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Chapter 9:  
Building Associations 

 
 The first part of this book developed an argument that synthetic psychology was one ap-
proach that could be fruitfully explored in the study of mind.  In very general terms, the aim of syn-
thetic psychology is to build mental phenomena from the bottom up.  A synthetic psychologist 
could proceed by proposing some basic “building blocks” to be used, and then by seeing what 
kinds of interesting and surprising phenomena could be created when these basic components 
are combined.  Some researchers have argued that the synthetic approach promises to provide 
theories of mental phenomena that are simpler than those that can be produced by applying more 
traditional analytic methodologies. 
 
 The purpose of the current chapter is to begin our exploration of synthetic psychology by 
examining a proposal for a set of “building blocks” that originated over 2,000 years ago, but which 
still plays an important role in modern research in psychology, cognitive science, and the philoso-
phy of mind.  This architecture is an instantiation of the set of principles that define what has 
come to be known as association psychology (Warren, 1921), or simply associationism. 
 
 The main objective of this chapter is to propose an associationist architecture, to create 
computer simulations from these components, and to use these simulations to explore some of 
the advantages and disadvantages of associationism.  This will provide us with some “hands on” 
experience with synthetic psychology.  Later chapters will use more advanced connectionist net-
works to explore more sophisticated issues.  We will see that these more advanced networks are 
easily thought of as refinements of some of the connectionist ideas that are introduced here, so 
this chapter will also provide a foundation upon which later simulations are going to be con-
structed. 
 
 This chapter proceeds as follows.  First, it presents a brief historical overview of associa-
tionism.  This is culminates in an account of William James’ theory of association, which is used 
to motivate a more modern account of associative mechanisms.  Second, it introduces this mod-
ern account by describing the properties of a particular connectionist network, called a distributed 
associative memory.  This account defines the properties of processing units, modifiable connec-
tions, and the general operations used to train the network and to retrieve associations that have 
been stored in it.  Third, the chapter describes a particular learning rule for this type of connec-
tionist network, the Hebb rule.  Mathematical analyses and the results of computer simulations 
are used to show the advantages and disadvantages of this learning rule.  Fourth, a second train-
ing procedure, the delta rule, is defined in an attempt to overcome some of the problems that 
were uncovered with Hebb-style learning.  The chapter ends with some brief reflections about 
how one might use a computer simulation of a distributed associative memory to explore some 
issues that have arisen in the modern study of association and learning. 
 

9.1 From Associationism To Connectionism 
 
 In 1921, Howard Warren published A history of the association psychology, which traced 
associationism from Aristotle’s reflections on memory (B.C. 382 – 322) to the psychological theo-
ries proposed by Herbert Spencer and George Henry Lewes in the 1870s.   As far as Warren was 
concerned, association psychology in its most focused form ended at this time: “The association 
psychology culminated with Bain, Spencer, and Lewes.  The evolution doctrine of the two last 
writers affords a wider scope to the play of association; but at the same time it opens the door to 
other factors, which have tended to lessen the importance of association in the eyes of the em-
pirical investigator” (Warren, 1921, p. 16).  Accordingly, Warren organized his history by consider-
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ing four different periods of thought that ended with the work of a select group of 19th century 
thinkers.  
 

In this section of the chapter, I will provide a highly selective history of associationism, 
and I will organize this history by adopting Warren's (1921) method of considering different peri-
ods of thought.  However, we will be parting company with Warren in two important ways.  First, 
we will consider some aspects of associationism that persisted beyond the era of Bain.  In 
particular, we will examine the associationism of William James, a psychologist whose contribu-
tions are only briefly considered by Warren.  Second, we will use James’ thoughts about 
associationism as a springboard to very modern associationist models in cognitive science.  In 
particular, we will see that James laid the foundation for a particular type of connectionist model, 
called a distributed associative memory.  Contrary to what Warren’s history implies, 
associationism has survived, and even flourished, into the new millennium. 
 
 9.1.1 Philosophical considerations 
 
 A very long line of philosophers and psychologists are responsible for the development of 
associationism.  Because of this, this theory of mental phenomena has been developed by an 
array of individuals who have espoused a bewildering array of conflicting positions (Warren, 
1921).  While there is enormous diversity amongst their positions, these thinkers were in consid-
erable agreement about the methods to be used to support their claims about mentality.  “The 
bond of union in the association movement […] is found chiefly in the unwavering devotion of its 
adherents to the empirical method in psychology” (p. 13).  Until late in the 19th century, this em-
pirical method consisted of the introspective examination of mental activities.  One of the main 
observations that introspection revealed was that there existed sequences of thought which were 
experienced during memory and thinking.  Associationism grew out of the attempt to provide law-
ful accounts of these sequences of thought. 
 

9.1.1.1 Aristotelian Contributions 
  

The earliest detailed introspective account of such sequences of thought can be found in 
the writings of Aristotle.  In his short essay De memoria et reminiscentia, Aristotle provided an 
account of memory that “is fuller than that to be found in the best-known British empiricists” 
(Sorabji, 1972, p. 1).  In the early part of this essay, Aristotle argued that the contents of memory 
are essentially visual images that resemble the things being memorized.  “For it is clear that one 
must think of the affection, which is produced by means of perception in the soul and in that part 
of the body which contains the soul, as being like a sort of picture, the having of which we say is 
memory.  For the change that occurs marks in a sort of imprint, as it were, of the sense-image, as 
people do who seal things with signet rings” (p. 50). 

 
Later in the essay, Aristotle turned to the process of recollecting thoughts that have been 

remembered.  His account of recollection has all of the elements of the association psychology 
from the 19th century.  He focused upon the sequence of thought: “Acts of recollection happen 
because one change is of a nature to occur after another” (Sorabji, 1972, p.54).  A particular se-
quence of images occurs because either this sequence is a natural consequence of the images, 
or because (through repetition) the sequence has been learned by habit.  Recall of a particular 
memory, then, is achieved by cuing that memory with the appropriate prior images.  “Whenever 
we recollect, then, we undergo one of the earlier changes, until we undergo the one after which 
the change in question habitually occurs.” 

 
For Aristotle, recollection by initiating a sequence of mental images was not a haphazard 

process.  The first image in the sequence could be selected in such a way that the desired image 
would be recollected fairly easily, by taking advantage of possible relationships between the start-
ing image and the image to be recalled.  Aristotle considered three different kinds of relationships 
between the starting image and its successor: similarity, opposition, and (temporal) contiguity: 
"And this is exactly why we hunt for the successor, starting in our thoughts from the present or 
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from something else, and from something similar, or opposite, or neighboring.  By this means 
recollection occurs" (Sorabji, 1972, p. 54). 

 
In Aristotle's account of recollection, we see three characteristics that recur in all the later 

theories that defined the association psychology.  First, there is the (introspective) observation 
that thought occurs in sequences.  Second, there is a claim about the nature of the mental enti-
ties that make up this sequence (e.g., mental images).  Third, there is a claim about lawful rela-
tionships between these entities, such that when one comes to mind, this relationship will lead to 
the recollection of the next component of the sequence.  These relationships are generally con-
sidered to be laws of association, and Aristotle's proposal of three such laws (which in later theo-
ries would be called the law of similarity, the law of contrast, and the law of contiguity or the law of 
habit) is completely consistent with proposals made centuries later. 

 
Later researchers accepted the main points of Aristotle's associationism with only minor 

qualifications.  For instance James (1890, p. 594) wrote, "Aristotle seems to have caught both the 
facts and the principle of explanation; but he did not expand his views."  However, Aristotle's ob-
servations on memory were essentially ignored (perhaps because they were not understood – 
see (Warren, 1921, p.28) -- for many centuries.  Advances in associationism did not occur until 
the 17th century. 
 

9.1.1.2 17th Century Associationism In Philosophy 
 
 One prominent feature of Aristotle’s treatment of associationism was that he only applied 
the laws of association to one domain of experience, that of memory.  This feature was preserved 
through the middle ages.  “The many commentators on Aristotle during the middle ages took up 
the passage on recollection which has been quoted.  They discussed an amplified it, as they did 
every saying of the master, but without throwing any new light on association” (Warren, 1921, p. 
30).  One reason for this very long period of dormancy was the fact that departures from Aristotle 
were akin to heresy: “Any freshness or originality was frowned upon; the only advances came 
from new interpretations – and these too often were misinterpretations” (p. 30). 
 
 This situation began to change in the 17th century with the philosophical writings of Tho-
mas Hobbes (b. 1588 – d. 1679).  Hobbes was particularly important for setting the stage to 
broaden the import of association, by applying it to thought processes in general, and not just to 
memory in particular.  He presented three separate themes that permeated the writings of those 
that followed him.  First, he distinguished sense (or sensations) from memory; memory was 
viewed as mental images of what was sensed.  Second, he noted that images are experienced in 
succession, and argued for the need to explain this succession.  Third, he attempted to use prin-
ciples of association to explain sequences of thought. 
 
 Hobbes’ work on this third issue was not particularly successful, but his work inspired 
later philosophers who had greater success than did he.  “The British thinkers who followed him 
developed their systems of psychology along the lines that he marked out; the notion of associa-
tion, which he did little more than outline, became more and more prominent as the analysis was 
perfected” (Warren, 1921, p. 33). 
 
 The most important philosopher who followed Hobbes in this era was John Locke (b. 
1632 – d. 1704).  Locke coined the phrase “association of ideas”, which first appeared as a chap-
ter title in the fourth edition (1700) of An essay concerning human understanding.   Locke’s fame 
as a philosopher came late in his life; the first edition of this book was published in 1690 when he 
was 57 years old.  However, this fame and influence was long lasting, and his chapter on asso-
ciation launched British empiricism. 
 
 Locke’s work was a reaction against the nativism espoused in the philosophy of Des-
cartes, and was primarily concerned with establishing experience as the foundation of all thought.  
Following Hobbes, Locke distinguished between ideas of sensation and ideas of reflection.  He 
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was particularly interested in the composition of simple ideas into more complex ideas, as well as 
the sequence of appearance of ideas.  One reason for this interest was because these connec-
tions (from simple to complex, or from one idea to the next in a sequence) did not seem to neces-
sarily reflect a natural order.  Instead, Locke realized that these connections were due to experi-
ence.  “There is another connexion of ideas wholly owing to chance or custom: ideas that in 
themselves are not at all of kin, come to be so united in some men’s minds that it is very hard to 
separate them, they always keep in company, and the one no sooner at any time comes into the 
understanding but its associate appears with it; and if they are more than two that are thus united, 
the whole gang, always inseparable, show themselves together” (Locke, 1977, p. 219). 
 
 Interestingly, while Locke anticipated the law of frequency that was later endorsed by J. 
S. Mill, and alluded to association by contiguity and by similarity, he did not explore specific asso-
ciative laws.  One reason for this may be that his primary goal was to argue for the existence of 
ideas formed by association; this was more important to him than an analysis of associative 
mechanisms.  A second reason may be because Locke was not in a position to offer any strong 
arguments in favor of any particular causal process underlying association.  After describing as-
sociation as being responsible for a keyboard player retrieving a long sequence of finger move-
ments during a performance, Locke noted “whether the natural cause of these ideas, as well as 
that regular dancing of his fingers, be the motion of his animal spirits, I will not determine, how 
probable soever, by this instance, it appears to be so” (Locke, 1977, p. 220). 
 
 It is clear that the primary result of 17th century philosophy’s analysis of association was 
to renew scholarly interest in this topic, and to set the stage for more technical advances that 
would come later.  Issues that were pioneered by Aristotle once again became central concerns 
to philosophers, and did so in a context that permitted Aristotle’s views to be criticized and modi-
fied. 
 

9.1.1.3 18th Century Philosophy And Associationism 
 
 Locke’s immediate philosophical successor was the Bishop of Cloyne, George Berkeley 
(b. 1685 – d. 1753).  Unlike Locke, Berkeley published his most influential works at the relatively 
young age of 25.  Berkeley was primarily important for transforming the problem of knowledge 
from one that was essentially philosophical to one that was more consistent with the strong psy-
chological overtones that marked theories of association that developed later.  Like Hobbes and 
Locke, Berkeley divided mental content into ideas of sensation and into ideas of imagination, and 
was primarily interested in accounting for the natural succession of ideas.  He reiterated Aris-
totle’s law of contiguity, and extended it to account for associations involving different modes of 
sensation.  “From a frequently perceived connection, the immediate perception of ideas by one 
sense suggests to the mind others, perhaps belonging to another sense, which are wont to be 
connected with them” (Warren, 1921, p. 41).  In other words, Berkeley – unlike Locke -- was one 
of the first philosophers after Aristotle to develop an account of “modes of association”, which de-
scribed the laws that determined how associations came to be. 
 
 A more detailed and elaborate theory of modes of association was to be found in the 
work of philosopher David Hume (b. 1711 – d. 1776).  Hume, like his predecessors, began by 
dividing experience into impressions and ideas, and viewed the latter as being weaker or less 
vivid copies of the former.  He then turned to consider principles that explained the connection 
between successive ideas. 
 
 In his original treatment, Hume, who was likely unaware of similar ideas put forth by Aris-
totle, proposed three different laws of association: resemblance, contiguity in time or place, and 
cause or effect.  “That these principles serve to connect ideas will not, I believe, be much 
doubted.  A picture naturally leads our thoughts to the original; the mention of one apartment in a 
building naturally introduces an enquiry or discourse concerning the others; and if we think of a 
wound, we can scarcely forbear reflecting on the pain which follows it” (Hume, 1952, p. 23).  
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Later, Hume argued that association by cause or effect could not be distinguished from associa-
tion by contiguity, and thus settled on two associative laws: contiguity and resemblance (or simi-
larity). 
 
 Hume’s work on association was monumentally influential, but did have one shortcoming, 
in that Hume did not attempt to use his laws of association to account for all mental phenomena.  
This was not attempted until the treatment of association offered by David Hartley (b. 1705 – d. 
1757).  Hartley was not only able to show the broader implications of Hume’s theory, but also 
provided one of the earliest examples of an attempt to root association in terms of brain function.  
Hartley constructed a theory of vibrations that attempted to draw a close correspondence be-
tween mental associations and neural activity.  Hartley saw contiguity as the primary source of 
associations, and ignored Hume’s law of resemblance.  He also anticipated the associationism of 
J.S. Mill by recognizing repetition as a source of association, or at least as a factor that could af-
fect the strength of an association. 
 

Hartley had nowhere near the fame or impact of Hume, but he is usually regarded as the 
founder of associationism.  This status is often granted to him not because of his theoretical inno-
vations, but instead because of his unusual success in promoting associationism’s cause.  “He 
took Locke’s little-used title for a chapter, ‘the association of ideas’, made it the name of a funda-
mental law, reiterated it, wrote a psychology around it, and thus created a formal doctrine with a 
definite name, so that a school could repeat the phrase after him for a century, and thus implicitly 
constitute him its founder” (Boring, 1950, pp. 193-194). 
 

9.1.1.4 19th Century Philosophy And Associationism  
 
 The 19th century marked a period in which associationism evolved from a topic that was 
primarily philosophical into one that was predominately psychological.  In 1829, James Mill (b. 
1773 – d. 1836) published his Analysis of the human mind.  The third chapter of this psychologi-
cal text was on associationism.  Many of the ideas put forth in this chapter were familiar: Mill di-
vided mentality into sensations and ideas, where ideas were once again proposed as being cop-
ies or traces of sensations.  Mill observed that sensations occur either simultaneously or in suc-
cessive order, and that ideas presented themselves in the same sequence as did the sensations 
that they copied.  His associationism, like those of the philosophers that we have already seen, 
attempted to account for the succession of ideas. 
 
 The 19th century was also an era in which writers assumed the fundamental notions of 
associationism as a given, and turned to fleshing out the details.  Often this theme revealed itself 
in one writer critiquing the modes of association proposed by a predecessor.  For Mill, the only 
law of association was contiguity.  He explicitly denied Hume’s laws of cause or effect and re-
semblance.  Mill also emphasized the importance of individual associations varying in strength.  
For Mill, association was essentially a mechanical process by which complex ideas were created 
by associating simpler ideas together.  Because of his mechanical metaphor, emergence played 
no role in Mill’s associationism.  For Mill, a complex idea was no more than the sum of its compo-
nents, and if one understood these, then one should be able to completely understand the larger 
idea that they comprised. 
 
 Mill’s ideas were challenged and modified by his own son, John Stuart Mill (b. 1806 – d. 
1873).  John Stuart Mill provided many modifications to his father’s theory of associationism.  
First, he argued that ideas were indistinguishable from sensations, and were not just less vivid 
copies.  He then posited a completely different set of associative laws, which included a reintro-
duction of Hume’s law of similarity:  “The first is that similar ideas tend to excite one another.  The 
second is that when two impressions have been frequently experienced (or even though of) either 
simultaneously or in immediate succession, then whenever one of these impressions or the idea 
of it recurs, it tends to excite the idea of the other.  The third law is that greater intensity in either 
or both of the impressions is equivalent, in rendering them excitable by one another, to a greater 
frequency of conjunction” (Warren, 1921, p. 96). 
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 One of John Stuart Mill’s most interesting departures from his father’s associationism was 
replacing a mechanistic account of complex ideas with an account that was described as a “men-
tal chemistry”.  In this mental chemistry, when complex ideas were created via association, the 
resulting whole was more than just the sum of its parts.  As a result, the laws governing the whole 
(e.g., successions to other ideas) could not be predicted by knowing the laws governing the sim-
pler ideas that served as parts.  In other words, John Stuart Mill proposed an associationism that 
endorsed an early form of emergence. 
 
 One of John Stuart Mill’s friends was Alexander Bain (b. 1818 – d. 1903), who eventually 
became chair of logic at Aberdeen.  “His book on logic is overshadowed by J.S. Mill’s great clas-
sic, just as the latter’s fragmentary psychology is dominated by Bain’s exhaustive two-volume 
treatise” (Warren, 1921, p. 104).  Bain’s two major books, which constitute two volumes of one 
complete project, were The senses and the intellect, which was published in 1855, and The emo-
tions and the will, which was published in 1859.  Bain spent many of his later years revising these 
books, which served as the standard British psychology text for half a century. 
 
 Bain’s associationism is, in many respects, a refinement of John Stuart Mill’s.  Bain in-
voked four different laws of association, and attempted to reduce all intellectual processes to 
these laws.  One of these laws was the law of contiguity, which has been present in every theory 
of association that we have reviewed.  A second was the law of similarity, which was revived from 
Hume by both Bain and J.S. Mill after being banished by James Mill.  The third was the law of 
compound association: “Past actions, sensations, thoughts, or emotions are recalled more easily, 
either through contiguity or similarity, with more than one present object or impression” (Warren, 
1921, pp. 107-108).  This law was an important precursor to William James’ treatment of associa-
tions between patterns, which we will consider in more detail shortly.  The fourth was the law of 
constructive imagination: “By means of association the mind has the power to form new combina-
tions or aggregates, different from any that have been presented to it in the course of experience” 
(p. 109).  This law represents an important psychological contribution of Bain, in that he was at-
tempting to explain creative thought in terms of associative principles. 
 
 9.1.2 Psychology, Associationism, and Connectionism 
 

Bain represents a bridge between philosophical and psychological treatments of associa-
tion.  Bain stood “exactly at a corner in the development of psychology, with philosophical psy-
chology stretching out behind, and experimental physiological psychology lying ahead in a new 
direction.  The psychologists of the twentieth century can read much of Bain with hearty approval; 
perhaps John Locke could have done the same” (Boring, 1950, p. 240).  In this section, we will 
consider some of the key developments of the psychological associationism that was inspired by 
Bain’s work.  However, this review will be extremely selective, because we will use it to motivate 
a discussion of a very particular kind of connectionist network. 
 

9.1.2.1 19th Century Contributions Of William James 
 
 The pioneer of the “New Psychology” in North America was William James (b. 1842 – d. 
1910).  He received his medical degree from Harvard in 1869, and returned to Harvard as a pro-
fessor later in his career.  In 1872 he was a professor of physiology there, and offered instruction 
in physiological psychology as early as 1875.  In 1885 he became a professor of philosophy, and 
in 1889 his title changed to professor of psychology.  James created the first demonstrational 
psychology laboratory in North America, and in 1890 published a profoundly influential psychol-
ogy text in two volumes, The principles of psychology.  “The key to his influence lies…in his per-
sonality, his clarity of vision, and his remarkable felicity in literary style” (Boring, 1950, p. 509). 
 
 James’ treatment of association is found in Chapter 14 of The principles of psychology.  
His thoughts on this topic were inspired by the work of Bain and others, but were also an innova-
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tive reaction against philosophical associationism.  James was in particular concerned about the 
fact that philosophical associationism had not made any serious proposals concerning the causal 
mechanisms that instantiated modes of association.  For example, he offers the following as-
sessment of Bain: “His pages are painstaking and instructive from a descriptive point of view; 
though, after my own attempt to deal with the subject causally, I can hardly award to them any 
profound explanatory value” (James, 1890, p. 601). 
 
 James was of the opinion that explanatory accounts had eluded previous associationists 
because of a fatal flaw in their approach.  This flaw was the assumption that associations were 
made between mental contents (e.g., the images, reflections, or ideas that had been proposed by 
most of James’ predecessors as being copies or traces of sensations).  James argued that if as-
sociation was a mechanical process, then it must apply to objects and not ideas; he then pro-
posed a particularly psychological theory by arguing that the objects being associated were brain 
states: “Association, so far as the word stands for an effect, is between THINGS THOUGHT OF – 
it is THNGS, not ideas, which are associated in the mind.  We ought to talk of the association of 
objects, not of the association of ideas.  And so far as association stands for a cause, it is be-
tween processes in the brain – it is these which, by being associated in certain ways, determine 
what successive objects shall be thought” (James, 1890, p. 554). 
 
 In terms of viewing association as an effect, James’ theory was not a radical departure 
from others that we have considered in this chapter.  First, he was primarily concerned with pro-
viding an account of the succession of thoughts.  Second, his theory attempted to explain this 
succession via associative law.  For James, the only explanatory mode of association was conti-
guity, which he called the law of habit.  While he admitted that other factors could be described as 
affecting association (similarity, vividness, recency, emotional congruity), he attempted to show 
how all of these could be explained in terms of contiguity. 
 
 James was able to reduce other laws of association to the law of contiguity when he de-
parted from the traditional view of association as an effect, and replaced it with the view of asso-
ciation as a cause.  There are several central elements to his physiological account of associa-
tion.  First, James recognized that one idea or event could be represented in the brain as a pat-
tern of activity across a set of more than one neuron.  Second, he expressed his law of habit in 
terms of a process that affected the ease of transit of a nerve-current through a tract:  “The psy-
chological law of objects thought of through their previous contiguity in thought or experience 
would thus be an effect, within the mind, of the physical fact that nerve-currents propagate them-
selves easiest through those tracts of conduction which have been already most in use” (James, 
1890, p. 563).  Third, he viewed the succession of thoughts that one experiences as due to the 
fact that activity in one brain state (i.e., some set of neurons) leads to activity in some different 
brain state that had previously been associated with the first.  “When two elementary brain-
processes have been active together or in immediate succession, one of them, on reoccurring, 
tends to propagate its excitement into the other” (p. 566).  Finally, James was predominately con-
cerned with predicting which subsequent brain state would be activated by a prior brain state, 
given that one idea might be associated with a number of different ideas, other at different times 
or in different ways.  James attempted to explain this kind of variation by realizing that any given 
neuron would be receiving signals from a number of other neurons, and that its degree of acti-
vation would depend on an entire pattern of input, and not upon an association with a single 
incoming signal. “The amount of activity at any given point in the brain-cortex is the sum of the 
tendencies of all other points to discharge into it, such tendencies being proportionate (1) to the 
number of times the excitement of each other point may have accompanied that of the point in 
question; (2) to the intensity of such excitements; and (3) to the absence of any rival point 
functionally disconnected with the first point, into which the discharges might be diverted” (p. 
67). 5 
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 The main physiological points of James’ theory of 
association are summarized in Figure 9-1, which is analo-
gous to his own Figure 40 in his chapter on association 
(James, 1890) (p. 570).  The figure represents two ideas, 
one (A) being the last act of a dinner party, the other (B) be-
ing walking home through the frosty night.  Each of these 
ideas is represented in the brain as a pattern of activity in a 
set of neurons.  A is represented by activity in neurons a, b, 
c, d, and e; B is represented by neurons l, m, n, o, and p.  
The association between A and B occurs because A pre-
ceded B in the course of an evening.  As a result, the neu-
rons representing A were active immediately prior to the ac-
tivity of the neurons representing B, and the tracts connect-
ing the neurons (represented as the lines in Figure 9-1) were 
modified according to the law of habit.  The ability of A’s later 
activity to lead to the thought of B, is due to these modified 
connections between the two sets of neurons.  “The thought 
of A must awaken that of B, because a, b, c, d, e, will each 
and all discharge into l through the paths by which their 
original discharge took place.  Similarly they will discharge 
into m, n, o, and p; and these latter tracts will also each rein-
force the other’s action because, in the experience B, they 
have already vibrated in unison” (p. 569). 

Figure 9-1.  James’ asso-
ciative memory.  See text 

for details on how this sys-
tems was theorized to 

 
9.1.2.2 The Paired Associate Task 

 
 The type of association envisioned by James, and illustrated in Figure 9-1, leads to one 
methodological topic that will be central to the simulations that will be introduced later in the chap-
ter.  In James’ example, associative memory is viewed as having two different functional stages.  
The first is learning, in which an association between two ideas is stored.  As we saw in the pre-
vious section, this occurs when two ideas (A and B) occur either simultaneously or in close suc-
cession to one another.  As a result of this co-occurrence, the connections between the neurons 
representing both A and B are modified to permit easier transmission of “nerve-currents”.  The 
second stage is recall.  During this stage, only one of the two previous ideas is present (A).  
When its underlying neural processes become active, they serve to activate those associated 
with the other idea (B), bringing it to mind. 
 
 This two-stage account of association was used to develop a particular paradigm used to 
study human memory called the paired associate task.  This method of examining memory pre-
sents stimuli in a fashion similar to what would be the case if someone were learning the vocabu-
lary of a foreign language (Kintsch, 1970).  Subjects learn a list of stimulus-response pairs.  
Sometimes this learned via the “study-test method”.  With this method, subjects are presented 
both members of the pair at the same time, and attempt to remember the association between 
the two.  In the test phase of this method, subjects are only presented the stimulus, and must at-
tempt to recall the associated response on their own.  Sometimes the list is learned via the “an-
ticipation method”.  In this method, subjects are only presented the stimulus term, and must gen-
erate the response on their own.  On the first presentation, they will of course be forced to guess 
a response.  Once this guess is made, the subject is provided with the stimulus and the correct 
response together.  Later, the same stimulus will be presented, and the subject will be given the 
opportunity to recall the associated response.  The paired-associate learning task was used with 
great success to study the issue of whether learning was all-or-none or was instead due to an 
increment in continuously varying response strength. 
 
 Mary Whiton Calkins (b. 1863 – d. 1930), who was among the first generation of women 
to enter psychology, invented the paired associate task (Furumoto, 1980).  Calkins graduated in 
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1885 with degrees in philosophy and in the classics from Smith College.  In 1887 she began to 
teach Greek, philosophy, and psychology at Wellesley college.  She has created a psychology 
laboratory at Wellesley by 1891.  While teaching, she furthered her education by attending Har-
vard from 1892 to 1895, during which time she was enrolled in James’ psychology course.  Be-
cause she was a woman, she was not awarded a PhD from Harvard, in spite of the fact that she 
had completed all of the requirements and had the support of her professors.  In 1896, she pub-
lished a paper in Psychological Review that provided the first description of the paired associate 
task.  In this paper, she used the study-test method, employing colors as stimuli and numbers as 
cues.  There is no doubt that she was inspired to invent this technique by considering ways in 
which James’ theory of association could be put to the test in an experimental laboratory. 
 

9.1.2.3 20th Century Models Of Distributed Memory 
 
 After the cognitive revolution in the second half of the 20th century, many researchers 
turned to using computer simulations to study human memory processes.  In this section of the 
chapter, we will be interested in simulations that share two general characteristics.  First, they are 
designed to perform the paired associate task, and are generally trained using some variation of 
the study-test method.  Second, they are closely related to the kind of associative memory envis-
aged by James, and which was illustrated in Figure 9-1. 
 
 Some of the earliest research on parallel 
systems was concerned with the development of 
distributed memories capable of learning 
associations between pairs of input patterns (e.g. 
Steinbuch, 1961; Taylor, 1956), or of learning to 
associate an input pattern with a categorizing 
response (e.g., Rosenblatt, 1962; Selfridge, 1956; 
Widrow & Hoff, 1960). Figure 9-2 depicts a 
connectionist network that is often used to introduce 
some of the basic properties of PDP connectionism, 
and has come to be called the standard pattern 
associator (McClelland, 1986).  This network is 
designed to implement what is known as a 
distributed associative memory that functions in a 
fashion that is very reminiscent of James’ theory of 
association.  For this reason, Figure 9-2 has been 
labeled in such a way as to draw out its similarities 
with Figure 9-1. 
 

When I first began work on learning in 
connectionist networks, I had the pleasure of work-
ing on a number of different projects with Don 
Schopflocher.  Don was of the opinion that while 
there were many differences between connectionist researchers, they were all united by their tacit 
understanding of what Figure 9-2 represents.  In support of Don’s position, versions of Figure 9-2 
have a long history (e.g., Kohonen, 1977, Fig. 1.9; McClelland & Rumelhart, 1988, Chap. 4 Fig. 3; 
Rumelhart, McClelland, & Group, 1986, Chap. 1 Fig. 12, Chap. 9 Fig. 18, Chap. 12 Fig. 1, Chap. 
18 Fig. 3; Schneider, 1987, Fig. 1; Steinbuch, 1961, Fig.2; Taylor, 1956, Figs. 9 & 10).  Of course, 
this history can be traced back to James’ own figure in his chapter on association.  If connection-
ists ever decide to wear an identifying tattoo, then perhaps Figure 9-2 would be an excellent can-
didate. 

Figure 9-2.  James’ associative 
memory redrawn as the standard 

pattern associator. 

 
 As will be detailed below, the standard pattern associator is constructed from the proc-
essing units and modifiable connections defined in the PDP architecture.  It consists of two sets 
of processing units; one is typically called the input set, the other the output set.  During a learn-
ing stage, the activation states of the input processing units are used to represent a cue pattern 
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and the activation states of the output processing units are used to represent a to-be-recalled pat-
tern.  The connection weights are then modified to store the association between the two pat-
terns.  The standard pattern associator is called a distributed memory because this association is 
stored throughout all the connections in the network, and because one set of connections can 
store several different associations.  During the recall stage, a cue pattern is presented to the 
network by activating the input units.  This causes signals to be sent through the connections in 
the network.  These signals, in accord with James’ theory, activate the output processors.  If the 
memory is functioning properly, then the pattern of activation in the output units will be the pattern 
that was originally associated with the cue pattern. 
 

9.2 Building An Associative Memory 
 

Up to this point in the chapter, we have reviewed a history of associationism that has 
culminated in the standard pattern associator.  The remainder of this chapter is intended to pro-
vide a technical account of this kind of system.  This account will accomplish several different 
goals.  First, it will serve as an introduction to some of the building blocks of a connectionist net-
work.  These same building blocks will be used to construct more sophisticated networks in the 
chapters that follow.  Second, it will provide some examples of how one might study paired-
associate learning synthetically.  Third, it will introduce the reader to a software package that can 
be used to empirically explore associative memory.  The user interface for this software package 
will be maintained in programs that are introduced in later chapters. 
 
9.2.1 Defining the problem  

 
The purpose of the computer simulation is to build a memory system that is capable of 

storing associations between pairs of items.  During a learning phase, the system will be pre-
sented pairs of stimuli.  For each pair, it will determine how they are to be associated together, 
and store this association in memory.  During a recall phase, the system will be presented with 
only one member of a pair.  Using this member as a cue, it will use its memory to attempt to recall 
the other member of the pair to the best of its ability.  In order to create a system that will behave 
in this fashion, we will construct a very simple connectionist network.  The network will consist of 
an input “bank” of processing units, an output bank of processing units, and a set of modifiable 
connections between these two banks.  The basic design of the network was illustrated in Figure 
9-2.  As we will see, several independent associations can be stored in the same set of connec-
tion weights. 

 
9.2.2 The Network Architecture 
 

9.2.2.1 Processing Units 
 
 Ultimately, both the input units and the output units can be considered as sets of num-
bers, with each number representing a property of an individual unit (e.g., its internal level of ac-
tivity), and with the entire set of numbers representing a pattern across a whole bank of units 
(e.g., the pattern of activity of the bank of input units).  It will be useful to represent these sets of 
numbers as vectors, because linear algebra provides an extremely compact and useful notation 
for exploring the properties of distributed associative memories and of other connectionist net-
works.   
 

For example, we might represent the activity of input unit 1 with the numerical value a1, 
the activity of input unit 2 with the numerical value a2, and so on.  The set of activities for all of the 
input units could be represented as the vector a, whose first entry would be the value a1, whose 
second entry would be the value a2, and so on.  By convention, when we talk about the vector a 
we will assume that it is a column vector.  This means that when all of the values of the vector are 
listed out, they are strung out vertically in a column, as is shown in Figure 9-3.  In some cases, 
the operations of linear algebra assume that a vector is a row vector, which means that when its 
values are listed out, they are strung out horizontally in a row, as is also shown in Figure 9-3.  
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The operation that converts a column vector into a row vector is called transposition.  Because of 
this, if we were to indicate that a vector was a row vector, then we would do so with a notation 
that included a superscript “T”, to explicitly indicate that the vector had been transposed.  For in-
stance, if vector a is a column vector of unit activities, then vector aT would be a row vector of the 
same numerical activities. 

 
In order to represent the properties of 

banks of units as vectors, we need to define 
some equations that dictate what numerical 
values should be inserted into the vectors.  
Any processing unit in a connectionist network 
can be described using three different 
mathematical equations.  The first equation is 
the net input function, which describes how a 
processing unit computes the total signal 
coming into it from other processors in the 
network.  The second equation is the acti-
vation function, which determines how a 
processing unit converts this input signal into a 
number that represents its internal level of 
activity.  The third equation is the output 
function, which defines how a processor’s 
internal level of activity is converted into a 
numerical signal that can be sent through 

connections to other processors in the network.  When these three equations are used to de-
scribe the processors used in our memory network, it will become apparent that they are particu-
larly simple. 

Figure 9-3.  The inner product (see Equation 
9-5) of the row vector aT and the column 
vector a is a single number, which is the 
sum of the products of the entries of the 

two vectors. 

 
 In the distributed associative memory network that we are constructing, the activity val-
ues of the input units are always set by the programmer, who simply turns each input unit on to 
the desired level of activity (i.e., the level of activity that represents information about one mem-
ber of the to-be-associated pairs of patterns).  For the sake of consistency with later chapters, we 
will describe this in terms of a net input function.  Specifically, the net input for input unit i (neti) is 
equal to the environmental stimulation for that input unit (ei): 
 

neti = ei     (Equation 9-1) 
 
 The input processors in the distributed associative memory are particularly simple be-
cause after their net input is computed, its value is used as the value of the processor’s internal 
activity and as the value that the processor outputs to the output units.  Mathematically speaking, 
the activation function and the output function for the input units are both identity functions.  That 
is, the internal activity of input unit i (ai) is defined as: 
 

ai = neti    (Equation 9-2) 
 
Similarly, the output activity of input unit i (oi) is defined as: 
 

oi = ai     (Equation 9-3) 
 
 During the learning phase, the output units are treated exactly as are the input units.  
That is, the programmer sets their activity values to represent the other member of the to-be-
associated pair.  Because of this, during learning, the output units can be described using exactly 
the same equations that were used to describe the input units (i.e., Equations 9-1, 9-2, and 9-3).  
During the recall phase, the output units have their net input determined by signals that are sent 
from the input units, and therefore require a slightly more elaborate net input equation. 
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 Imagine a very simple network in which there are 8 different input units, and only 1 output 
unit.  Each of the input units is linked to the output unit by a connection.  Each connection is 
weighted, where a connection weight is simply some numerical value.  When a numerical signal 
is sent through a connection, the connection scales the signal by multiplying it by the value of its 
connection weight.  Let us represent the weight of the connection between input unit 1 and the 
output unit as w1, between input unit 2 and the output unit as w2, and so on.  During recall in this 
simple network, each of the input units will be sending a signal to the output unit.  Input unit 1 will 
be sending the signal o1, input unit 2 will be sending the signal o2, and so on.  The signal o1 will 
be multiplied by the weight value w1 before it reaches the output unit.  So part of the signal that 
reaches the output unit will be the value o1w1.  Following the same logic for the other input units, 
the output unit will also be receiving the signal o2w2, o3w3, and so on.  In other words, the total 
signal for the output unit – its net input – will be: 
 

net1 = o1w1 +o2w2 + o3w3 + … + o8w8 
    = Σoiwi      (Equation 9-4) 

 
 Linear algebra can be used to make this equation more compact.  (For an excellent intro-
duction to linear algebra that is framed in the context of connectionist networks, the reader is re-
ferred to Jordan, 1986).  Let us take the signals being output by the input units and represent 
them as the row vector o, and let us take the set of connection weights between the input units 
and the output units and represent them as the column vector w.  These two vectors can be 
combined using an operation called the inner product or the dot product (see Figure 9-3).  The 
result of this operation is a single number (net1, representing the net input for output unit 1) 
whose value is defined in Equation 9-4 – in fact, Equation 9-4 shows how an inner product is to 
be computed.  In the notation of linear algebra, the inner product that defines the net input for the 
output unit is: 
 

net1 = oT • w    (Equation 9-5) 
 
  One way to remember that the result of an inner product like Equation 9-5 is a single 
number is to note the number of rows in the first component (oT is a row vector, and therefore has 
only one row) and to note the number of columns in the second component (w is a column vector, 
and therefore has only one column).  The result of the operation will have the same number of 
rows as the first component, and the same number of columns as the second component.  In 
other words, the result of an inner product will be a single number – a vector with only one row 
and only one column. 
 
 The inner product described in Equation 9-5 defines the net input for a single output unit.  
We will see in later chapters that the inner product is a standard net input function for all of the 
processors in more sophisticated connectionist networks. 
 

9.2.2.2 Modifiable Connections 
 
 In the previous section, when we defined the net input function for a single output unit 
during recall, we represented the set of connection weights from a bank of input units to the out-
put unit as a vector.  Our goal in designing the distributive associative memory is to have a sys-
tem that uses more than one output unit, so that it can recall a complete pattern of activity.  It 
stands to reason that we would need to represent the connection weights for this more compli-
cated memory with a set of weight vectors, with each vector in the set holding the connection 
weights associated with one of the output units. 
 
 In linear algebra, this set of vectors would be represented as a single entity called a ma-
trix.  If our memory had n input units, and m output units, then all of the connection weights be-
tween the input and output processors would be represented by one weight matrix, W, which 
would have n rows and m columns.  Each entry in this matrix, wij, would contain a number repre-
senting the weight of the connection from input unit i to output unit j.  
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 By representing all of the connection weights with the matrix W, we can take advantage 
of linear algebra to create a very compact mathematical description of how weights are modified, 
and we can also define very simple equations that describe how information stored in this matrix 
can be retrieved when the memory system is presented with a cue.  When the distributed asso-
ciative memory stores associations between patterns, it does so by modifying the strengths of its 
connection weights.  This is done in two steps.   
 

First, the memory computes changes in weights that are required to represent the asso-
ciation between the pair of patterns presented to it during a learning trial.  Later in this chapter we 
will discuss two different equations that could be used to compute the desired weight changes.  In 
this first step, all of the desired weight changes are stored in the matrix ∆t+1, where the subscript 
t+1 indicates the learning trial during which the changes have been computed.  This matrix has 
the same number of rows and columns as does matrix W, and each entry δij in this matrix repre-
sents the value by which the connection weight between input unit i and output unit j should be 
changed. 
 
  Second, the memory uses the matrix ∆t+1 to change the existing connection weights.  Let 
us use the subscript t to represent the network’s connection weights at a particular trial of learn-
ing.  Using the current weights, represented in the matrix Wt, and the desired weight changes, 
stored in the matrix ∆t+1, the goal is to compute the new values of weights, which will be stored in 
the matrix Wt+1.  This is done by computing the sum of the matrices that represent the current 
weights and the desired weight changes: Wt+1 = Wt + ∆t+1.  Every value wij at row i and column j of 
the new weight matrix is simply equal to the sum of the value wij in matrix Wt and of the value δij in 
matrix ∆t+1. 
 

With this notation, learning can be described as a series of matrix additions.  Imagine that 
prior to learning, our memory system is truly a “blank slate”, because all of its connection weights 
are equal to zero.  The null matrix, 0, is the special matrix that has every value in it equal to zero.  
So at time 0, before learning as started, we could declare that W0 = 0.  At learning trial 1, the new 
weights (W1) are equal to the old weights (the null matrix) plus the desired weight changes (∆1).  
At learning trial 2, the new weights (W2) are equal to the old weights (W1) plus the desired weight 
changes (∆2).  As can be seen from Table 9-1, this kind of learning can continue for as many tri-
als as is desired.  Furthermore, Table 9-1 demonstrates that at any point in time after learning 
has begun, the memory’s connection weights are essentially the sum of a series of matrices each 
of which contains the weight changes that are desired to store an association between a pair of 
stimuli. 

 
Trial (t+1) Equation Describing Weight Values 

0 W0 = 0 
1 W1 = W0 + ∆1 = 0 + ∆1  = ∆1 
2 W2 = W1 + ∆2 = (∆1)+ ∆2 
3 W3 = W2 + ∆3 = (∆1 + ∆2) + ∆3 
4 W4 = W3 + ∆4 = (∆1 + ∆2 + ∆3) + ∆4 

. 

 
 B
stimuli, le
ing, and 
W.  Wha
that will b
of activity

Connection
Table 9-1. Associative learning described a series of matrix additions

9.2.2.3 The Retrieval Operation 

efore introducing a specific equation for calculating the association between pairs of 
t us assume that we have a distributed memory that has already undergone some train-
therefore has a pre-existing set of connection weights that are represented in the matrix 
t we would like to do is to present a vector of activity to the input units of this memory 
e used as a cue to retrieve some information, which will also be represented as a vector 
 in the memory’s output units.  To define this kind of retrieval mathematically, let the col-

ism And Psychological Modeling  © M.R.W. Dawson 31/07/2002 



 - 144 - 

umn vector c represent the cue pattern, and let the column vector r represent the recalled pat-
tern.  In linear algebra, the equation for recall from the distributed associative memory is: 
 

r = Wc     (Equation 9-6) 
 
In other words, if one takes the matrix of weights that have been produced by learning, and uses 
this matrix to premultiply the cue pattern’s vector, the result will be a column vector that holds the 
recalled pattern. 

 

Figure 9-4.  Recall as the premultiplica-
tion of a column vector by a matrix. (A) 
The second entry of the recall vector is 
the inner product of the second row of 

the matrix with the vector (see grey). (B) 
Similar logic defines the third entry of 

the recall vector. 

 For those unfamiliar with linear algebra, let 
us briefly examine the logic of Equation 9-6.  When 
retrieving information from the distributed 
associative memory, the input units are activated, 
and send signals through weighted connections to 
the output units.  The output units use these signals 
to compute their net input, which is also equal to 
their activation and to their output, as indicated in 
Equations 9-2 and 9-3.  We saw earlier that the net 
input for a single output unit was the inner product 
between a vector of weights and a vector of 
activities.  It stands to reason, then, that in order to 
compute the net input for several different output 
units, we will have to compute a series of different 
inner products. 
 
 The notation in Equation 9-6 represents 
performing a series of inner products.  Each entry in 
the recall vector r is the inner product between the 
cue vector and one of the rows of the weight matrix.  
For example, the second entry in r is equal to the 
inner product between the second row of W and the 
column vector c (see Figure 9-4A).  Similarly, the 
third entry in r is the inner product between the third 
row of W and the vector c (see Figure 9-4B).
 This operation is consistent with the rule of 
thumb that we introduced earlier when discussing 
the inner product.  The matrix W will have m rows, 
and the vector c has 1 column.  So, we expect the 
result of Equation 9-6 to be a vector with m rows 
and 1 column – in other words, a column vector of 
the same size as c. 

 
 

9.2.2.4 Hebb-Style Learning 
 
 Up to this point, we have described how vectors are used to represent properties of 
processing units, how matrices are used to represent connection weights, how linear algebra 
provides a mathematical operation that uses a cue vector to retrieve a recall vector from a matrix 
of existing weights, and how associative learning can be described in generic terms as a series of 
sums of matrices.  The only remaining piece of information required for a complete description of 
a distributed associative memory is a specific equation that defines how the desired weight 
changes are to be computed and stored in the matrix ∆t+1.  In this section, we will introduce one 
simple and historically important learning rule, called the Hebb rule.  Later in this chapter, we will 
explore the Hebb rule’s advantages and disadvantages, and use its disadvantages to motivate a 
second learning rule. 
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Donald Hebb (1904-1985) was one of the most influential figures in psychology (Klein, 
1999).  Born in Nova Scotia, Hebb graduated from Dalhousie University in 1925, and completed 
his Ph.D. at Harvard in 1936 after working with Lashley.  Hebb’s seminal contribution to psychol-
ogy was his book The Organization of Behavior: A Neuropsychological Theory (Hebb, 1949).  At 
the time that this book was published, physiological psychology was in decline because of the 
popularity of behaviorism.  Hebb’s book reversed this trend by attempting to explain behavior by 
appealing to properties of the nervous system.  The book “wielded a kind of magic in the years 
after its appearance.  It attracted many brilliant scientists into psychology, made McGill University 
a North American mecca for scientists interested in brain mechanisms of behavior, led to many 
important discoveries, and steered contemporary psychology onto a more fruitful path” (Klein, 
1999, p. 2). 
 

One of the central ideas that made Hebb's (1949) work so influential was the notion of a 
cell assembly.  “The general idea is an old one, that any two cells or systems of cells that are re-
peatedly active at the same time will tend to become ‘associated’, so that activity in one facilitates 
activity in the other” (p. 70).  The result of this kind of process is the creation of coordinated sys-
tems, or assemblies, of cells that act in sympathy with one another.  Activity in one of the cells 
would lead to activity in the other cells that were part of the assembly.  Hebb emphasized the util-
ity of this kind of biological construct for explaining a variety of perceptual and motivational 
phenomena. 

 
A crucial component of cell assembly theory was an account of how assemblies came 

into existence.  Hebb (1949) is perhaps most famous for his statement of a principle of synaptic 
change for the creation of cell assemblies: “When an axon of cell A is near enough to excite a cell 
B and repeatedly or persistently takes part in firing it, some growth process or metabolic change 
takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased” 
(p. 62).  Hebb believed that the mechanism underlying the change in the strength of the synapse 
between the two neurons was an increase in the area of contact between the two, but such hy-
potheses could not be tested at the time his work was published.  Advances in neuroscience 
have led to a discovery of a phenomenon, called long-term potentiation, that is often cited as a 
biologically plausible instantiation of Hebb’s theory (e.g., Brown, 1990; Martinez & Derrick, 1996). 
 

In the late 1950s, the advent of digital computers enabled researchers to use simulations 
to explore the advantages and disadvantages of Hebb's (1949) theory of synaptic change.  In one 
famous study, Rochester, Holland, Haibt, and Duda (1956) simulated a network of 69 simple neu-
rons, with each neuron connected to 10 others.  Rochester et al. updated connection weights us-
ing a modified version of Hebb’s proposal.  While the general spirit of the proposal was main-
tained, when weights were updated, they were normalized to prevent them from growing out of 
bounds.  What this meant was that if the strength of one connection were increased, then the 
strength of other connections would be decreased at the same time.  As well, Rochester et al. 
introduced the notion of “neural fatigue”, which meant that one of their simulated neurons was 
less likely to fire if it had recently been active.  After running this simulation, Rochester et al. ex-
amined the connection weights that emerged in an attempt to identify whatever cell assemblies 
had emerged.  They found no evidence for the existence of cell assemblies in their simulation, 
and concluded that Hebb’s theory as stated was not sufficient for their production. 

 
Rochester et al. (1956) developed a second simulation using an unpublished modification 

of Hebb’s theory that was proposed by Milner, and which later appeared in Psychological Review 
(Milner, 1957).  In Hebb’s original theory, and in Rochester et al.’s first simulation, there were no 
inhibitory connections.  All of the connection weights (and all of the neural signals) in the simula-
tion were positive and excitatory.  Milner’s proposal was to include inhibitory connections in the 
theory, under the assumption that there would be excitatory connections within a cell assembly, 
but activity in one cell assembly would tend to decrease activity in other cell assemblies via inhibi-
tory signals.  This proposal – endorsed by Hebb in a revision of his original theory (Hebb, 1959) – 
led to a simulation that did produce evidence of the emergence of cell assemblies. 
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In modern connectionist simulations, the goal of Hebb-style learning is not specifically to 
create cell assemblies, but is instead to create associations between patterns of activity, so that 
later when one pattern of activity is presented, the other pattern will be recalled.  In other words, 
modern Hebb-style learning is one approach to defining “association by contiguity” or “the law of 
habit”.  Nevertheless, inhibition is an important component of this type of learning, and is included 
in a distributed associative memory in two different ways. 

 
First, and consistent with proposals described above, connections between processing 

units can either be excitatory (i.e., have a positive connection weight) or be inhibitory (i.e., have a 
negative connection weight).  Second, and deviating from research in the 1950s, processing units 
can themselves be sending a signal that is excitatory (i.e., positive processing unit activity) or in-
hibitory (i.e., negative processing unit activity).  In many respects, these assumptions violate 
Hebb’s attempt to develop a biologically plausible account of behavior.  For instance, in the ver-
sion of the distributed associative memory that we will develop below, at one moment a process-
ing unit (or connection) can be excitatory, but at another moment the same unit (or connection) 
can be inhibitory.  This kind of proposal is biologically implausible (Crick & Asanuma, 1986).  
However, it leads to a very simple mathematical description of Hebb-style learning, as we will see 
shortly. 
 
 As was noted above, Hebb's (1949) basic idea about learning was that if an input neuron 
and an output neuron were both active at the same time, then the synapse between them should 
be strengthened.  “The assumption, in brief, is that a growth process accompanying synaptic ac-
tivity makes the synapse more readily traversed” (p. 60).  The logic of this proposal was that with 
the strengthening of the synapse, in situations in which the input neuron became active, there 
would be an increased likelihood of the output neuron becoming active as well.  This is because 
the output neuron would receive increased stimulation (via the reinforced synapse) from the input 
neuron. 
 
 In modern variations of Hebb-style learning, particularly those based upon the assump-
tion that processor activity can be either inhibitory or excitatory, the goal of connection weight 
changes is not to increase the likelihood of activity in an output unit.  Rather, the goal is to change 
the weight in such a way that the relationship between input and output unit activities is en-
hanced.  In other words, if at some learning trial an input unit is in one state x, and the output unit 
is in some other state y, then the connection weight should be changed so that later if the input 
unit returns to state x, then its signal through the connection should increase the likelihood of rec-
reating state y in the output unit. 
 
 Hebb's (1949) view of learning is an example of enhancing one aspect of this relation-
ship.  To place his original proposal in the more modern context of a connectionist network, it was 
assumed that if an input unit and an output unit were both excited (positive activity), then the 
weight of the connection between them should be made more excitatory (i.e., more positive).  
Later, if the input unit exhibits positive activity, this would lead to a more positive signal (the posi-
tive activity multiplied by the more excitatory connection weight) being sent to the output unit, 
which would increase the net input to the output unit, and which would in turn increase the likeli-
hood that the output unit would also exhibit positive activity. 
 
 Importantly, connection weights can be changed to enhance other relationships between 
input and output unit activities.  For example, consider the situation where both an input unit and 
an output unit were inhibited (negative activity).  To increase the probability that this pattern would 
occur later, one would again make the weight of the connection between them more excitatory.  
Later, if the input unit exhibits negative activity, this would lead to a more negative signal (the 
negative activity multiplied by the more excitatory connection weight) being sent to the output 
unit, which would decrease the net input to the output unit.  As a result, the output unit would be 
more likely to assume negative activity.  Similarly, imagine the situation in which the input unit 
was inhibited, but the output unit was excited.  To increase the probability that this pattern would 
occur later, one would make the weight of the connection between the two units more inhibitory.  
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Later, if the input unit exhibits negative activity, this would lead to a more positive signal (the 
negative activity multiplied by the more inhibitory connection weight) being sent to the output unit, 
which would increase the net input to the output unit.  As a result, the output unit would be more 
likely to assume positive activity. Similar logic would dictate that if the input unit was excited and 
the output unit was inhibited at the same time, then the connection between them should again 
be made more inhibitory.  Table 9-2 summarizes the desired direction of weight changes given 
the possible states of connected input and output units. 
 

Activity Of Input Unit Activity Of Output Unit Direction Of Desired Weight Change 
Positive Positive Positive 
Negative Negative Positive 
Negative Positive Negative 
Positive Negative Negative 

 What remains is to convert the qualitative account of desired weight changes that is given 
in Table 9-2 into a quantitative equation that will generate numbers that can be used to fill in the 
values of the matrix ∆t+1 during learning.  An examination of the table provides a clear indication 
of the kind of mathematical operation to use.  Note that if one were to take the value (i.e., the 
mathematical sign) of each of the first two columns and multiply them together, then the result 
would be the value in the third column of the table.  In modern Hebb-style learning, the basic as-
sumption is that the desired weight change for the connection between input unit i and output unit 
j is equal to the product of the activities of the two units: 

Table 9-2. The direction of weight changes that will enhance the relationship between 
patterns of input and output unit activities. 

 
δij = ai • ai     (Equation 9-7) 

 
 Equation 9-7 has two main advantages.  First, under the assumption that unit activities 
can have negative or positive values, this equation creates weight changes of the desired sign 
according to Table 9-2.  Second, this equation generates weight changes that reflect the relative 
amount of activity in both units.  Imagine that the two processing units were both exhibiting posi-
tive activities, but that the two activities were very weak (e.g., values of, say, 0.05).  It would seem 
plausible in this situation to not make a very large change to the connection weight.  Equation 9-7 
accomplishes this.  For example, when two fractional positive values are multiplied together, as 
would be the case in our imagined situation, the resulting connection weight change is positive, 
but is also very small.  Conversely, if both processing units were exhibiting very large activities, 
then it stands to reason that the connection between them should be changed a great deal.  
Again, Equation 9-7 automatically accomplishes this. 
 
 One minor modification to Equation 9-7 permits the exploration or manipulation of a richer 
notion of learning.  One can imagine some situations in which a system is capable of learning a 
great deal, and other situations in which a system is less capable of learning.  For instance, my 
kids are more likely to learn things in school when they are rested than when they are tired. In 
Hebb-style learning, such general effects can be modeled by using a learning rate, which is a 
constant used to scale the result of Equation 9-7 up.  Traditionally, the Greek letter η represents 
the learning rate.  When η is small or fractional, the desired weight changes will be small, which is 
analogous to the situation in which a tired child is trying to learn.  When η is large, the desired 
weight changes will be amplified, which is analogous to the situation in which a rested child is 
trying to learn.  This is all accomplished by multiplying the desired weight changes by the learning 
rate, as is indicated in Equation 9-8: 
 

δij  = η (ai • ai )    (Equation 9-8) 
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 To bring this discussion to a close, Equation 9-8 defines how Hebb-style learning can be 
used to compute the desired change for a single weight in the distributed associative memory.  
Linear algebra provides a very compact notation for defining every entry in the matrix ∆t+1.  Re-
member the rule of thumb that claimed that the result of combining two vectors together had as 
many rows as the first vector in the combination, and had as many columns as the second vector.  
We used this rule of thumb to predict that when the inner product was computed (e.g., Equation 
9-5) the result would be a number (i.e., a vector with one row and one column.  Imagine we had 
two vectors, c and d, and combined them in the reverse order than that used in Equation 9-5.  In 
other words, what if they were multiplied together in an expression in which the transposed vector 
was the second component, instead of being the first: d • cT?  Using our rule of thumb, we would 
not predict that we would get a single number.  Instead, we would predict that the result of this 
equation would be a full matrix with as many rows as were in vector d, and as many columns as 
were in cT.  This matrix-producing operation is called the outer product. 
 
 The outer product is used to define how all of the desired weight changes for the distrib-
uted associative memory are to be calculated.  Imagine that vector d represents some pattern of 
activity that has been presented to the output units of the memory, and that vector c represents 
some pattern of activity that has been presented to the input units of the memory.  The desired 
weight changes are defined as: 
 

∆t+1 = η (d • cT)   (Equation 9-9) 
 

The calculation of the outer product is illustrated in Figure 9-5.  Every entry δij in the ma-
trix ∆t+1 is equal to the value ci multiplied by the value dj.  This is the outer product.  The result of 
this operation is then scaled by the learning rate, by multiplying it by the learning rate constant η. 
 
9.2.3 Behavior Of The Distributed 
Associative Memory 
 
 Now that Hebb-style learning has 
been defined using the outer product of two 
vectors, we are in a position to examine the 
behavior of this kind of memory system.  
This section does this in two ways.  First, it 
uses what we have learned about linear 
algebra to explore the properties of this 
memory system.  Second, it uses these 
equations to develop a computer simulation of 
a distributed associative memory that can be 
empirically explored. 

Figure 9-5.  Using the outer product to 
define the desired weight changes in ac-

cordance with Hebb-style learning. 

 
9.2.3.1 Computational Account Of The Model 

 
 Dawson (1998) has argued that one of the key approaches taken by cognitive scientists 
to explain an information processing system is computational.  In adopting the computational ap-
proach, one formally defines some characteristics of interest in a system (i.e., in some mathe-
matical or logical notation).  Then one uses formal operations to explore the properties of the sys-
tem, typically by constructing mathematical or logical proofs. 
 
 One of the reasons that linear algebra was used to define the properties of the distributed 
associative memory in the previous sections was because it permits us to examine the system 
computationally.  In particular, we can quickly manipulate the memory system’s equations to gen-
erate proofs about its ability to function.  We can also use the equations to determine whether 
there are some general situations in which it will fail to operate as intended. 
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 As the first step in the computational analysis of a distributed associative memory gov-
erned by Hebb-style learning, let us make some simplifying assumptions.  First, let us assume 
during learning that η has a value of 1.  Because of this, it will be omitted from the learning equa-
tions.  This is only being done to simplify the equations.  The effect of different values of η will be 
explored in more detail in the simulation described in Section 9.2.3.2. 
 
 The second assumption involves the properties of the to-be-learned vectors that will be 
used in the equations below.  Let us imagine that there are four of these vectors: a, b, c, and d.  
We will assume that this set of vectors is orthonormal.  At a general level, what this assumption 
means is that each of these vectors has a length of 1.00, and is completely uncorrelated with the 
other three vectors in the set.  Mathematically, this assumption involves assuming certain proper-
ties are true of the inner products of the vectors in this set.  In particular, it is assumed that if one 
takes the inner product of a vector with itself, the result will be equal to 1.  However, if the inner 
product is taken between a vector and a different member of the set, the result will be equal to 0.  
For example, this assumption means that aT • a = 1, but that aT • b = 0, aT • c = 0, and aT • d = 0.  
The importance of this second assumption will be apparent shortly. 
 
 Now let us define a simple learning sequence in which the distributed associative mem-
ory first learns the association between a and b by computing the outer product b • aT and then 
learns the association between c and d by computing the outer product d • cT.  This process of 
learning is detailed in Table 9-3, which is essentially the same as Table 9-1 with a few more spe-
cific details added because of our knowledge of which vectors are being learned at each trial: 
 

Trial (t+1) Operation Equation Describing Weight Values 
0 Start with the 0 matrix W0 = 0 
1 Associate a with b W1 = W0 + ∆1 

         = 0 + (b • aT) 
     = (b • aT) 

2 Associate c with d W2 = W1 + ∆2  

         = (b • aT)+ ∆2 
     = (b • aT)+ (d • cT) 

 Now that the distributed memory has learned two different associations, we can use lin-
ear algebra to predict its ability to recall remembered information.  In this example, information is 
retrieved from the memory system is achieved by presenting either vector a or vector c as a cue 
and using the retrieval operation that was defined in Equation 9-6.  If recall is correct, then when 
a is presented as a cue, the vector b should be retrieved; when c is the cue, d should be re-
trieved.  Table 9-3 provides the mathematical details about recall from the memory.  It takes 
Equation 9-6, and replaces the weight matrix with the more detailed expression for the weights 
that was provided in Table 9-2.  It then works the cue vector into the parentheses.  When this is 
done, two inner products are revealed.  Because of our assumption that the set of vectors is or-
thonormal, one of the inner products works out to 0, canceling out a vector.  The other inner 
product works out to 1.  As a result, correct recall is achieved. 

Table 9-2. Learning two pairs of vectors 
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Cue Recall Equation Comments 
a r  = W2a 

   = ((b • aT)+ (d • cT))a 
   = b • aT• a + d • cT • a 
   = b • (aT• a) + d • (cT • a) 
   = b(1) + d(0) 
   = b 

Equation 9-6 
Expand W2 from Table 9-2 
Move vector a into the parentheses 
Identify the inner products with parentheses 
Compute inner products (orthonormal assumption) 
b is correctly recalled 

c r  = W2c 
   = ((b • aT)+ (d • cT))c 
   = b • aT• c + d • cT • c 
   = b • (aT• c) + d • (cT • c) 
   = b(0) + d(1) 
   = d 

Equation 9-6 
Expand W2 from Table 9-2 
Move vector c into the parentheses 
Identify the inner products with parentheses 
Compute inner products (orthonormal assumption) 
d is correctly recalled 

 The equations that we have just been manipulating in Tables 9-2 and 9-3 make two im-
portant points.  First, they have shown that when we make a particular assumption about the rela-
tionships between the patterns being associated, Hebb-style learning works.  Furthermore, they 
show that this is accomplished with a single set of connections between processing units.  The 
weight matrix W2 is a single entity, but from Table 9-3 it is clear that it holds information about the 
association between a and b and between c and d.  Second, these equations demonstrate a 
computational analysis (Dawson, 1998) of this kind of memory system.  We have been able to 
use mathematics to demonstrate correct learning and recall; we did not need to program a simu-
lation of this system to investigate these properties. 
 
 Computational analyses can also be used to demonstrate some of the problems with 
Hebb-style learning.  The assumption that the set of to-be-associated vectors is orthonormal is 
extremely strong.  What it amounts to is the claim that there can be absolutely no correlation be-
tween different patterns at all.  If we were to be learning associations between entities in the 
world, then this assumption would be very limiting.  For instance, in many cases we would expect 
there to be similarities or correlations between these objects.  Indeed, one would expect – as did 
many of the associationists – that such correlations would be an important aid to memory. 
 

Cue Recall Equation Comments 
a r  = W2a 

   = ((b • aT)+ (d • cT))a 
   = b • aT• a + d • cT • a 
   = b • (aT• a) + d • (cT • a) 
   = b(1) + d(½) 
   ≠ b 

Equation 9-6 
Expand W2 from Table 9-2 
Move vector a into the parentheses 
Identify the inner products with parentheses 
Compute inner products  
b is not correctly recalled! 

c r  = W2c 
   = ((b • aT)+ (d • cT))c 
   = b • aT• c + d • cT • c 
   = b • (aT• c) + d • (cT • c) 
   = b(½) + d(1) 
   ≠ d 

Equation 9-6 
Expand W2 from Table 9-2 
Move vector c into the parentheses 
Identify the inner products with parentheses 
Compute inner products  
d is not correctly recalled! 

Table 9-3. Correct recall of different associations from the same memory. 

Table 9-4. Incorrect recall due to correlation between c and a. 
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 To examine the effect of correlation on Hebb-style learning, let us make a slight modifica-
tion to our orthonormality assumption.  We will again be interested in learning associations be-
tween four different vectors, a, b, c, and d.  We will assume once again that the inner product of 
any of these vectors with itself will result in a value of 1.  We will also assume that a, b, and d are 
uncorrelated, so that the inner product of one of these vectors with one of the other two in this 
group of three will result in a value of 0.  All of these assumptions were used in our previous 
analyses.  Our change in assumptions will involve vector c.  We will assume that this vector is still 
not correlated with vectors b or d, but that it does have a strong correlation with vector a.  In par-
ticular, we will assume that the inner product of c with a is equal to ½.  
 
 Table 9-4 provides the equations for recall with our change in assumption about the rela-
tionship between c and a.  In this case, because these two vectors are correlated, their inner 
product does not equal 0, and as a result does not completely cancel out part of the recall equa-
tion.  As a result, there is noise or error added to the recall.  Instead of recalling b when presented 
a as a cue, the memory recalls b plus some added noise: b + ½d.  Instead of recalling d when 
presented c as a cue, the memory recalls d plus some added noise: d + ½b.  The amount of 
noise that is evident in the recall is exactly equal to the correlation between c and a.  If this corre-
lation were to increase, then the amount of noise in the recalled vectors would also increase.  If 
this correlation were to decrease, then the amount of noise in the recalled vectors would also de-
crease.  It is only when this correlation is equal to 0 that there is no noise and recall is perfect. 
 
 The linear algebra that we have just reviewed has shown that Hebb-style learning of as-
sociations has problems when the to-be-associated patterns are correlated with one another.  
This provides one strong suggestion that a different approach to learning associations should be 
considered if one is interested in training a distributed associative memory.  In the next section, 
we will explore Hebb-style learning with a computer simulation in an attempt to identify some fur-
ther problems.  Later, these problems will lead to a reformulation of the rule that we use to modify 
connections in the memory system.  
 

9.2.3.2 Observing The Behavior 
 
 The preceding sections have provided a mathematical description of a distributed asso-
ciative memory, a formal definition of one method for storing associations in this memory, and 
mathematical proofs that show situations in which this memory works perfectly, as well as cir-
cumstances in which this memory does not function as well as desired.  In this section, we will 
examine this same memory and learning rule, but instead of working with the system computa-
tionally, we will work with it algorithmically by observing the performance of a computer simula-
tion. 
 
Given the mathematical understanding of the memory that we have already achieved, one might 
wonder about the need for creating a computer simulation.  However, a working computer simula-
tion can quickly shed some light on practical issues that are not explicitly addressed in mathe-
matical proofs.  How fast is this type of learning when the memory is simulated on a digital com-
puter?  How is performance affected when the size of the memory grows?  How does the learning 
rate affect performance?  “Behavior is sometimes explainable in retrospect, but it is necessary to 
do the numerical experiments to see if ideas are actually workable, or if unforeseen problems ap-
pear.  They often do.  As only one example, there are a number of learning rules that can be 
proved to work mathematically.  Unfortunately, when simulations are done, learning times are 
found to be enormous, totally outside the boundaries of practicality.  Or the results are immensely 
sensitive to noise, or error, or to values of particular parameters” (Anderson & Rosenfeld, 1988, p. 
65). 
 
 The simulation that was used to generate the results that are described below was pro-
grammed in Visual Basic 6.0 as an instructional tool to be used to explore a distributed associa-
tive memory.  At the end of this chapter are directions for obtaining a free copy of this software, 
instructions for its use, and example training sets.  This software can be used to perform all of the 
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experiments that are described below, and will save the results in a variety of formats (text files, 
Microsoft Excel spreadsheets) for later exploration and analysis.  The reader can also use the 
instructions to create their own training sets in a format that can be read by the network. 
 
 The first demonstration using this software involves testing the memory’s performance 
when it learns the associations between a set of orthonormal vectors.  I used Maple 5 to create a 
set of eight different vectors, with each vector having eight different entries.  Each of these vec-
tors was scaled to have a length of 1, and the set of vectors was constructed in such a way that 
the inner product of a vector with itself was equal to 1, and the inner product of a vector with any 
other vector in the set was equal to 0.  This set of vectors is given in Table 9-5, and was used to 
create eight different stimulus-response pairs to be used to train the network.  The pairs were 
vectors a and h, b and g, c and f, d and e, e and d, f and c, g and b, and h and a. 
 

Name Values Of Each Vector 
a 0.27 0.39 -0.31 -0.16 0.64 -0.48 0.10 0.07 
b 0.35 -0.22 0.06 -0.28 0.29 0.28 -0.47 -0.61 
c 0.32 0.62 0.19 -0.08 -0.23 0.24 -0.47 0.38 
d -0.33 0.25 0.20 0.01 0.53 0.65 0.30 0.05 
e 0.25 0.45 -0.01 -0.05 -0.37 0.06 0.54 -0.55 
f -0.04 -0.05 -0.83 -0.34 -0.16 0.38 0.01 0.15 
g -0.52 0.37 -0.29 0.43 -0.01 -0.10 -0.41 -0.38 
h 0.51 -0.14 -0.23 0.77 0.11 0.24 0.07 0.08 

 This set of eight stimulus-response pairs that were created by using this table were pre-
sented to the network under the following conditions.  First, the learning rate η was set to the 
value of 0.10.  Second, the network was trained for 10 epochs, at which time training stopped.  
Each epoch represents a “sweep” through each of the eight stimulus-response pairs.  During one 
epoch, each pair was taken once, presented to the network (i.e., by presenting the cue pattern to 
the input units and the response pattern to the output units), and the weights were modified ac-
cording to the Hebb rule.  Thus at the end of training in this experiment, each pair had been pre-
sented to the network ten different times. 

Table 9-5. A set of eight orthonormal vectors used for training. 

 
 In order to examine the performance of the 
network, a measure of total network error was com-
puted at the completion of every training epoch.  
This was done as follows:  First, each cue member 
of a stimulus-response pair was presented to the 
input units of the network, and the network’s 
response to this cue was computed using the recall 
equation.  Second, the resulting network response 
was compared to the correct response.  This was 
accomplished by subtracting the actual activity of 
each output unit from the correct or desired activity.  
This difference was then squared to remove any 
resulting negative signs.  The squared values ob-
tained for each of the eight output units were 
summed together for each of the patterns, and then 
these eight sums were themselves summed together 
to create a single measure.  This measure is the 
sum of squared error (SSE), and provides an index 
of network error summing across all output units and 

Figure 9-7. Network error as a func-
tion of training in Simulation 1
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all training patterns.  If the network were correctly recalling all of the associates, then the SSE 
would have a value of 0. 
 
 

ier. 

Figure 9-7 shows the SSE that was computed for the network after each epoch of training 
in Simulation 1.  This figure demonstrates a systematic decline in network error with each sweep 
through the training patterns, and shows that SSE reached a value of 0 at the end of the 10th ep-
och.  It would be expected that 10 presentations of each pair would be required to generate per-
fect recall in this experiment, because the learning rate η was set at 0.10.  In this case, the 
behavior of the network is completely consistent with our expectations from the mathematical 
treatment that was presented earl
 

 Input  1 Input  2 Input  3 Input  4 Input  5 Input  6 Input  7 Input  8
Output  1 -0.28 0.28 -0.57 0.34 0.42 -0.11 0.09 0.46 
Output  2 0.28 -0.10 -0.40 -0.09 0.12 0.81 0.23 -0.16 
Output  3 -0.57 -0.40 -0.22 -0.10 -0.18 -0.16 0.56 -0.28 
Output  4 0.34 -0.09 -0.10 -0.42 0.66 -0.41 0.13 -0.27 
Output  5 0.42 0.12 -0.18 0.66 -0.19 -0.26 0.18 -0.46 
Output  6 -0.11 0.81 -0.16 -0.41 -0.26 -0.03 0.11 -0.24 
Output  7 0.09 0.23 0.56 0.13 0.18 0.11 0.71 0.24 
Output  8 0.46 -0.16 -0.28 -0.27 -0.46 -0.24 0.24 0.53 

 Table 9-7 provides the connectionist weights that are found in the network at the end of 
Simulation 1.  An examination of this set of weights indicates that the associative memory is in-
deed distributed.  We know from the recall performance of the network that these weights are 
storing information about eight different associations.  However, in looking at these weights, we 
do not see any evidence that these associations are stored locally.  For instance, it does not ap-
pear that one row of the weight matrix stores information about one association, and that another 
row stores information about a different association.  All of the weights have been affected by 
training, and information about all eight associations is distributed throughout the entire weight 
matrix. 

Table 9-6. The final weights from the network trained in the first study. 

 
 Earlier, we saw that our computational analy-
ses demonstrated that one problem with Hebb learning 
was that it failed to produce perfect results when the 
patterns being associated did not conform to the or-
thonormality assumption.  When this assumption is 
violated, this means that some of the vectors in the 
training set are similar to, or correlated with, others.  
To examine this kind of problem with the computer 
simulation, a new training set was constructed.  It used 
the first seven vectors that were listed above in Table 
9-5.  However, vector h was replaced with a new vec-
tor.  This vector was created by taking the first 4 en-
tries from vector a, and using them as the first four 
entries in the new vector h.  Then the last 4 entries 
from vector b were taken, and used as the last 4 en-
tries in vector h.  As a result of this manipulation, vec-
tor h had substantially high correlations with vectors a 
and b (0.36 and 0.78 respectively).  These correlations 
represent a violation of the orthonormality assumption. 

 

Figure 9-8. Network error as a 
function of training in Simulaton 

2.  SSE never reaches 0. 
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In Simulation 2, this new table of vectors was used to create a set of eight stimulus-
respons

Another important way in which correlation 
can be 

 

A more detailed analysis of the kinds of errors 
 its performance is being affected by the 

e pairs in accordance with the procedure that was used in the first simulation.  The net-
work was then trained on these eight associates for 10 epochs, using the exactly the same 
method that was described earlier.  Figure 9-8 illustrates the performance of the network, and 
confirms our expectations that correlations between vectors disrupt Hebb learning.  The figure 
provides a graph of network SSE as a function of training.  As can be seen from this graph, SSE 
has not reached a value of 0 during this simulation.  This shows that recall was not perfect. 
 

Figure 9-9. Network error as a 
function of training in Simulation 

3.  

built into a training set is to make the training 
set linearly dependent.  This means that one vector in 
the set is equal to a weighted sum of other vectors in 
the set.  To illustrate the effect of this on Hebb learn-
ing, a linearly dependent training set was created. 
This was done by defining a new vector h as being 
equal to ½ (a + b).  That is, each entry of vectors a 
and b were added together and then divided by 2 to 
produce a new vector that was the average of vectors 
a and b.  This new vector h is obviously correlated 
with both vectors a and b because it was constructed 
from them.  Simulation 3 was conducted with this line-
arly dependent training set, using the same methodol-
ogy that was employed in the first two studies.  Figure 
9-9 illustrates the performance of the network, and 
shows again that the network was not able to learn this 
training set properly. 
 
 
made by the network in Simulation 3 clearly show that
linear dependence that was built into the training set.  Table 9-7 provides the errors (desired ac-
tivity – observed activity) made by each of the output units to each of the 8 cue patterns.  As can 
be seen from the table, the network’s errors in recall are quite selective.  Indeed, for five of the 
eight cues, the network’s recall is perfect, because there is no error in any of the output units.  
The only time that error is observed is when a, b, or h is used as a cue.  For two of these situa-
tions, the error is fairly small.  For the third situation, when the cue is a blend between two other 
cues that the network has already seen, there is substantial error in all of the output units. 
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Stimulus Error Calculated For Each Output Unit 
Cue Response OUT  1 OUT  2 OUT  3 OUT  4 OUT  5 OUT  6 OUT  7 OUT  8

a h -0.14 -0.20 0.15 0.08 -0.32 0.24 -0.05 -0.03 
b g -0.14 -0.20 0.15 0.08 -0.32 0.24 -0.05 -0.03 
c f 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
d e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
e d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
f c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
g b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
h a 0.24 -0.03 0.05 -0.19 0.09 -0.14 0.35 0.36 

 A closer examination of Figures 9-8 and 9-9 reveals a second counterintuitive property of 
Hebb learning.  In both figures, it appears that SSE has reached a minimum value before the 10th 
sweep of training, and is actually rising as more training is conducted.  Our general sense about 
learning is that this shouldn’t be happening.  We would normally expect that more learning should 
result in better performance.  So, if learning is operating the way that we would expect, then SSE 
should not increase.  Is the apparent increase in the two figures real, or is it a minor aberration?  
If it is real, is it due to Hebb learning in general, or is it a more specific result of violating the or-
thonormality assumption? 

Table 9-7. Network errors from the third simulation study. 

 
 To explore these questions in more detail, 
Simulation 4 was carried out.  This simulation was 
identical to Simulation 1, with the exception that 
instead of training the network on the orthonormal 
patterns for 10 epochs, it was trained for 30 epochs.  
The results of Simulation 4 are provided in Figure 9-
10.  As can be seen in this figure, after network SSE 
drops to 0 following the 10th epoch of training, SSE 
begins to rise, and is actually quite large at the end of 
the 30th epoch.  At the end of this simulation, total 
network error is over three times the size that it was 
before any learning had started at all.  This 
unfortunate finding is due to the fact that Hebb learn-
ing modifies weights after each stimulus presentation, 
even when the weights should not be changed.  In 
other words, Hebb learning does not use any 
feedback about the errors that the network is making.  
If it did, then this would prevent it from making 
unnecessary changes to its weights, and from undoing 
the correct learning that it has already accomplished. 

Figure 9-10.  Network SSE in Simu-
lation 4. 

 
9.3 Beyond The Limitations Of Hebb Learning 

 
 The previous section used computational analyses and computer simulations to examine 
some of the properties of a distributed associative memory that uses the Hebb rule to learn asso-
ciations between presented pairs of stimuli.  In this section, we will quickly review some of the 
drawbacks of this type of system.  We will then use these drawbacks to motivate discussion of a 
second learning rule.  The goal of this new rule is to train the memory in such a way that some of 
the problems that we have identified are solved. 
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9.3.1 The Limitations Of Hebb Learning 
 
 There are three general reasons that the Hebb learning rule has enjoyed a great deal of 
popularity amongst researchers who are interested in developing theories of associative memory.  
First, we saw in the historical review of associationism that one of the constants from one theory 
to the next was the inclusion of the law of contiguity.  The Hebb rule is an elegant statement of 
this fundamental mode of association.  Second, in modern cognitive science there is an increas-
ing desire to relate properties of functional theories to neural mechanisms (Dawson, 1998).  The 
Hebb rule is one of the few connectionist learning rules that seems to be biologically plausible.  
Many researchers have taken pains to point out the similarities between Hebb’s account of learn-
ing and the biological mechanisms that govern long-term potentiation in the brain (Brown, 1990; 
Cotman, Monaghan, & Ganong, 1988; Martinez & Derrick, 1996).  Third, even when memory sys-
tems trained by Hebb-style learning rules make mistakes, these mistakes are interesting, be-
cause in many cases they are analogous to the kinds of errors that one finds in human experi-
ments on associative learning (Eich, 1982; Murdock, 1982, 1997). 
 
 In spite of these attractions, the theoretical and empirical evidence that we have collected 
earlier in this chapter points to some severe limitations of a distributed associative memory that is 
trained by the Hebb rule.  First, the memory only works well when the stimuli being associated 
are completely uncorrelated.  As soon as the orthonormality assumption is violated, one cannot 
guarantee that the memory will recall the correct response when given a cue.  Second, the Hebb 
rule is not sensitive to the performance of the memory system.  This means that the Hebb rule will 
modify network connections even in situations where these modifications are not required be-
cause perfect recall has been achieved. 
 
9.3.2 Overcoming The Limitations 
 
 The combination of these problems with Hebb learning and the general attractiveness of 
this learning rule suggests that we should attempt to explore some ways in which the rule can be 
improved without throwing away many of its attractive properties.  The purpose of this section is 
to describe such a refinement, and to define a new rule called the delta rule.  We will see that the 
delta rule ultimately relies on association by contiguity, and therefore maintains many of the es-
sential properties of the Hebb rule.  However, the delta rule is explicitly designed to teach a net-
work by providing it feedback about the kinds of errors that it makes.  As a result, the delta rule 
provides one approach to overcoming some of the limitations of Hebb learning that we have al-
ready encountered. 
 

9.3.2.1 Supervised Learning 
 
 In connectionist research, a common distinction is made between unsupervised learning 
and supervised learning.  In unsupervised learning, a network modifies its connection weights in 
an attempt to remember regularities that it has discovered in its environment.  However, it never 
receives any information about what some programmer might think are desirable regularities.  It 
therefore also never receives any feedback about whether its responses are correct or incorrect.  
In this regard, Hebb learning is an example of unsupervised learning.  The fact that Hebb learning 
does not take into account errors that are being made by a network accounts for problems like 
the increase in network SSE that was illustrated in Figure 9-9. 
 
 In supervised learning, the goal of learning is for a network to generate a set of re-
sponses that are desired by a programmer (or a teacher).  When the network generates a re-
sponse to a stimulus, this observed response is compared to a desired response, which is often 
called the target response.  Typically, one compares these two responses by subtracting the ob-
served response (0) from the target response (T) for each output unit in the network.  That is, the 
error for output unit i (εi) is: 
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εI = Ti - Oi     (Equation 9-10) 

 
 One of the advantages of supervised learning is that learning is only driven by mistakes.  
This implies two different things.  First, if no mistake is made, then no learning will occur, because 
no learning is required.  Second, the degree of learning should be proportional to the degree of 
error.  If a system makes a very large error, then there should be very large changes to its con-
nection weights.  However, if a system makes a very small error, then there should be a corre-
spondingly small change to its connection weights.  If we could replace the Hebb rule with a su-
pervised learning rule that operated in this fashion, then we would definitely be in a position to 
solve one of the problems with Hebb learning that we have already identified.  To be more spe-
cific, if our distributed associative memory was supervised when it learned, then we would not 
observe the problem that was illustrated in Figure 9-9, because once total SSE had dropped to 0, 
no more connection weight changes would occur. 
 
 The question is how to reformulate the Hebb rule in such a way that it can be converted 
from an unsupervised learning rule to a supervised learning rule.  As a first pass at the logic of 
this reformulation, consider Table 9-8, which is a variation of Table 9-2.  The purpose of Table 9-8 
is to consider the activity in a single input unit, treating it for the sake of simplicity as being merely 
positive or negative.  This input unit is connected to a single output unit, and the error for this unit 
has been calculated according to equation 9-10 after some pattern has been presented to the 
network.  Again, for simplicity’s sake, we consider the result of this calculation to be a value that 
is positive, negative, or equal to zero.  The table lays out the possible combinations of input val-
ues and error values in order to make clear what would need to happen to the weight of the con-
nection between the two units in order to reduce the error that was produced the next time that 
the pattern was presented to the network.  
 

Activity Of  
Input Unit 

T - O Implication Operation To 
 Reduce Error 

Direction Of Desired  
Weight Change 

Positive Positive T > O ↑ O Positive 
Positive Negative T < O ↓ O Negative 
Positive Zero T = O None Zero 
Negative Positive T > O ↑ O Negative 
Negative Negative T < O ↓ O Positive 
Negative Zero T = O None Zero 

 For example, consider the first three rows of the table, for which the input unit has been 
activated with some positive value.  In the first case, the error value is positive.  This means that 
the target activity is greater than the observed activity.  In order to reduce error, this means that 
the observed activity must be increased.  For this pattern, this could be accomplished by making 
the connection weight more positive, because this would amplify the positive signal being sent by 
the input unit.  In the second case, the target activity is smaller than the observed activity, which 
means that the observed activity has to be made smaller to reduce error.  This would be accom-
plished by making the connection weight more negative, because this would attenuate the posi-
tive signal being sent by the input unit.  In the third case, the target activity is equal to the ob-
served activity, which indicates that no change should be made at all to the connection weight. 

Table 9-8. The logic of weight changes during supervised learning. T represents the 
target value for an output unit, and O represents the observed value for the output unit. 

See text for further details. 

 
 Similar logic can be followed for the remaining three rows in the table.  However, be-
cause in these instances the input unit activity is negative, the change to the connection weight 
will be opposite in direction to the changes that were just described.  In the first case, the connec-
tion weight must be made more negative in order to amplify (i.e., make more positive) the nega-
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tive signal being sent by the input unit.  In the second case, the connection weight must be made 
more positive in order to attenuate (i.e., make more negative) the negative signal coming from the 
input unit.  Of course, in the third case there again would be no change made to the connection 
weight because there is zero error being generated by the output unit. 
 

Earlier in this chapter, we motivated the rule for Hebb-style learning by observing that if 
we multiplied the first two columns of Table 9-2 together, the result would be the third column.  A 
similar situation now arises in our discussion of supervised learning.  If one were to take the first 
two columns of Table 9-8 and multiply them together, the result would be the last column of the 
table, which indicates the direction of weight change to make in order to reduce error.  This in-
spires the following learning rule for a single connection between input unit i and output unit j: 
 

δij = ai (Tj - ai)    (Equation 9-11) 
 
where δij is the desired weight change, is the ai activity of the input unit, Tj is the target activity for 
the output unit, and ai is the observed activity in the output unit. 
 
 Equation 9-11 has two very nice properties that suggest that it is an excellent choice for a 
supervised learning rule for connections in a distributed associative memory.  First, the equation 
changes the weight in the direction that is required to reduce error, because the equation is con-
sistent with the logic that we worked through when discussing Table 9-8.  Second, it is sensitive 
to amount of error.  If the value of Tj - ai is large, then the change in the weight will be large.  If the 
value is small, then the change in the weight will be small.  If the value is zero, then – crucially – 
there will be no change in weight.  This equation places a natural brake on the learning process, 
solving one of the problems that we identified with the Hebb rule. 
 

9.3.2.2 The Delta Rule 
 

The final step in defining a supervised learning rule for the distributed associative mem-
ory is to take Equation 9-11 and modify it by including a learning rate, and by expressing it in 
terms of linear algebra so that we can use one equation to define the changes for all the weights 
in a network that consists of multiple input and output units.  When we defined the Hebb rule, we 
used the outer product of two vectors – scaled by a learning rate – to define the matrix of weight 
changes ∆t+1.  We can also follow this procedure for defining our supervised learning rule, which 
is called the delta rule.  Let us assume that vector cT represents some pattern of activity that has 
been presented to the input units of the memory.  Let us also assume that the vector t (for target) 
defines the vector that should be correctly recalled from the memory when c  is used as the cue 
in Equation 9-6.  Let vector o (for observed) be the actual activity that is generated in the output 
units when c is the cue.  The desired weight changes, scaled by the learning rate η, are defined 
as: 
 

∆t+1 = η ((t - o) • cT)   (Equation 9-12) 
 
The expression t – o in Equation 9-12 is the difference between two vectors.  The result 

of this operation will be another vector, with the same number of entries that would be found in 
either vector t or vector o.  Let us name this third vector ε, to represent the fact that it is a vector 
of error values.  Consistent with our definition of error in Equation 9-10, each entry εi in this vector 
is equal to the value (ti – oi).  With this definition of the error vector, we can rewrite Equation 9-12 
as: 

 
∆t+1 = η (ε • cT)   (Equation 9-13) 

 
Equation 9-13 is important in that it makes very explicit the relationship between the delta 

rule and the Hebb rule.  If you compare it to Equation 9-9, you will see that the two learning rules 
are very similar.  The delta rule essentially involves Hebb learning, but this learning is not carried 
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out until after a couple of preliminary steps have been taken.  First, a cue vector is presented to 
the existing memory to see what vector would be recalled from the memory if no weight changes 
were made at all.  Second, an error vector is computed by subtracting this observed recall vector 
from the target vector.  Third, Hebb learning is performed, but the association that is learned is 
between the cue vector and the error vector.  The point of doing this – as was explained in our 
discussion of Table 9-8 – is to only make changes in weights that are necessary to reduce error.  
If the error vector is full of zeroes, then no weight changes will be made when Equation 9-13 (or 
9-12) is applied. 

 
9.3.2.3 The Power Of The Delta Rule 

 
In this section, we are going to examine the performance of the delta rule, and compare it 

to the performance of Hebb learning, by repeating the four simulation experiments that were de-
scribed earlier.  It is also possible to compare the two rules by doing a computational analysis of 
the delta rule, and comparing the conclusions drawn from that analysis to those that we drew af-
ter working through the proofs in Tables 9-3 and 9-4.  While this isn’t done in the current chapter, 
mathematical treatments of the delta rule are available in the literature.  A particularly good one is 
provided by Stone (1986). 

 
Because the delta rule is error correcting, instead of training the associative network for a 

set number of iterations, in each simulation we will train the network until SSE reaches a suitably 
low value.  In these studies that follow, a value of 0.01 SSE was chosen as the criterion to use to 
stop training, because this level of SSE is small enough for us to say that the network has cor-
rectly learned the task.  (If this low level of SSE was not reached after 5000 epochs, then training 
was also stopped, under the assumption that this was sufficient time to learn a small set of asso-
ciates.  If SSE had not dropped to below the criterion after this amount of training, then it was 
likely that the network could not learn the associations).  In order to enable a comparison be-
tween the two learning rules, all other aspects of training (learning rate, stimuli) were identical to 
those used in the previous four simulations. 

 
Simulation 5 is our first test of the delta rule.  In it, 

the delta rule was used to train the distributed memory on 
the associations between the orthonormal set of patterns, 
using the same stimulus set that was used to collect the 
data for Figure 9-7.  The network converged after 34 ep-
ochs, at which time network SSE was equal to 0.0094, 
indicating that the network’s performance was nearly per-
fect.  This shows that the delta rule is indeed capable of 
training associations, but with this particular learning rate, 
the training is slower than we saw with the Hebb rule.  
However, if training is continued, the delta rule continues 
to improve performance.  Figure 9-11 illustrates network 
SSE during the course of 50 epochs of training.  At the end 
of 50 epochs, the delta rule has reduced the network’s er-
ror to 0.0002.  In other words, this particular memory sys-
tem is performing in a fashion that is in more accordance 
with our intuitions:  when the memory has more repetitions 
on the paired associates, its performance improves. 

 

Figure 9-11. Network SSE 
when the delta rule is used in 

Simulation 5. 

Figure 9-11 illustrates an important emergent property of this kind of learning.  Notice 
how network SSE decreases exponentially, with a great deal of learning occurring early in train-
ing, but with learning slowing down as training proceeds.  This is to be expected because the 
amount of learning depends upon the amount of error that the network is making (see Equation 9-
12).  As the network learns more, its error is reduced, and as a result learning slows down.  We 
saw this pattern earlier in Chapter 4 when we discussed mathematical models of learning in gen-
eral, and the Rescorla-Wagner learning rule (Rescorla & Wagner, 1972) in particular.  Figures 4-1 
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and 4-2 illustrate the dynamics of Rescorla-Wagner learning, and show how it decelerates over 
time.  This is because learning is driven in that model by the difference between the current asso-
ciative strength and the maximum possible strength – as the two strengths become more similar, 
learning slows down.  The only reason that Figures 4-1 and 4-2 move in the opposite direction of 
Figure 9-11 is because the former two figures plot learning, while the latter plots error.  One of the 
important findings that demonstrated a strong relationship between connectionism and mathe-
matical models in psychology was a proof that showed that learning rules like the delta rule are 
indeed equivalent to the Rescorla-Wagner rule (Sutton & Barto, 1981). 

 
Figure 9-11 demonstrates that the dynamics of delta rule learning are quite different from 

those o

  1 Input  2 Input  3 Input  4 Input  5 Input  6 Input  7 Input  8

f Hebb rule learning.  Because of this, does the network learn different regularities de-
pending on what learning rule is used?  Table 9-9 provides the connection weights in the associa-
tive memory from simulation five at the end of 50 epochs of training.  A comparison of this table to 
Table 9-6 indicates that the connection weights from the two simulations are nearly identical.  Any 
minor discrepancies between the two probably account for some of the tiny errors that are made 
by the network trained by the delta rule, whose SSE is not perfectly equal to zero.  With further 
delta rule training, we would expect that the two networks would have learned exactly the same 
kind of information, at least for stimulus-response pairs that had been taken from a set of or-
thonormal vectors. 

 Input
Output  1 -0.27 0.27 -0.57 0.34 0.41 -0.11 0.09 0.46 
Output  2 0.27 -0.10 -0.39 -0.09 0.12 0.81 0.23 -0.16 
Output  3 -0.57 -0.39 -0.22 -0.10 -0.18 -0.16 0.56 -0.28 
Output  4 0.34 -0.09 -0.10 -0.42 0.65 -0.41 0.13 -0.27 
Output  5 0.41 0.12 -0.18 0.65 -0.19 -0.26 0.18 -0.46 
Output  6 -0.11 0.81 -0.16 -0.41 -0.26 -0.03 0.11 -0.24 
Output  7 0.09 0.23 0.56 0.13 0.18 0.11 0.70 0.24 
Output  8 0.46 -0.16 -0.28 -0.27 -0.46 -0.24 0.24 0.53 

This is not to say that the two learning rules will 
lead to

When this set of associations is trained using 
the delt

Table 9-9. The final weights from the network trained in the fifth study. 

 exactly the same connection weights in all 
situations, however.  One of the interesting properties of 
the delta rule is that it is more powerful than Hebb 
learning.  Because the rule works explicitly to reduce 
output unit error, it turns out that there are some 
associations that can be stored in a network using the 
delta rule, but which cannot be stored if the network is 
trained using the Hebb rule.  To illustrate this, Simulation 
6 was conducted.  In this case, the training set was the 
same as that used in simulation two, where a new vector 
h was created by taking the first half of vector a and the 
second half of vector b.  We saw in the second 
simulation that this prevented the Hebb rule from 
learning; it reached a minimum SSE of 1.82 after 7 
epochs, and then SSE began to grow again, reaching a 
value of 2.54 after 10 sweeps of training.  The question 
of interest is whether delta rule learning leads to any 
better performance than this. 
 

Figure 9-12.  Network SSE in Simula-
tion 6.  Note that error drops to near 
zero, which was not the case in Fig-

ure 9-8. 
a rule, the network is able to learn the problem.  
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After 15,503 iterations, network SSE has dropped below 0.01, and the training has stopped.  With 
this small level of total error, network performance is near perfect for all eight stimulus-response 
pairs.  The course of learning is illustrated in Figure 9-12.  From this figure, it would appear that 
two stages of learning are evident.  In the first stage, there is an extremely rapid drop in overall 
SSE.  In the second stage – which starts at the sharp elbow on the left side of the graph – there is 
a much more gradual decrease in error.  It is likely that this more complicated pattern of error 
change is the result of dealing with two different types of patterns.  In the first instance, much of 
the sudden drop in error is likely due to the ability of the network to quickly learn the associations 
among the stimulus-response pairs that have not been affected by the change in vector h.  In the 
second instance, the network is slowly adapting itself to deal with the more problematic instances. 

 
It should be pointed out that while the learning depicted in Figure 9-12 was very slow, the 

delta ru

ow is it possible for the delta rule to come up with a set of connection weights that can 
store th

 Input  1 Input  2 Input  3 Input  4 Input  5 Input  6 Input  7 Input  8

le is not necessarily limited to this kind of performance.  For example, if one trains a net-
work on exactly the same set of associations, but sets the learning rate at 0.75, then the network 
will converge on a solution (i.e., reach an SSE of less than 0.01) after only 775 epochs.  Clearly 
the speed of learning is markedly affected by the choice of learning rate. 

 
H
ese eight associates, while this was not possible when the Hebb rule was used to train the 

network?  One empirical clue to this additional power comes from examining the connection 
weights in the network at the end of training.  The weights are provided in Table 9-10.  For sim-
pler problems (i.e., learning associations involving orthonormal vectors), the matrices of connec-
tion weights that resulted were symmetric (see Tables 9-6 or 9-9).  This means that the value in 
cell wij is the same as the value found in cell wji.  If one examines Table 9-10, however, it is clear 
that this matrix is not symmetric at all.  The ability of the delta rule to create a set of connection 
weights that are not symmetric means that it can store a wider range of associations than can be 
learned via the Hebb rule.  This is because the Hebb rule will always produce a symmetric set of 
connection weights.  Because the delta rule is not limited to producing symmetric weights, it is 
more powerful – a fact that we have already demonstrated by showing that the delta rule learned 
the set of associations in Simulation 6, while the Hebb rule was unable to learn the same set of 
associations in Simulation 2. 

 

Output  1 3.23 -0.75 -2.1 5.71 1.01 1.7 0.56 0.97 
Output  2 -1.22 0.53 0.18 -2.62 0.11 -  0.22 0.06 -0.37 
Output  3 0.56 -0.73 -0.71 1.63 0.01 0.42 0.72 -0.12 
Output  4 -1.68 0.01 0.97 -2.91 -0.3 -0.8 -0.21 -0.59 
Output  5 3.82 -0.69 -1.74 5.63 0.63 1.24 0.67 0.04 
Output  6 -7.8 2.84 3.28 -11.91 -1.85 -3.69 -0.96 -1.37 
Output  7 6.19 -1.61 -2.07 9.53 1.15 3.33 1.52 1.12 
Output  8 6.43 -2.04 -2.83 9.03 0.39 3.01 1.03 1.39 

This is no ional analyses of 
this rule

t to say that the delta rule is all-powerful, however.  Computat

Table 9-10. Connection weights from the sixth simulation. 

 have demonstrated that it permits associations to be learned when some correlations 
exist between vectors, but it is unable to learn associations when other correlations exist.  In par-
ticular, the delta rule is not capable of correctly recalling associations when the training set is 
linearly dependent.  To demonstrate this point, a seventh simulation was run in which the delta 
rule was trained on the linearly dependent patterns that were created for simulation 3.  This simu-
lation was run for 20,000 epochs.  However, after all of this training, the network had not con-
verged upon a solution.   By the end of the first 1000 sweeps of training, total error had dropped 
to about 0.544.  Further training did not lead to any noticeable improvement.  (However, further 
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training also did not lead to the network performing any poorer, which demonstrates again one 
advantage of the delta rule over the Hebb rule.) 

 

However, even this inability to learn to deal with the linearly dependent patterns did not 
lead to a complete breakdown in learning.  Table 9-11 provides the error calculated for each out-
put unit and each stimulus at the end of training.  As was the case for Hebb learning, perfect re-
call was observed for 5 of the associates (compare this table with Table 9-6).  The network only 
had difficulty learning the associates that used a, b, or h as the cue.  This was exactly the case 
for Hebb learning.  The only apparent difference between the two error tables is that the delta rule 
led to smaller values of error whenever mistakes were being made. 

Stimulus Error Calculated For Each Output Unit 
Cue Response OUT  1 OUT  2 OUT  3 OUT  4 OUT  5 OUT  6 OUT  7 OUT  8

a h -0.13 -0.06 0.04 0.09 -0.14 0.13 -0.14 -0.14 
b g -0.13 -0.06 0.04 0.09 -0.14 0.13 -0.14 -0.14 
c f 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
d e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
e d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
f c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
g b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
h a 0.25 0.11 -0.07 -0.17 0.27 -0.25 0.26 0.26 

Table 9-11. Network errors from the seventh simulation. 

 
9.4 Associative Memory And Synthetic Psychology 

 
9.4.1 Summary Of Key Points 
 
 This chapter has explored the building of associations between patterns as a first step in 
introducing some of the essential features of connectionist modeling.  The chapter began with an 
historical overview of associationism.  This overview revealed two repeating themes.  First, asso-
ciationists were concerned with a particular mental regularity, sequences of thought.  They were 
struck by the compelling fact that one idea often calls to mind another.  Second, associationists 
were interested in using laws of association to explain mental sequences.  One law that seems to 
appear in every theory of associationism is the law of contiguity, which essentially says that if two 
ideas occur close together in time, then the association between them will become stronger. 
 
 The historical overview of associationism led to a description of a particular connectionist 
network, called a distributed associative memory.  This memory is associative in the sense that 
when two patterns are presented to it, it stores an association between them.  Later, the presen-
tation of one of the patterns is intended to lead to the retrieval of the other from the memory.  This 
memory is distributed in the sense that it uses one set of connection weights to store information 
about many different associations, and this stored information is distributed throughout the entire 
set of weights. 
 
 One of the main goals of describing the distributed associative memory was to introduce 
some of the basic concepts of the connectionist architecture.  Three different categories of con-
nectionist concepts were introduced.  The first concept was the processing unit, defined by a net 
input function, an activation function, and an output function.  The second concept was the modi-
fiable connection, whose weight is used to scale a numerical signal that is sent through it.  The 
third concept was the learning rule, which is used to define how connection weights are modified 
to store the associations that are experienced by the network.  Most of these concepts were 
framed in the context of linear algebra.  For instance, we showed how the inner product of two 
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vectors can be used to define a processor’s net input function, how the outer product of two vec-
tors can be used to define a matrix of desired weight changes, and how the premultiplication of a 
vector by a matrix can be used to define how information is retrieved from a distributed associa-
tive memory. 
 
 Two different learning rules were defined for this particular memory system.  The first was 
the Hebb rule, which defined associations in terms of contiguity of processor activities.  Mathe-
matical analyses of Hebb-style learning indicated that it worked quite well in a situation in which 
the entire set of patterns being associated were uncorrelated.  However, correlations between 
training patterns were shown to produce systematic errors.  These two conclusions were also 
demonstrated with a computer simulation.  The simulation also showed that an additional problem 
with Hebb learning is that it is not error correcting, and as a result makes unwanted changes to 
connection weights when more training is conducted than is required. 
 
 The second learning rule that was defined was the delta rule, which was explicitly de-
signed to solve this last problem with Hebb learning.  The delta rule uses feedback about proc-
essing unit errors to set connection weights.  As a result, learning is driven by the size of error, 
and when error is reduced to zero, learning stops.  A computer simulation was used to demon-
strate this property of the delta rule.  It was also used to demonstrate that the delta rule is more 
powerful than the Hebb rule, in that it was able to learn associations between patterns with some 
correlations between them.  The Hebb rule was unable to do this.  However, some correlations 
between patterns still presented problems to the delta rule.  In particular, sets of vectors that are 
linearly dependent still cause systematic problems for delta rule learning. 
 
9.4.2 Implications For Synthetic Psychology  
 
 The primary goal of describing the distributed associative memory in this chapter was to 
introduce some basic notions about connectionist models.  We will see in the chapters that follow 
that many advances in connectionist architectures can be described as “tweaks” or elaborations 
of some of the concepts that were introduced in this chapter.  However, it is important to realize 
that distributed associative memories are interesting in their own light, and can be used to syn-
thetically explore some issues in the psychology of learning and memory.  Indeed, the software 
that was used to conduct the simulations that were described earlier, and which is freely available 
(see below), might be used by the reader to explore issues that have not been covered at all in 
this chapter. 
 
 Associative learning is still a fundamental topic in psychology and cognitive science, and 
there is a variety of research streams that are worthy of consideration, and of possible future ex-
ploration with computer simulations. 
 
 One key area of research is the study of associative learning in animals.  Throughout the 
history of this topic, the underlying assumption has been that the discovery of elementary asso-
ciative laws that govern animal learning can be used to aid in the understanding of more complex 
types of learning and cognition observed in humans.  However, the current state of this field 
would suggest that these associative laws are complex, and a surprising variety of theories have 
been proposed in recent years.  For example, it is well known that there are a number of regulari-
ties in learning that cannot be explained by the Rescorla-Wagner model (Miller, Barnet, & Gra-
hame, 1995).  Because of this, many different models have been proposed in an attempt to either 
broaden the scope of the Rescorla-Wagner model, or to replace it with a theory that has been 
derived from an alternative framework (for reviews see Pearce & Bouton, 2001; Wasserman & 
Miller, 1997).  “Other cognitive processes such as attention, memory, and information processing 
are now being invoked to help explain the facts of associative learning.  The next several years of 
research will be exciting ones, as neuroscientists and cognitive scientists join experimental psy-
chologists in an interdisciplinary attack on the challenging problems of associative learning and 
behavior change” (Wasserman & Miller, 1997, p. 598). 
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 With respect to this interdisciplinary research program, distributed associative memories 
may provide an interesting environment in which new ideas about associative learning can be 
explored.  For instance, we noted earlier that the delta rule has been proven to be formally 
equivalent to the Rescorla-Wagner rule (Sutton & Barto, 1981).  Presumably, this implies that it 
too suffers from the same limitations that have been motivating new theories about associative 
learning in animals.  Can these new theories be implemented in the contiguity-based scheme that 
we have been developing in this framework?  Can attentional modulations be added to a distrib-
uted associative memory by manipulating stimulus encodings, and then applying something like 
the delta rule? 
 
 There has also been a considerable amount of interest in using models like the one that 
has been introduced in this chapter to account for a number of different regularities in human 
memory (Anderson, Silverstein, Ritz, & Jones, 1977; Eich, 1982; Hinton & Anderson, 1981; Mur-
dock, 1982, 1985; Pike, 1984).  One reason for this interest has been the fact that when distrib-
uted memories make errors, these errors are systematic, and can be related back to the kinds of 
errors that are made by human subjects in associative memory experiments.  For example, we 
saw earlier that under certain conditions a distributed associative memory will generate re-
sponses that represent “blends” of different memories.  Memory models of this type also exhibit 
emergent behaviors that suggest that they provide an excellent environment in which human as-
sociative memory can be explored.  “Current connectionist models have been successful in ac-
counting for a range of basic phenomena such as the effect of contingency on associative learn-
ing, as well as more complex effects such as enhanced responding to an unseen prototype pat-
tern and partial memory for the training items” (Shanks, 1995, p. 151). 
 
 Interestingly, one of the primary attractions of distributed associative memories has been 
the fact that they offer theories that appear to be more biologically plausible than their competitors 
(Hinton & Anderson, 1981; Shanks, 1997).  Indeed, many researchers have recently been inter-
ested in taking networks like the ones that have been described in this chapter, or more sophisti-
cated networks, and using these simulations to study neural mechanisms of learning and memory 
(Brown, 1990; Cotman et al., 1988; Foster, Ainsworth, Faratin, & Shapiro, 1997; Gluck & Myers, 
1997; Lynch, 1986; Martinez & Derrick, 1996). 
 

The reason for this interest has been the discovery of a particular neural phenomenon, 
called long-term potentiation.  Long-term potentiation is the long-lasting increase of synaptic effi-
ciency that occurs when two connected neurons are active (or nearing activity) at roughly the 
same time.  This increase in efficiency appears to be related to the properties of a particular re-
ceptor mechanism, the NMDA receptor.  It also appears to be related behaviorally to memory and 
spatial learning mediated by the hippocampus, because chemicals that block NMDA receptors 
disrupt these behaviors.  In short, the biochemical study of long-term potentiation appears to be 
revealing the mechanisms that underlie the kind of neural changes that motivated theories of as-
sociation by both James (1890) and Hebb (1949). 

 
However, with this increased understanding of long-term potentiation, and with an emerg-

ing and detailed understanding of neural mechanisms, there has also been an increased need to 
propose more sophisticated models of synaptic change.  Brown et al. (1990) note that there have 
been anywhere from 50 to 100 theories of this type, and proceed to review only a subset of these.  
They classify them as being Hebbian algorithms, generalized Hebbian algorithms, and global 
control algorithms.  Again, one question to ask is how might this more sophisticated rules be in-
corporated into the models that have been described in the current chapter.  Do these rules result 
in solving some problems that were not solved by the delta rule?  If implemented, do these rules 
lead to behavioral results that are more or less consistent with the performance of human sub-
jects in memory experiments? 

 
One theme that seems to be emerging in even this cursory glance at the current state of 

research related to distributed associative memories is that, while interesting, the versions of the 
networks that were described in this chapter are not as powerful as would seem to be required to 
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keep up with advances in the field.  What general approach could be used to increase the power 
of these networks?  In the next two chapters, we will consider two very basic – but critical – modi-
fications.  In Chapter 10, we will consider some of the implications of changing the activation 
function from being linear (as is the case in Equation 9-2) to being nonlinear.  In Chapter 11, we 
will consider how the use of a nonlinear activation function permits even more power through the 
use of additional layers of processing units separating network input from network output. 
 

9.5 Software Availability 
 
 The software that was used to run the simulations described in this chapter is available, 
free of charge, from my website: http://www.bcp.psych.ualberta/~mike/book2/.  At the time of writ-
ing, the website includes a Visual Basic 6.0 program and some example training files that can be 
downloaded, as well as instructions on using the program and on creating new training files that 
might be of interest.  In the near future, Java versions of this program will also be available on the 
website. 
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