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Much of perception, learning and high-level cognition

involves finding patterns in data. But there are always

infinitely many patterns compatible with any finite

amount of data. How does the cognitive system choose

‘sensible’ patterns? A long tradition in epistemology,

philosophy of science, and mathematical and compu-

tational theories of learning argues that patterns

‘should’ be chosen according to how simply they

explain the data. This article reviews research exploring

the idea that simplicity drives a wide range of cognitive

processes. We outline mathematical theory, compu-

tational results and empirical data that underpin this

viewpoint.

The cognitive apparatus finds patterns in the data that it
receives. Perception involves finding patterns in the
external world, from sensory input. Language acquisition
involves finding patterns in linguistic input, in order to
determine the structure of the language. High-level
cognition involves finding patterns in information, to
form categories and to infer causal relations.

Simplicity and the problem of induction

A fundamental puzzle is what we term the problem of
induction: infinitely many patterns are compatible with
any finite set of data (see Fig. 1). So, for example, an
infinity of curves pass through any finite set of points
(Fig. 1a); an infinity of symbol sequences are compatible
with any subsequence of symbols (Fig. 1b); infinitely many
grammars are compatible with any finite set of observed
sentences (Fig. 1c); and infinitely many perceptual
organizations can fit any specific visual input (Fig. 1d).
Some patterns are more cognitively natural than others.
But why? And are cognitively natural continuations
reliable in prediction?

These illustrations are quite abstract; but, importantly,
the same issue arises even if the input is arbitrarily rich:
although some specific patterns will be eliminated by such
enrichment, an infinite number of incompatible patterns
will always remain. What principle allows the cognitive
system to solve the problem of induction, and choose
appropriately from these infinite sets of possibilities?

Any such principle must meet two criteria: (1) it must
solve the problem of induction successfully; (2) it must
explain empirical data in cognition. We argue that the best

approach to (1) is to choose patterns that provide the
simplest explanation of the data; and that this approach
provides a powerful in-road to (2), in line with a long
tradition of psychological research.

The physicist and philosopher Mach [1] proposed the
following radical idea: that the cognitive system should
(criterion i), and does (criterion ii), prefer patterns that
provide simple descriptions of the data. Here, a description
must allow the data to be reconstructed, and the simplicity
of a description is measured by its length.

Mach’s proposal traces its roots back to Ockham’s razor;
that, in explanation, entities should not be multiplied
beyond necessity; and to Newton’s statement in the
Principia that we ‘admit no more causes of natural things
than are both true and sufficient to explain the appear-
ances’. But to make Mach’s proposal precise required a
theory of description complexity, which necessitated
awaiting further mathematical developments.

Quantifying simplicity

These mathematical developments came in two steps.
First, Shannon’s information theory justified log2(1/p) as a
code length for items with probability p. This is helpful for
providing code lengths of highly repetitive data patterns,
which can be assigned probabilities, such as low-level
perceptual properties, phonemes, words and so on [2].
Second, the critical generalization to algorithmic infor-
mation theory by Kolmogorov, Solomonoff and Chaitin
defined the complexity KðxÞ of any object, x, by the length of
the shortest program for x in any standard (universal)
computer programming language [3]. Surprisingly, it
turns out that the choice of programming language does
not matter, up to a constant additive factor. Moreover,
algorithmic information theory turns out to agree closely
with standard information theory, where the latter theory
applies at all. Crucially, the algorithmic definition of
simplicity applies to individual objects, whereas Shan-
non’s definition depends on associating probabilities with
objects.

Intuitively, then, we can regard the cognitive system’s
goal as compressing data: coding it in such a form that it
can be recovered by some computable process (the
mathematics allow that compression may be ‘lossy’ – i.e.
information may be thrown away by the cognitive system,
but we do not consider this here). Choices between
patterns are determined by the degree of compression
they provide – compression thus provides a measure of theCorresponding author: Nick Chater (n.chater@warwick.ac.uk).
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strength of evidence for a pattern. This viewpoint forges
potential connections between compression and pattern-
finding as computational projects. Note that the shortest
code for data also provides its least redundant represen-
tation; elimination of redundancy has been viewed as
central to pattern recognition both in humans [4,5] and
machines [6].

More importantly, formalizing simplicity provides a
candidate solution to the problem of induction, described
above. The infinity of patterns, all compatible with any set of
data, are not all equal: the cognitive system should prefer
that pattern that gives the shortest code for the data.

Regarding criterion (1) above, there are two beautiful
and important mathematical results that justify this
choice as a solution to the problem of induction [7]. One
is that, under quite general conditions, the shortest code
for the data are also the most probable (according to a
Bayesian analysis, using the so-called ‘universal prior’). A
second result is that the shortest code can be used for
prediction, with a high probability of ‘convergence’ on
largely correct predictions. Finally, a third powerful line of
justification for simplicity as an effective method of
induction is its widespread use in machine learning [8,9]
and statistics [10].

Simplicity as a cognitive principle

So, simplicity appears to go some way towards meeting
criterion (1): justifying why patterns should be chosen
according to simplicity. What about criterion (2)? Does
simplicity explain empirical data in cognitive science?
Table 1 describes a range of models of cognitive phenom-
ena, from low- and high-level visual perception, language
processing, similarity judgments, and mental processes in

explicit scientific inference. The breadth of domains in
which simplicity has proved to be a powerful organizing
principle in cognitive modelling is encouraging.

But how does the simplicity principle stand up to direct
empirical testing? This question is difficult to answer, for
two reasons:
(1) The representation problem: Although, in the limit,

and assuming the brain has universal Turing-
machine power and Kolmogorov complexity is
language invariant, many specific, non-asymptotic
empirical predictions from simplicity depend on
assumptions about mental representation, which
will affect what regularities can be detected. And
the mental representation of perceptual and linguistic
stimuli is highly contentious in cognitive science.

(2) The search problem: The cognitive system might
prefer the simplest interpretation that it can find, but
be unable to find a simple pattern of interest. Thus,
without creating a full-scale cognitive model, invol-
ving assumptions about representation and perhaps
also search, precise predictions from the simplicity
viewpoint cannot be obtained [11].

There are, however, several lines of evidence that
appear to be consonant with the simplicity viewpoint.
† A vast range of phenomena in perceptual organization,

including the Gestalt laws of closure, good continuation
and common fate, have been widely interpreted as
revealing a preference for simplicity. Box 1 discusses
some complex cases. The main theoretical alternative,
the Bayesian approach to visual perception [12] is
mathematically closely related to the simplicity
principle [13].

Fig. 1. There are always infinitely many patterns compatible with any finite body of data. The general problem is illustrated in (a), where there is an infinite number of con-

tinuous functions that can be made to pass through a set of data points. (b) The same issue arises for discrete data: the alternating black and white squares on the left illus-

trate a sequence of binary data. But, as the right-hand side indicates, the overall pattern of which this data are a part could continue in any way. The ‘middle’ continuation is

more cognitively natural. But why? (c) extends the point to grammar induction from a tiny ‘corpus’ of language data. Grammar 1 provides a linguistically reasonable anal-

ysis; Grammar 2 can produce any word sequence whatever and is clearly wildly overgeneral; Grammar 3 produces just the sentences in the corpus and nothing more.

Human learners favour reasonable analyses; but why? (d) The limitless possible hypotheses for elaborating partial perceptual input. Only completion ii. (black dashed line)

is seriously entertained, although i. and iii. are also compatible with the data.
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† Items with simple descriptions are typically easier to
detect in noise [2,11].

† The simplicity of a code for a stimulus quantifies the
amount of structure uncovered in that stimulus. The
more structure people can find in a stimulus, the easier
they find it to process and remember [14] and the less
random it appears [15].

† The speed of learning for Boolean concepts (e.g. A or B or
C; A and (B or C), etc) is closely predicted by the shortest
code length for those concepts [16].

† Similarity can be viewed as a function of the simplicity of

the distortion required to turn one representation into
the other. This viewpoint makes empirical predictions
that are not captured by existing spatial or feature-
based theories of similarity, but which have been
confirmed [17].

† Shepard’s Universal Law of Generalization [18], which
implies that items have a probability of confusion that is
a negative exponential function of the distance between
them in an internal ‘space’, can be derived from the
assumption that the psychological similarity between
two objects is a function of the complexity of the simplest

Box 1. Empirical data

Various qualitative aspects of the resolution of perceptual ambiguity

can be understood in terms of simplicity. In each of Fig. Ia–c, the left-

hand side schematically represents a visual input, and the right-hand

figure represents possible interpretations. Figure Ia illustrates that

preferred perceptual organizations typically have a relatively good

(although not necessarily perfect) fit with the data – here a somewhat

consonant triangle interpretation is favoured over a very unlikely square

interpretation. Patterns with good data-fit provide short codes for the

data, given the pattern, and are preferred by the simplicity principle.

Figure Ib illustrates the complementary preference for simple patterns:

the 2-D straight line projected image is thus preferred to a highly

irregular curve in the plane, even though, when viewed from one

specific angle, this can project a perfect 2-D line. Figure Ic reveals the

importance of precision in visual coding. The figure illustrates a

preference for interpreting a small ellipse as that ellipse in the plane

perpendicular to the viewer, rather than a larger, but geometrically

similar, ellipse at a highly skewed angle (another possible interpretation

is a circle, at a moderately skewed angle). Thus, data-fit, and, apparently,

complexity-of-pattern appear identical here. How can the simplicity

principle distinguish the two elliptical interpretations? The answer is

that the projection is much more stable for the perpendicular ellipse; for

the highly skewed ellipse the angle of orientation must be specified

more precisely, costing additional code length, to obtain an equally

good fit with the data. Finally, Fig. Id illustrates that simpler

interpretations are taken to have causal significance. The right-hand

2-D figure is perceived as a projection of a wire cube; the left-hand figure

is perceived as an irregular 2-D figure. Importantly, the joints of the wire

cube are perceived as rigid, whereas the joints of the irregular 3-D figure

are perceived as potentially flexible. The joints of the cube are perceived

as rigid presumably because, otherwise, this ‘simple’ arrangement

would be a remarkable coincidence (analogously, a sequence of 100

heads from a coin would be interpreted as indicating that the coin is

biased). Thus, causal structure can be inferred on the basis of simplicity.

Qualitative demonstrations of this kind have also been supplemented

by formal theories in psychology that seek to explain the interpretations

of perceptual figures as minimizing code length [a,b].

References
a Hochberg, J. and McAlister, E. (1953) A quantitative approach to

figure ‘goodness’. J. Exp. Psychol. 46, 361–364
b Van der Helm, P.A. and Leeuwenberg, P.A. (1996) Goodness of visual

regularities: a non-transformational approach. Psychol. Rev. 103,
429–456Fig. I. Interpretations of perceptual input. (See text for details).
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Table 1. Pattern-finding by simplicity: a sample of researcha

Cognitive

process

Data Codes Computer science/

mathematical approaches

Cognitive science applications

Low-level

perception

Sensoryinput/artificially

captured images

Filters in early vision Image compression [25] Early vision as compression [23,22]

High-level

perception

Sensory input/output

of early perceptual

Representations of higher

level structure

Pattern theory [26] Principle of economy [1]

Processing Perceptual organization [27,14]

Language

acquisition

Linguistic input Representations of

language structure

Text compression [28] Phonological [29] and morpholgical

analysis [30], segmentation [31,24] and

grammar induction [32,33]

High-level

cognition

High-level representations

of knowledge

Similarity, causal relations Information distance [34] Similarity as representational

distortion [18]

Gencompress [35] Categorization by compression [36]

Scientific

inference

Scientific data Theoretical knowledge Machine induction systems [9] Ockham, Newton Mach’s principle

of economy [1]

Foundations of statistics [10] Formal measures of simplicity [37,38]

aMany pattern-finding problems have been successfully approached by mathematicians and computer scientists using a simplicity principle. In many of these areas, the

simplicity principle has also been used as a starting point for modelling cognition.
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transformation between them, with minimal additional
assumptions [19].

† The physiology of early vision, including receptive-field
structures, and phenomena such as lateral inhibition,
seems adapted to maximize information compression
from visual input [20]. On the other hand, both
theoretical and empirical arguments suggest that, the
brain also uses highly redundant ‘sparse’ neural codes
for perceptual input [21,22].

Conclusion

Since Mach, a number of theorists have proposed the
sweeping idea that much of cognition concerns com-
pression [23], or the elimination of redundancy [24]. This
‘simplicity principle’ has been developed into a mathemat-
ically rigorous method for finding patterns in data [3], has
served as the foundation for a broad range of cognitive
models, and is consistent with a range of empirical data.
We suggest that simplicity is worth pursuing as a
potentially important unifying principle across many
areas of cognitive science.
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