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Psychology 452
Week 5: Perceptrons And 

Animal Learning

•Mathematical Models
•Mathematical Models Of Conditioning

•Rescorla-Wagner
•Logical Neuron

•Equivalence Between Models
•Empirical
•Formal

•The Perceptron Paradox

Course Trajectory

When What

Weeks 1-3
Basics of three architectures (DAM, 

perceptron, MLP)

Weeks 4-6
Cognitive science of DAMs and 

perceptrons

Week 7
Connectionism and Cognitive 

Psychology

Weeks 8-10 Interpreting MLPs

Weeks 11-13
Case studies (interpretations, 
applications, architectures)

• Questions, comments or issues?

Discussion? Models And Psychology

• Simon & Newell (1958) 
predicted that “within ten 
years most theories in 
psychology will take the form 
of computer programs.”

• Models have become 
important in psychology

• Models of data

• Mathematical models

• Computer simulations

• Let’s consider some issues 
that emerge in mathematical 
modeling

Herbert Simon 
(1916-2001)

Allen Newell 
(1927-1992)
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Mathematical Models

William K. Estes, 
Professor Emeritus, 
Psychology, Indiana 

University

“From the first efforts toward 
psychological measurement, 
investigators have had in mind 
the goal of making progress 
toward generality in 
psychological theory by 
developing quantities 
analogous to mass, charge, 
and the like in physics and 
showing that laws and 
principals formulated in terms 
of these derive quantities 
would have greater generality 
than those formulated in terms
of observables” (Estes, 1975)

Properties

Property Mathematical 
Models

Analyses of 
existing data

Yes

Linear 
transformation

Usually not

Goodness of fit Yes

Yields surprises Maybe

Behaves No

• “The essential nature of the 
learning process may, however, be 
stated quite simply … the process 
of learning consists in the 
strengthening of certain of these 
connections as contrasted with 
others, or in the setting up of quite 
new connections” (Hull, 1943).

– The physiological limit or maximum 
(M),

– The ordinal number (N) of the 
reinforcement producing a given 
increment to the habit strength 
(SHR),

– The constant factor (f) according to 
which a portion (∆SHR) of the 
unrealized potentiality is transferred 
to the actual habit strength ata given 
reinforcement.

• Over trials, the law becomes:
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Clark Hull

Hull’s Law For Growth Of S-R Habits

• Pavlovian conditioning is the process of 
repeatedly pairing a CS with an US so that 
eventually the CS will produce this response

• We can gain tremendous insights into this type of 
learning  by considering mathematical equations 
that attempt to account for it

Pavlovian Conditioning

Before conditioning….

Food (US) ---> Salivation (UCR)

Bell (CS) -----> No Salivation

After conditioning….

Bell (CS) -----> Salivation (CR)
Ivan Petrovich Pavlov
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• CS does not occur in a vacuum

• CS appears in the context of 
numerous other stimuli

• Context, and previous training, 
can interfere with the desired 
learning of the CS

• This is nicely demonstrated by 
Kamin’s blocking phenomenon

Conditioning And Context

Leon J. Kamin

• If CS1 (the bell) has already been conditioned to elicit the 
response, then when it is paired with CS2 (the light), further 
learning does not occur

• CS1 blocks the learning (conditioning) that could have 
occurred with CS2!

Blocking Phenomenon

Food

Bell

Bell

Food

Light

One Phase Control Condition

Two Phase Experimental Condition

Bell

Food

Light

“Organisms only learn when events 
violate their expectations.  Certain 
expectations are built up about 
events following a stimulus 
context; expectations initiated by 
the complex and its component 
stimuli are then only modified when 
consequent events disagree with 
the composite expectation” 
(Rescorla & Wagner, 1972)

Explaining Blocking

Allan Wagner

• Rescorla and Wagner used a 
mathematical model to make 
their “cognitive” account more 
rigorous
– V(t) - Change in associative 

strength at time t

– V(t) - Current associative 
strength of CS

–  - Salience of CS

–  - Maximum associative 
strength possible

Rescorla-Wagner Rule

 )()( tt VV  

This image cannot currently be displayed.
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• The Rescorla-Wagner model can easily be 
generalized to handle situations in which more 
than one CS can be presented

• This is done by assuming that there is a total 
associative strength that is the sum of the 
components, and that the Rescorla-Wagner 
equation can be selectively applied to each CS

Multiple CSs

CBA VVVV 

 )()( tAtA VV  

• The Rescorla-Wagner 
model works by 
choosing values for the 
constants, and updating 
associative strength if 
the CS is present

• For both runs on the 
right,  = 100

• For the blue line,  = 0.3, 
and for the black line  = 
0.1
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Formalizing Learning

 )()( tAtA VV  

• Extinction is modeled by 
changing the value of   to 
0 in the weight change 
equation

• The examples on the right 
continue the previous 
example, extinguishing the 
conditioning from Phase 1 0
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Formalizing Extinction

 )()( 0 tAtA VV  

• The associative strength is not always modified

• If the CS is not presented, then its associative 
strength will not change

• The equation below bluntly defines this situation

Formalizing CS Absence

0)(  tAV
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• A unified formulation of the Rescorla-Wagner rule 
accounts for all of its special-case instances that have 
been shown in previous slides

A Unified Rule
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Learning

Extinction

Absent CS

• Animal learners have not 
been the sole developers 
of formal learning models

• Since the 1940s 
researchers have 
formalized neurons, 
attempting to describe 
the brain logically

Logical Neurons

Warren McCulloch

Walter Pitts

• Some logical neurons, 
like the ADALINE model 
developed by Widrow and 
Hoff in 1959, learn

• Feedback about the 
correctness of their 
responses is used to 
modify connection 
weights

Formal Neurons Learn

Marcian 
Hoff

Bernard 
Widrow

ADALINE Learning
• ADALINE stood for “adaptive linear element”.  

• Connections are modified by computing error, which is difference 
between desired and observed response to a stimulus  

• Widrow and Hoff realized ADALINE as a physical system, which is 
pictured below (the “KNOBBY ADALINE”)
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The Perceptron

• The perceptron is an architecture very similar to 
ADALINE, developed by Frank Rosenblatt in the 
late 1950s

• It is trained by the delta rule, which is formally 
equivalent to Widrow-Hoff learning

A sketch of Frank Rosenblatt by Peter Kahn, with Minsky and Papert’s 
illustration of his perceptron. The sketch is on display at Cornell 

University • Delta rule learning 
adjusts weights 
according to response 
error, where the 
response is binary 

• If input units are used to 
represent the presence 
or absence of CSs, and 
if the response is 
viewed as a prediction 
about the presence of 
the CS, then you can 
use a perceptron to 
model classical 
conditioning

Perceptron Conditioning With The Delta Rule
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• Using the terminology of 
Dana Ballard, call a 
perceptron that uses a 
continuous approximation 
of a step function  as its 
activation function an 
integration device

• Train this network with a 
gradient descent version of 
Rosenblatt’s delta rule

Integration Device

1 = 1.5

Output

Inputs
Dana Ballard

W21 = 1.0W11 = 1.0

• If the derivative of the 
logistic function is 
included in the error 
definition of the delta 
rule, an integration 
device can be trained 
with a gradient descent 
rule

• The derivative is 
provided below:

The Gradient Descent Rule
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• The integration device 
can be used to simulate 
many standard 
paradigms in the animal 
conditioning literature

• Here we see the learning 
curve and extinction 
curve for a simple 
network trained on a 
single CS

Integration Device Results: Acquisition Curves

Phase Trial 
Type

Input tj

1 A+ 1 1

2 A- 1 0

Table 4-2

• Blocking was historically 
important in the development 
of the Rescorla-Wagner rule

• It can be demonstrated in an 
integration device

• On average, the control 
networks generate a response 
of 0.55 to CSB.  In contrast, 
experimental networks 
generate an average response 
of 0.10 to CSB – functionally 
equivalent to “off”.  This 
difference is statistically 
significant (t = 160.974, df =48, 
p < 0.0001).

Integration Device Results: Blocking

Blocking Paradigm

Weight Changes In A Network

Phase Type CSA CSB tj

1 - 0 0 0

A+ 1 0 1

2 - 0 0 0

AB+ 1 1 1

Table 6-5

Phase Unit Weight 

Phase 1
CSA 4.63

-

CSB 0.09
-

Output - -2.20

Phase 2
CSA 4.64

-

CSB 0.09
-

Output - -2.20

Table 6-6

• Dawson (2008) reports a number of experiments that have 
shown that integration devices can model many standard 
conditioning phenomena 

• Classical conditioning of individual stimuli

• Behaviorally plausible acquisition and extinction curves

• The effect of CS intensity on the rate of conditioning

• The effect of US intensity on the rate of conditioning

• Associations to compound stimuli

• The discrimination of compound stimuli from their components

• Overshadowing

• Blocking

• Conditioned inhibition

• Renewal, or context-dependent extinction

• Superconditioning

Empirical Equivalences

• Sutton and Barto proved the 
equivalence between a 
connectionist architecture and 
a psychological learning rule 
by translating the Rescorla-
Wagner rule into the Widrow-
Hoff rule

• A similar proof has been 
developed by Gluck

• These proofs assume that the 
activation function of the 
output unit is linear!

Formal Equivalence?

Andrew Barto

Richard Sutton
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• If activity is identical to net input, and net input is total 
associative strength, then the error term in the delta rule is 
identical to the “distance from maximum association term” in 
the Rescorla-Wagner model

• That is, the Rescorla-Wagner model can be translated into the 
delta rule under this assumption

Linear Proof
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• Perceptrons and related 
devices depend on nonlinear 
activation functions, so the 
typically cited proof of the 
relation between animal and 
machine learning is not really 
all that applicable

• We need to define how 
nonlinear output is related to 
internal associative strength

• One proposal is the equation 
below:

Nonlinear Activity and Association
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Nonlinear Proof
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Rescorla-Wagner Rule

Substitute for total association

Move shared terms outside 
parentheses

Simplify constants

If US indicates presence, then the 
equation above is identical to the delta 
rule, but now for a nonlinear system!

• Miller, Barnet and Grahame (1995) 
have documented many successes 
and failures of the Rescorla-
Wagner model

• Given the formal equivalence that 
we have established, perceptrons 
and integration devices must have 
the same successes and failures

• The perceptron paradox is that this 
is not true!

• We can easily demonstrate learning 
results in an integration device that 
diverge from the Rescorla-Wagner 
model, and in fact improve upon it

The Perceptron Paradox

Robert Barnet

Ralph Miller
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• The Rescorla-Wagner model 
does not predict facilitated 
reacquisition after extinction

• This is one of the model’s 
failures

• This failure is not evident in an 
integration device!

• On average, networks learned 
the associations to the CSs after 
695.9 sweeps during Phase 1.  
After extinction, networks 
reacquired these associations 
after only 62.6 sweeps.  Not 
surprisingly, this difference was 
statistically significant (t = 
3005.415, df =48, p < 0.0001).

Phase Trial Type CSA CSB tj

1 - 0 0 0

A+ 1 0 1

B+ 0 1 1

2 - 0 0 0

A- 1 0 0

B- 0 1 0

3 - 0 0 0

A+ 1 0 1

B+ 0 1 1

Table 7-1

Paradoxical Result: Facilitated Reacquisition Paradoxical Result: Extinction of a Conditioned Inhibitor

• The Rescorla-Wagner 
model predicts that when a 
conditioned inhibitor is 
extinguished, its 
associative strength 
should become more 
positive

• This is one of the model’s 
failures, as this prediction 
is not supported by animal 
data

• This failure is not evident 
in an integration device!

• Note the changes in the 
conditioned inhibitor’s 
weight after phase 2 
training

Phase Trial Type CSA CSB tj

1 - 0 0 0

A+ 1 0 1

AB- 1 1 0

2 - 0 0 0

A- 1 0 0

B- 0 1 0

Table 7-5

Phase Unit Weight 

1 CSA 4.47 -

CSB -4.80 -

Output - -2.45

2 CSA 2.37 -

CSB -4.81 -

Output - -4.58

Table 7-6

Paradoxical Result: Overexpectation

• Let CSA and CSB be independently paired 
with a US. Then, the two CSs are presented 
as a compound and are paired with the US.

• Overexpectation is defined as occurring 
when there is reduced responding (relative 
to a control) to CSA and CSB as individual 
stimuli following the training on the 
compound stimulus.

• Prediction of this effect was a triumph of 
the Rescorla-Wagner model

• Dawson and Spetch (2005) argued that the 
overexpectation effect will not be produced 
in an integration device, and supported this 
argument with simulation results

Why Does The Paradox Occur?

• The perceptron 
paradox arises 
because integration 
devices were not just 
mathematical models 
of changes in 
associative strength, 
but were simulations 
that had to behave

• Therefore, associative 
strength must be 
converted into a 
response

• The Rescorla-Wagner 
model is mute with 
respect to how 
associative strength 
becomes behavior

Property Mathematical 
Models

Computer 
Simulations

Analyses of 
existing data

Yes Possibly

Linear 
transformation

Usually not Usually not

Goodness of 
fit

Yes Yes, but 
nonstandard

Yields 
surprises

Maybe Hopefully

Behaves No Yes
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Implications Of The Paradox

• The Rescorla-Wagner model is evaluated by 
comparing it to behaving animals

• Such comparisons must involve a tacit 
theory of how associative strength 
becomes behavior!

• The nature of this theory has a severe 
impact on the responses of the model – for 
instance, you can change the behavioral 
predictions of the model by changing your 
theory of behavior, but leaving Rescorla-
Wagner untouched!

• For example, Dawson and Spetch (2005) 
have shown that changing the activation 
function has implications for whether 
overexpectation is observed.  This change 
does not affect a “Rescorla-Wagner” 
account of machine learning!!


