PSYCO 452

Week 2: Nonlinearity, or Making
Decisions

*Building Associations
*Hebb Learning
«Delta Learning

*Making Decisions
—Linear Activation Function
—Nonlinear Activation Functions
—Perceptrons, Pros and Cons

Course Trajectory

When What

Basics of three architectures (DAM,

WEES 18 perceptron, MLP)
Weeks 4-6 Cognitive science of DAMs and
perceptrons
Week 7 Connectionism and Cognitive
Psychology
Weeks 8-10 Interpreting MLPs
Weeks 11-13 Case studies (interpretations,

applications, architectures)

Chapter 9 Discussion

¢ Questions?
¢ Important Terms
— Association
— Associationism
— Distributed associative memory
— Processing unit
— Modifiable connection
— Net input function
— Hebb learning
— Deltarule
* General ideas are more important than
the math, but the math can be useful

Distributed Associative Memory

* Modern views of neural

. & _input
association involve the (a\(b\‘fc)(d\_fe\l
strengthening of synapses o0 171 " 1
(both excitatory and 7 o w w w

inhibitory) as well as the }r<

weakening of synapses

¢ These two processes have
been combined to create
many interesting models of
distributed associative
memory
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Problems With These Memories

Hebb rule has many problems

— Only learns orthogonal
patterns

— Produces error when
overtraining

— Unable to deal with linear
dependence

The delta rule overcomes many of

these problems

— Can deal with some correlated
patterns

— Only modifies weights when
errors exist

— Still cannot deal with linear
dependence

Distributed Associative Memory Sequences

One possibility for
overcoming these
problems would be to
build a more powerful
network

For example, perhaps a
layer of hidden units
would serve the purpose

In this chain, the output of
one DAM would be
passed along as input to
another, so that layers of
connections would be
exploited

Hidden Unit #fail

Linear algebra shows that
these sequences can be
reduced to a memory with
one layer of connections
In other words, the
sequences don’t add
power to a linear system
r = Wy(W,c) = (W, Wy)c
r=Xc

Why Won’t Hidden Units Work?

For layers to add something
that can’'t be removed by
linear algebra, a nonlinear
transformation of net input
must be provided

In short, we need to use a
nonlinear activation function
in our processors
Fortunately, many are
available

An each permits a unit to be
interpreted as making a
decision




Threshold Device

« Monotonic
* Discontinuous

* Analogous to “all or
none” law in neurons

» Used by Rosenblatt
in the perceptron

Integration Device

Logistic Activation Function For An Integration Device

¢ Continuous
« Monotonic

* Approximates the
step function

¢ Permits calculus to
be used to derive
step function
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Value Unit

Gaussian Activation Function For A Value Unit ¢ Continuous
.

Nonmonotonic
Behaves as if it has two
thresholds

» Permits calculus to be
used to derive step
function
Lots of nice properties
as we will see in the
course

_ a-x(net—u)?
a, =¢e 4 Ta-e

The Perceptron

« A perceptron can be
viewed as a
distributed memory
whose output units
use nonlinear
activation functions

e Itis used to
associate an input
pattern with a
category name

* A perceptron was a
trainable pattern
classifier!




An Example Perceptron

» An example Oureur ONite
perceptron takes i u ol 0 &
LT T - B & W

as input the seven
notes that are
found in a
particular major
or minor musical
scale

* The perceptron
then categorizes
the scale by
identifying the
note that serves
as the scale’s root

INPUT UNiTs

Perceptrons Learn

Perceptron weights are set via a

learning rule
Assume that the perceptron Inputs  No-Bias Neuron
uses a threshold activation [

function in its output.

Rosenblatt used this rule P'
Wijnew) = Wioiay + 7(tj = 05)3; P2,

Compare this learning rule to the

. AN N
delta rule for DAM. Why does this a = hardiim(Wp)
rule make sense?

4,,=n(t-0)ech)

Gradient Descent Rule

e Assume that the
perceptron uses a
sigmoid activation
function

* Calculus can be used to
determine a gradient
descent rule that moves
the network downhill in
error space as fast as
possible

* The calculus is only
possible because the
sigmoid is a continuous
approximation of the
threshold function

W Output

A Single Node Example

Deriving A Gradient Descent Rule

E =ZEp :ZZ(tpi ~Opi

« Define a “least squares” error term
¢ Use calculus to determine how this error term is

changed by a weight change

¢ Use this information to define the fastest decrease

in error possible

¢ For f(net) = 1/1+exp(-net):
* Wijtnew) = Wijoigy + 7(t; — 0)F (net)a;
* Wijtnew) = Wijoia) + 7(t — 0) (@) (1 - a))ay




Perceptron Limitations

¢ In their book Perceptrons,
Minsky and Papert used
mathematics to investigate
what perceptrons could and
could not learn to do

» They discovered some
interesting, and serious,
limitations to the capabilities
of perceptrons

* The result was an extreme
decline in neural network
research

Pattern Recognition

Networks are frequently
used to classify patterns
They carve a pattern
space into decision
regions

Patterns are classified
according to these
decision regions

The AND Problem
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The AND Pattern Space
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An AND Network

* Asingle, straight cut Output
through the pattern
space solves the AND
problem

¢ This means this
problem is linearly
separable

¢ The networks of Old
Connectionism could
learn to solve such
problems

The XOR Problem

INPUT1 | INPUT2 | OUTPUT
0 0 0

1 0 !
0 a 1
il 1 0
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The XOR Pattern Space

» This is because

« As aresult, Old

¢ XORis aproblem for

Linear Nonseparability

XOR is not alinearly
separable problem

more than 1 cut is
required

Connectionism
could not train
networks to deal
with this problem

New Connectionism
Or, aproblem for a
perceptron with a
more sophisticated
activation function!




Value Unit An Elaborated Error Term

« Standard error term in gradient descent rule

E :ZEP :Zz(tpi _Opi)z
* Dawson & Schoplocher error term »
EzzEp=ZZ(tpi_opi) K
DR (net o = yi)z

* Named after Ballard (1986) » This second term keeps some of the patterns in
e Gaussian activation function the middle of the distribution!

» G(net,) = exp[-n(net, - w)?

> Wijnew) = Wijiq) + 71(t; — 0))G’ (et)a; + n(t; * net)G’(net)ay

A New Learning Rule Another XOR Network

For G(net,) = exp[-n(net,)?]

Using the Gaussian, and the Rumelhart - 10
Hinton & Williams chain rule procedure, M
one can derive a learning rule for value il il
units:

AW'I = 11(5;:. i sp\) am
Essentially the same as the gradient
descent rule, with the exception of an
elaborated (two component) error term




Perceptron Performance

e Let’s use a perceptron program to
explore some of the issues raised this
lecture

— Ability to perform beyond DAM

— Ability to deal with most of
Boolean logic

— Integration device vs. value unit
power in terms of small, linearly
nonseparable problems

« Limitations still exist —we will need to
add layers of nonlinear processors to
deal with them — and will talk about
how to do this later in this course




