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Laplace’s Demon The Intuitive Statistician

« 20t century research uses
probability and statistics to define
norms to which human reasoning
can be compared

¢ “[Our] psychological research
consists of examining the relation
between inferences made by man

A and corresponding optimal

2ot inferences as would be made by

To an agent with knowledge of all
causal relationships "nothing would
be uncertain and the future, as the
past, would be present to its eyes”
(Laplace, 1814).

Imperfect, humans must accept and
adapt to uncertainty

Probability theory is a means for
doing this

i S 1] _.l ‘statistical man’” (Peterson &
“The theory of probabilities is at
bottom nothing but common sense S . Beach, 1967, p. 29)
reduced to calculus; it enables us to Lee Roy Beach

appreciate with exactness that which
accurate minds feel with a sort of
instinct for which oftimes they are
unable to account.”




Probability Theory Is Key

* Egon Brunswik used probabilistic
notions as the keys to his lens
theory

Egon Brunswik
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Figure 1-1. Brunswik's lens model of the mapping between the wrld and actions upen It This
figure is a variation of Brunswik (1962) Figure 1

Digital Perceptron

The traditional
perceptron has digital
output and is
equivalent to a
trainable McCulloch-
Pitts neuron
Activation function is
a step function or
Heaviside equation
with threshold 6

Output

The Logistic Equation

« But modern perceptrons typically use an analog
activation function, the logistic

« Typically connectionists ignore this, and treat it as
digital, by training outputs to the extremes of the
logisitc
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analog properties Fig. 1. Average responses of ten different perceplrons o each of the four

stimuli as a function of training epoch. (a) Responses for networks from the
first simulation which used standard training procedures. (b} Responses for
networks from the second simulation which used an operant training procedure.

of a modern
perceptron?




Perceptron As Lens

* We can use the analog perceptron as a candidate
architecture for Brunswik’s probabilistic lens model

Feedback

A

Feedback

Figure 1-6. The basic components of a perceptron, placed in the context of Brunswik's lens
model from Figure 1-1. See text for details.

a priori Probability

¢ One class of probability
problems are a priori
problems

* Knowing the cause, you
make an inference about
future events

« Example:

— Cause:

+ box of marbles, 25% white, 75%
black, sampled one at a time with
replacement

— Inference:

+ What is likelihood of drawing
WWWBB when 5 selections are
made from the box?

a posteriori Probability

The inverse probability problem is to
reason backwards from event to its
(unknown) cause
Example:
— Evidence:

+ Draw WWWBB marbles
— Hypothesis about cause:

» What is likelihood draw came from bag of marbles, 3
25% white, 75% black? g

That is, what is P(H|E)?

In general, one must consider the
different a posteriori probabilities of a
number of different competing
hypothesis

Simplest case — 2 hypotheses

Bayes’ Rule

* In the simplest case, consider probabilities involving
two hypothetical causes, H and ~H

* The posterior probability P(H|E) is given by a simple
ratio:

e P(E|H) - P(H)
Ll (P(EIH) -1P(H))+(P(E|~H)-P(~H))
Tt L )

P(E|H) - P(H)

Thomas Bayes




Case Study: Contingency

According to contingency theory,
learning occurs when stimulus
provides information about the
likelihood of a certain event
occurring

Simple contiguity is not enough
“The notion of contingency differs
from that of pairings in that the
former includes not only what is
paired with the CS but also what is
not paired with the CS” (Rescorla,
1967, p. 76).

.
Robert Rescorla

Measuring Contingency

¢ In the simplest scenario, summarized
by a 2X2 contingency table,
contingency between variables is
defined by AP

e AP = P(H|E) - P(H|~E) = al/(a+b) — c/(c+d)
= (ad — bc)/((a + b)(c + d))

« Perceptrons compute AP if activity is
analog (and logistic)!

H ~H
E a b
~E c d

Lorraine Allan

Bayes’ Rule In Action

What is probability that a patient has breast cancer given that
their mammogram was positive?

Note that this problem is based on a contingency table!

1 il 1
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P(H|E) = 0.0776699029126214

H ~H
E a=8 | b=95
~E c=2 | d=895

The Posterior Perceptron

 Train the simplest perceptron Output (H or ~H)
on the 1000 patterns defined by

the cancer contingency table
* At the end of training:
— w = 3.4656832744007
— 8=-5.94807103049533
— Input on: 0.0771021239932535
Input off: 0.00260407305517532 AW

Difference between these two
activities is AP

¢ Posterior perceptron learns to -

approximately agree with
Bayes’ rule! Input (E or ~E)




Is The Perceptron Bayesian?

» Empirically, the simplest
perceptron learns to behave
like Bayes’ rule

» Are the two formally
equivalent?

* This issue can be explored
using the contingency table to
act as a link between the
logistic and Bayes’ rule

Output (H or ~H)

w

Input (E or ~E)

Equating Output With Input On

¢ Take the empirical link between perceptron behavior
and Bayes’ rule, and express it formally for when E is
true:
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w + 6 = In(a) — In(b)

Equating Output With Input Off

» Take the empirical link between perceptron behavior
and Bayes’ rule, and express it formally for when E is
false:
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6 = In(c) — In(d)

Finding Weight

* The previous equations related network bias to
Bayes’ rule. We can use it to solve for the
connection weight value too:

w = In(a) — In(b) — 6
= In(a) — In(b) — In(c)

+ In(d)
= In(ad) — In(bc)

i ad
_nbc




Bayesian Perceptron

* We can translate Bayes’ rule into the weight and bias

of the posterior perceptron
« Formal equivalence!
e Ideal
— w = 3.6292411877942051550032412410499
- 08=-6.1036765377149100613613316417894
— w + 8 = -2.4744353499207049063580904007395 &
¢ Observed Example
— w = 3.4656832744007
— 0 =-5.94807103049533
— w + 0 = -2.48238775609463

Extending Bayes’ Theorem

« Bayes’ theorem can be extended to cases in which
more than one source of evidence is being used to
signal probability

Tabie 4-3. General fe
frequency. Fo

d 10 a reward (R). Eac

P(XnY|H) P(H)

P(HIXNnY) =

(P(XNY|H)-P(H)) + (P(X nY|~H)- P(~H)) ik

Naive Bayes

* The math of the extended Bayes’ theorem can be

simplified by making it ‘blind’ to interactions between

variables
* This equation is called naive Bayes
« Compare this to Equation 4-4

P(X|H)-P(Y|H) - P(H)

PHIXNY) =7 — - -
(P(X|H) - P(Y|H) - P(H)) + (P(X|~H) - P(Y|~H) - P(~H))

(4-5)

Perceptron Interpretation

« Formal analyses provide similar interpretations to the
two-variable Bayesian perceptron

‘):_m(m-h))_m([f +M)—ﬁru([” +b+['—d])

(c+d) (b+d) (e+f+g+h)

(4-19)
= () (D) (2D
- ”([g*‘fr) +in (f'+l|))— ”(Lu+f+g+m)




Three Cue Test Case

« Train perceptrons where probability of reward is
signaled by three cues

* In some conditions let two cues interact (AND, XOR)
« Also manipulate reward probability associated with

the interaction Seeking Rewards In An Uncertain World
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Perceptron Performance

« Perceptrons, not surprisingly, have trouble with
interactions, particularly when reward probability
makes conditional dependence very hard

Tabie 5-18. The mean imation { f perceptrons a3 a function of probiem type
and level of reward. Probabilty estimation pe-formance is cperationakized as the squared correlation between the perceptrons responses for each of
stimuii rewara probaniv same stimuli. Each mean is based upan the performance of 100 diferent percep-
rrans
Figh Reward Low Revard

082 095

AND of Cues Band C 008 o)

052 0sc

XOR of Cues B and C 1005) 003

Toble 5-20. The [with 5 in e0ch of the five simulations thet are de-
scribed in Chaptar 5. Probobility estimation performance is operatonalized a5 the squared correlation between the response gererated by a percep-
wron stimuli and the of reward each. Each mean is based upon the performance of 100

different perceperons.

Independent Cues High Reward AND High Reward XOR Low Reviard AND Low Reward XOR
Mean & 3 [ 085 050
D 004 003 0.08 0oL 003

Human Performance

* Human performance on an analogous task is very
similar, suggesting that during probability learning
people are like naive Bayesians!

Figure 7-3. Bax plots. orm
iduals and Each box

asch of
ot summarizes the respentes cf 4 diffarent parbeipants.




