
This article is an overview of behavior-based robotics, a

field of robotics that is guided by principles from nature and

aims to develop methods for synthesizing artificial systems,

ranging from physical robots to autonomous software agents,

and use robotics to model and analyze natural systems,

ranging from insects to humans. The article defines the key

principles of behavior-based robotics, and overviews a vari-

ety of examples of its practical applications and its models of

natural systems. The overlap between the two is described,

but the article focuses on biologically inspired robotics

work, giving details of several new areas of research.

Behavior-based robotics is a branch of robotics that

bridges artificial intelligence (AI), engineering and cognitive

science. Its dual goals are: (1) to develop methods for con-

trolling artificial systems, ranging from physical robots to

simulated ones and other autonomous software agents; and

(2) to use robotics to model and understand biological sys-

tems more fully, typically, animals ranging from insects to

humans. This article focuses mainly on work towards satis-

fying the first goal, giving a brief review of the key ap-

proaches and types of systems that have been implemented

with a strong biological inspiration.

In the field of robotics, ‘control architectures’ are

methodologies that supply structure and impose constraints

on the way that robots are controlled. The behavior-based

approach is a methodology for designing robot architectures

and controllers for endowing robots with intelligent behav-

ior. The methodology is based on a biologically-inspired

philosophy that favors parallel, decentralized architectures,

and allows for some freedom of interpretation. The ap-

proach is general and fits well within other powerful frame-

works such as schema theory1.

In behavior-based systems, the robot controller consists

of a collection of ‘behaviors’, each of which achieves and/or

maintains a specific goal. For example, the ‘avoid-obstacles’

behavior maintains the goal of preventing collisions with

objects in the environment, and the ‘go-home’ behavior

achieves the goal of reaching some home region. Each be-

havior is a processing element or a procedure, also called a

control law in the engineering field of ‘control theory’, that

can be implemented either in software or hardware; each can

take inputs from the robot’s sensors (for example, cameras

and ultrasound, infra-red or tactile sensors) and/or from other

behaviors, and send outputs to the robot’s effectors (such as

wheels, grippers, arms or speech) and/or to other behaviors 

in the system. Consequently, a behavior-based robot is 

controlled by a structured network of interacting behaviors.

System organization

The organizational methodology of behavior-based systems

differs from other robot control methods in its approach to

modularity, that is, the way in which the system is organ-

ized and subdivided. The behavior-based philosophy man-

dates that behaviors are relatively simple, incrementally

added to the system and not executed in a serial fashion.

The systems are meant to be constructed in a bottom-up

fashion, resembling evolution in its incremental refinement

as well as its utilitarian exploitation of existing modules.
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Behaviors are activated in response to external and/or

internal conditions, that is, sensory inputs and internal

state. The system as a whole activates entire subsets of 

behaviors so that parallelism can be exploited, both in speed

of computation and in the resulting dynamics. The latter is

a critical aspect of behavior-based control: as multiple 

behaviors or modules are active, dynamics of interaction

arise both within the system itself (from the interaction

among the behaviors) and within the environment (from

the interaction of the behaviors with the external world).

Inspired by biological organisms, designers of behavior-

based systems exploit these dynamics to create (by hand or

automatically through the use of learning, described below)

repeatable, stable and, ultimately, intelligent behavior with-

out relying on top-down, centralized and often even hier-

archical control (Refs 2,3; and P.E. Agre, PhD thesis, 1988,

MIT).

The design of behaviors

A methodological constraint of behavior-based systems is

their use of state and representation: information is not cen-

tralized or centrally manipulated. Instead, various forms of

distributed representations are used, ranging from static table

structures and networks, to active, procedural processes,

providing a rich medium for innovative interpretations.

Behaviors can be designed at a variety of levels of ab-

straction. In general, they are made to be higher than the

robot’s atomic actions (that is, typically above ‘go-forward-

by-a-small-increment’ or ‘turn-by-a-small-angle’), and they

extend in time and space. Effectively, this elevates the rep-

resentational level of the system, which has been shown to 

facilitate higher-level cognition and learning4,5. Some com-

monly implemented behaviors include: ‘go-home’, ‘find-

object’, ‘get-recharged’, ‘avoid-collisions’ and ‘pick-up-object’.

More specialized behaviors include: ‘avoid-the-light’, 

‘aggregate-with-group’, ‘find-mate’, ‘follow-edge’, etc.

The internal behavior structure of a system does not

necessarily need to mirror its externally manifested be-

havior. For example, a robot that flocks with other robots

may not have a specific internal ‘flocking’ behavior; instead,

its interaction with the environment and other robots may

produce flocking. Typically, behavior-based systems are 

designed so that the effects of the behaviors interact in the

environment, rather than internally through the system, so as

to take advantage of the richness of the interaction dynamics.

These dynamics are sometimes called ‘emergent’ because

they result from the interactions and are not internally 

specified by the robot’s program6.

Coordinating multiple behaviors

A key issue in behavior-based systems concerns the coordi-

nation of the multiple behaviors, thus making ‘arbitration’

(deciding what behavior to execute at each point in time)

one of the central challenges. For the sake of simplicity,

most implemented systems use a built-in, fixed priority or-

dering of behaviors. More flexible solutions, which can be

less computationally efficient and harder to analyze, have

been suggested, commonly based on selecting a behavior by

computing some function of the behavior activation levels,

such as voting or activation spreading7,8.

A historical overview

Behavior-based systems were founded on the work in reactive

robotics and in particular on the ‘subsumption architec-

ture’9, which achieves rapid real-time responses by embed-

ding the robot’s controller into a collection of prepro-

grammed parallel condition–action rules, or reflexes, with

minimal internal state (for example, ‘if bumped, stop’)2,10.

In contrast to these so-called bottom-up systems, traditional

AI deliberative planner-based systems are top-down, and re-

quire the robot to perform a serial sequence of processing

sense–plan–act steps (for example, ‘combine the sensory

data into a model of the world, then use the planner to find

a path in the model, then send each of the steps of the plan

to the robot’s wheels’)11–13. Hybrid systems attempt a com-

promise between the ‘thinking’ and ‘acting’ extremes by

using a reactive system for low-level control and a planner for

higher-level decision making14–19.

Hybrid systems tend to separate the control system into

two or more communicating but largely independent parts.

Behavior-based systems are an alternative to hybrid systems;

they enable fast real-time responses through simple reactive

behaviors that directly link sensors and effectors, but also

provide for higher-level deliberation by distributing the rep-

resentation and computation over more sophisticated con-

current behavior processes. The power, elegance and com-

plexity of behavior-based systems all stem from the ways in

which their constituent behaviors are defined and used.

Some proponents of behavior-based systems claim that 

they model cognition better, while others use them purely

from pragmatic motivations, including their ease of system

development and the robustness of the results.

Learning and adaptation

Learning has been called the hallmark of intelligence; thus,

achieving adaptive and learning capabilities in artificial sys-

tems is one of the greatest challenges of AI. Learning is par-

ticularly difficult in robotics, because sensing and acting in

the physical world involve a great deal of uncertainty, owing

to incomplete and noisy information and dynamically

changing environment conditions. It is often difficult for

robots to perceive correctly (owing to limited sensory tech-

nology) and act on (owing to limited effectors) the variety

of situations that arise in the physical world. Nonetheless,

robot learning is an active branch of robotics, and is one of

the variations and adaptations of standard machine learning

techniques (in particular reinforcement learning) that have

been applied effectively to robots. Behavior-based robots

have learnt to walk20, navigate21–23, communicate24, divide

tasks25, behave socially26 and even identify opponents and

score goals in robot soccer27.

Reinforcement learning is the most popular method for

learning in mobile robotics28,29. It refers to a set of problems

(rather than methods), in which the robot must improve its

behavior based on rewards or punishment from the envi-

ronment. The reinforcement learning model is based on

early conditioning work in psychology, and recently an in-

creasing number of robot learning systems have used related

concepts from biological reinforcement learning, most no-

tably shaping5,30,31 and operant conditioning32,33. Supervised

learning methods using neural networks have also been used
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extensively23,34,35. Some of the most effective demonstrations

of learning in mobile robots have been inspired by biological

learning systems.

Demonstrations and applications

Consistent with the dual goal of the field itself, behavior-

based robotics has been used both in practical applications

and in futuristic exploratory endeavors. Behavior-based 

robots have demonstrated various standard robotic capabil-

ities, including obstacle avoidance, navigation, terrain map-

ping, following, chasing/pursuit, object manipulation, task

division and cooperation, and learning maps and walking.

Application domains have included mobile robots, under-

water vehicles, space robotics (most recently the Mars

Sojourner, the robot that autonomously explored the sur-

face of Mars), as well as robots capable of manipulation,

grasping, walking and running.

Interestingly, as the behavior-based approach is being

explored for modeling natural systems, the resulting re-

search is demonstrating methods with immediate practical

applications. For example, models of large-scale group be-

havior, that have been developed with behavior-based sys-

tems, appear to be the methodology of choice for deploying

robots in hazardous or inaccessible environments, including

under water, in mine fields, under ground and in space.

These domains require a combination of individual inde-

pendence and group cohesion capable of adapting to vary-

ing group sizes and organizations, as in natural societies.

Consequently, behavior-based approaches have presented

popular options for addressing analysis of natural behavior

and synthesis of practical artificial behavior.

Faithful simulation and robotic models have been devel-

oped for a diverse range of natural behaviors including: reflex-

ive behavior selection strategies36; cricket phonotaxis for flight

and mating behaviors37; lobster odor location38; fly39 and

hover-fly40 vision; insect navigation, trail formation and path-

finding41,42; the application of the schema theory to modeling

navigation43 and frog behavior44; the use of evolutionary com-

putation methods, modeled after natural selection, to develop

individual robotic behaviors45; group behaviors46 and many

others. A bi-annual international conference, ‘Simulation of

Adaptive Behavior’, is devoted to the subject, and has been

convening since 1990; its proceedings provide a more rep-

resentative review of the various activities in this field47–50.

An example of biologically inspired navigation

Our own work has used behavior-based systems to model

navigation, map learning and path-finding mechanisms

loosely modeled on the rat’s hippocampal place cells4. In

this system, the behaviors served not only for general move-

ment and obstacle avoidance, but also for landmark detec-

tion and representation. As new landmarks were discovered,

behaviors became associated with them, and subsequently

became activated whenever the robot returned to the same

location, much like hippocampal place cells in rats51–54.

Unlike its neural counterpart, whose network topology has

no obvious mapping to the physical space it represents, our

synthetic navigation system maintained a clear isomorphic

mapping between the two. Consequently, the resulting robot-

generated maps were easily readable by humans interacting

with the robot. The landmark behaviors also served as pre-

dictors that allowed the robot to localize more precisely in

its environment; an active landmark used context to activate

its network neighbor in the robot’s direction of travel, thus

‘priming’ it and generating expectation. A lack of expectation

indicated novel locations or incorrect localization.

An example of ethologically inspired group behavior

Our more recent work has focused on using behavior-based

systems to model group behavior. Inspired by ethologically

common natural behaviors, we have used groups of up to 13

robots to demonstrate aggregation, dispersion, following,

flocking, foraging, task division, specialization and domi-

nance hierarchy formation (see Fig. 1). The robotic imple-

mentations resemble the equivalent behaviors found in

species ranging from ants, crabs and chickens to chimps and

humans55,56, but are not designed to be careful mechanistic

models. Instead, they serve as demonstrations of possible

mechanisms that push the state of the art in robotics, as well

as allowing us to postulate theories about their inspirations

from nature.

Current developments: biologically inspired imitation

Our most recent work with behavior-based systems extends

the control spectrum from planar mobile robots to articu-

lated, anthropomorphic bodies. Again inspired by certain

neuroscience theories of motor control57,58 (which demon-

strate evidence of a finite set of additive force fields control-

ling the movement repertoire of frogs and rats), we are 

developing behaviors for the control of three-dimensional

movement. As with our work on group behavior, we are

using ‘basis-behavior’ primitives as a substrate for a broader

repertoire of higher-level behaviors, obtained by sequencing

and combining the basis set59. Our current basis set includes

behaviors for movement to a destination point, posture

maintenance and oscillatory movements, all based on theories

of human motor control60–63, with the eventual goal of

modeling learning by imitation.

Acquiring new skills by imitation is a well-known robotics

problem. It is usually classified as learning by demonstration,
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Fig. 1 The nerd herd. A group of 13 flocking mobile robots. These robots also demon-

strated wandering, following, aggregation, dispersion, chain-formation and foraging.



where the robot uses vision sensors to interpret the behavior

of a human user and thus acquire a new task. Historically,

assembly tasks have been learned by demonstration, with-

out an effort to model precisely the observed behavior, but

focusing on achieving the demonstrated goals64–67. More re-

cently, imitation learning between two mobile robots has

been demonstrated68, as has skill learning between a human

demonstrator and an articulated robot arm with human

kinematics, such as learning to balance a pole69 and play

Kendama70. The latter was an instantiation of the bi-

directional theory of motor control71, another example of a

robotic implementation of a neuroscience model. Modeling

human skill acquisition, while a tremendously challenging

task, is gaining popularity in robotics. It has recently been

approached from a Piagetian perspective, using develop-

mental stages in order to simplify the complex learning

problem72–74. Computational modeling of motor control

and learning is an active research area outside the scope of

this review.

Inspired by data from neuroscience and psychophysics

that provide evidence for combined perceptual and motor

activation during movement observation and imagina-

tion75–78, we are developing a set of behaviors that not only

produce movement, but also facilitate its perception. These

behavior primitives simultaneously recognize and plan

movements, thus combining perception and generation.

Furthermore, the primitives facilitate prediction, in that

they represent complete movements and when presented

with an incomplete visual input, can complete it based on

their own model of the movement. Practically, the system

functions by continuously classifying the observed movements

into its known repertoire, thus enabling imitation.

This approach is an extension of our earlier hippocam-

pus-inspired navigation work, described above, in which

landmark behaviors primed and anticipated other land-

marks based on their local topology. Similarly, in the cur-

rent work, partial movement matches recognize and prime

complete behaviors. Inspired by developmental psychology

work providing evidence for infant prediction of goals im-

plied in observed incomplete and incorrect actions79, our

primitives infer movement goals by internally matching,

predicting and completing the observed movements. The

ultimate goal of this work is dual, in a manner typical of be-

havior-based work, namely to: (1) provide insight into the

animal/human imitation process, and (2) facilitate automated

programming of new tasks and skills in robotic systems.
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Outstanding questions

While major accomplishments have been made in the development of
behavior-based systems (see Ref. 80 for an in-depth review of the
foundations, goals and the state of the field in 1991), many interesting
and important research questions remain to be addressed. 
Among them are:
• What organizational principles will be needed in order to scale-up

behavior-based systems so that they are able to handle truly complex
problems, such as those involving multiple, very different tasks and
goals, akin to animal behavioral repertoires?

• How well will behavior-based systems scale-up to increasingly more
cognitive problems, such as those involving symbolic reasoning, including
natural language discourse?

• Can researchers in natural and artificial sciences overcome their stylistic,
terminological and methodological differences and collaborate more
closely and efficiently in order to utilize their complementary expertise
more efficiently?
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Spatial hemineglect refers to the defective ability of patients

with unilateral brain damage to explore the side of space

contralateral to the lesion (contralesional), and to report

stimuli presented in that portion of space. The ‘hemi’ prefix

denotes a main feature of the disorder, which distinguishes

spatial neglect from global deficits of spatial exploration and

perception. The patients’ performance is comparatively pre-

served in the side ipsilateral to the lesion (ipsilesional), or a

lateral gradient may be present. In the more widely used diag-

nostic tasks, such as line bisection (Fig. 1), target cancellation,

copying and drawing (Fig. 2), patients are free to move their

head and eyes. A defective performance, therefore, cannot be

attributed to primary sensory or motor deficits, which, in turn,

may occur in the absence of hemineglect1. These patients may

also show an ipsilesional displacement of the egocentric frames

of reference, such as the perceived mid-sagittal plane (Fig. 3).

In the last 30 years, a number of general interpretations

have been put forward, to account for the manifold mani-

festations of hemineglect, making use of constructs such as

‘representation’2, ‘attention’3, and ‘reference frames’4,5. (i)

Conscious representations of contralesional space may be more

or less completely lost6. (ii) Orientation of spatial attention

87
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The term ‘spatial hemineglect’ refers collectively to disorders of spatial cognition,

which concern specific sectors of space with reference to a given coordinate system.

Patients with cerebral lesions involving the posterior-inferior parietal and the premotor

cortex, most often in the right hemisphere, sometimes fail to explore the 

extra-personal and personal sectors of space contralateral to the side of the lesion, are

not aware of stimuli presented in these portions of space, or of contralateral body

parts and their disordered function. In addition to these negative signs patients may

also show positive pathological manifestations, such as avoidance or withdrawal from

the contralateral side of space, and delusional views concerning contralateral body

parts. The many varieties of this disorder can occur in dissociated forms, suggesting a

multifaceted organization of the internal representation of space, of spatial attention,

and of their neural correlates. Many manifestations of hemineglect are modulated in a

similar fashion by specific sensory stimulation that also affects visuo-motor processes

in normal subjects. This ongoing sensory modulation might update the internal

representations of space in a continuously changing environment, and contribute to the

formation, around the vertical orientation of gravity, of our subjective unitary

experience of space.
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