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PSYCO 452
Week 7: The Analog Perceptron

•Intuitive Statistics

•Digital vs Analog Perceptrons

•Bayesian Probability

•Bayes’ Theorem and Networks

Course Trajectory

When What

Weeks 1-3
Basics of three architectures (DAM, 

perceptron, MLP)

Weeks 4-6
Cognitive science of DAMs and 

perceptrons

Week 7
Connectionism and Cognitive 

Psychology

Weeks 8-10 Interpreting MLPs

Weeks 11-13
Case studies (interpretations, 
applications, architectures)

• To an agent with knowledge of all 
causal relationships "nothing would 
be uncertain and the future, as the 
past, would be present to its eyes” 
(Laplace, 1814).

• Imperfect, humans must accept and 
adapt to uncertainty

• Probability theory is a means for 
doing this

• “The theory of probabilities is at 
bottom nothing but common sense 
reduced to calculus; it enables us to 
appreciate with exactness that which 
accurate minds feel with a sort of 
instinct for which oftimes they are 
unable to account.”

Laplace’s Demon

• 20th century research uses 
probability and statistics to define 
norms to which human reasoning 
can be compared

• “[Our] psychological research 
consists of examining the relation 
between inferences made by man 
and corresponding optimal 
inferences as would be made by 
‘statistical man’” (Peterson & 
Beach, 1967, p. 29)

The Intuitive Statistician

Lee Roy Beach
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• Egon Brunswik used probabilistic 
notions as the keys to his lens 
theory

Probability Theory Is Key

Egon Brunswik

Digital Perceptron

w1

Output

Inputs

• The traditional 
perceptron has digital 
output and is 
equivalent to a 
trainable McCulloch-
Pitts neuron

• Activation function is 
a step function or 
Heaviside equation 
with threshold θ
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The Logistic Equation
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• But modern perceptrons typically use an analog 
activation function, the logistic

• Typically connectionists ignore this, and treat it as 
digital, by training outputs to the extremes of the 
logisitc

• But the analog nature 
of the activation 
function can be 
valuable

• Activity can match the 
probability of 
reinforcement, as 
shown by Dawson et 
al. (2009)

• What can be 
gained by 
exploring the 
analog properties 
of a modern 
perceptron?

Analog Behavior
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• We can use the analog perceptron as a candidate 
architecture for Brunswik’s probabilistic lens model

Perceptron As Lens

• One class of probability 
problems are a priori
problems

• Knowing the cause, you 
make an inference about 
future events

• Example:
– Cause:

• box of marbles, 25% white, 75% 
black, sampled one at a time with 
replacement

– Inference: 
• What is likelihood of drawing 

WWWBB when 5 selections are 
made from the box?

a priori Probability

• The inverse probability problem is to 
reason backwards from event to its 
(unknown) cause

• Example:
– Evidence:

• Draw WWWBB marbles

– Hypothesis about cause: 
• What is likelihood draw came from bag of marbles, 

25% white, 75% black?

• That is, what is P(H|E)?
• In general, one must consider the 

different a posteriori probabilities of a 
number of different competing 
hypothesis

• Simplest case – 2 hypotheses

a posteriori Probability

• In the simplest case, consider probabilities involving 
two hypothetical causes, H and ~H

• The posterior probability P(H|E) is given by a simple 
ratio:

ܲ ܪ ܧ ൌ
ܲ ܧ ܪ ∙ ܲ ܪ

ܲ ܧ ܪ ∙ ܲ ܪ ൅ ܲ ܧ ܪ~ ∙ ܲ ܪ~
	

ൌ
1

1 ൅
ܲ ܧ ܪ~ ∙ ܲ ܪ~
ܲ ܧ ܪ ∙ ܲ ܪ

Bayes’ Rule

Thomas Bayes
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• According to contingency theory, 
learning occurs when stimulus 
provides information about the 
likelihood of a certain event 
occurring

• Simple contiguity is not enough
• “The notion of contingency differs 

from that of pairings in that the 
former includes not only what is
paired with the CS but also what is 
not paired with the CS” (Rescorla, 
1967, p. 76).

Case Study: Contingency

Robert Rescorla

• In the simplest scenario, summarized 
by a 2X2 contingency table, 
contingency between variables is 
defined by ∆P

• ∆P = P(H|E) – P(H|~E) = a/(a+b) – c/(c+d) 
= (ad – bc)/((a + b)(c + d))

• Perceptrons compute ∆P if activity is 
analog (and logistic)!

Measuring Contingency

Lorraine Allan

H ~H

E a b

~E c d

• What is probability that a patient has breast cancer given that 
their mammogram was positive?

• Note that this problem is based on a contingency table!

• ܲ ܪ ܧ ൌ
ଵ

ଵାು ಶ ~ಹ ∙ು ~ಹ
ು ಶ ಹ ∙ು ಹ

ൌ
ଵ

ଵା
್

್శ೏ ∙ ್శ೏
ೌశ್శ೎శ೏

ೌ
ೌశ೎ ∙ ೌశ೎

ೌశ್శ೎శ೏

ൌ
ଵ

ଵା ್
ೌ

P(H|E) = 0.0776699029126214

Bayes’ Rule In Action

H ~H

E a = 8 b = 95

~E c = 2 d = 895

The Posterior Perceptron

w 

Output (H or ~H)• Train the simplest perceptron 
on the 1000 patterns defined by 
the cancer contingency table

• At the end of training:
– w = 3.4656832744007

– θ = -5.94807103049533

– Input on: 0.0771021239932535 

– Input off: 0.00260407305517532

– Difference between these two 
activities is ∆P

• Posterior perceptron learns to 
approximately agree with 
Bayes’ rule! Input (E or ~E)

θ
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Is The Perceptron Bayesian?

w 

Output (H or ~H)• Empirically, the simplest 
perceptron learns to behave 
like Bayes’ rule

• Are the two formally 
equivalent?

• This issue can be explored 
using the contingency table to 
act as a link between the 
logistic and Bayes’ rule

Input (E or ~E)

θ

Equating Output With Input On

• Take the empirical link between perceptron behavior 
and Bayes’ rule, and express it formally for when E is 
true:

ܲ ܪ ܧ ൌ
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Equating Output With Input Off

• Take the empirical link between perceptron behavior 
and Bayes’ rule, and express it formally for when E is 
false:
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Finding Weight

• The previous equations related network bias to 
Bayes’ rule.  We can use it to solve for the 
connection weight value too:

ݓ ൌ ln ܽ െ ln ܾ െ ߠ
																											

ൌ ln ܽ െ ln ܾ െ ln ܿ
൅ ln ݀
	ൌ ln ܽ݀ െ ln ܾܿ

ൌ ln
ܽ݀
ܾܿ
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Bayesian Perceptron

• We can translate Bayes’ rule into the weight and bias 
of the posterior perceptron

• Formal equivalence!

• Ideal
– w = 3.6292411877942051550032412410499

– θ = -6.1036765377149100613613316417894

– w + θ = -2.4744353499207049063580904007395

• Observed Example
– w = 3.4656832744007

– θ = -5.94807103049533

– w + θ = -2.48238775609463

Extending Bayes’ Theorem

• Bayes’ theorem can be extended to cases in which 
more than one source of evidence is being used to 
signal probability

Naïve Bayes

• The math of the extended Bayes’ theorem can be 
simplified by making it ‘blind’ to interactions between 
variables

• This equation is called naïve Bayes

• Compare this to Equation 4-4

Perceptron Interpretation

• Formal analyses provide similar interpretations to the 
two-variable Bayesian perceptron
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Three Cue Test Case

• Train perceptrons where probability of reward is 
signaled by three cues

• In some conditions let two cues interact (AND, XOR)

• Also manipulate reward probability associated with 
the interaction

Perceptron Performance

• Perceptrons, not surprisingly, have trouble with 
interactions, particularly when reward probability 
makes conditional dependence very hard

Human Performance

• Human performance on an analogous task is very 
similar, suggesting that during probability learning 
people are like naïve Bayesians!


