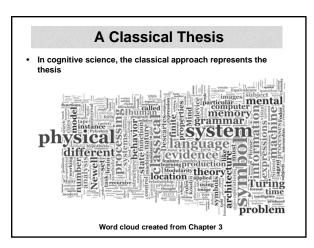
Psychology 354 The Cognitive Dialectic

Thesis And Antithesis In Cognitive Science Synthesis In Cognitive Science? Natural Computation And Synthesis Synthetic Psychology And A Cognitive Synthesis

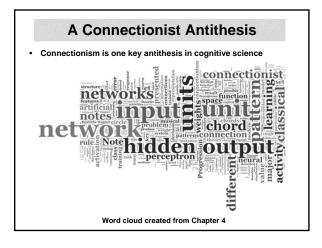
Dialectic

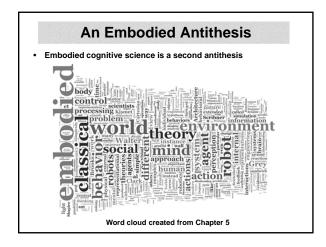
- Hegel's dialectic logic viewed ideas as evolving towards truth and unity in the following progression
 Develop a position (Thesis)
- Develop a position (mesis)
 Develop an antagonistic position (Antithesis)
- Develop a combination of thesis and antithesis that leads towards truth (Svnthesis)

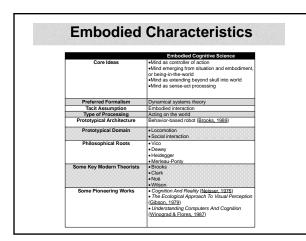
alls towards truin (Synthesis) "The bud disappears when the blossom breaks through, and we might say that the former is refuted by the latter; in the same way when the fruit comes, the blossom may be explained to be a false form of the plant's existence, for the fruit appears as its true nature in place of the blossom. The ceaseless activity of their own inherent nature makes these stages moments of an organic unity, where they not merely do not contradict one another, but where one is as necessary as the other; and constitutes thereby the life of the whole" (Hegel, preface to The Phenomenology of Spirit, 1807)

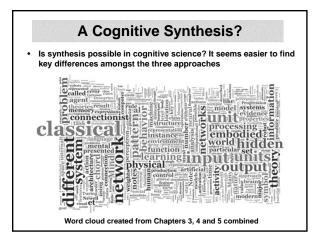


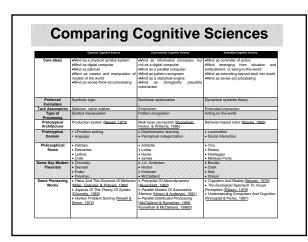
A Cognitive Dialectic

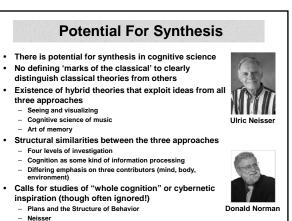

 "Dialectical progression depends upon having a critical tradition that allows current beliefs (theses) to be challenged by alternative, contrasting, and sometimes even radically divergent views (antitheses), which may then lead to the origination of new ideas based on the old (syntheses)" (Sternberg, 1999, p. 52)


- Robert Sternberg has argued that cognitivism can be characterized as such a dialectical progression
 - What is the thesis?
 - What are the antitheses?
 - Has there been a synthesis of these opposing ideas?




Classical Characteristics		
	Classical Cognitive Science	
Core Ideas	Mind as a physical symbol system Mind as digital computer Mind as planner Mind as planner Mind as creator and manipulator of models of the worl Mind as sense-think-act processing	
Preferred Formalism	Symbolic logic	
Tacit Assumption	Nativism, naïve realism	
Type of Processing	Symbol manipulation	
Prototypical Architecture	Production system (Newell, 1973)	
Prototypical Domain	Language Problem solving	
Philosophical Roots	Hobbes Descartes Leibniz Craik	
Some Key Modern Theorists	Chomsky Dennett Fodor Pylyshyn	
Some Pioneering Works	Plans And The Structure Of Behavior (<u>Miller, Galanter</u> Pribram, 1960) Aspects Of The Theory Of Syntax (<u>Chomsky, 1965</u>) Human Problem Solving (<u>Newell & Simon, 1972</u>)	




	Connectionist Cognitive Science
Core Ideas	 Mind as information processor, but not as a digit
	computer
	 Mind as a parallel computer
	 Mind as pattern recognizer
	 Mind as a statistical engine
	 Mind as biologically plausible mechanism
Preferred Formalism	Nonlinear optimization
Tacit Assumption	Empiricism
Type of Processing	Pattern recognition
Prototypical Architecture	Multi-layer perceptron (Rumelhart, Hinton, & Williams, 1986)
Prototypical Domain	Discrimination learning
	Perceptual categorization
Philosophical Roots	Aristotle
	Locke
	Hume
	James
Some Key Modern Theorists	J.A. Anderson
	Hinton
	Kohonen
	McClelland
Some Pioneering Works	Principles Of Neurodynamics (Rosenblatt, 1962)
	Parallel Models Of Associative Memory (Hinton &
	Anderson, 1981)
	 Parallel Distributed Processing (McClelland & Rumelhart,
	1986; Rumelhart & McClelland, 1986b)

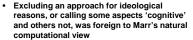
Resisting Synthesis

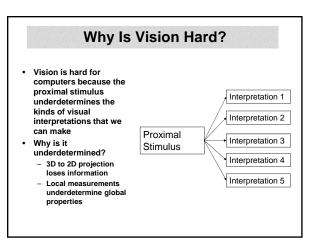
- Classical researchers acknowledge that they have neglected aspects of cognition that are critical to antitheses
- One reason for this, which prevents synthesis, is that the classical approach arose as a stark rebuttal to behaviorism, rejecting environment and rejecting associationism
 - "We were not out to 'reform' behaviorism, but to replace it" (Bruner, 1990, p. 3)
 - The cognitive revolution "was not one of finding new positives to support the important role of cognition, many of which were already long evident. Rather, the story is one of discovering an alternative logic by which to refute the seemingly incontestable reasoning that heretofore required science to ostracize mind and consciousness" (Sperry, 1993, p. 881)

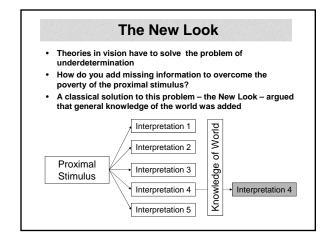
Jerome Brune

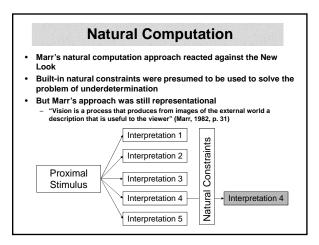
Breaking Down The Resistance How can the classical approach's resistance to synthesis be broken down?

- One approach may be to consider more carefully the theoretical perspectives that guided its pioneers:
 - "A man, viewed as a behaving system, is quite simple. The apparent complexity of his behavior over time is largely a reflection of the complexity of the environment in which he finds himself" (Simon, 1969, p. 25)
- Another approach may be to consider the advantages of abandoning ideology and of taking a more pragmatic approach to understanding human information processing

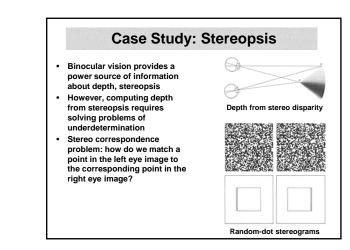

 Mar's natural computation approach


erbert Simon


Pragmatic Natural Computation

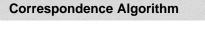

- Vision scientist David Marr's (1945-1980) work on natural computation in vision provides an excellent example of a synthesis of the different approaches to cognitive science
- This synthesis resulted from a pragmatic view of what is needed to make viable theories of vision

David Marr

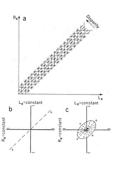


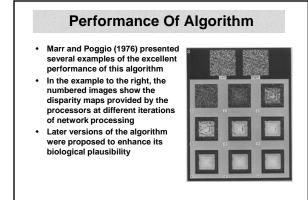
What Are Natural Constraints?

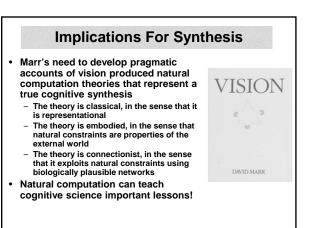
- A physical, not psychological, property that is almost always true of the world
- Can be used to generate unique, correct solutions to problems of underdetermination
- Constraints are exploited as follows:
- Choose the interpretation that is
 - consistent with the proximal stimulus
 consistent with the natural
 constraints being exploited
- The trick is to find the right natural constraints to make this approach work



Constraining Stereo Correspondence Matching points between stereo images is intrinsically underdetermined Marr and Poggio (1976) proposed three natural constraints to deal with this problem //// <u>Compatibility constraint:</u> only match elements that could only be asso with the same element Underdetermination of stereo correspondence Uniqueness constraint: only make one-totches between images Continuity constraint: assign matches such that disparity varies smoothly across the image Note that these constraints are all natural in the sense that they are argued to be the result of general


properties of the visual world


Tomaso Poggio


Whitn

- How do you use these natural constraints to compute stereo matches?
- For each possible match, place a processor
- Let connections amongst the processors enforce the natural constraints
- Signals between processors causes the network to relax into a low energy state that only turns on the processors for correct matches
- Note that this exploits the properties of artificial neural networks

Classical Analysis

- Classical cognitive science has been successful, and is comfortable with an analytic approach to mind
- **Reverse engineering** Collect data first Build model from data
- Cummins' functional analysis "Perhaps the most extensive use of the analytical strategy in science occurs in psychology, for a large part of the psychologist's job is to explain how the complex behavioral capacities of organisms are acquired and how they are exercised. Both goals are greatly facilitated by analysis of the capacities in question'

...

문제법

Robert Cummins

Embodied Synthesis

Synthetic methods seem to be the

- province of embodied cognitive science
- Forward engineering
- Build model first
- Collect data from model
- Braitenberg's synthetic psychology
- "We have to distinguish between the perspective of an observer looking at an agent and the perspective of the agent itself. In particular, descriptions of behaviour from an observer's perspective must not be taken as the internal mechanisms underlying the described behaviour" (Pfeiffer & Scheier, 1999)

Christian Scheier

Bricolage And Forward Engineering

Forward engineering is an alternative to classical analysis

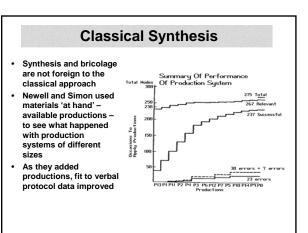
Put a system together from interesting components as bricoleurs must - and see what surprises emerge from simple theories or models

- "Only about 1 in 20 'gets it' -- that is, the idea of thinking abou psychological problems by inventing mechanisms for them and then trying to see what they can and cannot do" (Minsky, 1995, personal communication)
- "Analysis is more difficult than invention in the sense i which, generally, induction takes more time to perform than deduction: in induction one has to search for the way whereas in deduction one follows a straightforward path" (Braitenberg, 1984)

Forward engineering focuses on using materials 'at hand', and therefore is strongly related to a concept called bricolage

- The Power of Bricolage
- Levi-Strauss introduced the notion of bricolage, but did so in a way that disparaged it in comparison to "classical" thought
 - "The 'bricoleur' is adept at performing a large number of diverse tasks; but, unlike the engineer, he does not subordinate each of them to the availability of raw materials and tools conceived and procured for the purpose of the project. His universe of instruments is closed and the rules of Claude Levi-Straus his game are always to make do with 'whatever is at hand' (Lévi-Strauss, 1966)
- "The 'bricoleur' is still someone who works with his hands and
- uses devious means compared to those of a craftsman Modern researchers view bricolage as a powerful
- style of thinking "As the computer culture's center of gravity has shifted from programming to dealing with screen simulations, the intellectual values of bricolage have become far more important. [...] Playing with simulation encourages people to develop the skills of the more informal soft mastery because is so easy to run "What if"'s scenarios and tinker with the outcome" (Turkle, 1995, p. 52)

Sherry Turkle


. cause it

- The Great Pretender For one example of synthetic psychology as bricolage, consider the work of Dutch sculptor Theo Jansen The synthetic approach can be used to create multi-legged walkers without extant analysis Rather than analyzing what makes a gain "lifelike", Jansen explored, from the Theo Jansen ground up, configurations of tubing that resulted in amazingly lifelike, manylegged, walking sculptures I want to make everything out of plastic tubing. Just as nature as we know it consists largely of protein, I want to make my own life-forms from a single material" (Jansen, 2007,
 - p. 35).

Strandbeest

Synthetic Strandbeest

 Jansen's approach to Strandbeest construction reflects many of the fundamental properties of the synthetic approach, and its relation to bricolage

"Remarkably, chance is more likely to play a role when there are restrictions. Financial restrictions, for example, may mean that drawers in the workplace stay closed. This necessitates looking for other possibilities elsewhere. During this search new ideas automatically emerge, ideas that are often better than the ones you first had. Again, the restrictions of the plastic tubing oblige you to look for technical solutions that are less than obvious" (p. 37)

 Finding such restrictions may be why forward engineering is apt for a cognitive dialectic

Synthesis By Synthesis

- Dawson argues that the synthetic approach might induce a cognitive synthesis because it will lead to 'roadblocks' that can only be overcome by exploiting ideas from other schools of thought
- "The synthetic approach provides a route that takes a cognitive scientist to the limits of their theoretical perspective. This in turn will produce a theoretical tension that will likely only be resolved when core elements of alternative perspectives are seriously considered" (Dawson, 2011, Chap. 9)

Learning More About Synthesis

- If you are interested in learning more about synthetic approaches in cognitive science, then you might be interested in the following courses:
 - PSYCO 452 (Winter, 2012) "Minds and Machines" – Hands-on training with PDP networks
 - Connectionism as synthetic psychology
 PSYCO 457 (Fall, 2012) "Embodied
 - Cognitive Science"
 - Hands-on training with LEGO robots
 Behavior-based robotics and embodied cognitive science

