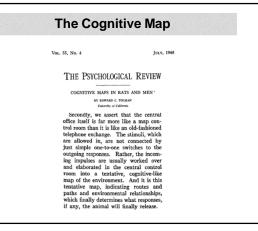
Psychology 452 Week 13: Spatial Representations In PDP Networks

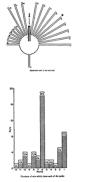
•Hippocampus As A Cognitive Map •Networks Learn Metric Spaces •Networks Learn Nonmetric Spaces

Course Trajectory


When	What
Weeks 1-3	Basics of three architectures (DAM, perceptron, MLP)
Weeks 4-6	Cognitive science of DAMs and perceptrons
Week 7	Music and networks
Weeks 8-10	Interpreting MLPs
Weeks 11-13	Case studies (interpretations, applications, architectures)

Psychology and Space

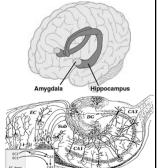
- Spatial behavior, or spatial reasoning, have long been studied by psychologists
- Some of the earliest cognitive proposals are found in Tolman's studies of spatial behavior
- Tolman introduced the term 'cognitive map' long before the cognitive revolution occurred



Edward Tolman

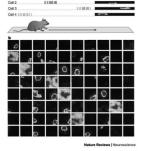
Example Evidence

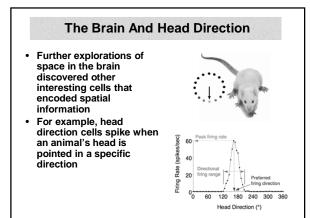
- Rats, when finding a route to a goal blocked, will find a related route that will take them towards the goal whose learned path is not available
- "As a result of their original training, the rats had, it would seem, acquired not merely a strip-map to the effect that the original specifically trained-on path led to food but, rather, a wider comprehensive map to the effect that food was located in such and such a direction in the room"

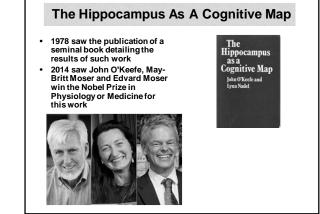

CritiqueTolman's cognitivist musings were
critiquedIn a 1935 text on learning, Guthrie
noted: "In his concern with what
goes on in the rat's mind, Tolman
has neglected to predict what the rat
will do. So far as the theory is
concerned the rat is left buried in
thought; if he gets to the food-box at
the end that is [the rat's] concern,
not the concern of the theory" (p.
172)It is is a variant of Ryle's regress
being used to attack functionalism
and cognitivismIt is is a variant of Ryle's regress
being used to attack functionalism
and cognitivism

Needed: an architecture for the cognitive map!

•

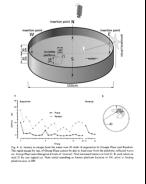

The Hippocampus

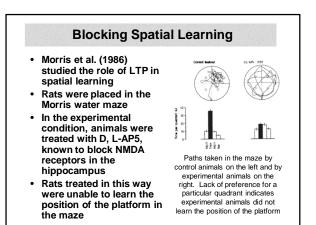

- The hippocampus is a component of the limbic system
- Earlier we saw that there are reasons to believe that it is a locus of Hebb-like learning
- There is also substantial evidence to suggest that it provides the cognitive map

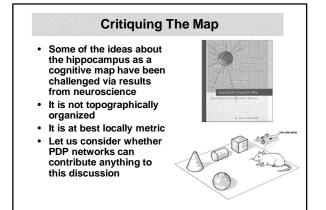


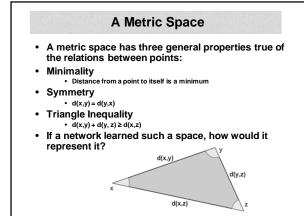
The Hippocampus And Place

- In the 1970s, single-cell recordings from the hippocampus revealed a biological basis for the 'cognitive map'
- Place cells fire when an animal's head is at a particular location in the world
- A variety of other spatial location cells have been found in the hippocampus since the discovery of place cells

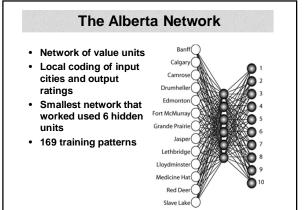


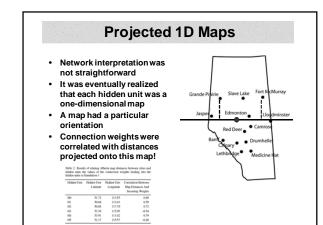


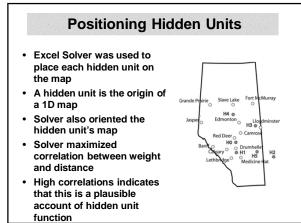


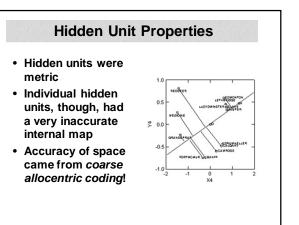

Studying Spatial Learning

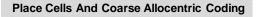
- Why is the map in the hippocampus? This permits spatial learning to occur
- Morris (1984) invented the water maze to study spatial learning of rats
- Rats swim to escape the water, and discover a hidden platform
- On repeated trials, the time taken to find the platform decreases, indicating that the agents are learning its position in the maze

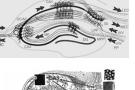




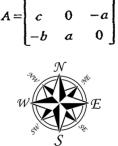

Alberta As A Metric Space Dawson, Boechler and Valsangar-Smyth (2000) trained a network to estimate the distances between cities in Alberta If it can learn such a task, then it has – by definition – internalized a metric space


ALBERTA

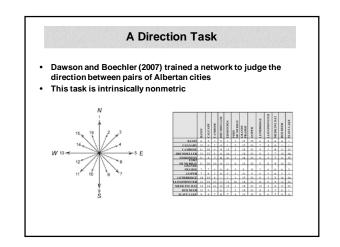

raining Inces b		et w	as r										
inces b	-												
	et	vee	n cit	ties	to e	dete	rmi	ne	ou	itpu	ıt ra	tir	ıg
Table I. (A) Dis	tances be	tween citie	of Alberta,	measured	in kilonetr	s (B) The d	istances fire	on Table	la conv	intedintor	atings on a	0 10 10	54
	BANP	CALGARY	CAMBIORE	DRUM- HELLIR	IDMONTON	FORT MCMURRAY	GRANDE PRARE	AGPER	LITS MEDGE	LLOID- MINSTHE	MIRCHE	NED DEER	
ESET	-	13	261	29	401	540	682	297	342	426	419	253	
CALGARY	125		274	108	294	253	720	412	216	519	29.5	145	
CAMBORE DECMEDILLER	34	234	182	182	97	\$21 \$00	553	40	453	245	429	129	
RESOLUTION	20	24	182	- 28	279	50	235	347	242	435	247		
FORT MCM BRAD		7.0	521	26	409		752	76	548		931		
GRANDE PRAIRE		730	553	715	456	752		317	935	73	982	586	
ASPER.	3		403	542	366	26	397 935	65	625		233	413	
LOTIMICITY			245	415	251	50	215	60			450	374	
MEDICING	421	218	429	247	536	971	982	7.0	368	480	0	000	
RED-DERIG	25			145	148	97		43	368		409		
SLOT LAKE	43	56	348	530	250	46	318	494	760	436	777	399	
Table I. Continu	ed												
	BANK	CALCARY		DBUM-	IDMONTON	FORT	GRANEE	1.07130	LITH		MINDE	HID	
0.047	_					MONUBAY	PEGER		nna	MESTIK	103	1413	-
CHEGARY	2			- 1		i i		- 1				- 6	
CAMBORE		·			- í			- 6			- i	- 2	
CREMINGELLER.		2	2	0	3			- 6	3		3	2	
TEMONTON FORT MCMURRAN	. 1		1		0			. :				2	
GRANDI PRARE								- 2	10			- 2	
\$1.5PE R								- 6		- 7	1	- 3	
LETHINGTON:		,				18	10	7		7	2		
LLOY DMINSTER MEDICINE RAF	7	6	,	5	,			2	7		5		
NUCLEUR RAF					:	10		- 1		2		- 2	

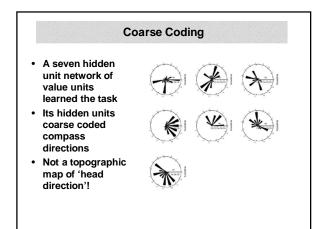


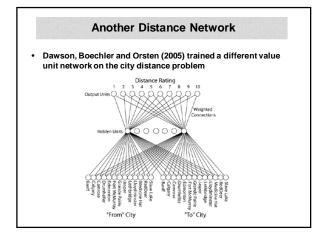
- Place cells have been criticized as not being 'maplike'
- Our network is not map-like either, but has internalized a map of Alberta
- Hidden units are like place cells
- Perhaps the hippocampus is a PDP map, using coarse allocentric coding – which acts like a map, but doesn't look like one!

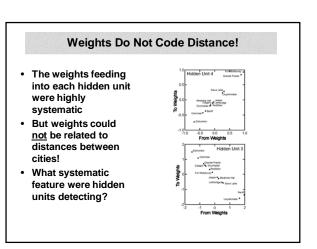

Advantages Of Non-Map-Like Maps

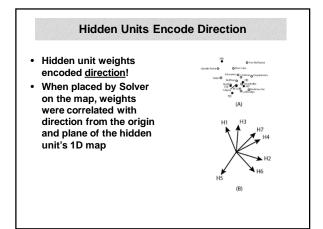
- Why might it be advantageous to have a cognitive map that is not maplike in structure?
- Some spatial reasoning may involve spaces that are not metric
- Map-like representations might fail on such tasks

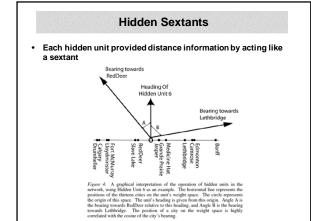

Antisymmetry And Direction

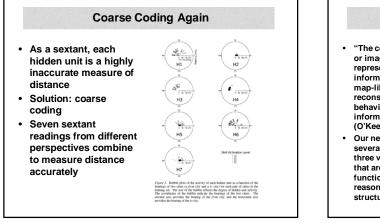

- One can violate metric space property by using antisymmetric relations instead of symmetric ones
- d(x,y) = -d(y,x)
- Compass directions are antisymmetric
- The direction from Edmonton to Calgary is the opposite of the direction from Calgary to Edmonton


-c


Ь






	,	Of Wireta				
unit for e	and Boechler wi each pair of input Itting matrices of tric	stimuli	e highly			
	Proportion Asymmetry Of Activation Matrix	Proportion Asymmetry Of Net Input Matrix	Correlation Between "From" Weights and "To" Weights			
	Proportion Asymmetry Of	Asymmetry Of Net	"From" Weights and			
Hidden Unit	Proportion Asymmetry Of Activation Matrix	Asymmetry Of Net Input Matrix	"From" Weights and "To" Weights			
Hidden Unit	Proportion Asymmetry Of Activation Matrix 0.47	Asymmetry Of Net Input Matrix 0.63	"From" Weights and "To" Weights -0.27			
Hidden Unit H1 H2	Proportion Asymmetry Of Activation Matrix 0.47 0.36	Asymmetry Of Net Input Matrix 0.63 0.36	"From" Weights and "To" Weights -0.27 0.28			
Hidden Unit H1 H2 H3	Proportion Asymmetry Of Activation Matrix 0.47 0.36 0.51	Asymmetry Of Net Input Matrix 0.63 0.36 0.49	"From" Weights and "To" Weights -0.27 0.28 0.03			
Hidden Unit H1 H2 H3 H4	Proportion Asymmetry Of Activation Matrix 0.47 0.36 0.51 0.92	Asymmetry Of Net Input Matrix 0.63 0.36 0.49 0.95	"From" Weights and "To" Weights -0.27 0.28 0.03 -0.91			

