

Course Trajectory

When	What	
Weeks 1-3	Basics of three architectures (DAM, perceptron, MLP)	
Weeks 4-6	Cognitive science of DAMs and perceptrons	
Week 7	Connectionism and Cognitive Psychology	
Weeks 8-10	Interpreting MLPs	
Weeks 11-13	Case studies (interpretations, applications, architectures)	

NETtalk Learning

- NETtalk achieved 90% performance after being trained on only 5000 stimuli
- Klatt was not completely impressed: "In some sense, this is a surprisingly good result in that so much knowledge could be embedded in a moderate number of about 25,000 weights, but the performance is not nearly as accurate as that of a good set of letter-to-sound rules" (Klatt, 1987, p. 770)

NETtalk Representations

- Because of its size and complexity, the internal structure of NETtalk was not investigated in detail
- Sejnowski and Rosenberg explored the hidden layer with Hinton diagrams
- They concluded that most of the representations were 'distributed'

NETtalk Develops

- "During the early stages of learning in NETtalk, the sounds produced by the network are uncannily similar to early speech sounds of children" Examples of NETtalk
- "The phonological mappings produced by NETtalk are efficient encodings for a parallel network and may be comparable to those used by humans"
- Descendants of NETtalk have been central in the debate about the kinds of model required to account for reading, as well as symptoms of dyslexia

Dyslexia

- Dyslexia is a disorder in reading of words, and can be related to brain injury
 - Phonological dyslexia is a disorder in which nonwords cannot be read, but the reading of words is unaffected
 - Surface dyslexia is a selective disorder in which there is severe difficulty in reading aloud irregular words, usually revealed in terms of generalization errors; nonwords can be read
 - Deep dyslexia involves semantic errors in reading aloud, visual errors, and an inability to read nonwords

Symptoms of Dyslexia

ent but has problems with read onfuses the right from the left ent but does not test well or h daydream or zone our when in a class Learns best by "hands on" training rather than verbal or utraction ment of letters on a page whether reading or Seen movement of electric on a page whether meaning or writing
 Reads and rereads without much comprehension
 Has difficulty with opelling
 Has difficulty writing or copying
 Has during a set of the set ids to be good at math calculations but word pr y difficult ederly or extremely orderly nds to be dis

Deep Dyslexia

Deep dyslexia's symptoms are difficult to explain using simple boxologies

- 1. Semantic errors (e.g., BLOWING "wind", VIEW "scene", NIGHT "sleep", GONE "lost");
- Visual errors (e.g., WHILE "white", SCANDAL "sandals", POLITE "politics", BADGE "bandage");
 Function-word substitutions (e.g., WAS "and", ME "my", OFF "from", THEY "the");
- 4.
- "the"); Derivational errors (e.g., CLASSIFY "class", FACT "facts", MARRIAGE "married", BUY "bought"); Non-lexical derivation of phonology from print is impossible (e.g., pronouncing nonwords, judging if two nonwords rhyme); Lexical derivation of phonology from print is impaired (e.g., judging if two words rhyme): 5.
- 6. rhyme);
- Words with low imageability/concreteness (e.g., JUSTICE) are harder to read than words with high imageability/concreteness (e.g., TABLE); Verbs are harder than adjectives which are harder than nouns in reading aloud; 7.
- 8.
- Functions words are more difficult than content words in reading aloud;
 Writing is impaired (spontaneous or to dictation);
- Auditory-verbal short-term memory is impaired;
 Whether a word can be read at all depends on its sentence context (e.g., FLY as a noun is easier than FLY as a verb).

Dual Route Cascade Model

- Coltheart's dual route cascade model (DRC) is a classical model of reading
- Basic assumption: there are multiple routes by which text can be converted into speech, some involve semantics, others do not
- Damage to different routes in this model can account for different kinds of dyslexia, and can account for the un-unified syndrome of symptoms associated with deep dyslexia

Is Physical Space Metric? In terms of traditional distance measures, physical space is metric However, alternative measures of distance make physical space nonmetric If distance = time traveled, then physical space is nonmetric because it violates the symmetry constraint - If I drive, I can get home

faster than I can get to work

Hidden Unit As Sextant

- Each hidden unit could be seen as a sextant, delivering angles or bearings towards pairs of cities
- Connection weights were strongly correlated with this model
- But this means that each hidden unit delivers an inaccurate distance measure

- Judgements of similarity violate the triangle inequality
- Jamaica is similar to Cuba
 - Cuba is similar to Russia
 - but Jamaica is not similar to Russia at all!

Asymmetric Training

- Again, a network with 7 hidden units, trained on 169
 patterns, converged after 7645 sweeps of training
- Hidden unit behavior reflected the asymmetry of the task
- Hidden units in a 13 x 13 city matrix had large asymmetries of both net inputs and of activities .

Hidden Unit	Proportion Asymmetry Of Activation Matrix	Proportion Asymmetry Of Net Input Matrix	Correlation Betwee "From" Weights an "To" Weights
HI	0.47	0.63	-0.27
H2	0.36	0.36	0.28
H3	0.51	0,49	0.03
114	0.92	0.95	-0.91
115	0.72	0.86	-0.76
H6	0.45	0.50	-0.01
H7	0.81	0.92	+0.86

