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Computational models of human collective behavior

offer promise in providing quantitative and empirically

verifiable accounts of how individual decisions lead to

the emergence of group-level organizations. Agent-

based models (ABMs) describe interactions among

individual agents and their environment, and provide a

process-oriented alternative to descriptive mathemat-

ical models. Recent ABMs provide compelling accounts

of group pattern formation, contagion and cooperation,

and can be used to predict, manipulate and improve

upon collective behavior. ABMs overcome an assump-

tion that underlies much of cognitive science – that the

individual is the crucial unit of cognition. The alternative

advocated here is that individuals participate in collec-

tive organizations that they might not understand or

even perceive, and that these organizations affect and

are affected by individual behavior.
Introduction

Cognitive scientists tend to focus on the behavior of single
individuals thinking and perceiving on their own.
However, interacting groups of people also create emer-
gent organizations at a higher level than the individual.
Interacting ants create colony architectures that no single
ant intends. Populations of neurons create structured
thought, permanent memories and adaptive responses
that no neuron can comprehend by itself. Similarly, people
create group-level behaviors that are beyond the ken of
any single person. The emergence of higher-level organ-
izations from the interactions of lower-level units is
surprising in the case of group behavior because we are
the lower-level units, and the higher-level organizations
typically emerge spontaneously, without our knowledge.
Social phenomena such as rumors, the emergence of a
standard currency, transport systems, the World Wide
Web, resource harvesting, crowds, and scientific establish-
ments arise because of individuals’ beliefs and goals, but
the eventual form that these phenomena take is rarely
dictated by any individual.

There is a growing realization across the social sciences
that one of the best ways to build useful theories of group
phenomena is to create working computational models of
social units (e.g. individuals, households, firms or nations)
and their interactions, and to observe the global struc-
tures that these interactions produce. In the past few
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years, the use of computational models of collective
behavior has grown tremendously in sociology [1],
economics [2], psychology [3,4], and anthropology [5].
This approach is relevant to cognitive science because it
integrates computational modeling and understanding of
human behavior. This relevance is timely because these
models provide balance to cognitive science’s bias to view
cognition as a property of an individual mind rather than
as resulting from interactions among people and their
environments [6].

We will focus on computational models called Agent-
Based Models (ABMs), which build social structures from
the ‘bottom-up’, by simulating individuals by virtual
agents, and creating emergent organizations out of the
operation of rules that govern interactions among agents
[7,8]. ABMs have several attractive features that sup-
plement traditional methods for exploring group behavior.
First, they are expressed with unambiguous mathematical
and computational formalisms so that once they have been
fully described, their predictions are clear, quantitative
and objective. Second, they provide true bridging expla-
nations that link two distinct levels of analysis: the
properties of individual agents (e.g. their attributes and
interactions), and the emergent group-level behavior.
When successful, agent-based models are particularly
satisfying models because they show how coherent, group-
level structures can spontaneously emerge without
leaders ordering the organization, and sometimes despite
leaders’ effort. Third, because the models are typically
either simple or informed by real-world data, they are
appropriately constrained and cannot fit any conceivable
pattern of data. The self-organization process itself exerts
strong constraints on the kinds of patterns likely to be
observed [9]. In this review of ABMs, we will characterize
the approach; describe crucial decisions that a modeler
must make; present case studies of ABMs from literatures
on organization, contagion and cooperation, and assess
the future opportunities and challenges for ABMs.
Characteristics of agent-based models

ABMs tend to possess four characteristics:
Computational description at the level of agents

ABMs consists of a large number of interacting agents,
operating within an environment. Each agent’s behavior
is governed by rules triggered by their local condition
rather than global information [10]. High-level summary
descriptions emerge from the unfolding agent interactions,
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but they are not explicitly programmed (see also Supple-
mentary data online).

Stigmergic interactions

Agents act on and are influenced by their local environ-
ment. Stigmergy is a form of indirect communication
between agents that is achieved by agents modifying their
environment and also responding to these modifications
[11], for example, ants following pheremone trails left by
other ants [12]. Analogous stigmeric effects are achieved
by ‘swarms’ of humans that make a terrain more
attractive to others by creating paths with their own
steps [13,14], book recommendations on Amazon.com
based upon similar readers’ buying habits, or robots that
create large-scale architectural structures even though
they cannot directly communicate, by reacting to and
building upon structures left by others [15].

Autonomy of agents

Each agent is capable of autonomous behavior, and
possesses individual, albeit frequently simplified, repre-
sentations of beliefs, goals and strategies [16]. Agents
typically do not calculate optimal or rational courses of
action, but rather use heuristics [17,18], reinforcement
learning [19], opportunistic adaptation [20], or cross-
generational evolution [21] to change their strategies.

Spatially distributed populations of agents

ABMs often consist only of agents and a 2D or 3D land-
scape of environmental ‘patches,’ both of which may have
several attributes [10]. The visuo-spatial and animated
nature of the resulting simulations makes the most of
people’s natural aptitude for visual pattern recognition.

Idealized and detailed models

Themost fundamental decision an ABM researchermakes
is how detailed their model will be. Many researchers
purposefully choose to create highly idealized models that
boil down a collective phenomenon to its functional
essence. Researchers pursuing idealized models are
typically motivated to describe domain-general mechan-
isms with a wide sphere of application. A good example of
this strategy is Robert Axelrod’s Culture Model [22]. The
goal of this model is to explain how beliefs or attitudes
converge or diverge in a population over time. Agents are
placed at fixed locations within a 2D grid, and initially
have random trait values on each of several features. The
likelihood of neighboring agents interacting with one
another is proportional to their similarity across all
features. When two agents interact, one of the trait values
of one of the agents is copied to the other agent, in a
process that simulates cultural imitation or social
influence. Over time, spatial clusters of like-minded
agents develop, although some diversity of opinion is
often maintained as dissimilar agents are unlikely to
interact even if they are neighbors (see Figure 1). This
simple model can explain (i) the spatial clustering of
opinions, (ii) bandwagon effects, and (iii) the spontaneous
division of a culture into sub-cultures.

The ‘similarity begets even more similarity’ dynamic
has applications to the spread of smoking in teenagers [23]
www.sciencedirect.com
and geospatial political patterns [24], to take just two
examples. The original Culture Model has given rise to
follow-up simulations showing how the Culture Model can
be extended to disseminating solutions to objective
problems rather than opinions [25], incorporating global
media rather than only neighbor-to-neighbor interactions
[26], and also analyzed to show rapid phase transitions
from disordered to ordered configurations of opinions [27].
The Culture Model may be too simplified to fully explain
any specific real-world pattern of opinion spread, but it
also formally captures an essential commonality of many
situations in which homogeneity within cliques co-exists
with striking heterogeneity across cliques.

Other ABMs are intimately tied to a specific domain
because they include a considerable amount of detail
derived from real world datasets and their goal is
answering a specific real-world question. One such
question is, ‘Why did the Anasazi people of southwestern
United States abandon their homeland around 1350 AD?’
To find the answer, research teams [28,29] have developed
ABMs that incorporate features grounded in historical
records: maize production levels, ground water reserves,
the 3D geography of the Anasazi’s Long House Valley
homeland, populations established from archeological
digs, and social trends regarding childbirth age, the
average age of children leaving home, and food consump-
tion needs, all based upon recent maize-growing societies
of Pueblo Indians descended from the Anasazi. Specific
runs from the eventual model [29] (see Figure 2) capture
aspects of the rise and fall of the Anasazi population for
more than a millennium period from AD 200–1300,
although the modeling would have been even more
impressive if it had been systematically compared to
alternative models.

The juxtaposition of these models allows us to critically
assess the costs and benefits of idealized and detailed
models. When successful in isolating a universal pattern,
idealized models have widespread application to many
real-world domains, and generate comprehensible expla-
natory accounts by focusing on only a few crucial causal
elements. Revealing idealized models have been formu-
lated for the diffusion of innovations [30], collective action
[31], the transmission of cultural elements over gener-
ations [32], the development of social conventions [33],
and language change [34,35]. The downsides of these
idealized models are that without extensive tailoring, they
might not map onto any actual case study, and they can
oversimplify to the point of leaving out crucial details [36].
By contrast, detailed models hold the promise of making
faithful predictions by being grounded in a case’s
particular data. There are ABMs that effectively incor-
porate considerable detail about university tenure
systems [37], electricity markets in England [38], and
hunting behavior in eastern Cameroon [39]. The downside
of detailed models is that they may be able to predict too
many possible outcomes if they have many parameters
that are insufficiently constrained. If the models become
too detailed, they may become as complex as the modeled
phenomenon itself, and hence serve as poor explanatory
aids. Given these considerations, it is best to choose the
level of model detail based on the (1) importance of
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Figure 1. Four simulations of Axelrod’s Culture Model [22]. Each agent is represented by a color that represents their entire set of features (e.g. hobby) and trait values

(e.g. chess, badminton, violin). Agents with identical colors have identical traits. (a) an initial, randomly generated population of agents, each possessing two traits (TZ2) on

each of two features (FZ2). (b) The same population after 4000 generations of interactions in which neighboring agents copy each others’ traits, with the probability of

interaction proportional to the agents’ similarity. The population is frozen because the red and green agents have no traits in common and hence will never interact. (c) After

4000 generations, a simulation starting with agents characterized by two trait values (TZ2) along 15 features (FZ15). Increasing the number of features increases the

probability of a homogeneous, like-minded population emerging. (d) When FZ3 and TZ15, the population quickly becomes frozen into small cliques that have no cross-

group interactions. Increasing the number of traits per feature decreases the size of cliques. (A web-based simulation of the Culture Model can be found at http://www-

personal.umich.edu/waxe/)
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predicting future behavior in a particular case study
(advocating detail), (2) importance of generalizing the
model’s behavior to new scenarios (advocating idealiz-
ation), (3) difficulty in assessing what elements of a case
study are crucial versus inconsequential in determining
the global behavior (advocating detail), and (4) desire for a
concise and comprehensible explanatory account (advo-
cating idealization).

ABMs and aggregate models

The ABMs described above all work by synthetically
constructing virtual versions of social phenomena from
low-level descriptions of the individual agents. This
approach is in contrast to descriptive models, which use
equations to describe aggregate level phenomena. To
create tractable descriptive equations it is often necessary
to make misleading assumptions that fail to capture
essential aspects of natural phenomena. One example is
the Mean Field Approximation, according to which all
individuals in a group are assumed to be in the same
location and experience the same local environment.
ABMs that incorporate space and local variability
frequently produce much more realistic models. For
www.sciencedirect.com
example, giving agents unique rather than aggregate
positions has proven invaluable in modeling the continued
stability of host-pathogen populations [40] the genetic
diversity in a population [41], and preserved pockets of
cooperation surrounded by defectors [42,43]. More gener-
ally, ABMs often provide more satisfying accounts than
purely descriptive approaches because they posit mechan-
isms by which aggregate qualities emerge.

Three core themes for agent-based models

Three prevalent themes for computational models of
collective behavior have been spatial and temporal
patterns, social contagion and cooperation. The human
agents in these models are represented by a wide range in
complexity, from particles to simple rule-following devices
to rich cognitive architectures.

Patterns and organization

Political economist Thomas Schelling is one of the
founders of computational models of collective behavior
in the social sciences, although his original experiments
on segregation were done by hand with dimes and pennies
[44]. Schelling created agents belonging to two classes
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Figure 2. Simulated (a) and historical (b) patterns of settlement for the Anasazi in the Long House Valley around AD 1125. Red circles indicate settlements, and the shade of

blue depicts the annual groundwater level for a location. Figure adapted by Rowan Johnston from [29] with permission from the author and publisher.
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(his dimes and pennies) that are reasonably tolerant of
diversity and only move when they find themselves in a
clear minority within their neighborhood, following a rule
like ‘If fewer than 30% of my neighbors belong to my class,
then I will move’. The agents still divide themselves into
sharply segregated groups after a short time, even though
no individual is motivated to live in such a highly
segregated world. The work of Schelling stimulated the
development of other models of sorting where micro-
motives lead to surprising macrobehavior, especially
within political economic processes [43,45].

Recently, several physicists have used simulation
models to study patterns that can emerge when many
humans interact, including human trails [13], traffic jams
[46], Mexican waves [47] and panic behavior of pedes-
trians [48]. In these models humans are represented as
particles with variation in speeds or position, and without
any requirement of cognition for the agents. In some
applications of financial markets, agents are explicitly
called ‘zero intelligence agents’ to show that full ration-
ality is not required to explain observed patterns in
economic statistics [49]. These simple reactive agent-
based simulation models have often provided surprisingly
apt accounts of empirically observed behavior.
Contagion

Social contagion is the spread of an entity or influence
between individuals in a population via interactions
between agents. Examples are the spreading of fads,
rumors and riots. Computational approaches to simulate
social contagion are based on thresholds models [50]. Each
agent has a threshold that, when exceeded, leads the
agent to adopt an activity. This threshold represents the
number of other agents in the population or local
neighborhood following that particular activity. Threshold
www.sciencedirect.com
models can be either deterministic [51] or stochastic [51].
Recent work in this area assumes that thresholds are
applied to the adoption rate within a local neighborhood,
rather than the whole population [52,53]. This has led to
the study of the impact of different social network
configurations on contagion [54,55].
Cooperation

A social dilemma is a situation where sub-optimal group
outcomes are achieved if all agents do the action that is
optimal for themselves. If self-centered rational agents do
not cooperate in social dilemmas why do we often find
cooperation in actual case studies? From an ABM
perspective, are the roots of cooperation in the model of
the individual, environmental conditions, or information
exchange between agents? Robert Axelrod pioneered the
use of computational models by showing that strategies
which lead to conditionally cooperative behavior are
effective in a tournament of repeated prisoner dilemma
games, giving better overall performance than uncoopera-
tive strategies even though in head-to-head competition
with non-cooperative strategies, the non-cooperative
strategies prevail [56]. This work led to a large literature
on extensions of the original models to include the
addition of space [57], indirect reciprocity [58], and more
complex strategies [59]. Most of this work uses simple
reactive agents. Some recent studies [60,61] focus on more
cognitively sophisticated agents with designs informed by
psychological theories, such as social comparison and
bounded rationality.
The future of computational models of collective

behavior

These early explorations have given us enough data to
make some prescriptions for the development of the next
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generation of ABMs. Broadly speaking, there are several
limitations with the current crop of ABM models from a
cognitive science perspective. We have four recommen-
dations for realizing the promise of ABMs:

Genuine predictiveness

If the first generation of ABMs can be characterized as
generally ‘post-dicting’ existing data, the next generation
should aspire to genuinely predicting the outcome of
future patterns of collective behavior.

Create a computational lingua franca

Early work with ABMs has been somewhat unsystematic,
with different researchers developing idiosyncratic
systems. One result has been the lack of replicability of
some ABM results. For example, early demonstrations of
the persistence of cooperation in a spatial Prisoner’s
Dilemma game [57] have been shown to hinge crucially on
the unstated assumption of agents that update synchro-
nously (e.g. all at the same time) rather than asynchro-
nously [62]. If ABM modelers all use the same simulation
environments, then interesting differences between
models can be missed [63], but establishing common
modeling methods will promote comparison between
models, improve replicability of results, and facilitate
researchers’ efforts to build upon prior work.

Greater synthesis between experiments and models

When ABMs have been compared to empirical data, they
have often been applied to case studies. A problem with
case studies is that they are not genuinely replicable
events, although role-playing games can sometimes
capture their major elements. Instead, we would recom-
mend validating ABMs against data obtained from
experiments. Ideally, laboratory experiments, field obser-
vations and computational models will not only be
integrated, but they will inform and improve one another
over several iterative cycles. Relatively simple laboratory
situations can be constructed to involve groups of people
interacting in idealized environments according to easily
stated game rules. Experiments can bridge the often-
noted [36] gap between computational models and group
behavior because the assumptions underlying the experi-
ments can be tailored to correspond almost exactly to
the assumptions of the computational models, and so the
models can be aptly applied without sacrificing the
concision of their explanatory accounts.

Greater sophistication of internal representations of

agents

The majority of current ABMs incorporate rather
impoverished representations of agents. Often, each
individual is represented by a single, albeit time-varying,
number (e.g. ‘Probability of cooperationZ0.8’) [3]. In more
complicated models, agents are represented by a vector of
independent values across a set of dimensions [22]. Actual
knowledge hasmuch richer structures than either of these
representations. For example, an evolutionary theorist
has concepts about natural selection, sexual reproduction
and genetic variability within a population, but these
concepts are not independent elements, but rather
www.sciencedirect.com
support and contextualize one another. Concepts gain
their meaning by their relations to other concepts [64].
Finding a good balance between incorporating these
influences and achieving constrained and elegant models
is an excellent challenge for ABMs. If each person is to be
modeled as a conceptual network, then a social group is to
be modeled as network of networks. From a modeling
perspective, the intellectual interest is in the study of how
these two levels of networks interact [65]. Communicating
is not simply transmitting individual concepts. Communi-
cation involves aligning the conceptual systems of agents
[33]. One implication of this alignment process is that as
concepts migrate across people, they will be systematically
altered to fit their owners’ conceptual network.

Opportunities

Despite these challenges to current ABMs, the future
looks bright for computational modeling of collective
behavior. We highlight three opportunities for future
modeling efforts.

Modeling large-scale collectives

Recently, there has been a phenomenal increase in
archival data on groups. Archival data available from
on-line news groups, blogs, social network services, chat
groups and topical communities can effectively be used to
explore naturally occurring coalition formation, idea
spread and group evolution [66].

Computational models as test-beds

Computational models of collective behavior can explore
in advance the possible consequences of public policy
changes. ABMs can be used to address ‘what if ’ scenarios
like ‘What is the consequence of the spread of HIV if
policies are implemented to affect stigmatization of HIV
infected persons?’ and ‘What would be the impact on world
demographics if parents can choose the sex of their child?’
As computational simulations become increasingly real-
istic, they will serve as increasingly useful test-beds for
exploring potential consequences of public policies that
have complex, non-linear dynamics.

Group control through indirect manipulation rather than

explicit rules

Perhaps the most common method of crowd control is
through direct orders or laws. If we wish to direct pedes-
trian traffic, for example, we may institute rules or
physical barriers that prohibit certain movements. The
cost of such prohibitions is decreased pedestrian morale
and the perception of excluded possibilities [67]. ABMs
suggest an alternative method of crowd control by
changing the structure of the environment such that
certain behaviors are facilitated and others are indirectly
hindered without instituting physical or abstract barriers.
Small changes in environments can often have a major
change on the flow because of the positive feedback
involved in individuals following other individuals. The
need for direct force is reduced by this approach. As we
gain confidence in our computational models, they will
provide useful advice not only for predicting but also for
controlling collective behavior (see also Box 1).
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Box 1. Questions for future research

† What are the mechanisms by which individuals within groups

learn to cooperate, compete, spontaneously specialize and divide

labor, form coalitions, distribute resources, propagate innovations,

create social networks and coordinate complex activities?

† How is the gulf between the real-world complexities of social

interaction and the relative simplicity of ABMs best bridged: by

creating simplified experimental environments that constrain

human interaction, by incorporating as much real-world data into

ABMs as possible, or by identifying crucial real-world elements and

selectively incorporating only these into ABMs?

† When can models inspired from physics be effectively used to

explain collective behavior, and when must the ‘humans-as-

particles’ idealization be enriched to incorporate people’s beliefs,

memories, plans, strategies and creativity?

† Can ABMs be successfully used to advise organizational design or

public policy, for example, by predicting the implications of new

voting or auction rules before they are publicly implemented?
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Conclusion

There are exciting opportunities for recent efforts in ABMs
to both benefit from, and inform, cognitive science. ABMs
can benefit from the advanced statistical tools and empirical
methods that cognitive scientists have developed for
assessing the quality of the fit between computational
models and the world. The emphases of cognitive science on
neural and cognitive constraints, replicability, comparison
between models, laboratory-controlled validation and rea-
listic cognitive processes of individual decision makers are
much needed insights for the ABM community. Conversely,
ABM methods advance cognitive science by providing a
generative, proof-by-construction approach to understand-
ing social behavior. Cognitive scientists often act as though
individuals are the sole loci of organized thought, but ABMs
remind us that organized behavior can be described at
multiple levels, and that our thoughtsbothdependuponand
determine the social structures that contain us as elements
within those structures.
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