
 

Chapter 12: Performing More Logic With Perceptrons 
 

12.1 TWO-VALUED ALGEBRA AND PATTERN SPACES 
 
Chapter 11 provided a brief introduction to two-valued algebra, culminating in the presen-

tation of a functionally complete set of logic gates (AND, OR, INVERT).  A moment’s reflection, 
though, reveals that there must be many more logic gates that can be expressed for a two-valued 
algebra, and that this functionally complete set is merely a sample of a larger set of primitive logic 
gates. 

 
In the two-valued algebra, a logic gate is an operator that combines the values of two in-

put variables, and makes some resulting judgment.  The input values of two variables A and B 
can only be one of two values, true or false.  This means that, in the two-valued algebra, a logic 
gate can be only be presented one of four possible stimulus patterns: (~A, ~B), (A, ~B), (~A, B), 
or (A, B).  The response of the logic gate when presented one of these patterns can also only be 
true or false.  By looking at the pattern of responses that a logic gate makes to the set of four 
possible stimuli, one can determine what relationship between A and B is being computed.  For 
instance, if the logic gate responds “true” to the stimulus (A, B) and “false” to the other three 
stimuli, then it must be computing the AND relationship (or, in some of the historic notation seen 
in Chapter 11 (Boole, 1854), it must be computing AB). 

 
How many different logic gates can be defined for the two-valued algebra?  The answer 

to this question is the number of different patterns of responses that can be generated to the set 
of four stimuli.  Given that the output of a logic gate must be binary (i.e., true or false), and that 
there are four different stimulus patterns that must be responded to, the number of different pat-
terns of responses that can be generated is 24, or 16.  Therefore the two-valued algebra must 
consist of 16 different primitive logical operations.  The first of these operations is CONTRADIC-
TION, where the logic gate generates a “false” response to each of the four stimuli.  The last of 
these operations is TAUTOLOGY, where the logic gate generates a “true” response to each of 
the four stimuli.  The other 14 possible logic gates generate “false” to some of the stimuli, and 
“true” to the others.  The complete set of logic gates is provided in the table later in this section. 

 
For the purposes of the exercises in the current chapter, it will be convenient to think of 

these logical operators from a slightly different perspective.  Imagine a logic gate to be a percep-
tron with two input units (one for A and one for B) and one output unit (for computing the relation-
ship between A and B).  As was the case in Chapter 11, let an input activation value of 1 repre-
sent “true”, and a value of 0 represent “false”.  So, when this perceptron is being trained, it will be 
presented four different sets of numbers as inputs: (0, 0), (1, 0), (0, 1), and (1,1).  In Chapter 4 we 
saw that in some instances it is useful to represent sets of numbers as points. 

 
The figure below shows a graph in which each of these four patterns involved in the two-

valued algebra is represented as a point in a two-dimensional space, where the x-axis represents 
the value of A, and the y-axis represents the value of B.  We will call this the pattern space for the 
two-valued algebra.  In processing this pattern space to perform two-valued logic, a perceptron 
must learn to carve the space into different decision regions (Lippmann, 1989).  For example, one 
straight cut through this pattern space will separate it into two regions.  If the point representing a 
pattern falls in one region of a pattern space so divided, then the point will be classified as being 
“true” (i.e., the perceptron would turn its output unit on to this pattern).  If the point falls in the 
other region of the pattern space, then the point will be classified as being “false” (i.e., the percep-
tron would turn its output unit off to this pattern).  Clearly there must be 16 different ways in which 
the pattern space for two-valued algebra can be carved up to separate true points from false 
points.  The figure below illustrates three of these, for AND, OR, and INVERT.  In these exam-
ples, a straight line is drawn to represent the straight cut that separates the space into decision 



regions, false points are represented as outline squares, and true points are represented as solid 
squares. 

 
 

Given that there are 16 different primitive operations in the two-valued algebra, it is not 
surprising that in logical formalisms each operation is represented with its own notation.  The ta-
ble below represents the output responses of each of the 16 operations to each of the 4 possible 
input patterns; the first column in this table provides a traditional logical notation for these opera-
tions (Mendelson, 1970).  A second notational approach is to represent each operation with its 
own graphical symbol (a “jot”), which is occasionally seen in the literature (McCulloch, 1988).  For 
example, McCulloch would represent tautology as A※B.  I have developed my own system of 
jots for these 16 operations, where the appearance of each jot is modeled after the appearance of 
the pattern space as drawn above.  My system is provided in the second column of the table be-
low; to see how it works, one need only compare the jot for AND (b  ), OR (m ,) or INVERT (f  ) 
to the pattern space drawings in the figure above.  This notational system may be convenient to 
use when considering answers to the questions below.  The appendix to this chapter provides 
some information about obtaining the font set that I created for this jot notation. 

 
Inputs Pattern 1 Pattern 2 Pattern 3 Pattern 4 

A False False True True 
 

B False True False True 
Logic Gates 

(Standard Notation) 
Logic Gates 

(Jots Notation) 
 

Output 1 
 

Output 2 
 

Output 3 
 

Output 4 
Contradiction A a   B False False False False 

~A ∧  ~B A d   B True False False False 
~A ∧  B A e   B False True False False 

~A A f   B True True False False 
A ∧  ~B A c   B False False True False 

~B A h   B True False True False 
A ⊗  B A j   B False True True False 

~(A ∧  B) A n   B True True True False 
A ∧  B A b   B False False False True 

~(A ⊗  B) A g   B True False False True 
B A e   B False True False True 

A ⊃  B A l   B True True False True 
A A k   B False False True True 

B ⊃  A A o   B True False True True 
A ∨   B A m   B False True True True 

Tautology A p   B True True True True 
 

 
 



12.2 PERCEPTRONS AND LINEAR SEPARABILITY 
 

12.2.1 LINEAR SEPARABILITY 
 
If you examine the 16 jots in the table above, then you should see that they fall into dif-

ferent classes.  12 of the jots have a single line in them that separates outline squares from solid 
squares.  Two of the jots have no line in them, because all of the squares in the jot are of the 
same type.  However, we could easily add a single line to these jots (outside of the four points 
that the jot illustrates), so one could argue that these two jots are just special cases that belong to 
the same set as the 12 that we have already discussed.  The remaining two jots have two lines in 
them to separate the two types of squares, and because of this stand out as being different. 

 
Each of the jots used in the table above is based upon a plot of a pattern space, such as 

those that were illustrated in Section 12.1.  The differences between jots that we have just seen 
reflects an important property of the different ways in which the pattern space for two-valued al-
gebra can be carved into decision regions.  14 of these carved pattern spaces (including the pat-
tern spaces for CONTRADICTION and TAUTOLOGY) are said to be linearly separable.  In a 
linearly separable pattern space, all of the points that belong to one class can be separated from 
all of the points that belong to the other class by carving a single, straight cut through the pattern 
space.  If a pattern space is linearly nonseparable, then it is impossible to separate one set of 
points from the other using a single straight cut.  The two jots that stand out as being different 
from the other 14 are different because they represent two operations in the two-valued algebra 
that are linearly nonseparable. 

 
The exercise below is an extension of the exercises that were performed in Chapter 11.  

Its first goal is to explore the ability of perceptrons to learn more logical operations than just the 
four that were taught in Exercise 11.1.  As was the case in this previous exercise, you will train a 
perceptron with 2 input units to represent the four possible stimuli in the two-valued logic.  How-
ever, instead of only having 4 output units, you will be working with a perceptron that has 16 out-
put units.  Each output unit corresponds to one of the logical operations in the table above; output 
unit 1 corresponds to the first logical operation in the table, output unit 2 corresponds to the sec-
ond logical operation in the table, and so on.  The second goal of this exercise is to determine 
whether the difference between linearly separable and linearly nonseparable logical operations. 

 
12.2.2. PROCEDURE 

 
Using the Rosenblatt program, load the file “Boole16.net”.  This file represents the table 

above in a format that can be processed by the perceptron architecture.  On the setup page, 
choose the Delta rule, and keep the remaining settings at their default values, with the exception 
that the learning rate can be reduced to a value of 0.1: 

 
• End after a maximum number of training epochs 
• End when there are all “hits” and no “misses” 
• Randomize patterns each epoch 
• Train thresholds during learning 
• Default starts for weights 
• Default starts for thresholds 
• Maximum number of epochs = 1000 
• Number of epochs between printouts = 100 
• Learning rate = 0.1 
• Minimum level of squared error to define a “hit” = 0.01 

 
Press the “Start Training” button to begin training.  The network will not converge to a so-

lution in which the number of misses drops to 0.   Keep training the network until there are 60 hits 
and 4 misses.  Then, have the program build an Excel spreadsheet to summarize the results.  



This spreadsheet will contain all of the information required to answer the following questions.  If 
you are using a version of the Rosenblatt program that does not use Excel, then save the results 
of training to a file that you can examine later to answer the questions. 

 
12.2.3 EXERCISE 12.1 

 
1. Examine the responses of the network to the training set, as well as the errors 

computed for each output unit and each training pattern.  Your network should be 
making 4 misses.  What logical operations are causing the perceptron difficulty? 
(Note: if an output unit is generating three correct responses for a logical opera-
tion, but is generating an error for the fourth response, then we will say that this 
operation is posing a problem, simply because the output unit has failed to re-
spond correctly to all of the input patterns.) 

2. Focus on the errors being made by the perceptron in more detail.  For each output 
unit that is making at least one error, describe the output unit’s response to each 
of the four input patterns. 

3. For each output unit that is making at least one error, examine the threshold for 
that unit as well as the two connection weights that are feeding into that unit.  Use 
this information, in the context of your description of responses in question 2, to 
explain why the output unit is not responding correctly. (Remember – if you used 
the Delta rule, then the output units are using the step activation function.) 

4. On the basis of your answer to question 3, is it possible in principle for these in-
correct output units to eventually learn to respond correctly, or are they doomed to 
eternal failure?  If you think that they cannot learn to respond correctly, then ex-
plain this belief.  If you think that they can respond correctly, then explain why, and 
return to the program to try to validate this belief empirically.  (Hint: I don’t recom-
mend this latter approach!)   
 

12.3 APPENDIX CONCERNING THE DAWSONJOTS FONT 
 

The DawsonJots font was created with Macromedia Fontographer 4.1 for Windows.  Ver-
sions of the font files are available for download from the site that provides web support for this 
book. 
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