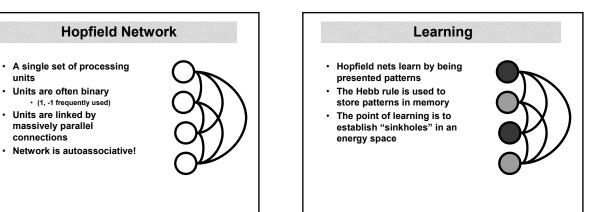
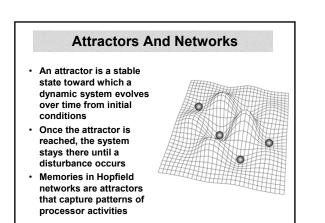
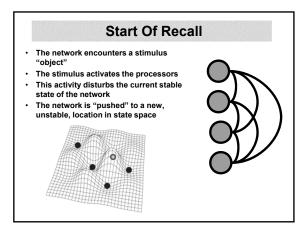
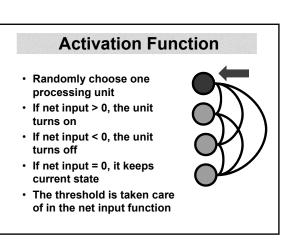

Psychology 452 Week 11: Autoassociative Networks


Physical basis of Hopfield networks Energy minimization in Hopfield networks Learning and attractors Boltzmann machines

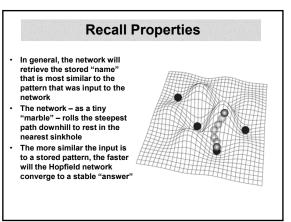

Course Structure		
When	What	
Weeks 1, 2, 3	Connectionist Building Blocks	
Weeks 4, 5, 6	Case Studies of Connectionism	
Week 7	Midterm Exam	
Weeks 8, 9, 10	Interpreting Connectionist Networks	
Weeks 11, 12	Deep Learning Basics	
Week 13	Final Exam	

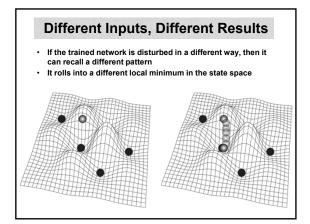




Net Input Function

- Net input for unit *i* is a function of the weighted signals from other units, environmental input (which may be present, but typically isn't) and the unit's threshold
- Threshold is typically equal to 0, but does not have to be


$$net_i = \Sigma w_{ij}a_j + i_i - T_i$$



Convergence In Time

- The process is repeated
- Each "flip" of a unit increases stability
- Eventually the system will stabilize -- it will reach a constant state, and will not change unless disturbed

Energy In The Network

- Using the spin glass analogy, Hopfield defined an energy (E) term for his network
- Let W be a matrix of weights, a a vector of activity, x an input vector, and t a vector of thresholds
 - E = 1/2aWa^T xa^T ta^T
- This term gets smaller as the network approaches the attractor!

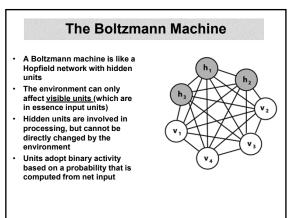
The Effect Of Activity

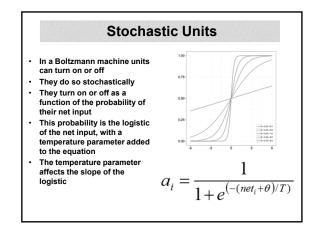
- The activation of units is crucial for defining network energy
- How might the change in a unit's activity affect total network energy?
- Hopfield proved the following:

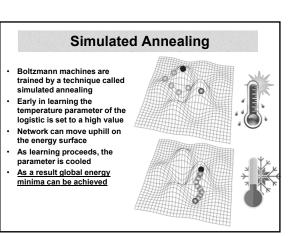
$$\Delta \mathsf{E} = - (\Sigma \mathsf{w}_{ij} \mathsf{a}_j + \mathsf{i}_i - \mathsf{T}_i) (\Delta \mathsf{a}_i) = -(\mathsf{net}_i)(\Delta \mathsf{a}_i)$$

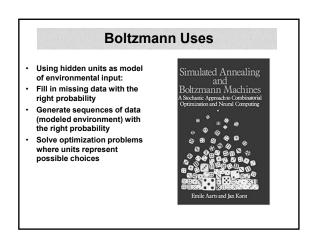
Implications For Energy

Consider the equation $\Delta E = -net_i \Delta a_i$


•


· When activity changes, energy decreases!


	a _i = 1	a _i = -1
net _i > 0	Stays on	Turns on
so	∆ a _i = 0	∆ a _i = +2
- net _i < 0	ΔE = 0	∆ a _i = +2 ∆E = -ve
net _i < 0	Turns off	Stays off
so	∆ a _i = -2	∆ a _i = 0
- net _i > 0	∆a _i = -2 ∆E = -ve	ΔE = 0


Related Networks

- Other autoassociative networks have been used to solve problems in memory and vision
- Brainstate-in-a-box (Anderson, Silverstein, Ritz & Jones, 1977)
- Brainstate-in-a-sphere (Dawson, 1991)
- · Various unsupervised networks
- Let's explore a network that evolved into deep learning nets: the Boltzmann machine

