Psychology 452 Week 11: Autoassociative Networks

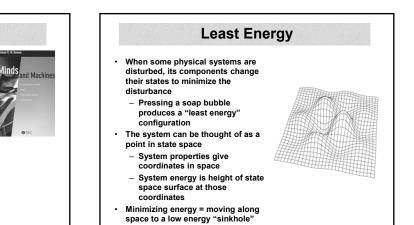
Physical basis of Hopfield networks Energy minimization in Hopfield networks Learning and attractors Boltzmann machines

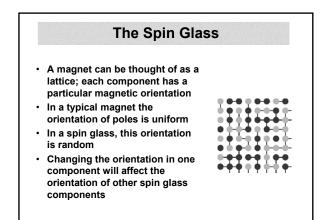
Course Structure

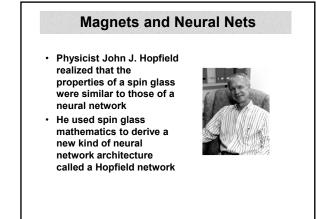
What
Connectionist Building Blocks
Case Studies of Connectionism
Midterm Exam
Interpreting Connectionist Networks
Deep Learning Basics
Final Exam

Chapter 7 Discussion

- Questions?
- Important Terms
 - Feedback
 - Machine
 - Homeostat
 Tortoise
 - Braitenberg vehicle
 - Braitenberg vehicle
 NETTalk
 - Cricket phonotaxis
 - Stigmergy
 - Law of uphill analysis and downhill synthesis





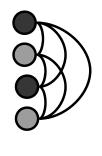


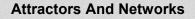
Hopfield Network

- A single set of processing units
- Units are often binary
 (1, -1 frequently used)
- Units are linked by massively parallel connections
- Network is autoassociative!

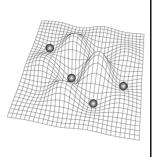
Learning

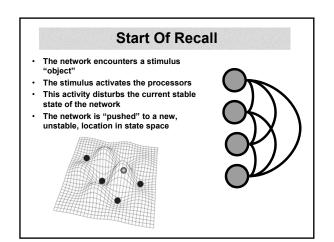
- Hopfield nets learn by being presented patterns
- The Hebb rule is used to store patterns in memory
- The point of learning is to establish "sinkholes" in an energy space





- An attractor is a stable state toward which a dynamic system evolves over time from initial conditions
- Once the attractor is reached, the system stays there until a disturbance occurs
- Memories in Hopfield networks are attractors that capture patterns of processor activities





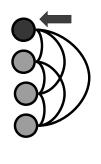
Net Input Function

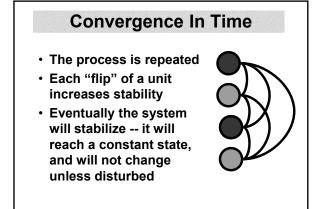
- Net input for unit *i* is a function of the weighted signals from other units, environmental input (which may be present, but typically isn't) and the unit's threshold
- Threshold is typically equal to 0, but does not have to be

$$net_i = \Sigma w_{ij}a_j + i_i - T_i$$

Activation Function

- Randomly choose one processing unit
- If net input > 0, the unit turns on
- If net input < 0, the unit turns off
- If net input = 0, it keeps current state
- The threshold is taken care of in the net input function

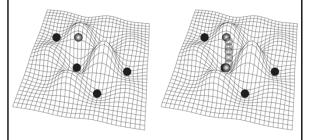


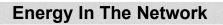




Different Inputs, Different Results

- If the trained network is disturbed in a different way, then it can recall a different pattern
- It rolls into a different local minimum in the state space





- Using the spin glass analogy, Hopfield defined an energy (E) term for his network
- Let W be a matrix of weights, a a vector of activity, x an input vector, and t a vector of thresholds

E = - ½aWa^T - xa^T - ta^T

• This term gets smaller as the network approaches the attractor!

The Effect Of Activity

- The activation of units is crucial for defining network energy
- How might the change in a unit's activity affect total network energy?
- Hopfield proved the following:

$$\Delta \mathsf{E} = \mathsf{-} (\Sigma \mathsf{w}_{ij} \mathsf{a}_j + \mathsf{i}_i - \mathsf{T}_i) (\Delta \mathsf{a}_i) = \mathsf{-}(\mathsf{net}_i)(\Delta \mathsf{a}_i)$$

Implications For Energy

- Consider the equation $\Delta E = -net_i \Delta a_i$
- When activity changes, energy decreases!

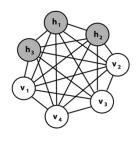
	a _i = 1	a _i = -1
net, > 0	Stays on	Turns on
so	$\Delta a_i = 0$	∆ a _i = +2
- net _i < 0	ΔE = 0	ΔE = -ve
net _i < 0	Turns off	Stays off
SO	∆a _i = -2	∆ a _i = 0
- net _i > 0	∆E = -ve	ΔE = 0

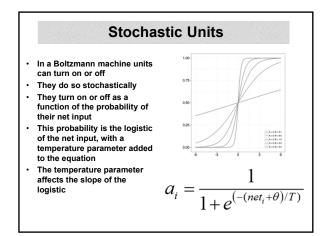
Related Networks

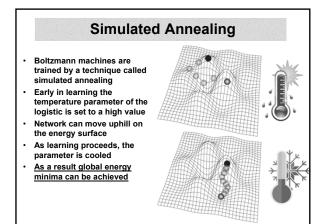
- Other autoassociative networks have been used to solve problems in memory and vision
- Brainstate-in-a-box (Anderson, Silverstein, Ritz & Jones, 1977)
- Brainstate-in-a-sphere (Dawson, 1991)
- · Various unsupervised networks
- Let's explore a network that evolved into deep learning nets: the Boltzmann machine

The Boltzmann Machine

- A Boltzmann machine is like a Hopfield network with hidden units
- The environment can only affect <u>visible units</u> (which are in essence input units)
- Hidden units are involved in processing, but cannot be directly changed by the environment
- Units adopt binary activity based on a probability that is computed from net input







Boltzmann Uses

- Using hidden units as model of environmental input:
 Fill in missing data with the
- Fill in missing data with the right probability
 Generate sequences of data
- (modeled environment) with the right probability
- Solve optimization problems where units represent possible choices

