

• Continuous
• Nonmonotonic
• Behaves as if it has two 

thresholds
• Permits calculus to be 

used to derive step 
function

• Lots of nice properties 
as we will see in the 
course

2)(   net
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The Perceptron

• A perceptron can be 
viewed as a 
distributed memory 
whose output units 
use nonlinear 
activation functions

• It is used to 
associate an input 
pattern with a 
category name

• A perceptron was a 
trainable pattern 
classifier!
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An Example Perceptron

• An example 
perceptron takes 
as input the seven 
notes that are 
found in a 
particular major 
or minor musical 
scale

• The perceptron 
then categorizes 
the scale by 
identifying the 
note that serves 
as the scale’s root

• Perceptron weights are set via a 
learning rule

• Assume that the perceptron 
uses a threshold activation 
function in its output.  
Rosenblatt used this rule

• Wij(new) = Wij(old) + (tj – oj)ai

• Compare this learning rule to the 
delta rule for DAM.  Why does this 
rule make sense?

• t+1 =  ((t - o)  cT)

Perceptrons Learn

• Assume that the 
perceptron uses a 
sigmoid activation 
function

• Calculus can be used to 
determine a gradient 
descent rule that moves 
the network downhill in 
error space as fast as 
possible

• The calculus is only 
possible because the 
sigmoid is a continuous 
approximation of the 
threshold function

Gradient Descent Rule Deriving A Gradient Descent Rule

• Define a “least squares” error term

• Use calculus to determine how this error term is 
changed by a weight change

• Use this information to define the fastest decrease 
in error possible

• For f(net) = 1/1+exp(-net):

• Wij(new) = Wij(old) + (tj – oj)f’(net)ai

• Wij(new) = Wij(old) + (tj – oj)(aj)(1 - aj)ai

 2  pipip otEE

Perceptron Limitations

• In their book Perceptrons, 
Minsky and Papert used 
mathematics to investigate 
what perceptrons could and 
could not learn to do

• They discovered some 
interesting, and serious, 
limitations to the capabilities 
of perceptrons

• The result was an extreme 
decline in neural network 
research

• Networks are frequently 
used to classify patterns

• They carve a pattern 
space into decision 
regions

• Patterns are classified 
according to these 
decision regions

Pattern Recognition
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The AND Problem

INPUT 1 INPUT 2 OUTPUT
F F F
T F F
F T F
T T T

INPUT 1 INPUT 2 OUTPUT
0 0 0
1 0 0
0 1 0
1 1 1

The AND Pattern Space

0,0

0,1 1,1

1,0

An AND Network

 = 1.5

Wt = 1.0Wt = 1.0

Output

Inputs

• A single, straight cut 
through the pattern 
space solves the AND 
problem

• This means this 
problem is linearly 
separable

• The networks of Old 
Connectionism could 
learn to solve such 
problems

The XOR Problem

INPUT 1 INPUT 2 OUTPUT
0 0 0
1 0 1
0 1 1
1 1 0

INPUT 1 INPUT 2 OUTPUT
F F F
T F T
F T T
T T F

The XOR Pattern Space

0,0

0,1 1,1

1,0

• XOR is not a linearly 
separable problem

• This is because 
more than 1 cut is 
required

• As a result, Old 
Connectionism 
could not train 
networks to deal 
with this problem

• XOR is a problem for 
New Connectionism

• Or, a problem for a 
perceptron with a 
more sophisticated 
activation function!

Linear Nonseparability

 = 0.5

 = 1.5 = 0.5

+3

+1

+1

+1

-1 -3



5

• Named after Ballard (1986)

• Gaussian activation function

• G(netpj) = exp[-(netpj - j)2]

Value Unit

• Standard error term in gradient descent rule

• Dawson & Schoplocher error term

• This second term keeps some of the patterns in 
the middle of the distribution!

An Elaborated Error Term
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• For G(netpj) = exp[-(netpj)2]
• Wij(new) = Wij(old) + (tj – oj)G’(net)ai  + (tj * net)G’(net)ai

• Using the Gaussian, and the Rumelhart 
Hinton & Williams chain rule procedure, 
one can derive a learning rule for value 
units:

wij = (pi - pi) apj

• Essentially the same as the gradient 
descent rule, with the exception of an 
elaborated (two component) error term

A New Learning Rule Another XOR Network

 = 1.0

+1+1

• Let’s use a perceptron program to 
explore some of the issues raised this 
lecture

– Ability to perform beyond DAM

– Ability to deal with most of 
Boolean logic

– Integration device vs. value unit 
power in terms of small, linearly 
nonseparable problems

• Limitations still exist – we will need to 
add layers of nonlinear processors to 
deal with them – and will talk about 
how to do this later in this course

Perceptron Performance


