	SYCO 452 onlinearity, or Making
100A 2. A	Decisions
•Building Ass	sociations
	b Learning a Learning
•Making D	
-Linea	r Activation Function
-Nonli	near Activation Functions
-Perce	eptrons, Pros and Cons

Course Trajectory

Case studies (interpretations	When	What
Weeks 4-6 perceptrons Week 7 Connectionism and Cognitive Psychology Weeks 8-10 Interpreting MLPs Veeks 11-13 Case studies (interpretations,	Weeks 1-3	
Week 7 Psychology Weeks 8-10 Interpreting MLPs Case studies (interpretations,	Weeks 4-6	•
Veeks 11-13 Case studies (interpretations,	Week 7	0
	Weeks 8-10	Interpreting MLPs
	Weeks 11-13	• •

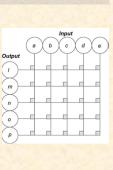
Chapter 9 Discussion

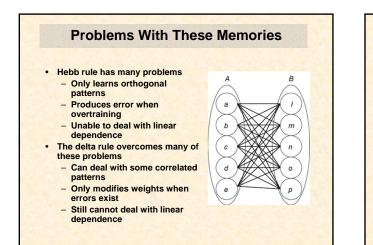
nd Machine

- Questions?
- Important Terms
 - Association
 - Associationism
 - Distributed associative memory
 - Processing unit
 - Modifiable connection
 - Net input function
 - Hebb learning
 - Delta rule
- General ideas are more important than the math, but the math can be useful

Distributed Associative Memory

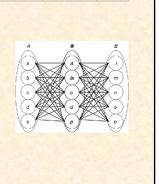
- Modern views of neural association involve the strengthening of synapses (both excitatory and inhibitory) as well as the weakening of synapses
- These two processes have been combined to create many interesting models of distributed associative memory





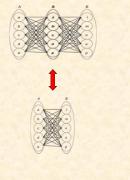
Distributed Associative Memory Sequences

- One possibility for overcoming these problems would be to build a more powerful network
- For example, perhaps a layer of hidden units would serve the purpose
- In this chain, the output of one DAM would be passed along as input to another, so that layers of connections would be exploited

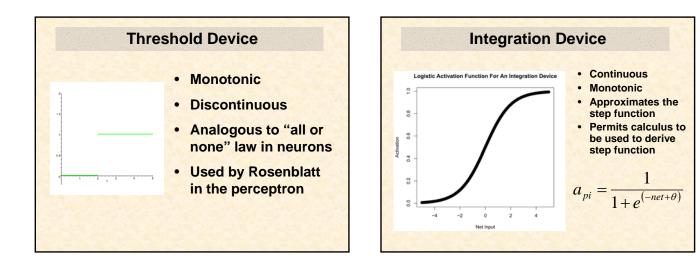


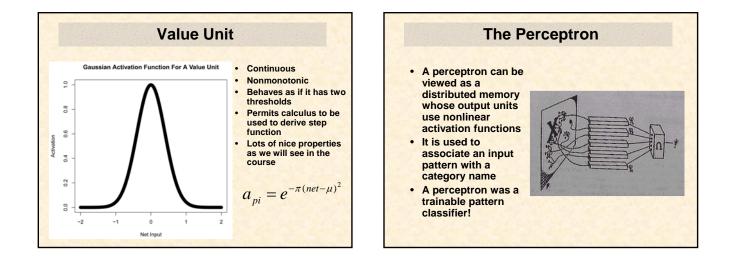
Hidden Unit #fail

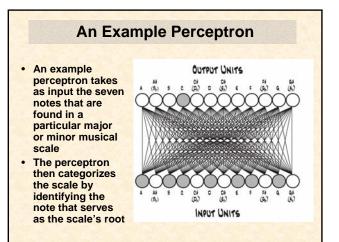
- Linear algebra shows that these sequences can be reduced to a memory with one layer of connections
- In other words, the sequences don't add power to a linear system
- r = W₁(W₂c) = (W₁W₂)c
 r = Xc

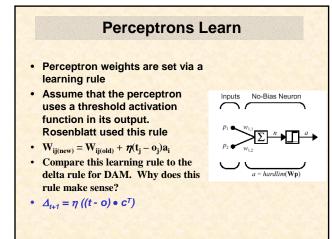


Why Won't Hidden Units Work? • For layers to add something that can't be removed by linear algebra, a nonlinear transformation of net input must be provided In short, we need to use a . nonlinear activation function in our processors Fortunately, many are available An each permits a unit to be interpreted as making a decision



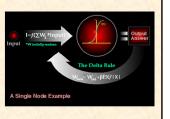






Gradient Descent Rule

- Assume that the perceptron uses a sigmoid activation function
- Calculus can be used to determine a gradient descent rule that moves the network downhill in error space as fast as possible
- The calculus is only possible because the sigmoid is a continuous approximation of the threshold function



Deriving A Gradient Descent Rule

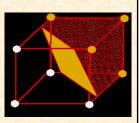
- $E = \sum E_p = \sum \sum (t_{pi} o_{pi})^2$ • Define a "least squares" error term
- · Denne a least squares error term
- Use calculus to determine how this error term is changed by a weight change
- Use this information to define the fastest decrease in error possible
- For f(net) = 1/1+exp(-net):
- $W_{ij(new)} = W_{ij(old)} + \eta(t_j o_j)f'(net)a_i$
- $W_{ij(new)} = W_{ij(old)} + \eta(t_i o_i)(a_i)(1 a_i)a_i$

Perceptron Limitations

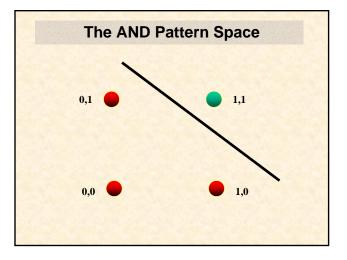
- In their book *Perceptrons*, Minsky and Papert used mathematics to investigate what perceptrons could and could not learn to do
- They discovered some interesting, and serious, limitations to the capabilities of perceptrons
- The result was an extreme decline in neural network research

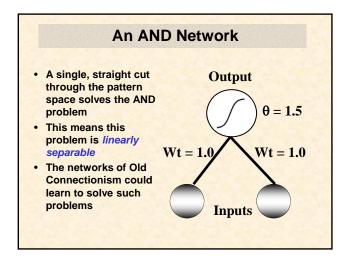
Pattern Recognition

- Networks are frequently used to classify patterns
- They carve a pattern space into decision regions
- Patterns are classified according to these decision regions

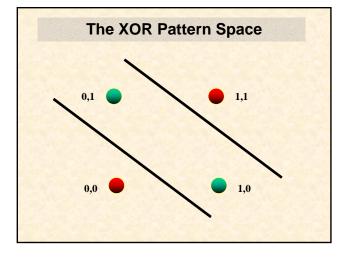


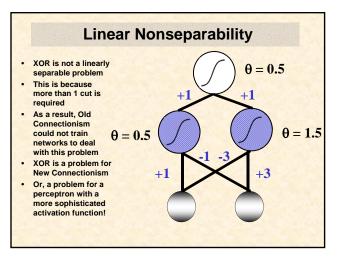
INPUT 1	INPUT 2	OUTPUT
F	F	F
Т	F	F
F	Т	F
Т	Т	Т
INPUT 1	INPUT 2	OUTPUT
INPUT 1 0	INPUT 2 0	OUTPUT 0
	0	0

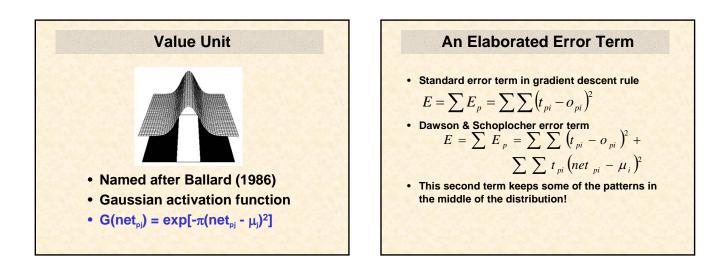




INPUT		OUTPUT
0	0	0
1	0	1
0	1	1
1	1	0
INPUT		OUTPUT
F	F	F
F	F	F







A New Learning Rule

- For $G(net_{pj}) = exp[-\pi(net_{pj})^2]$
- $W_{ij(new)} = W_{ij(old)} + \eta(t_j o_j)G'(net)a_i + \eta(t_j * net)G'(net)a_i$
- Using the Gaussian, and the Rumelhart Hinton & Williams chain rule procedure, one can derive a learning rule for value units:

$\Delta w_{_{ij}} = \eta (\delta_{_{pi}} - \epsilon_{_{pi}}) a_{_{pj}}$

• Essentially the same as the gradient descent rule, with the exception of an elaborated (two component) error term

