
User Manual For The Rumelhart

and RumelhartLite

 Multilayer Perceptron Programs

Michael R.W. Dawson and Vanessa Yaremchuk
February 26, 2003

Biological Computation Project
University of Alberta

Edmonton, Alberta, Canada
http://www.bcp.psych.ualberta.ca

http://www.bcp.psych.ualberta.ca/

Rumelhart Program User Manual Page 0

INTRODUCTION

 Rumelhart is a program written in Visual Basic 6.0 for the demonstration and exploration of multi-
layer perceptrons. It is designed for use on a computer based upon a Microsoft Windows operating sys-
tem. The program is part of a multimedia support package for a book by Michael R.W. Dawson, Minds
and Machines: Connectionism and Psychological Modeling, which is currently in production by Blackwell
Publishing. Michael Dawson and Vanessa Yaremchuk programmed the current version of Rumelhart. A
second program, RumelhartLite, is identical to Rumelhart with the exception that it does not include the
capability to save network results in Microsoft Excel workbooks. In this document, Rumelhart will be the
only program referred to, as the user interface for it is identical to the interface for RumelhartLite. Both
programs are distributed as freeware from the following website:

http://www.bcp.psych.ualberta.ca/~mike/Book2/

 The purpose of the multilayer perceptron program is to learn a set of stimulus/response associa-
tions, which are usually interpreted in the context of pattern classification. This means that network re-
sponses are usually interpreted as representing names or categories that are applied to stimuli. The cur-
rent program explores pattern classification with two main types of processing units: integration devices,
which use the typical logistic activation function, and value units, which use a Gaussian activation func-
tion. These two processing units can be combined to create four different network types. The first is all
integration devices. The second is all value units. The third uses value units as outputs, and integration
devices as hidden units. The last uses integration devices as outputs, and value units as hidden units.
Furthermore, the user always has the option of including direct connections from the input units to the
output units. These variations of the multilayer perceptron are described in more detail in Chapter 11 of
the book for which this multimedia site has been constructed.

INSTALLING THE PROGRAM

 Rumelhart is distributed from the above website as a .zip file. The following steps will result in the
program being installed on your computer:

1. Download the file Rumelhart.zip to your computer by going to the website, click on the program
icon, and save the file in any desired location on your computer.

2. Go to the saved Rumelhart.zip file on your computer, and unzip it with a program like WinZip. The
result will be three different objects: setup.exe, setup.lst and Rumelhart.cab.

3. Run the setup.exe program. This will call an Install program that will complete the installation of
the program on your computer, which will include the installation of an Examples folder with a few
sample training files.

TRAINING A MULTILAYER PERCEPTRON

Starting The Program

 The program can be started in two different ways. First, one can go into the directory in which the
program was installed and double-click on the file “Rumelhart.exe”. Second, one can go to the start but-
ton on the computer, choose programs, scroll to the program group BCPNet, and select the program Ru-
melhart.exe.

Loading A File To Train A Network

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

http://www.bcp.psych.ualberta.ca/~mike/Book2/

Rumelhart Program User Manual Page 1

 After the program is started,
the first form that appears is used to
select a file for training the distrib-
uted memory. This form is illus-
trated on the right. By using the left
mouse button and the drive selec-
tion tool located in the upper left of
the form, one can choose a com-
puter drive on which directories and
files are located. The available di-
rectories on the selected drive are
listed in the directory selection tool
that is immediately below the drive
selection tool. One opens a direc-
tory by double-clicking it with the left
mouse button. If the directory con-
tains any files that end with the ex-
tension .net, then these files will be
displayed in the file selection box
located in the upper middle of the
form. The properties of .net files are
described later in this manual.
These files have a particular format
that the Rumelhart program is de-
signed to read, and only files that end in this extension can be used to train the network.

 One chooses a .net file by double-clicking one of the file names that is displayed in the file selec-
tion box. When this is done, the program reads the desired file, some of the file’s properties are dis-
played, and another button appears on the form. In the figure on the right, the file “monk1.net” has been
selected (and read). On the right of the form its general properties are displayed, and the button permit-
ting the user to proceed to the next part of the program is displayed under the file selection box.

 In this example, if “monk1.net” has been selected, but is not really the file that is desired, one can
simply go back to the file selection tools and choose another file. When its file name is double-clicked, the
new file will be read in, and will replace the properties of the previous (undesired) file.

 Once the desired file has been selected, all that is required is to press the “Go To Next Page To
Set Training Parameters” button with a left-click of the mouse. If instead one desires to close the pro-
gram, then one can left-click the “Exit” button displayed on the bottom right of the form.

Setting The Training Parameters And Training The Network

 When the program reads in the .net file, this only determines how many processing units are con-
nected in the network, and defines the input and desired output patterns that are used in training. It is up
to the user to define what learning rule to use, and to specify the value of the parameters to control (and
stop) learning. The second form displayed by the program allows the user to choose these parameters.
The paragraphs below describe how this is done. If the reader wishes to learn more about what exactly is
accomplished by setting these values on this form, then he or she should look through Chapter 11 of
Minds And Machines: Connectionism And Psychological Modeling.

The second form consists of a number of different tools that can be used to quickly control the

kind of learning that will be carried out by the multilayer perceptron. The first tool is used to choose which
of four general architectures are going to be used to construct the multilayer perceptron. In essence, this
tool determines the type of processor that will be used in the output units (integration device or value unit)
as well as the type of processor that will be used in the hidden units (integration device or value unit).

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rumelhart Program User Manual Page 2

When a particular architecture is selected, default values for learning rates will also be set. The user can
change these later by the user if desired. If all integration devices are used, then the learning rule that will
be adopted is the gradient descent rule proposed by Rumelhart, Hinton, and Williams (1986). If all value
units are used, then the learning rule will be the modification of the gradient descent rule proposed by
Dawson and Schopflocher (1992). For the other two architectures, the learning rule that is applied will be
defined by the choice of output unit.

A second tool is used to choose a method for stopping training. In the first method, training stops
after a maximum number of epochs (this value is set by the user). In the second method, training stops
when there is a “hit” for every pattern and every output unit. This means that when each output is gener-
ating an acceptably accurate response for each pattern, training will stop. A left-click of the mouse is used
to select either of these methods; when a method has been selected, a check mark appears in the tool.
Importantly, the user can select both methods to be used in the same simulation. When this is done, then
the simulation will stop as soon as one of the two conditions is met. This is the default situation, and it is
recommended

 A third tool determines the order in which patterns will be trained. The program is epoch-based,
which means that each epoch or “sweep” of training involves presenting every pattern once to the percep-
tron. When a pattern is presented, output unit error is used to modify the weight values. One can have
the program present patterns in a random order each epoch, which is the recommended practice. How-
ever, if pattern order is being manipulated, you can turn this option off with a left-click of the mouse.
When this is done, the patterns will always be presented in the order in which they are listed in the .net file
that has been input.

 A fourth tool determines whether unit thresholds (i.e., the logistic function’s bias, or the value
unit’s mu) is to be trained. The default is to train this value, because this permits the output unit to “trans-
late” its “cut” through pattern space. However, in some situations it may be required to hold this value
constant, which can be done with a left-click of the mouse button.

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rumelhart Program User Manual Page 3

 A fifth tool is used to deter-
mine the starting values of the con-
nection weights, which are randomly
selected from a distribution. In the
default situation, the maximum
value of a weight is 0.1, the mini-
mum value is 0, and the sign option
is “both”, which means that negative
and positive weights are possible.
These defaults are displayed to the
right of the weight-start tool. With
these default values, weights will be
randomly selected from a rectangu-
lar distribution that ranges from –0.1
to +0.1. However, in some cases it
may be desirable to explore different
starting states. This can be accom-
plished by left-clicking the “User de-
fined starts for weights” option.
When this option is selected, a new
form appears, as is shown on the
right. This form is used to set the
minimum (absolute) value for a weight, the maximum (absolute) value for a weight, and the desired sign
for the weight (positive, negative, or either). When the desired settings have been selected, the “Use
These Settings” button will select them, and close the form. If it is decided that the default settings are
desired, then this can be accomplished by using the “Use Default Settings” button. Whatever settings
have been selected will be updated on the right of the settings form.

 A sixth tool is used to determine the starting values of the randomly selected thresholds for the
output units. The default is to assign every output unit a threshold of 0, regardless of which activation
function has been selected. If different randomly selected starts are desired, then a left-click of the “User
defined starts for thresholds” option will reveal a form similar to the form described above for manipulating
the starting parameters for the weights.

 A seventh tool allows the user to change the number of hidden units in the network, overriding the
number of hidden units prescribed by the .net file that was read in. If the user wishes to alter the number
of hidden units, then he or she can type in a new value in the text box, or manipulate the arrow tools with
the mouse to increase or decrease the value. This manipulation will not change the .net file that was in-
put. We use this tool to try and find the minimum number of hidden units required by a multilayer percep-
tron to solve a problem of interest.

 An eighth tool permits the user to include direct connections between input and output units. The
default situation does not include such connections, but they can be included by selecting the “Yes” value
on this tool. This will increase the power of the network, and when selected, you might also consider re-
ducing the number of hidden units used by the network.

 The four remaining tools on the form are used to set numerical values that control training.

 The first is a tool for specifying the maximum number of training epochs by left-clicking either ar-
row beside the value’s box. This will either increase or decrease the value of this parameter, depending
upon which arrow is selected. The maximum number of training epochs can also be set directly by left-
clicking the value’s box with the mouse, and typing in the desired value. Note that it if the user chooses a
value for this variable, then the “End After A Maximum Number Of Training Epochs” selection should also
be selected. If this latter option does not have a check mark beside it, then the program will ignore this
number when it is run! The default value (shown above) is 1000.

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rumelhart Program User Manual Page 4

 The second is a tool for specifying the number of training epochs between printouts of training
information. During training, the program will periodically print out information to tell the user how things
are progressing. This includes information about what epoch has been reached, what the network SSE is,
and the degree to which network SSE has changed since the last printout. The frequency of these print-
outs is controlled by the number displayed in this tool, which can be set in a fashion similar to that de-
scribed for the previous tool. The default value (displayed in the figure) is 100. If this value is selected,
then every 100 epochs the user will receive updates about network learning. The value selected for this
parameter also defines the spacing of the x-axis of the “SSE by Epochs” plot that can be created from a
form described later in this document.

 The third is a tool for specifying the learning rate used in the learning rule. More details on the
role of learning rate in the equations can be found in Chapter 10 and Chapter 11 of Minds And Machines:
Connectionism And Psychological Modeling. In setting the learning rule, two rules of thumb should be
followed. First, if the learning rate is 0, then no learning will be accomplished. Second, it would not be
typical to set learning rates greater than 1, although the user is free to explore the behavior of the network
when this is done. The learning rate can be set in two different ways. One is to left-click on the arrow of
the slider tool that is beside the value, hold the mouse button down, and use the mouse to slide the value
of the learning rate up or down. The other is to select the box in which the learning rate is displayed, and
to type in the desired learning rate.

 The fourth is a tool for specifying the minimum level of error (that is, SSE) to define a “hit”. The
default value for this setting is 0.01. With this setting, this means that if the desired value of an output unit
is 1.00, then if the unit generates activity of 0.9 or higher, a “hit” will have occurred. This is because 1.00
– 0.9 = 0.1, and the square of 0.1 is 0.01. Similarly, if the unit generates activity of 0.1 or smaller for a
desired output of 0.00, then a “hit” will have occurred. If a more conservative definition of “hit” is desired,
then this tool should be used to make the minimum SSE value smaller. If a more liberal definition is re-
quired, then this value should be made larger. The smaller the value, the longer it will take learning to
occur. However, if this value is too large, learning will end quickly, but the network’s responses to stimuli
will be less accurate.

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rumelhart Program User Manual Page 5

 Once these tools have been used to select the desired training parameters, associations (memo-
ries) can be stored in the network by pressing the “Start Training” button with a left-click of the mouse.
When this is done, new boxes appear on the form to show the user how training is proceeding (see the
figure above). When training stops, two new buttons appear on the form. By pressing the “Continue
Training” button, more training occurs using the settings that have already been selected on this form. By
pressing the “Test Recall” button, the user moves to a new form that can be used to explore the perform-
ance of the trained network. The details of this form are described below. Of course, pressing the “Exit”
button terminates the program. Note that as training proceeds, information about the number of sweeps,
the total network SSE, and the number of hits and misses is displayed. In the preceding figure, training
stopped after 105 epochs because there were 432 hits and 0 misses on the training patterns for the
monk1 problem.

TESTING WHAT THE NETWORK HAS LEARNED

 Once training has been completed, the perceptron has learned to classify a set of input patterns.
With the press of the “Test Recall” button of the form that has just been described, the program presents a
number of options for examining the ability of the network to retrieve the information that it has stored.
Some of these options involve the online examination of network responses, as well as the plotting of
learning dynamics. Other options permit the user to save properties of the network in files that can be
examined later. One of these file options enables the user to easily manipulate network data, or to easily
move the data into another program (such as a statistical analysis tool) for more detailed analysis (e.g.,
factor analytic analysis of final connection weights).

 The “Test Recall” causes
the program to present a form to the
user that permits him or her to do
two general types of activities. The
first is the study/saving of network
properties, which is described in
more detail below. The second is
the ability to return to previous
forms to either continue network
training on the same problem, or to
read in a new problem for training
and study. For either of these two
classes of activity, the user selects
the specific activity to perform from
either list that is illustrated in the
figure on the right. Double-clicking
the list item with the left mouse but-
ton results in the activity being car-
ried out. The sections that follow
first describe the different activities
that are possible by selecting any
one of the four actions laid out in
the control box on the upper part of
the form. Later sections describe the result of double-clicking any one of the three actions made available
in the control box on the lower part of the form. Again, an “Exit Program” is also provided to allow the user
to exit the program from this form.

Testing Responses To Individual Patterns

 After the network has learned some classifications, it may be of interest to the user to examine the
particular responses of the network to individual cue patterns in the training set. For instance, in cases

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rumelhart Program User Manual Page 6

where the network is not performing perfectly, it could be that it is responding correctly to some cues, but
not to others. By double-clicking on the list item “Probe Network Responses To Selected Patterns”, the
user causes the program to provide a form that allows the network to be tested one cue pattern at a time.

 The form that permits this is
depicted on the right. The form
provides a large window in which
network behavior is printed. When
the form is initially presented, this
large window is blank. Left-button
mouse clicks on the arrow controls
at the top of the form are used to
select the number of the pattern to
be presented to the network. When
the desired pattern number has
been selected, the “Ok” button is
pressed. The cue pattern is then
presented to the network, and the
network’s response is displayed.
The display provides details about
the cue pattern, the actual network
response, the desired network re-
sponse, and the error of the net-
work. For instance, in the illustra-
tion, Pattern 102 of the monk1 prob-
lem has just been presented to the
network.

 More than one pattern can be tested in this way. The new pattern information is always displayed
on top of previous pattern information. One can use the two scroll bars on the window to examine all of
the information that has been requested. At any point in time, one can send this information to the sys-
tem’s default printer by pressing the button for printing. Also, one can erase the window by pressing the
button for clearing the display. When
the “Close Form” button is pressed,
this form closes, and the user is back
to the “Test Recall” list options.

Plotting Learning Dynam-
ics

 A comparison of the three
learning rules for the perceptron might
require examining how network error
changes as a function of epochs of
training. If the user chooses the “Plot
SSE By Sweeps” option from the list
in the network testing form, then the
program automatically plots this in-
formation using a bar chart. One can
import this chart directly into a word
processing document by simultane-
ously pressing the “Alt” and “Print
Screen” keys on the keyboard (which
copies the active window into the clip-
board), going to the document, and

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rumelhart Program User Manual Page 7

pasting the clipboard into the document. One can print this chart on the default printer by left-clicking the
mouse over the “Print The Graph” button. A left-click of the “Exit This Page” button closes the graph, and
returns the user to the page that provides the options for testing network performance.

 With respect to the graph produced in this form, the SSE axis is computed automatically, and the
sampling of the bars across the Sweeps axis is determined by the choice of epochs between printouts
made by the user on the program’s second form. If the graph doesn’t look quite right, then the user might
consider re-running the simulation with a different choice for epochs between printouts. If a different kind
of graph is desired, then the user might wish to save the network data to file. The data used to create this
graph can be saved when this is done, and imported into a different software package that can be used to
create graphs of different appearance.

 In the example on the right, this particular graph is not interesting, because the network con-
verged so quickly. In a case like this, if one were interested in the dynamics of learning, then one would
re-train the network after setting the number of epochs between printouts to a smaller value.

Saving Results In A Text File

 One of the options for storing in-
formation about network performance is to
save network results as a text file. The
form that permits this to be done, illus-
trated on the right, is accessed by choos-
ing the list item “Save Summary As A Text
File” from the “Test Network” page.

 There are two sets of controls on
this form. The first is a set of drive, direc-
tory, and file control boxes that are very
similar to those found on the very first form
seen when the program starts to run. One
uses the drive and directory controls to
navigate to a folder in which network data
is to be saved. If it is necessary to create
a new folder, a left-click of the mouse on
the “Create A New Directory” button cre-
ates a dialog that permits the new direc-
tory to be named and created. Once the
desired directory has been opened, the
existing text files (.txt) in it are displayed.
This is because the network data will be saved in such a file. One can overwrite an existing file by double-
clicking it with the left mouse button. If a new file needs to be created, the dialog for doing so is accessed
by a left-click of the mouse on the “Create A New Filename” button.

 After choosing the location in which information is to be saved, the check boxes on the right of the
form are set to determine what kinds of information will be saved. Appendix 1 provides an example of the
kind of information that is saved in a file if all of the check boxes have been selected. If a check box is not
selected, then the corresponding information is simply not written to the file. To save the file, after the de-
sired check boxes have been selected, the user left-clicks the “Save The File” button with the mouse. The
form remains open after this is done, because in some instances the user might wish to save different
versions of the network information in different locations. This form is closed by a left-mouse click on the
“Close Button”, which returns the user to the “Test Network” form.

Saving Results In An Excel Workbook

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rumelhart Program User Manual Page 8

 A second method for saving network performance is to save it in a structured Microsoft Excel
workbook. This option is only available in the Rumelhart program, and has been removed from Rumelhar-
tLite. It should obviously only be selected by users who also have Microsoft Excel installed on their com-
puter. It is selected by a double-click of the “Create A Summary In Excel” list item that is offered in the
“Test Network” form.

 When this item is selected, a patience-requesting message is displayed on the “Test Network”
form, and a number of different programming steps are taken to build an Excel Worksheet. When this is
completed, the Worksheet is displayed as its own window, which will open on the user’s computer in front
of any of the Rumelhart program’s windows. If the worksheet has been created successfully, then the
user should see something similar to the screen shot that is presented below.

 All of the possible information that
could be saved in the text version of a saved
network is saved on this spreadsheet. Each
different class of information is saved on its
own worksheet in this Excel workbook. One
can view different elements of this information
by using the mouse to select the desired work-
sheet’s tab on the bottom of the worksheet.
The worksheet opens (as illustrated on the left)
with the “General Information” tab selected.

When this workbook is open, it is run-
ning in Excel as a standalone program that is
separate from the Rumelhart software. One
can select different tabs in the worksheet to
examine network properties. For example, in
the figure below, the “Hidden Unit Weights” tab
has been selected. After examining the work-
sheet, the user might wish to save it to disk.

This is done by using the Save File utilities from Excel.

 One problem with having this information being displayed with a com-
pletely separate program is that it begins to use up memory resources on the
computer that cannot be directly controlled by either program. For instance, it
is possible to leave this workbook open, and to return to the Rumelhart pro-
gram. This practice is not recommended. Instead, potential system crashes
are likely to be avoided by closing the Excel workbook before returning to Ru-
melhart. When Rumelhart is returned to, the “Test Network” form will still be
displayed.

If saving Excel files from Rumelhart causes system crashes, it is likely
because of memory resource conflicts. The Excel options were built into Ru-
melhart because they provide a convenient format for working with network
data after training has been accomplished. For instance, many of the results
that are provided in Chapters 11 and 12 of Minds And Machines: Connection-
ism And Psychological Modeling were created by selecting a table from an Ex-
cel worksheet, copying it, and pasting it directly into a Microsoft Word docu-
ment. The Excel data can also be easily copied and pasted into statistical packages like Systat. How-
ever, the Excel capability is not required for the distributed associative memory software to be used pro-
ductively. If Excel problems are encountered frequently on your computer, our recommendation is to use
RumelhartLite instead, and save network performance as text files only.

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rumelhart Program User Manual Page 9

Inspecting Jittered Density Plots

 When value units are used, one important characteristic they have is the banding of the jittered
density plot of their hidden units. What this banding is, and its importance to network interpretation, is dis-
cussed in Minds And Machines: Connectionism And Psychological Modeling. The Rumelhart program
comes with a tool that lets the user quickly inspect the jittered density plots for each hidden unit, to deter-
mine whether banding exists. This might be an important consideration in deciding whether to save the
results of a network for later analysis. You can access this tool choosing the list item “Plot Jittered Density
Plots Of Hidden Units” from the “Test Network” page.

 When this list item is
selected, a mostly blank form
is created. In the top right of
this form is a number tool and
an “OK” button. Use the
number tool to select a hidden
unit. When the “OK” button is
pressed, the form is filled with
a jittered density plot. This is
illustrated on the right, where
the plot for Hidden Unit 2 of
the monk1 network has been
created. This particular ex-
ample indicates that several
different bands have ap-
peared in this unit.

 In some instances,
the bands may be faint, be-
cause there is a small number
of patterns in the training set.
To artificially deal with this
problem, one can press the
“Artificially Darken The Bands
Using Repeated Plotting” but-
ton. This causes the density
plot to be plotted again, with
different random values, on
the same plot. In the example
on the right the bands on the
first plot have been darkened
by pressing this button just
once.

 In using this tool, it
should be cautioned that the
bands that appear due to “arti-
ficial darkening” are not real.
This tool is just a visualization
aid. It is possible that this tool
might suggest that some
bands exist when they are not actually present. Whenever banding analysis is done on saved network
data, it will only be performed on the actual network data – not on “artificially darkened” data.

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rumelhart Program User Manual Page 10

Leaving The “Test Network” Form

 Once the user has finished examining the performance of a trained network, the list at the bottom
of the “Test Network” form provides different options for network training. If the “Reset Weights And Train
Again” option is selected, then all of the connection weights are randomized, the network is readied to be
trained on the same problem that it has just learned, and the user is returned to the form that permits
training parameters to be selected. If the “Keep Current Weights And Train Again” option is selected, the
network is trained on the same problem, but the weights created from the learning that was just completed
are not erased. The user is returned to the form that permits training parameters to be selected. They
must be set again if settings other than the default settings are desired. If the “Train A New Network On A
New Problem” option is selected, then the user is returned to the program’s first form to be able to read in
a new problem for training. If the “Train The Current Network On A New Problem” is selected, then the
user can read in a new problem, but it will be presented to the network with the weights preserved from
the previous training. This option can be used to study the effect of pretraining on learning a new prob-
lem, generalization of learning, or savings in learning. If none of these options are desired, then you can
close the program by pressing the “Exit Program” button with a left-mouse click.

CREATING NEW TRAINING FILES

 When Rumelhart is installed on your computer, a few example files for training the distributed as-
sociative memory are also included. Several of these files were used in the examples that are described
in Chapter 11 of Minds And Machines: Connectionism And Psychological Modeling. However, it is quite
likely that the user might wish to study the performance of the distributed associative memory on different
problems. In this section of the manual, we describe the general properties of the .net files that are used
to train a network. We then describe the steps that the user can take to define their own training sets for
further study.

General Structure Of A .net File

 In Appendix 1 of this manual, the reader will find a copy of a network’s performance when trained
on the file monk1.net with a network of value units that uses two hidden units. The first step of training
this network is to read in the file monk1.net, which contains three types of information: General network
properties, the set of input patterns, and the set of desired patterns. Because of its size, only some of this
file is given below:
1
2
12
432
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0
.
.(this continues for all 432 input patterns)
.
1 0 1 0 0 1 1 0 1 1 0 1
1
1
1
.
.(this continues for all 432 desired outputs)
.
1

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rumelhart Program User Manual Page 11

 This information is structured into three different categories, which are highlighted in different col-
ors to aid description. The first category (highlighted in yellow) consists of the first four rows in the file.
These rows define the number of processing units in the network, and the number of patterns in the train-
ing set. The first number indicates the number of output units (1 in this case). The second number indi-
cates the number of hidden units (2 in this case). The third number provides the number of input units
(12). The fourth number provides the number of training patterns (432).

The second category of information (blue) in the file is the set of input patterns. Each input pat-
tern is given its own row. Input pattern 1 occupies the first row, input pattern 2 occupies the second row,
and so on. Because the initial information in the file indicates that there are 432 different training patterns
in this training set, there are 432 different rows in this section of the file. For the preservation of space,
not all are shown. Each row provides the value that will be input, as a cue, to each of the 12 input units
used in this network. The first value in the row will be given to input unit 1, the second will be given to in-
put unit 2, and so on. Each of these values is separated from the others by a “space” character.

 The third category of information (gray) in the file is the set of output patterns. The first row of this
part of the file represents the first output pattern, which is to be associated with the first input pattern from
the previous information category. These second row represents the second output pattern, which is to
be associated with the second input pattern, and so on. The format of each output pattern row is the
same as that used for each input pattern row.

 The reason that the input patterns and the output patterns are given different sections of the file,
instead of appearing on the same row, is a historical convention. It does permit fairly easy modification of
training sets, however. For instance, the same input patterns can be paired with a completely new set of
output patterns by saving a copy of a .net file, opening it with an editor, selecting the existing output pat-
terns, and pasting in a new set of desired outputs.

Creating Your Own .net File

 All that one needs to do to create their own training set for the Rumelhart program is to create a
text file that has the same general characteristics as those that were just described. The steps for doing
this are:

1. Decide on a set of input pattern/output pattern pairs of interest
2. Open a wordprocessor (e.g., the Microsoft Notepad program) to create the file
3. On separate lines, enter the number of output units, hidden units, input units, and training patterns
4. On separate rows, enter each input pattern. Remember to separate each value with a space
5. On separate rows, enter each output pattern. Remember to separate each value with a space
6. Save the file as a text file
7. In Windows, rename the file to end with the extension .net instead of the extension .txt. Remem-

ber that the Rumelhart program will only read in files that have the .net extension.
8. Use the Rumelhart program to explore how a multilayer perceptron copes with the training set that

you have created.

APPENDIX 1: MONK1.TXT

The information provided below is a copy of the file monk1.txt. This provides an example of the
information that is saved in a text file when some of the checkboxes in the “Save File” form have been
selected.

Multilayer Perceptron Training Program
===

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rumelhart Program User Manual Page 12

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Results Of Training With File: monk1.net
Date Of Analysis: 26/02/2003
Time Of Analysis: 11:35:21 AM
===
 Network Type: Value
Learning rate: 0.01
Training completed after 105 epochs
Settings For Initial Random Weights:
Maximum value: 0.1
Minimum value: 0
 Sign value: Both

Settings For Initial Random Biases:
Maximum value: 0
Minimum value: 0
 Sign value: Both

Pattern randomization during an epoch: True
===

Connection weights from hidden units (rows) to output units (columns):

 Out 1
OutType Value
Bias +1.55
HID 1 +1.59
HID 2 +1.48

Connection weights from input units (rows) to hidden units (columns):

 Hid 1 Hid 2
HidType Value Value
Bias -.04 +1.04
INP 1 +.25 +.32
INP 2 +.55 +.70
INP 3 -.25 -.32
INP 4 +.29 +.38
INP 5 +.09 -.08
INP 6 +.00 +.00
INP 7 +.00 +.00
INP 8 +.00 +.00
INP 9 -.33 +.35
INP 10 -.33 +.36
INP 11 +.03 -.03
INP 12 +.00 +.00
===

	Michael R.W. Dawson and Vanessa Yaremchuk
	February 26, 2003
	Biological Computation Project
	University of Alberta
	Edmonton, Alberta, Canada
	http://www.bcp.psych.ualberta.ca
	INTRODUCTION
	INSTALLING THE PROGRAM
	TRAINING A MULTILAYER PERCEPTRON
	Starting The Program
	Loading A File To Train A Network
	Setting The Training Parameters And Training The Network

	TESTING WHAT THE NETWORK HAS LEARNED
	Testing Responses To Individual Patterns
	Plotting Learning Dynamics
	Saving Results In A Text File
	Saving Results In An Excel Workbook
	Inspecting Jittered Density Plots
	Leaving The “Test Network” Form

	CREATING NEW TRAINING FILES
	General Structure Of A .net File
	Creating Your Own .net File

	APPENDIX 1: MONK1.TXT

