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Chapter 8:  
Connectionism As Synthetic 

Psychology 
 

8.1 INTRODUCTION 
 
 In Chapter 6, we introduced the synthetic approach with the “thoughtless walker” exam-
ples.  In Chapter 7, we turned to a historical review of more serious robotics research to examine 
why researchers might be attracted to the synthetic approach.  We saw that one of the main at-
tractions was the possibility of generating interesting and surprising behaviors from the interaction 
between a fairly simple system of components and the environment in which this system was 
embedded. 
 
 One concern raised at the end of Chapter 6, and not addressed in Chapter 7, involved 
the relevance of the synthetic approach (as depicted to this point) to the study of psychological 
processes.  In particular, the modern renaissance of the synthetic approach that was pioneered 
by such researchers as Ashby and Grey Walter is strongly associated with the movements of be-
havior-based robotics (Brooks, 1999) and embodied cognitive science (Pfeifer & Scheier, 1999).  
These research traditions are strongly anti-representational, and are largely dedicated to remov-
ing the “think” component from the sense-think-act cycle.  This is strongly reminiscent of a failed 
tradition in experimental psychology, called behaviorism, that attempted to limit psychological 
theory to observables (namely, stimuli and responses), and which viewed as unscientific any 
theories that attempted to describe internal processes that mediated relationships between sen-
sations and actions. I believe we can write a psychology, define it as Pillsbury, and never go back 
upon our definition: never use the terms consciousness, mental states, mind, content, introspec-
tively verifiable, imagery, and the like. “I believe that we can do it in a few years without running 
into the absurd terminology of Beer, Bethe, Von Uexküll, Nuel, and that of the so-called objective 
schools generally. It can be done in terms of stimulus and response, in terms of habit formation, 
habit integrations and the like” (Watson, 1913). 
 
 Modern cognitive psychology emerged from a strong reaction against behaviorism’s anti-
representational stance (Leahey, 1987).  In psychology, there is a long history of powerful theo-
retical and empirical arguments against behaviorism, and as a result behaviorism is no longer an 
accepted position (but see Leahey, 1987, pp. 461-463).  The standard view in psychology is that 
many phenomena cannot be adequately explained without appealing to mental representations.  
Given this situation, and given that we have only considered the synthetic approach in the context 
of anti-representational research, this leads to an obvious question:  is there anything in the syn-
thetic approach that can be applied to the study of representational processes? 
 
 The purpose of this chapter is to consider one version of the synthetic approach that can 
be applied in this way, and which as a result can truly be considered to be synthetic psychology.  
The SEA methodology that we have been discussing in the last two chapters can be employed in 
a research tradition that is interested in exploring representational issues.  This position will be 
supported in this chapter as follows.  First, we will consider the properties of connectionist simula-
tions in the context of the synthetic approach.  This will be done to argue that connectionism of-
fers one – though not the only – medium in which representational, synthetic research can be 
conducted.  Second, we will discuss one case study that has recently appeared in the literature 
(Dawson, Boechler, & Valsangkar-Smyth, 2000).  This case study examines how connectionist 
simulations can be used to investigate issues related to one “higher-order processing” topic: spa-
tial cognition.  We will then use this case study as a motivator to step back and consider a variety 
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of techniques for performing synthetic psychology using connectionism, which is the topic for Part 
II of this book. 
 

8.2 BEYOND SENSORY REFLEXES 
 

The complexity of the behaviors of all of the machines that were surveyed in Chapter 7 
was rooted in a set of simple sensorimotor reflexes that were embedded in a complicated envi-
ronment.  For example, the behavior of all the Lego Dacta robots that were demonstrated in the 
movies at the end of the chapter were based upon simple routines in which a particular sensation 
(e.g., a value detected by a light sensor, or a switch depressed on a touch sensor) was immedi-
ately converted into a particular response (e.g., a particular motor speed, or a change in motor 
direction).  The extent to which the behavior of these robots was complex, surprising, or interest-
ing was due to the interaction of these simple reflexes with the environments in which the robots 
were placed. 

 
The purpose of this section is to briefly consider the extent to which sensorimotor reflexes 

can be relied upon to form the basis of synthetic psychology.  First, some evidence supporting the 
existence of visuomotor modules in humans will be described.  This evidence indicates that sen-
sorimotor reflexes should be plausibly considered as a component of synthetic psychology.  Sec-
ond, the limitations of such reflexes will also be considered.  The claim that will be made is that 
synthetic psychology cannot rely exclusively on such reflexes, and should therefore explore other 
foundations – some of which might be representational. 

 
8.2.1 Visuomotor modules 

 
One of the most influential ideas that has been proposed in cognitive science is that of 

the modularity of perceptual processing (Fodor, 1983).  While “perception is smart like cognition 
in that it is typically inferential, it is nevertheless dumb like reflexes in that it is typically encapsu-
lated” (p. 2).  A module is a domain-specific perceptual system that solves a very particular prob-
lem, and is incapable of solving other information processing problems.  The operations per-
formed by a module are rapid, mandatory, and run to completion once they are initiated.  Fodor 
argues that all of these characteristics are achieved by associating each module with fixed neural 
architecture -- modularity is physically built into the brain.  The corollary of this position is that 
general inferential processing, which is by definition nonmodular, is not going to be associated 
with a fixed neural architecture.  It is because of this that Fodor (p. 119) is not surprised that we 
have a neuroscience of sensory systems, but that we do not have a neuroscience of thought. 

 
The modularity proposal is usually portrayed as being part of the “sense-think-act” cycle 

that defines much of the status quo in cognitive science (Dawson, 1998, Chapter 7).  Specifically, 
many problems in early vision are solved by informationally encapsulated modules (sense).  The 
output of these modules is then passed on to visual cognition or higher-order cognition for infer-
ential or semantic processing (think).  The results of this higher-order processing are then used to 
generate actions.  However, this is not the only way in which modularity has been incorporated 
into cognitive science. 

 
In some of the earliest work on the neuroscience of vision, Lettvin, Maturana, McCulloch, 

and Pitts (1959) identified neurons in the visual system of the frog that only responded to specific 
visual stimuli, and which in some sense were modular feature detectors.  For instance, one type 
of cell appeared to be a “bug detector”, because it only responded to a stimulus that could be de-
scribed as a small, moving black spot.  However, such feature detectors in the frog do not appear 
to feed into a higher-order thinking mechanism.  Instead, the frog’s visual system appears to be 
organized into a system of “sense-act” or visuomotor modules.  Not only do these modules detect 
a specific visual stimulus, but they also generate a specific motor response. 

 
The existence of visuomotor modules in the frog was first demonstrated by Ingle (1973).  

In a seminal experiment, Ingle surgically removed one hemisphere of the optic tectum of a frog.  
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This lesion produced a particular form of blindness in which the frog pursued prey presented to 
the eye that was connected to the remaining tectum, but did not respond to prey presented to the 
eye that would have been connected to the ablated tectum.  The lesion did not affect the frog’s 
ability to avoid a stationary barrier placed between it and its prey.  Importantly, the amphibian 
brain is very plastic, and Ingle found that 6 to 8 months after surgery, the nerve fibers from the 
“bad eye” regenerated, and became connected to the remaining optic tectum on the “wrong” side 
of the animal’s head.  In this case, when a prey target was presented to the “bad eye”, the frog 
was no longer blind to it, and attempted to catch it.  However, because of the tectal rewiring, the 
animal’s responses were in the wrong direction.  The frog always moved toward a location that 
was mirror-symmetrical to the actual location of the target, and this incorrect response was shown 
to be due to the topography of the regenerated nerve fibers.  In other words, one role of the optic 
tectum in the frog is to mediate a visuomotor module that converts a visual sensation directly into 
a motor response. 

 
Perhaps surprisingly, studies of brain-injured patients have demonstrated that the human 

visual system may also be organized into visuomotor modules (Goodale, 1988, 1995; Goodale & 
Humphrey, 1998).  For instance, Goodale and his colleagues have studied one patient, DF, who 
suffered irreversible brain damage as a result of carbon monoxide poisoning.  One result of this 
brain damage was that DF’s ability to recognize visual shapes or patterns was severely impaired.  
She “was unable to describe the orientation and form of any visual contour, no matter how that 
contour was defined” (Goodale, 1995, p. 167).  However, DF’s visuomotor abilities were not im-
paired at all.  “Even though she cannot recognize a familiar object on the basis of its visual form, 
she can grasp that object under visual control as accurately and as proficiently as people with 
normal vision” (p. 169).  Another patient, VK, had the exact opposite pattern of dysfunction after a 
series of strokes.  VK had normal form perception, but her visuomotor control – in particular, her 
ability to form her hand to grasp objects of different shapes – was severely impaired. 

 
8.2.2 Reflexes Vs. Representations 

 
The evidence that there exists, even in humans, modular systems that involve direct link-

ages between sensation and action is consistent with behavior-based robotics and embodied 
cognitive science.  Specifically, research in these fields is based upon the assumption that intelli-
gence emerges situating a system in the world, and is not a result of representational processing.  
The existence of visuomotor modules is strongly suggestive of a human information processing 
architecture that is similar in many ways to Brook's (1989, 1999) subsumption architecture.  How-
ever, even researchers of visuomotor modules in humans would agree that such reflexes are not 
the sole foundations of psychological processing. 

 
For example, Goodale and Humphrey (1998) point out that “while there is certainly plenty 

of evidence to suggest that visuomotor modularity of the kind found in the frog also exists in the 
mammalian brain, the very complexity of day-to-day living in many mammals, particularly in 
higher primates, demands much more flexible organization of the circuitry” (p. 184).  They pro-
pose a reformulation of Ungerleider and Mishkin's (1982) proposal of two separate anatomical 
streams of visual processing.  Ungerleider and Mishkin proposed a ventral stream from primary 
visual cortex to inferotemporal cortex for the processing of visual appearances, and a dorsal 
stream from primary visual cortex to posterior parietal cortex for the processing of visual locations 
– the so-called what-where distinction.  Goodale and Humphrey distinguish these two streams in 
terms of the kinds of representations that they construct, and their purpose.  The dorsal stream 
computes representations of object locations and shapes in an egocentric frame of reference.  
These representations are components of visuomotor modules, and are used to control a variety 
of movements (e.g., saccades, grasps, etc.).  The ventral stream computes representations of 
object features in an allocentric frame of reference.  These representations become part of later 
semantic processing. 

 
Furthermore, the dorsal and ventral streams as described by Goodale and Humphrey 

(1998) are not independent, but are required to interact with one another.  For instance, “certain 
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objects such as tools demand that we grasp the object in a particular way so that we can use it 
properly.  In such a case both streams would have to interact fairly intimately in mediating the 
final output” (p. 203).  The fact that the two systems can interact is supported by theoretical ar-
guments and anatomical evidence (DeYoe & van Essen, 1988) that shows that they are far more 
interconnected than was originally proposed by Ungerleider and Mishkin (1982).  These interac-
tions are, of course, the source of the flexibility and control that Goodale and Humphrey note is 
required by higher-order visual systems to deal with complicated environmental demands. 

 
That stimulus-response reflexes are not sufficient to account for many higher-order psy-

chological phenomena is a theme that has dominated cognitivism’s replacement of behaviorism 
as the dominant theoretical trend in experimental psychology.  In the study of language, this 
theme was central to Chomsky's (1959) critical review of Skinner (1957).  Many of the modern 
advances in linguistics were the direct result of Chomsky’s proposal that generative grammars 
provided the representational machinery that mediated regularities in language (Chomsky, 1965, 
1995; Chomsky & Halle, 1991).  Similar arguments were made against purely associationist 
models of memory and thought (Anderson & Bower, 1973).  For example, Bever, Fodor, and 
Garrett (1968) formalized associationism as a finite state automaton, and demonstrated that such 
a system was unable to deal with the clausal structure that typifies much of human thought and 
language.  Paivio (1969, 1971) used the experimental methodologies of the verbal learners to 
demonstrate that a representational construct – the imageability of concepts – was an enor-
mously powerful predictor of human memory.  The famous critique of “old connectionism” by 
Minsky and Papert (1988) could be considered proofs about the limitations of visual systems that 
do not include mediating representations.  These examples, and many more, have lead to the 
status quo view that representations are fundamental to cognition and perception (Dawson, 1998; 
Fodor, 1975; Jackendoff, 1992; Marr, 1982; Pylyshyn, 1984). 

 
Some robotics researchers also share this sentiment, although it must be remembered 

that behavior-based robotics was a reaction against their representational work (Brooks, 1999).  
Moravec (1999) suggests that the type of situatedness that characterizes behavior-based robotics 
(for example, the simple reflexes that guided Grey Walter’s tortoises) probably provides an accu-
rate account of insect intelligence.  However, at some point systems built from such components 
will have at best limited abilities.  “It had to be admitted that behavior-based robots did not ac-
complish complex goals any more reliably than machines with more integrated controllers.  Real 
insects illustrate the problem.  The vast majority fail to complete their life cycles, often doomed, 
like moths trapped by a streetlight, by severe cognitive limitations.  Only astronomical egg pro-
duction ensures that enough offspring survive, by chance” (p. 46).  Internal representations are 
one obvious medium for surpassing such limitations. 

 
Interestingly, the view that representations provide an adaptive advantage for an organ-

ism, as well as flexibility and control of processing, are both central to the philosophical views of 
Karl Popper.  Popper proposed an evolutionary theory in which organisms are constantly en-
gaged in a process of problem solving, a process that Popper viewed as always being resolved 
through trial and error.  “Error-elimination may proceed either by the complete elimination of un-
successful forms (the killing-off of unsuccessful forms by natural selection) or by the (tentative) 
evolution of controls which modify or suppress unsuccessful organs, or forms of behavior, or hy-
potheses” (Popper, 1979, p. 242).  Popper viewed consciousness as an evolved system of “plas-
tic control”, a system that could be used to control behavior, but which was also subject to 
changes via feedback.  The purpose of representations was argued to supply “controls which can 
eliminate errors without killing the organism; and it makes it possible, ultimately, for our hypothe-
ses to die in our stead” (p. 244). 

 
 In summary, the synthetic models developed in behavior-based robotics and embodied 
cognitive science can be described as systems of sensorimotor reflexes or visuomotor modules 
which, when embedded in a complicated environment, can generate surprising or interesting be-
havior.  These models are consistent with the anti-representational motivation of this research 
trend, namely, the elimination of the “think” component of the “sense-think-act” cycle.  These 
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models are also consistent with evidence of the existence of visuomotor modules in highly com-
plex organisms, including humans.  However, theoretical and empirical arguments would suggest 
that not all psychological phenomena are equivalent to sensorimotor reflexes.  Some representa-
tional processes must exist as well, and it is these processes that are of keen interest to psy-
chologists.  The question that this leads to is this: can the synthetic approach be conducted in a 
way that provides the advantages that have been raised in previous chapters, but that also pro-
vides insight into representational processing? 
 

8.2.3 Synthesis And Representation 
 
 Of course, the answer to the question that was just raised is a resounding yes.  There is 
nothing in the synthetic approach per se that prevents one from constructing systems that use 
representations.  Describing a model as being synthetic or analytic is using a dimension that it is 
completely orthogonal to the one used when describing a model as being representational or not.  
This is illustrated in Table 8-1, which categorizes some examples of research programs in terms 
of these two different dimensions. 
 

 Analytic Synthetic 
 
 

Representational 

• Production system 
generated from analy-
sis of verbal protocols 

• e.g. (Newell & Simon, 
1972) 

• Multilayer connectionist net-
work for classifying patterns 
using abstract features 

• e.g. (Dawson, Boechler & 
Valsangkar-Smyth, 2000) 

 
 

Non-
Representational 

• Mathematical model of 
associative learning 
based upon analysis of 
learning behavior of 
simple organisms 

• e.g. (Rescorla & Wag-
ner, 1972) 

• Behavior-based robotics sys-
tem constructed from a core 
of visuomotor reflexes 

• e.g. (Brooks, 1989) 

Table 8-1.  Classification of some example research programs according to two sepa-
rate dimensions, analytic vs. synthetic and representational vs. non-representational. 

 The placing of most of the research examples in Table 8-1 should be clear from discus-
sions that we have had in preceding chapters.  For example, production system research is des-
ignated as being both analytic and representational.  It is analytic because production systems 
are almost always derived from an intensive analysis of the verbal protocols of human problem 
solvers (Ericsson & Simon, 1984; Newell & Simon, 1972).  It is representational in the sense that 
production systems define a set of definite rules that detect, and modify, data structures that are 
stored in a working memory.  Indeed, production systems are one of the prototypical examples of 
the power of symbolic representations in classical cognitive science (Newell, 1980, 1990). 
 
 Behavior-based robotics is designated as being both synthetic and non-representational.  
As we have seen in Chapter 7, it is explicitly synthetic in the sense that researchers build robots 
from fairly simple subsystems, and then examine the interesting kinds of behaviors that emerge 
when the robots are situated in an environment (Pfeifer & Scheier, 1999).  It is also an attempt to 
be as anti-representational as possible.  “In particular I have advocated situatedness, embodi-
ment, and highly reactive architectures with no reasoning systems, no manipulable representa-
tions, no symbols, and totally decentralized computation” (Brooks, 1999, p. 170). One of the 
foundational assumptions of behavior-based robotics is that if a system can sense its environ-
ment, then it should be unnecessary for the system to build an internal model of the world. 
 
 Mathematical models of associative learning, such as the Rescorla-Wagner model 
(Rescorla & Wagner, 1972), are designated as being both analytic and non-representational.  
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Such models are described as being analytic because they are usually based upon an analysis of 
behavioral regularities (see Chapters 3 and 4).  They are described as being non-representational 
because such models do not appeal to representational content to explain behavior, and fre-
quently model direct relationships between stimuli and responses. 
 

8.3 CONNECTIONISM, SYNTHESIS, AND REPRESENTATION 
 
 Connectionism was placed in the final cell of table 8-1.  In my view, modern multi-layer 
PDP networks permit research that is both synthetic and representational, and therefore offers 
one plausible avenue for conducting synthetic psychology.  The following subsections will elabo-
rate on why connectionism can be viewed in this way.  Specifically, we will briefly discuss connec-
tionism in the context of the three hallmarks of the synthetic approach: synthesis, emergence, 
and analysis.   
 

8.3.1 Connectionism And Synthesis 
 

In adopting the synthetic approach, a researcher is committed to identifying a basic set of 
building blocks.  Each of these building blocks defines a primitive element.  The set of all of the 
available primitives defines an entire architecture. For a cognitive scientist, an architecture dic-
tates “what operations are primitive, how memory is organized and accessed, what sequences 
are allowed, what limitations exist on the passing of arguments and on the capacities of various 
buffers, and so on.  Specifying the functional architecture of a system is like providing a manual 
that defines some particular programming language” (Pylyshyn, 1984, p. 92). The goal of syn-
thetic research is to see what variety of systems can be constructed from a particular architec-
ture. 
 
 In cognitive science, an architecture is usually a kind of programming language.  How-
ever, this is not a necessary property.  In some cases, there may not be any programming envi-
ronment at all.  For example, in building our “thoughtless walkers” in Chapter 6, the architecture 
that we restricted ourselves to was a set of K’NEX rods, connectors, and motors.  In other cases, 
an architecture might involve a combination of hardware and software elements.  For example, n 
building our simple Braitenberg-like vehicles in Chapter 7, the architecture that we restricted our-
selves to were the components of Lego Dacta, which included sensors, motors, Lego bricks, and 
which also included the RCX brick and the primitive operations provided by the NQC program-
ming language.  This kind of combined architecture is typical of research in embodied cognitive 
science (Pfeifer & Scheier, 1999). 
 
 The architecture is a foundational idea in cognitive science, and therefore it is not surpris-
ing that many different research programs revolve around proposals for the architecture of cogni-
tion.  In some cases, researchers present a particular architecture as a candidate proposal for the 
“language of thought”.  For instance, Newell and Simon (1972) made very strong claims that pro-
duction systems defined the functional architecture of the mind.  Dawson (1998, p. 170) provides 
(an incomplete) table of proposed cognitive architectures that lists 24 different examples.  In other 
cases, theoretical and empirical debates in cognitive science revolve around whether particular 
properties are part of the architecture or not.  For example, in the 1970s and 80s the imagery de-
bate was about whether the visual properties of mental images were built directly into the archi-
tecture (Block, 1981).  A more recent debate concerns whether the architecture of mind is analo-
gous to the architecture of a digital computer (Bechtel & Abrahamsen, 1991; Churchland, Koch, & 
Sejnowski, 1990; Clark, 1989, 1993; Fodor & Pylyshyn, 1988; Pylyshyn, 1991; Smolensky, 1988), 
and has spawned a new architectural proposal, connectionism (McClelland & Rumelhart, 1986; 
Rumelhart & McClelland, 1986). 
 
 Parallel distributed processing (PDP) models, or connectionism, are based on general 
assumptions about the kind of information processing carried out by the brain.  First, it is as-
sumed that the primitives for this type of information processing are individual neurons.  Second, 
it is assumed that the pattern of connections between neurons is analogous to the program in a 
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conventional computer, because these connections define the causal interactions between neu-
rons (Smolensky, 1988).  Third, it is assumed because the brain is composed a set of primitive 
units that operate in parallel, and because representations are distributed across a wide array of 
neurons and synapses, the kind of information processing carried out by the brain must be quite 
different from that to found in a digital computer.  “The analogy between the brain and a serial 
digital computer is an exceedingly poor one in most salient respects, and the failures of similarity 
between digital computers and nervous systems are striking” (Churchland et al., 1990, p. 47). 
 
 PDP models represent the embodiment of these general assumptions in a computer 
simulation environment that permits the construction of networks that can solve problems in an 
incredibly diverse set of domains (Dawson, 1998).  Essentially, the building blocks of PDP models 
represent abstract mathematical descriptions of the kind of information processing that neurons 
do. “Because of the ‘all-or-none’ character of nervous activity, neural events and the relations 
among them can be treated by means of propositional logic” (McCulloch, 1988, p. 19). This func-
tional approach ignores many of the biological properties of neurons, and attempts to simplify in-
formation processing as much as possible. 
 
 The first major component of a connectionist architecture is the processing unit.  As far 
as information processing goes, connectionists view individual neurons as computing three differ-
ent functions.  First, they sum the total incoming signal from dendrites.  Second, they convert this 
total incoming signal into internal activity.  Third, this internal activity may be converted into an 
output signal to be communicated to other neurons.  As we saw briefly in Chapter 5, processing 
units in a PDP architecture compute three different equations to mimic these three neural infor-
mation processing activities.  First, a net input function determines the total signal coming into the 
unit.  Second, an activation function converts the net input into an internal level of activity.  Third, 
an output function converts the internal activity into an output signal that can be sent to other 
processing units.  As we will see in Part II of this book, choosing different equations for computing 
net input, activation, and output can create different “flavors” of connectionism. 
 
 The second major component of a PDP architecture is the connection between units.  A 
processor sends a signal to another through a weighted connection, which is a functional descrip-
tion of a synapse (Dawson, 1998).  The connection is a communication channel that amplifies or 
attenuates a numerical signal being sent through by multiplying the signal by the weight associ-
ated with the connection.  The weight defines the nature and strength of the connection.  For ex-
ample, inhibitory connections are defined with negative weights, and excitatory connections are 
defined with positive weights.  Strong connections have strong weights (i.e., the absolute value of 
the weight is large), while weak connections have near-zero weights.  Different kinds of connec-
tionist networks permit different patterns of connections between processing units.  For example, 
feedforward networks connect one layer of processing units to another in such a way that signals 
only get sent in one direction.  In contrast, recurrent networks permit signals to travel in both di-
rections between sets of processing units.  The degree of connectivity might also be varied from 
one connectionist architecture to another.  In some simulations, the networks might be massively 
parallel, which means that every processing unit in one layer is connected to every processing 
unit in another layer.  In other simulations, the pattern of connectivity might be of limited order, 
which means that every processor is not connected to every processor in another layer. 
 
 The third major component of a connectionist architecture is the learning rule.  While the 
pattern of connections in a network is analogous to a program in a conventional computer, a PDP 
network is usually not programmed in any traditional sense.  Instead, the network is usually 
taught to perform a task of interest.  The purpose of this training is to determine the appropriate 
value for each connection weight in the network.  Prior to training, most networks will have a set 
of small, randomly assigned weights.  At the end of training, the network will have a very specific 
pattern of connectivity (in comparison to its random start), and will have learned to perform a par-
ticular stimulus response pairing.  Training is accomplished by using one of a variety of possible 
learning rules.  Many learning rules result in a supervised change in a network’s weights.  What 
this means is that for each example pattern that is presented to the network, there is a known 
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response, and the difference between the desired and actual responses can be used to guide 
weight modification.  Other learning rules are unsupervised, which means that the network is not 
instructed about what the desired responses are, but instead “carves up” the example patterns 
into a self-generated set of categories.  In Part II of this book we will discuss in detail a variety of 
different learning rules that can be used to train PDP networks. 
 
 With respect to synthesis, connectionist research typically proceeds as follows:  First, a 
researcher identifies a problem of interest, and then translates this problem into some form that 
can be presented to a connectionist network.  Second, the researcher selects a general 
connectionist architecture, which involves choosing the kind of processing unit, the possible 
pattern of connectivity, and the learning rule.  Third, a network is taught the problem.  This usually 
involves making some additional choices specific to the learning algorithm – choices about how 
many hidden units to use, how to present the patterns, how often to update the weights, and 
about the values of a number of parameters that determine how learning proceeds (e.g., the 
learning rate, the criterion for stopping learning).  If all goes according to plan, at the end of the 
third step the research will have constructed a network that is capable of solving a particular 
problem.  The next subsection illustrates this aspect of connectionist research by describing an 
example network that was trained to make judgments about the distances between cities on a 
map of Alberta (Dawson, Boechler & Valsangkar-Smyth, 2000). 
 

8.3.2 Connectionism And Synthesis: An Example 
 
 One of my former PhD students, Patricia Boechler, did her thesis on how navigation 
through a hypertext document was affected by different navigational aids (e.g., Boechler & Daw-
son, 2001).  One of the central themes of her research was the validity using the spatial metaphor 
to describe this kind of “virtual navigation” (Boechler, 2001).  One issue that needs to be ad-
dressed whenever such questions are raised concerns what is meant by the term “spatial”.  We 
used a PDP network to provide a synthetic framework for exploring the properties of space 
(Dawson, Boechler & Valsangkar-Smyth, 2000).  This subsection describes the creation of the 
network; later in this chapter we will consider some of its other properties in relation to the issues 
of emergence and analysis. 
 
8.3.2.1 Metric Representations Of Space 
 

Our everyday interactions with the visual and spatial world are grounded in the essential 
experience that space is metric.  Mathematically speaking, a space is metric if relationships be-
tween locations or points in the space conform to three different principles (Blumenthal, 1953).  
The first is the minimality principle.  According to this principle, the shortest distance in the space 
is between a point x and itself.  The second is the symmetry principle.  According to this principle, 
the distance in the space between two points x and y is equal to the distance between points y 
and x.  The third is the triangle inequality.  According to this principle, the shortest distance in the 
space between two points y and x is a straight line. 

 
One recurring theme in the study of cognition, perception, and action is that intelligent 

agents have internalized the metric properties of the space in which they find themselves situ-
ated.  As a result, the mental representations used by these agents are thought by some re-
searchers to have metric properties in their own right.  The paragraphs below briefly introduce 
three different examples of such proposals: similarity spaces, mental images, and cognitive 
maps. 
 
 Similarity is one of the most important theoretical constructs in cognitive psychology 
(Medin, Goldstone, & Gentner, 1993).  The notion of similarity is central to theories of learning, 
perception, reasoning, and metaphor comprehension.  One of the goals of cognitive psychology 
has been to determine the mental representations that enable similarity relationships to affect this 
wide range of psychological phenomena.  One proposal that received a great deal of attention in 
the 1970s was that concepts were represented as points in a multidimensional space, where the 
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dimensions of the space stood for either simple or complicated featural properties (Romney, 
Shepard, & Nerlove, 1972; Shepard, Romney, & Nerlove, 1972).  In this kind of representation, 
the similarity between two different concepts was reflected in the distance between their locations 
in the multidimensional space.  Researchers conducted a number of different studies in which 
ratings of concepts were used to position a set of concepts in the metric space.  This empirically 
derived space was then used to predict behavior on a variety of different tasks, including analogi-
cal reasoning (Rumelhart & Abrahamson, 1973) and judgments of the aptness of metaphor 
(Tourangeau & Sternberg, 1981; Tourangeau & Sternberg, 1982). Importantly, one of the main 
assumptions underlying the similarity space proposal was that this space was metric.   
 

On the basis of this assumption, one would expect that the metric properties of the space 
would be reflected in the behaviors that were governed by the space.  For example, if a subject 
used the similarity space to rate the similarity between two concepts A and B, then one would 
expect these ratings to be symmetric: the similarity between A and B should be the same as the 
similarity between B and A, because the distance between A and B in the similarity space is pre-
sumed to be symmetric. 
 
 A second example of a proposed representation that preserves the metric properties of 
space is mental imagery. Mental imagery is a visual experience that is usually elicited when peo-
ple solve visuospatial problems.  Not only does mental imagery provide a visual or pictorial ex-
perience, but mental images give the sense of being manipulated in a spatial manner -- for in-
stance, by being scanned, rotated, or zoomed in to (Kosslyn, 1980).  Early behavioral studies of 
the manipulation of mental images have provided data that suggest that they are indeed spatial in 
nature.  For example, many studies recorded the reaction times of subjects as they used mental 
images to perform some task, and found, for instance, that latencies increased linearly as a func-
tion of increases in the distance that an image had to be scanned or of increases in the amount 
that an image had to be rotated (Kosslyn, 1980; Shepard & Cooper, 1982).    
 

More recent research has turned to cognitive neuroscience in an attempt to explore the 
representations responsible for mental imagery. Kosslyn and others have used a variety of mod-
ern brain imaging techniques to show that when people generate mental images, they use many 
of the same brain areas that are also used to mediate visual perception (Farah, Weisberg, Mon-
heit, & Peronnet, 1989; Kosslyn, 1994; Kosslyn et al., 1999; Kosslyn, Thompson, & Alpert, 1997; 
Kosslyn, Thompson, Kim, & Alpert, 1995; Thompson, Kosslyn, Sukel, & Alpert, 2001).  In particu-
lar, mental imagery elicits activity in the primary visual cortex, a brain area that is organized to-
pographically.  Kosslyn has used this kind of evidence to propose an information processing sys-
tem that is responsible for the generation and manipulation of images.  He argues that mental 
images are patterns of activity in a visual buffer that is a spatially organized structure in the oc-
cipital lobe. 
 

A third example of a proposed representation that preserves the metric properties of 
space is the cognitive map. Beginning with Tolman’s (1932, 1948) proposal that the spatial abili-
ties of the rat were mediated by cognitive maps, representations that preserve the metric proper-
ties of space have been fundamentally important to the study of how humans and animals navi-
gate (Kitchin, 1994). Behavioral studies have demonstrated that animal representations of space 
do indeed appear to preserve a good deal of its metric nature (for introductions, see Cheng & 
Spetch, 1998; Gallistel, 1990, Chap. 6).  Many researchers are now concerned with identifying 
the biological substrates that encode metric space.  Single-cell recordings of neurons in the hip-
pocampus of a freely moving animal have provided compelling biological evidence that one func-
tion of the hippocampus is to instantiate a metric cognitive map (O'Keefe & Nadel, 1978).  In par-
ticular, neuroscientists have discovered place cells in the hippocampus that respond only when a 
rat’s head is in a particular location in the environment (O'Keefe & Nadel, 1978).  These place 
cells can be driven by visual information (e.g., by the presence of objects or landmarks in the en-
vironment), and appear to be sensitive to some of the metric attributes of space.  For example, 
O'Keefe and Burgess (1996) found evidence that the receptive field of a place cell can be de-
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scribed as the sum of two or more Gaussian tuning curves sensitive to the distance between an 
animal and a wall in the environment. 

 
8.3.2.2 Are Spatial Representations Metric? 

 
While research on each of these three proposals for spatial representations has provided 

evidence that the metric properties of space can be internalized, this evidence is not univocal.  
With respect to similarity spaces, Tversky and his colleagues conducted a number of experiments 
that demonstrated that similarity judgments were not metric, because in different situations it 
could be shown that these judgments were not always symmetric, did not always conform to the 
minimality principle, and did not always conform to the triangle inequality (Tversky, 1977; Tversky 
& Gati, 1982).   

 
With respect to mental imagery, it has been shown that by manipulating the tacit beliefs 

of subjects (Bannon, 1980), or by altering the complexity of the image being used (Pylyshyn, 
1979), the linear relationship between reaction time and image properties could be eradicated.  
These findings were used to argue that our experience of mental images is based upon more 
primitive and non-spatial representational components (Pylyshyn, 1980, 1981, 1984).  Even the 
evidence from neuroscience is not without controversy.  In a detailed review of the literature, 
Mellet, Petit, Mazoyer, Denis, and Tzourio, (1998) cite several studies that have found that some 
mental imagery tasks do not produce activity in primary visual cortex.   

 
With respect to cognitive maps, it has been argued that place cell circuitry by itself does 

not provide a cognitive map that can be considered to be metric in the mathematical sense. First, 
place cells are not organized topographically; the arrangement of place cells in the hippocampus 
is not isomorphic to the arrangements of locations in an external space (Burgess, Recce, & 
O'Keefe, 1995; McNaughton et al., 1996).  Second, it has been argued that place cell receptive 
fields are at best locally metric (Touretzky, Wan, & Redish, 1994), and that as a result a good 
deal of spatial information (e.g., information about bearing) cannot be derived from place cell ac-
tivity.  Some researchers have argued that place cells make up only a part of the cognitive map, 
and that the neural representation of metric space requires the coordination of a number of differ-
ent subsystems (McNaughton et al., 1996; Redish & Touretzky, 1999; Touretzky et al., 1994). 
 
8.3.2.3 A Synthetic Approach To Spatial Representation 
 

The three examples that were briefly reviewed above all involve proposals for metric spa-
tial representations that mediate spatial behavior.  However, in each example it was shown that 
such proposals are not without controversy.  In some instances, behavior that is presumably 
guided by the representation can violate the metric properties of space.  In other instances, in-
spections of the representational or neural structures that mediate spatial behavior or experience 
reveal regularities that are inconsistent with the notion that the underlying structure is metric in 
nature. 
 
 One reason that such inconsistencies emerge may be because these representational 
proposals were the product of an analytic research strategy.  Cognitive psychologists typically 
develop theories about underlying representations by decomposing complex behavior into more 
basic functions (Cummins, 1983; Dawson, 1998).  While this approach, called functional analysis, 
has been extremely successful, it can be dangerous to use.  One problem with it that we saw in 
Chapter 7 is that it can lead to theories that are more complicated than necessary, because the 
decomposition can fail to partition behavior appropriately into three different categories (behavior 
caused by the organism, behavior elicited by a complex environment, and behavior that emerges 
at the interface between an agent and its environment) (Braitenberg, 1984; Simon, 1996).  A sec-
ond problem is that the decomposition is theory-driven, and as a result can miss regularities that 
are real, but not intuitively obvious.  “The tendency will be to break different capacities down into 
different constituent processes.  As a result, explanations that are given of the capabilities in 
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question will rest on a false and artificial theory, one that is, in effect, engineered to account for 
data but that is not a realistic model of human neuropsychology” Rollins (2001). 
 
 The synthetic approach is one alternative to functional analysis. Dawson, Boechler and 
Valsangkar-Smyth (2000) decided to explore the notion of spatial representations synthetically by 
building a PDP network that could make judgments that preserved the metric properties of space.  
Could a simple network learn to make such judgments?  If so, then what kind of internal 
representation would it use?  Would the representation be metric or non-metric?  
 
8.3.2.3.1 Defining The Problem 
 
 As was noted 
earlier, the first step in 
synthesizing a connec-
tionist network is to 
choose a problem of 
interest, and to trans-
late this problem into a 
form that could be 
dealt with by a PDP 
model.  Dawson, 
Boechler and Valsang-
kar-Smyth (2000) 
wanted to create a 
network that could per-
form a behavior that 
was complicated 
enough to be of psy-
chological interest, and 
which also preserved 
the metric properties of 
space.  The task that 
they selected was a 
ratings task, in which a 
network was presented 
a pair of cities, and had 
to rate the distance 
between the two cities 
on a scale from 0 to 10. 
This kind of task is of 
psychological interest, beca
(Shepard, 1972). By basing
also ensure that a system 
space as well. 
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BANFF 0 2 4 3 5 9 7 3 4 7 5 3 7 

CALGARY 2 0 3 2 3 8 8 5 3 6 3 2 6 

CAMROSE 4 3 0 2 1 6 6 5 5 3 5 2 4 

DRUMHELLER 3 2 2 0 3 8 8 6 3 5 3 2 6 

EDMONTON 5 3 1 3 0 5 5 4 6 3 6 2 3 

FORT MCMURRAY 9 8 6 8 5 0 8 8 10 6 10 6 5 

GRANDE PRAIRIE 7 8 6 8 5 8 0 4 10 8 10 6 4 

JASPER 3 5 5 6 4 8 4 0 7 7 8 5 5 

LETHBRIDGE 4 3 5 3 6 10 10 7 0 7 2 4 8 

LLOYDMINSTER 7 6 3 5 3 6 8 7 7 0 5 4 5 

MEDICINE HAT 5 3 5 3 6 10 10 8 2 5 0 5 8 

RED DEER 3 2 2 2 2 6 6 5 4 4 5 0 4 

SLAVE LAKE 7 6 4 6 3 5 4 5 8 5 8 4 0 

 

 
Dawson, Boechler 

province of Alberta: Banff,
Prairie, Jasper, Lethbridge,
possible pairs from this se
scribed as the question “On
ings for each stimulus were
shortest distance in kilome
these distances into ratings
rating was assigned a value
was assigned a value of 1;
signed a value of 2; if the d

Synthetic Psychology 
Table 8-2.  Ratings of distances between cities of Alberta.  The 
number in each cell represents the answer to the question 

“What is the rating of the distance between City 1 and City 2?”,
where City 1 is the row label and City 2 is the column label.  
use it is often used to collect distance-like data from human subjects 
 the ratings on distances measured between cities on a map, one can 
that can make such judgments is preserving the metric properties of 

and Valsangkar-Smyth (2000) chose thirteen different locations in the 
 Calgary, Camrose, Drumheller, Edmonton, Fort McMurray, Grande 
 Lloydminster, Medicine Hat, Red Deer, and Slave Lake.  They took all 
t to create a set of 169 different stimuli, each of which could be de-
 a scale from 0 to 10, how far is City 1 from City 2?”   The desired rat-
 created as follows.  First, from a map of Alberta they determined the 
ters between each pair of locations.  Second, they then converted 
.  If a stimulus involved rating the distance from one place to itself, the 
 of 0.  Otherwise, if the distance was less than 100 kilometers, then it 

 if the distance was between 100 and 199 kilometers, then it was as-
istance was between 200 and 299 kilometers, then it was assigned a 
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value of 3; and so on up to a maximum value of 10 which was assigned to distances of 900 kilo-
meters or more.  The complete set of ratings that were used is provided in Table 8-2. 
 
 These ratings were designed to preserve the metric 
properties of the map of Alberta.  For instance, the ratings 
are symmetric – any cell (x,y) in the table holds the same 
rating as the corresponding cell (y,x).  As well, the minimality 
principle is upheld, because the rating of the distance from 
any cell to itself is equal to 0, as can be seen by examining 
the diagonal of Table 8-2.  To confirm that a system that 
could generate the ratings in this table must have, in some 
sense, internalized the map of Alberta, Dawson, Boechler 
and Valsangkar-Smyth (2000) analyzed Table 8-2 with a 
statistical technique called multidimensional scaling (MDS).  
MDS is designed to take proximity information as input, and 
to then convert this information into a geometric configura-
tion of points from which the proximities can be derived 
(Kruskal & Wish, 1978).  For example, if one were to give 
MDS a table of distances between cities (e.g., a table com-
monly found on a roadmap), MDS would produce a map with 
each city situated in the correct location.  When Table 8-2 is 
analyzed using MDS, it generates a plot in which each of the 
13 cities are located very near the position in which they 
would be found if one examined a road map of Alberta, as is shown in Figure 8-1. 

Figure 8-1.   
Results of analyzing Table 

8-2 with MDS. 

 
8.3.2.3.2 Choosing The Network Architecture 
 

 The second step in synthesizing a connectionist 
network is to choose a particular architecture, and to train 
this architecture to solve the problem of interest.  Part of this 
step involves making fairly general architectural choices.  
Dawson, Boechler and Valsangkar-Smyth (2000) decided to 
train a feedforward network to solve this spatial judgment 
task.  This network is illustrated in Figure 8-2.  The first layer 
of this network was a set of 13 different input units.  The 
input units used a very simple unary notation to represent 
pairs of places to be compared.  Each input unit represented 
one of the thirteen place names.  Pairs of places were 
presented as stimuli by turning two of the input units on (that 
is, by activating them with a value of 1).  For example, to ask 
the network to rate the distance between Banff and Calgary, 
the first input unit would be turned on (representing Banff), as 
would the second input unit (representing Calgary).  All of the 
other input units would be turned off (that is, were activated 
with a value of 0).  This unary representational scheme was 
chosen because it contains absolutely no information about 
the location of the different places on a map of Alberta.  In 
other words, the input units themselves did not provide any 
metric information that the network could use to perform the 
ratings task. 

Figure 8-2.  The spatial 
judgement network 

 
As can be seen from Figure 8-2, ten output units were used to represent the network’s 

rating of the distance between the two place names presented as input.  To represent a rating of 
0, the network was trained to turn all of its output units off.  To represent any other rating, the 
network was trained to turn on one, and only one, of its output units.  Each of these output units 
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represented one of the ratings from 1 to 10.  For example, if the network turned output unit 5 on, 
this indicated that it was making a distance rating of 5. 

 
The middle layer of the spatial judgment network was a set of six hidden units. Dawson, 

Boechler and Valsangkar-Smyth (2000) selected this number of hidden units because pilot simu-
lations had shown that this was the smallest number of hidden units that could be used by the 
network to discover a mapping from input to output.  When fewer than six hidden units were used, 
the network was never able to completely learn the task.  Previous research has suggested that 
forcing a network to learn a task with the minimum number of hidden units produces a network 
that is much easier to interpret, in comparison to a network that has more hidden units than are 
required to solve a problem (Berkeley, Dawson, Medler, Schopflocher, & Hornsby, 1995). 

 
In addition to making decisions about the input representation, the output representation, 

and the number of hidden units, Dawson, Boechler and Valsangkar-Smyth (2000) had to make 
specific decisions about the properties of the hidden and output units, and about how the network 
was to be trained.  They decided that the hidden and output units should all be value units.  A 
value unit uses a particular type of Gaussian activation function to convert net input into internal 
activity that ranges between 0 and 1.  Such units generate a maximum response of 1 when their 
net input is equal to the mean of the Gaussian.  These units were used because one of the pri-
mary goals of the research was to interpret the internal representations discovered by the net-
work.  As will be discussed in more detail below, a number of different studies have demonstrated 
that networks of value units permit their internal structure to be interpreted in great detail 
(Berkeley et al., 1995; Dawson, 1998; Dawson & Medler, 1996; Dawson, Medler, & Berkeley, 
1997; Dawson, Medler, McCaughan, Willson, & Carbonaro, 2000; Leighton, 1999; Zimmerman, 
1999). 

 
Because Dawson, Boechler and Valsangkar-Smyth (2000) decided to use value units in 

the spatial judgment network, they were committed to using a learning rule that was specifically 
designed for value unit networks (Dawson & Schopflocher, 1992).  In using this rule, they had to 
make a number of additional decisions about parameters that affected the specific course of 
learning.  Prior to training, all of the connection weights were randomly assigned values ranging 
from –0.10 to +0.10.  The biases of processing units (i.e., the means of the Gaussian activation 
functions, which are analogous to thresholds) were randomly assigned values ranging from –0.50 
to +0.50.  The network was trained with a learning rate of 0.10.  During each sweep of training, 
each of the 169 stimuli was presented to the network.  The learning rule was used to update con-
nection weights in the network after each stimulus presentation.  Prior to each sweep of training, 
the order of stimulus presentation was randomized.  Training proceeded until the network gener-
ated a “hit” for every output unit on every pattern.  As is our typical practice, a hit was operational-
ized as an activation of 0.90 or higher when the desired activation was 1.00, and as an activation 
of 0.10 or lower when the desired activation was 0.00.  All of these decisions were made on the 
basis of previous experience with training the value unit architecture. 

 
8.3.2.3.3 Training The Network 

 
The final step in synthesizing a connectionist network is to actually carry out the training, 

and create a network that is capable of generating the correct response for every pattern in the 
training set.  Dawson, Boechler and Valsangkar-Smyth (2000) found that their spatial judgment 
network converged on a solution to the problem – generating a “hit” for each of the 169 patterns – 
after 10,907 sweeps of training.  With this successful training, the research now turns to the con-
cerns of emergence and analysis. 
 

8.3.3 Connectionism And Emergence: A Prelude 
 
 In the robot examples of Chapters 6 and 7, after a robot was synthesized, the next step 
was to place it in an environment and observe its behavior.  The point of this observation was to 
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identify interesting and surprising actions that emerged from the interaction between the robot 
and its world. 
 
 In the early stages of what is now known as New Connectionism, the immediate empha-
sis of research was also on emergence.  As we will discuss in more detail in Section 8.3.4.1, con-
nectionist researchers were interested in developing systems that processed information in a 
radically different manner than that used by classical or symbolic models.  Symbolic models can 
be characterized as requiring a set of symbolic data structures and a set of explicitly defined rules 
for manipulating these data structures in memory (Newell, 1980).  These rules were explicit, but 
not consciously available.  In contrast, it was argued that connectionist models did not use explicit 
symbols or rules.  “Parallel distributed processing models may provide a mechanism sufficient to 
capture lawful behavior, without requiring the postulation of explicit but inaccessible rules” 
(Rumelhart & McClelland, 1986, p. 218).  PDP networks were viewed instead as dynamic data 
structures, responsible for storing information as well as transforming it (Hillis, 1985). 
  
 In order to support such claims, connectionist researchers took phenomena that were 
prototypical examples of symbolic cognitive science, and demonstrated that these phenomena 
could be mediated by PDP networks.  For example, the regularities found in language are typi-
cally used as evidence to support the classical approach in cognitive science (Dawson, 1998).  
Pioneering connectionist researchers would choose to explore problems in language with their 
networks because such problems were firmly entrenched in the symbolic paradigm.  In one influ-
ential instance, Rumelhart and McClelland (1986) trained a network to convert English verbs from 
the present tense into the past tense.  This problem was explicitly selected because it exhibits “a 
phenomenon that is often thought of as demonstrating the acquisition of a linguistic rule” (p. 219).  
The network was in particular interesting because it went through three stages of development – 
patterns of successes and errors – that mimicked the stages that human children go through as 
part of their natural course of language development (but see Pinker & Prince (1988) for a critique 
of this view).  They concluded that they had provided “a distinct alternative to the view that chil-
dren learn the rules of English past-tense formation in any explicit sense.” 
 
 Hanson and Olson (1991, p. 332) once noted “the neural network revolution has hap-
pened.  We are living in the aftermath.”  At the time when the neural network revolution was in full 
swing, it was important to demonstrate that PDP models were capable of dealing with domains 
that were prototypically symbolic.  I tell my students that this practice can be called “Gee Whiz 
connectionism”, because its main goal was to allow researchers to exclaim “Gee whiz – PDP 
networks can do x, so x can be done without explicit rules.”  Classical researchers did take note 
of such results, acknowledging that it was surprising that models built from such simple compo-
nents were capable of providing accounts of complex phenomena (Fodor & Pylyshyn, 1988). 
 
 However, in the aftermath of the neural network revolution, there really is no role for Gee 
Whiz connectionism.  As is discussed in slightly more detail below, modern analyses have dem-
onstrated conclusively that a broad variety of PDP architectures have the same computational 
power as the architectures that have been incorporated into symbolic accounts of cognition 
(Dawson, 1998).  What this means is that a connectionist network can learn to perform any task 
that can be accomplished by a classical model.  In the heyday of Gee Whiz connectionism, the 
mere demonstration that a network could do something of interest to classical cognitive science 
was by itself an emergent phenomenon of considerable interest.  Now, with a better understand-
ing of connectionist power, it is expected that networks can perform these tasks.  As a result, the 
fact that a network can learn a task is no longer an emergent phenomenon of any interest to re-
searchers. 
 
 Where, then, does emergence enter a synthetic psychology that uses PDP models?  The 
answer to this question is that while it is neither interesting nor surprising to demonstrate that a 
network can learn a task of interest, it can be extremely interesting, surprising, and informative to 
determine what regularities the network exploits.  What kinds of regularities in the input patterns 
has the network discovered?  How does it represent these regularities?  How are these regulari-
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ties combined to govern the response of the network?  In many instances, the answers to these 
questions can reveal properties of problems, and schemes for representing these properties, that 
were completely unexpected.  In short, this means that before connectionist modelers can take 
advantage of the emergent properties of a PDP network that is being used as paradigm for syn-
thetic psychology, the modelers must analyze the internal structure of the networks that they 
train.  In the next section, we will consider several issues related to analyzing connectionist mod-
els.  Later in this chapter we will return to the issue of emergent phenomena that are revealed 
from network analyses. 
 

8.3.4 Connectionism And Analysis 
 

In most cases, the identification of interesting emergent properties in a modern PDP net-
work requires a detailed analysis of the internal structure of a trained network.  In particular, after 
a network has learned to solve some problem of interest, a researcher will take the network apart 
and examine the properties of the internal representations that it has developed.  In many cases, 
it is expected that this kind of analysis will reveal that the network has discovered interesting and 
surprising regularities in the problem.  These surprises are one of the main ways in which 
connectionist simulations can push research in new directions. 

 
However, if the analysis of connectionist representations is to provide a vehicle for syn-

thetic psychology, then there are two general criticisms that have to be faced first.  The first criti-
cism is the general view that the kinds of representations that one will find in PDP networks are 
not the kinds of representations that will provide accounts of psychological phenomena.  The 
second criticism is that even if these representations were of potential interest, they are nearly 
impossible to uncover in a trained network.  We will consider each of these points below. 
 
8.3.4.1 Connectionism And Representation 
 

One major debate in cognitive science concerns potential differences (and similarities) 
between symbolic models and connectionist networks (Dawson, 1998).  For example, it has been 
argued that, in contrast to symbolic theories, PDP networks are subsymbolic (Smolensky, 1988).  
To say that a network is subsymbolic is to say that the activation values of its individual hidden 
units do not represent interpretable features that could be represented as individual symbols.  
Instead, each hidden unit is viewed as indicating the presence of a microfeature.  Individually, a 
microfeature is unintelligible, because its “interpretation” depends crucially upon its context (i.e., 
the set of other microfeatures which are simultaneously present (Clark, 1993)).  However, a col-
lection of microfeatures represented by a number of different hidden units can represent a con-
cept that could be represented by a symbol in a classical model. 

 
One consequence of the proposal that PDP networks use subsymbolic representations is 

further proposal that they process information in a completely different way than one would find in 
a symbolic model such as a production system.  “Subsymbols are not operated upon by symbol 
manipulation: they participate in numerical – not symbolic – computation” (Smolensky, 1988).  
The kinds of numerical operations that are carried out are formal descriptions of the kind of en-
ergy minimization that we used to characterize the “thoughtless walkers” in Chapter 6.  For ex-
ample, Smolensky puts forth a “connectionist dynamical system hypothesis” as a proposed ac-
count of connectionist information processing.  According to this hypothesis, at any state in time a 
connectionist network can be described as a vector of numbers, with each number representing 
the state of activity of a processing unit.  In some instances, such as an account of learning, the 
vector might also include the values of a network’s weights.  The system is dynamic, in the sense 
that this vector changes over time.   Differential equations precisely describe such changes, 
which in most cases can be thought of as defining a trajectory in some multidimensional space 
through which the system travels to minimize some energy or cost value.  For example, in Part II 
we will see several examples of learning rules that change a network’s vector state (i.e., its 
weights) over time to move the network into a state that minimizes an error term.  We will also 
see examples of networks that modify the activity levels of their processors in an attempt to mini-
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mize a mathematical function that describes a quantity that is analogous to energy.  In short, the 
kind of numerical computation envisioned in connectionist networks by Smolensky is some form 
of statistical mechanics. 

 
The claims that PDP networks represent and process information in completely different 

ways than symbolic models has led to strong criticisms about their role in cognitive science and 
psychology.  Specifically, some researchers have made strong arguments that the kinds of (non-
symbolic) representations that are found in connectionist models are not adequate to account for 
many of the regularities of human cognition (Fodor & McLaughlin, 1990; Fodor & Pylyshyn, 
1988).  In particular, Fodor and Pylyshyn argue that connectionist information processing does 
not involve a combinatorial syntax and semantics, and does not involve processes that are sensi-
tive to constituent structure.  They go on to argue that connectionist information processing 
shares many of the properties (and limitations) of the associationist theories that cognitivism re-
acted against in the 1950s (see also Bechtel, 1985).  In short, their position is that connectionism 
doesn’t provide the kind of representational account that psychology needs.  “The problem with 
connectionist models is that all the reasons for thinking that they might be true are reasons for 
thinking that they couldn’t be psychology” (Fodor & Pylyshyn, 1988, p. 66). 

 
There are both theoretical and empirical reasons to believe that this dismissal of connec-

tionism is premature.  The symbolic paradigm in cognitive science is based upon the assumption 
that whatever the architecture of cognition is, it must have the computational power of a universal 
Turing machine (UTM) (Dawson, 1998). It would appear that connectionist networks also have 
this level of computational power. In some of the earliest work on neural networks, McCulloch and 
Pitts (1943) examined finite networks whose components could perform simple logical operations 
like AND, OR, and NOT.  They were able to prove that such systems could compute any function 
that required a finite number of these operations.  From this perspective, the network was only a 
finite state automaton (see also Hopcroft & Ullman, 1979; Minsky, 1972).  However, McCulloch 
and Pitts went on to show that a UTM could be constructed from such a network, by providing the 
network the means to move along, sense, and rewrite an external "tape" or memory.  "To psy-
chology, however defined, specification of the net would contribute all that could be achieved in 
that field" (McCulloch & Pitts, 1943/1988, p. 25). 
 
 More modern results have validated and extended the pioneering research of McCulloch 
and Pitts (1943/1948).  One common kind of recurrent Connectionist network has been popular-
ized by Elman (e.g., 1990). In this network, there is a bank of “context units” that are used to re-
member the current activations of the output units.  As a result, network output at time t+1 is a 
function of input at time t+1 and the network’s previous output at time t. Williams and Zipser 
(1989) used this kind of network to construct the machine head of a UTM.  This network learned 
to use five different output neurons to perform the basic operations of a Turing machine (e.g., 
move left, no change, write “1”, write “0”, and move right) on a tape that was used to activate a 
single input processor.  Several formal analyses of this kind of network have also been per-
formed.  One theme of this work has been to determine whether or not in principle one could build 
a finite network to perform the computations of a UTM (Siegelmann & Sontag, 1991; Siegelmann, 
1999; Siegelmann & Sontag, 1995). Early work developed a proof that such a network was pos-
sible in principle, but this proof limited the absolute size of this network to a relatively large value 
(a maximum of 105 processing units).  Later research refined this result, and proved that Minsky’s 
(1972) well known 4-symbol, 7-machine state UTM could be built from a recurrent network that 
used 1058 processing units.  Kilian and Siegelmann (1993) have developed a general proof that 
recurrent networks of the type used by Elman (e.g., 1990) are indeed equivalent to Turing ma-
chines.  They concluded that “Turing universality is a relatively common property of recurrent 
neural network modes” (p. 137). 

 
 Empirical evidence also supports the view that the distinction between connectionist and 
classical models is fairly blurred.  For example, in one study (Dawson et al., 1997) my students 
and I trained a network of value units on a logic problem developed by Bechtel and Abrahamsen 
(1991).  When we analyzed the internal structure of the network, we found evidence for network 

Synthetic Psychology © M.R.W. Dawson Please do not quote! 



 - 17 - 

states that represented standard rules of logic.  A second study provided even stronger evidence 
of the representational equivalence of the two types of models.  Dawson, Medler et al. (2000) 
used a technique called extra-output learning to train a network to classify mushrooms as being 
either edible or poisonous on the basis of a vector of feature descriptors.  The network was 
trained to use its extra output units to assert a “reason” for making a particular judgment, where 
the “reason” was taken from a standard decision tree that could also be used to classify the 
mushrooms.  When the internal states of the network were examined, they found that the net-
work’s representations could be reduced to a small number of state vectors, where each vector 
defined a pattern of activity over the network’s hidden units.  It turned out that each state vector 
mapped precisely onto a production from a production system that was created by translating the 
decision tree.  In other words, they found that when the network’s hidden units were in a particu-
lar state of activity, this was equivalent to saying that the network was executing a particular pro-
duction.  The extra-output learning technique had essentially translated a symbolic representation 
directly into a connectionist network. 
 
8.3.4.2 Connectionism And Bonini’s Paradox 
 

In the section above, we briefly reviewed the criticism that connectionist representations 
are not appropriate for psychology, and presented theoretical and empirical arguments against 
this position.  It would appear, then, that examining the internal representations of PDP networks 
is an appropriate activity for synthetic psychology.  Unfortunately, connectionist researchers freely 
admit that it is extremely difficult to determine how their networks accomplish the tasks that they 
have been taught. “If the purpose of simulation modeling is to clarify existing theoretical con-
structs, connectionism looks like exactly the wrong way to go.  Connectionist models do not clar-
ify theoretical ideas, they obscure them” (Seidenberg, 1993, p. 229).   There are a number of rea-
sons that PDP networks are difficult to understand as algorithms, and are thus plagued by what 
we called Bonini’s paradox in Chapter 2. 
 
 First, general learning procedures can train networks that are extremely large; their sheer 
size and complexity makes them difficult to interpret.  For example, Seidenberg and McClelland's  
(1989) network for computing a mapping between graphemic and phonemic word representations 
uses 400 input units, up to 400 hidden units, and 460 output units.  Determining how such a large 
network maps a particular function is an intimidating task.  This is particularly true because in 
many PDP networks, it is very difficult to consider the role that one processing unit plays inde-
pendent from the role of the other processing units to which it is connected (see also Farah, 
1994). 
 
 Second, most PDP networks incorporate nonlinear activation functions.  This nonlinearity 
makes these models more powerful than those that only incorporate linear activation functions 
(e.g. Jordan, 1986), but it also results requires particularly complex descriptions of their behavior.  
Indeed, some researchers choose to ignore the nonlinearities in a network, substituting a simpli-
fied (and often highly inaccurate) qualitative account of how it works (e.g., Moorhead, Haig, & 
Clement, 1989). 
 
 Third, connectionist architectures offer (too) many degrees of freedom.  One learning rule 
can create many different networks -- for instance, containing different numbers of hidden units – 
that can each compute the same function.  Each of these systems can therefore be described as 
a different algorithm for computing that function.  One does not have any a priori knowledge of 
which of these possible algorithms might be the most plausible as a psychological theory of the 
phenomenon being studied. 
 
8.3.4.3 Interpreting Connectionist Networks 
 
 Difficulties in understanding how a particular connectionist network accomplishes the task 
that it has been trained to perform has raised serious doubts about the ability of connectionists to 
provide fruitful theories about cognitive processing.  Because of the problems of network interpre-
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tation, McCloskey (1991) suggested that “connectionist networks should not be viewed as theo-
ries of human cognitive functions, or as simulations of theories, or even as demonstrations of 
specific theoretical points” (p. 387).  Fortunately, connectionist researchers are up to this kind of 
challenge.  Several different approaches to interpreting the algorithmic structure of PDP networks  
have been described in the literature. 
 
 One approach to interpreting a network’s algorithm involves studying its connection 
weights.  For example, Hanson and Burr (1990) review a number of techniques for doing this, 
including compiling frequency distributions of connection strengths, quantifying global patterns of 
connectivity with descriptive statistics, illustrating local patterns of connectivity with “star dia-
grams”, and performing cluster analyses of hidden unit activations.  Hinton (1986) provides an 
excellent example of how an examination of connection weights in a trained network can reveal 
the regularities that the network is using to solve a difficult pattern recognition task. 
 
 A second approach involves using algorithms to translate the pattern of connections in a 
network into a production rule that describes how the response of one processing unit depends 
on the responses of a subset of the processing units that feed into it (e.g., Gallant, 1993, Chap. 
17)).  In general, this is problematic, because as one increases the number of connection weights 
in the network, the number of possible productions encoded in a network increases exponentially.  
As a result, the researcher must use additional assumptions about the nature of the rules in order 
to help constrain the interpretation (i.e., to help limit the number of proposed productions). 
 
 A third strategy is to map out the response characteristics of each processor in the net-
work.  For example, Moorhead et al. (1989) used the generalized delta rule to train a PDP net-
work to identify the orientation of line segments presented to an array of input units.  Their pri-
mary research goal was to determine whether the hidden units in this system developed center-
surround receptive fields analogous to those found in the primate lateral geniculate nucleus.  
They chose to answer this question by stimulating each input element individually, and plotting 
the resulting activation in each hidden unit. 
 
 In my own lab, my students and I have fo-
cused on interpreting the structure of networks of 
value units, which is one of the reasons that Dawson, 
Boechler and Valsangkar-Smyth (2000) decided to use 
such units in the spatial judgment network that was 
described above.  Value unit networks have many ad-
vantages over traditional PDP networks (Dawson, 
1990; Dawson & Schopflocher, 1992; Evans, 1989; 
Medler & Dawson, 1994a, 1994b; Shamanski & Daw-
son, 1994). In our earlier research, and as was briefly 
mentioned in Section 2.2.5.2, we discovered one 
property of value units that permits the internal struc-
ture of a trained network to be interpreted (Berkeley et al., 1995; Dawson, Berkeley, Medler, & 
Schopflocher, 1994).  After a value unit network is trained to solve a problem, the training set is 
re-presented to the network, and we record the activity produced in each hidden unit by each pat-
tern.  These data are then graphed in jittered density plots (Chambers, Cleveland, Kleiner, & 
Tukey, 1983).  One density plot is drawn for each hidden unit, and each "dot" in a plot represents 
the unit’s response to one of the patterns. We discovered that such plots for value units are usu-
ally very structured – they are organized into distinct bands (Figure 8-3). Furthermore, all the pat-
terns falling into the same band in the plot share particular features.  By statistically describing the 
properties of the patterns that fall into each band, we were able to identify the input features de-
tected by each hidden unit.  We were also able to establish how these features are combined to 
yield a network’s response to a stimulus (Dawson et al., 1997). 

Figure 8-3.  An example jittered 
density plot for a hidden unit from

a network of value units. 

 
 Our early research was quite successful in developing value unit networks that produced 
banded jittered density plots, and in interpreting the internal structure of the network by focusing 

Synthetic Psychology © M.R.W. Dawson Please do not quote! 



 - 19 - 

on the local properties of individual hidden units – namely, the features associated with individual 
bands.  One of my former students has used this finding to argue that bands are subsymbolic, in 
the sense of Smolensky (1988), but that subsymbols are more like symbols than one might ex-
pect at first (Berkeley, 2000). 
 
 Our later research has brought such conclusions into question.  In many cases, we have 
found networks with hidden units that demonstrate marked banding, but the local interpretations 
of the bands are of little use (Dawson & Piercey, 2001).  Instead, the interpretation of how the 
network is solving the problem requires considering the content of one band in the context of 
other bands in other hidden units.  In other words, the interpretation of the network depends on 
examining distributed representations.   
 

For example, Dawson, Medler et al. (2000) used a training technique called extra output 
learning to insert a symbolic theory into a network of value units.  When the network was inter-
preted (to verify theory insertion), a precise relationship between the network and the symbolic 
theory only emerged when cluster analysis was performed on the basis of activations across all 
the hidden units in the network.  Similarly, Leighton and Dawson (2001) trained a network of 
value units to solve the (Wason, 1966) card selection task, in which a subject must select cards to 
be examined to test a logical argument.  In one version of the network trained to generate the 
logically correct responses to the task, pairs of hidden units cooperated to activate an output unit 
(i.e., to select a card for examination).  The network’s behavior could not be understood by exam-
ining individual hidden units.  Finally, Zimmerman (1999) trained a network of value units to gen-
erate solutions to the balance scale task used to study cognitive development (Inhelder & Piaget, 
1958).  In this task, the network is presented a configuration of weights on either side of a bal-
ance scale, and has to judge whether the scale would tip to the left, tip to the right, or balance.  
Zimmerman found that the network solved this task by performing a function approximation that 
required a coarse-coding combination of activities from all of the network’s hidden units.  In all 
three of these examples, banding was found for the hidden units of the networks.  However, the 
local interpretations of these bands could not adequately explain the network’s behavior.  Inter-
pretation was possible, but only after considering regularities in hidden unit activity when the hid-
den units were considered simultaneously. 
 
 This finding is exactly in accordance with the standard view of subsymbolic representa-
tions.  According to Smolensky (1988), subsymbols are constituents of traditional symbols. “Enti-
ties that are typically represented in the symbolic paradigm are typically represented in the sub-
symbolic paradigm by a large number of subsymbols” (p. 3).  As a result, “it is often important to 
analyze connectionist models at a higher level; to amalgamate, so to speak, the subsymbols into 
symbols”.  Of course, the problem is that in some instances the internal network structure might 
be fairly local.  What this means is that when a network is being interpreted, one has to be open 
to the possibility of either a local or a distributed interpretation. 
 
 There are several conclusions that can be drawn from the research that has been con-
ducted in my lab.  First, it is possible to interpret and understand the internal representations of 
multi-layer connectionist networks.  In some instances, a local interpretation approach works; in 
others, one has to examine regularities distributed across hidden units.  Second, no one interpre-
tative strategy will work every time.  Network analysis requires a great deal of patience, and the 
ability to consider a variety of statistical approaches to network analysis is definitely an asset.  
Third, and a consequence of the first two points, network analysis is not easy.  This is likely one 
reason that detailed network interpretations are rarely found in the literature.  Nevertheless, net-
work interpretation is both necessary and possible. This is demonstrated in the next section with 
a detailed description of how  Dawson, Boechler and Valsangkar-Smyth (2000) “cracked” the in-
ternal structure of the spatial judgment network. 
 

8.3.5 Connectionism And Analysis: An Example 
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To provide an example of connectionism and analysis, let us return to the spatial judg-
ment network of Dawson, Boechler and Valsangkar-Smyth (2000).  After they were able to suc-
cessfully construct the network, their interest turned to the kinds of internal representations used 
by the network to generate its metric behavior.  In what way do the hidden units of this network 
represent the metric structure of a two-dimensional map of Alberta?  Have the hidden units de-
veloped a metric representation of space?  Or have the hidden units instead developed some 
complex nonmetric representation from which metric behavior can be derived?   

 
8.3.5.1 Relating The Map Of Alberta To Hidden Unit Connection Weights 
 
 Dawson, Boechler and Valsangkar-Smyth (2000) began by exploring the possibility that 
the network might have developed internal representations similar in nature to those that have 
been attributed to cells in the hippocampus.  For example, consider the possibility that each hid-
den unit occupies a position in the map of Alberta, and uses its connection weights to represent 
the distances from the hidden unit to each of the Albertan cities.  If this hypothesis is correct, then 
one should be able to find a position for each hidden unit on the map of Alberta such that there is 
a substantial correlation between the unit’s connection weights and the distances from each city 
to the hidden unit location. 
 
 Dawson, Boechler and Valsangkar-Smyth (2000) used 
the Solver tool in Microsoft Excel to move each hidden unit to a 
latitude and longitude on the map of Alberta.  The spreadsheet 
that they designed computed the distance between the (current) 
position of the hidden unit and each of the 13 Albertan cities.  
The spreadsheet then computed the correlation between these 
13 distances and the 13 connection weights feeding into the hid-
den unit.  The Solver tool in the spreadsheet then changed the 
position of the hidden unit, finally stopping when it identified the 
position on the map that produced the highest correlation be-
tween map distances and connection weights.  There was a very 
strong relationship between distances and connection weights. 
The correlations were 0.88 for H0, 0.59 for H1, 0.72 for H2, -0.54 
for H3, 0.79 for H4, and –0.48 for H5.  Figure 8-3 illustrates the 
positions of the six hidden units on the map that produced these 
correlations. 

Figure 8-3. The positions 
of the six hidden units on 

the map of the Alberta.  
 
8.3.5.2 Relating Connection Weights To Hidden Unit MDS Spaces 
 
 Dawson, Boechler and Valsangkar-Smyth's (2000) first analysis indicated that each hid-
den unit could be viewed as occupying a position on the map of Alberta, and that its connection 
weights were related to distances between the hidden unit and the 13 cities on the map.  How-
ever, while the correlation between map distances and connection weights were substantial, they 
were not as strong as might be expected.  They noted that one problem with the first analysis was 
that it imposes our notion of the space in question (i.e., the map of Alberta) onto the behavior of 
the hidden units. It does not permit the possibility that the hidden units are spatial, but the space 
that they are sensitive to is quite different from the map in Figure 8-2.  There are at least two rea-
sons to expect that the hidden units have a distorted representation of the map. 
 
 The first reason is theoretical.  If connection weights leading into a hidden unit represent 
distance, then these distances are dramatically transformed by the Gaussian activation function 
of the hidden unit when connection weight signals are converted into hidden unit activity.  This 
kind of transformation would be equivalent to a distortion of the Figure 8-2 map. 
 

The second reason is empirical.  For any input pattern, a hidden unit’s activity can be 
viewed as being analogous to that hidden unit’s rating of the distance between cities.  If we exam-
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ine hidden unit activity to various pairs of cities, then we can see that the hidden unit’s “ratings” 
do not seem particularly accurate.  Consider, for example, hidden unit 2.  When the network is 
asked to rate the distance between Red Deer and Jasper, this unit generates an activation value 
of 0.69.  On the map of Alberta, the distance between Jasper and Red Deer is 413 km.  However, 
nearly identical behavior is produced in the unit by two other cities, Edmonton and Lloydminster, 
which are much closer together on the map (251 km).  When these two cities are presented to the 
network an activation of 0.71is produced in hidden unit 2.   

 
 If the hidden units are spatial in nature, but are dealing with a space that is quite different 
from the one that we might expect (i.e., Figure 8-2), then how should their behavior be analyzed?  
One approach would be to consider each hidden unit as being a subject in a distance rating ex-
periment.  For each stimulus, the rating generated by the hidden unit is the hidden unit’s activity.  
If all of these ratings are taken and organized them into a table like Table 8-2, then MDS can be 
applied to this data.  This analysis determines the structure of the space that underlies the hidden 
units behavior, which can then be related to the connection weights that feed into each unit. 
 
 
 Dawson, 
Boechler and Val-
sangkar-Smyth 
(2000) performed 
this analysis on the 
13 X 13 “activity 
matrix” for each 
hidden unit, in 
which each row and 
each column corre-
sponded to an Albertan city, and each matrix entry aij was the hidden unit’s activation value when 
the network was asked to rate the distance between city i and city j.  They found that a two-
dimensional plot 
provided a nearly 
perfect account of 
the activity matrix of 
each hidden unit. 
They then repeated 
the analysis that 
was reported in 
section 8.3.5.2.1.  However, instead of using the map
the coordinates of the cities obtained from the MDS 
these analyses, for each hidden unit we found a locati
perfect correlation between distances and connection w

Hidden Unit X-Coordinate Y-Coordinate Correlation Between 
Distances And 

Weights 
H0 1.53 -1.88 -0.95 
H1 -0.07 0.10 0.96 
H2 -1.33 0.31 -0.88 
H3 -0.13 -0.14 0.93 
H4 0.07 0.16 -0.95 
H5 3.20 0.19 -0.96 

Results of relating connec  
MDS solutions obtained fr

unit.  The table provides the -
ordinates of the hidden un

mu

 
8.3.5.3 Coarse Coding From Hidden Unit Activation
 
 Up to this point, we have seen evidence that 
spatial representation of map locations, in which the w
information about the distance between the hidden uni
in the same space.  However, we have not yet discus
detected by the hidden units to produce the desired rat
 

We saw earlier that an individual unit’s respon
accurate.  For instance, when presented two cities that
generate internal activity very similar in value to that g
that were much further apart.  To verify this claim qua
kar-Smyth (2000) took the activity of each hidden unit 
the input patterns.  For units H0 through H5, these c
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 maximum correlation, as well as the co
it in the space that produces this maxi-
m correlation. 
 of Alberta, for each hidden unit they used 
analysis of the unit’s activity matrix.  With 
on in the MDS space that produced a near 

eights, as is reported in Table 8-3. 

s To Distance Ratings 

the spatial judgment network developed a 
eights that fed into a hidden unit encoded 

t’s position in a 2D space and city locations 
sed how the network exploits the features 
ings as output. 

ses to different stimuli were not necessarily 
 were relatively close together, a unit might 
enerated when presented two other cities 

ntitatively, Dawson, Boechler and Valsang-
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orrelations were –0.32, 0.04, 0.04, -0.10, 
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0,04, and 0.16.  It would appear that the activities of individual hidden units were at best weakly 
related to the desired distance ratings. How is it possible for such inaccurate responses to result 
in accurate outputs from the network?  

 
The answer to this question is that the hidden unit activations in the network are a form of 

representation called coarse coding.  In general, coarse coding means that an individual proces-
sor is sensitive to a broad range of features, or at least to a broad range of values of an individual 
feature (e.g., Churchland & Sejnowski, 1992).  As a result, individual processors are not particu-
larly useful or accurate feature detectors.  However, if different processors have overlapping sen-
sitivities, then their outputs can be pooled, which can result in a highly useful and accurate repre-
sentation of a specific feature.  Indeed, the pooling of activities of coarse-coded neurons is the 
generally accepted account of hyperacuity, in which the accuracy of a perceptual system is sub-
stantially greater than the accuracy of any of its individual components (e.g., Churchland & Se-
jnowski, 1992). 

 
The coarse coding that is used in the spatial judgment network can be thought of as fol-

lows:  Each hidden unit occupies a different position on the map of Alberta.  When presented a 
pair of cities, each unit generates an activation value that reflects a rough estimate of the com-
bined distance from the two cities to the hidden unit.  While each hidden unit by itself generates 
only a rough estimate, when all six hidden units are considered at the same time, a much more 
accurate estimate of the distance between the two cities is possible.  To demonstrate this, 
Dawson, Boechler and Valsangkar-Smyth (2000) used multiple linear regression to predict the 
distance rating (an integer ranging from 0 to 10) from the activations generated in 6 of the hidden 
units by each of the 169 stimuli that were presented to the network during training.  The regres-
sion equation produced an R2 of 0.71 (F[6,163] = 66.81, p < 0.0001).  In other words, a linear 
combination of the hidden unit activities can by itself account for over 70% of the variance of the 
distance ratings.  After being trained to solve the problem, the network, in virtue of the nonlinear 
transformations performed by the Gaussian activation functions of its output units, can combine 
the hidden unit activities to account for 100% of the distance ratings. 

 
8.3.6 Connectionism And Emergence: An Example 

 
 Several different analyses of the internal structure of the spatial judgment network were 
reported above, and all of these analyses converged on one general finding: the hidden units of 
the network developed metric representations of space.  First, two-dimensional MDS analyses 
accounted for almost all of the variance in the activation matrix that was created for each hidden 
unit.  Second, if one assumed that each hidden unit occupied a location on the map of Alberta, 
one could find a location for each hidden unit that produced a high correlation between the con-
nection weights feeding into the hidden unit and the distances on the map between cities and the 
position of the hidden unit.  Third, if one replaced the map of Alberta with a customized two-
dimensional space for each hidden unit (a space revealed by the MDS analyses), near perfect 
correlations between connection weights and distances in the space were revealed. 
 
 With these analyses completed, we can now return to the issue of connectionism, analy-
sis, and emergence.  Specifically, now that a spatial judgment network has been synthesized, 
and now that its internal structure has been thoroughly analyzed, what are the implications of this 
simulation?  Dawson, Boechler and Valsangkar-Smyth (2000) discussed two general insights that 
were provided by their research.  The first had to do with a controversy about how the hippocam-
pus represents space.  The second had to do with the relationship between metric representa-
tions and nonmetric behaviors.  These two issues are discussed in the sections that follow. 
 
8.3.6.1 Implications For The Hippocampal Cognitive Map 
 
 The strong interest that neuroscientists have taken in the study of spatial behavior and 
cognitive maps can largely be traced back to the discovery of place cells in the hippocampus 
(O'Keefe & Dostrovsky, 1971).  The properties of place cells have been used as evidence for the 
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neural basis of a cognitive map in the hippocampus (O'Keefe & Nadel, 1978).  This map was ar-
gued to be a Euclidean description of the environment based on an allocentric frame of reference.  
In other words, locations in this map were defined in terms of the world, and not in terms of a co-
ordinate system based upon (and moving with) the animal.  Additional support for this proposal 
came from the fact that lesions to the hippocampus produce deficits in a variety of spatial tasks 
(for an introduction, see Sherry & Healy, 1998).  Furthermore, robots that use a representational 
scheme based upon the properties of place cells can navigate successfully in their environment, 
indicating that the place cell architecture is a plausible proposal for a cognitive map (Burgess, 
Donnett, Jeffery, & O'Keefe, 1999).   
 
 One common analogy used by researchers is that a cognitive map is like a graphical map 
(Kitchin, 1994).  “This does not mean that there must be a region in the brain onto which the envi-
ronment is physically mapped, but rather that there will be a correspondence between input-
output behaviors of the storage and retrieval functions of the two representations” (p. 4).  The 
aforementioned properties of place cells would appear to support this analogy.  One might plau-
sibly expect that the cognitive map is a two-dimensional array in which each location in the map 
(i.e., each place in the external world) is associated with the firing of a particular place cell. 
 
 However, anatomical evidence does not support this analogy.  First, there does not ap-
pear to be any regular topographic organization of place cells relative to either their positions 
within the hippocampus or to the positions of their receptive fields with respect to the environment 
(Burgess et al., 1995; McNaughton et al., 1996).  Second, place cell receptive fields are at best 
locally metric (Touretzky et al., 1994).  This is because one cannot recover information about 
bearing from place cell representations, and one cannot measure the distance between points 
that are more than about a dozen body lengths apart because of a lack of place cell receptive 
field overlap.  Some researchers now propose that the metric properties of the cognitive map 
emerge from the coordination of place cells with cells that deliver other kinds of spatial informa-
tion, such as head direction cells which fire when an animal’s head is pointed in a particular direc-
tion, regardless of the animal’s location in space (McNaughton et al., 1996; Redish & Touretzky, 
1999; Touretzky et al., 1994). 
 
 Dawson, Boechler and Valsangkar-Smyth (2000) observed that the hidden units in the 
spatial judgment network also appear to be subject to the same limitations that have brought into 
question the ability of place cells to provide a metric representation of space.  First, because the 
hidden units were all connected to all of the input units, the network had no definite topographic 
organization.  Second, each hidden unit appeared to be at best locally metric.  While the input 
connections were correlated with distances on the map, the responses of individual hidden units 
did not provide an accurate spatial account of the map.  Nevertheless, the fact that the network 
could be trained to accurately generate the ratings indicated that the responses of these locally 
metric, inaccurate processors represented accurate spatial information about the entire map of 
Alberta.  This was possible because the network did not base its output on the behavior of a sin-
gle hidden unit.  Instead, it relied on coarse coding, and generated its response on the basis of 
the activities of all six hidden units considered simultaneously. 
 
 Dawson, Boechler and Valsangkar-Smyth (2000) noted that one implication of this coarse 
coding is that spatial relationships amongst locations in Alberta can be captured by a representa-
tional scheme that is not isomorphic to a graphical map.  In particular, if one views the hidden 
units as being analogous to place cells, then the network demonstrates that spatial relationships 
among 13 different landmarks can be represented by a system which assigns place cells to only 
6 different map locations. 
 

The reason that this is possible is because the representational scheme discovered by 
the network is allocentric, but in a fashion that might not be immediately expected.  Taken liter-
ally, the term allocentric means “centered on another”, but there are at least four distinct kinds of 
representations for which this would be true (Grush, 2000).  In two of these, the locations of ob-
jects are either specified with respect to one object in the environment (an object-centered refer-
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ence frame) or with respect to a position in the environment at which no object is located (a virtual 
or neutral point of view).  The representation used in the PDP network is allocentric in this latter 
sense, because the positions of cities are represented relative to the positions of hidden units, 
and the hidden units are not positioned at city locations.  However, the network representation 
extends this notion of allocentric, because city locations are not encoded with respect to a single 
virtual location, but instead with respect to a set of six different virtual positions, all of which have 
to be considered at the same time to accurately retrieve spatial information from the network (i.e., 
to judge the distance between cities).  Dawson, Boechler and Valsangkar-Smyth (2000) called 
this a coarse allocentric code. 

 
The major hypothesis about the hippocampus that was suggested by the spatial judg-

ment network is that place cells also implement a coarse allocentric code.  As a result, the place 
cells need not be organized topographically, because they don’t represent the environment in the 
same way as a graphical map.  Instead, locations of landmarks in the environment could be rep-
resented as a pattern of activity distributed over a number of different place cells.  If this were the 
case, then in spite of their individual limitations, coarse coding of place cell activities could be 
used to represent a detailed cognitive map without necessarily being coordinated with other neu-
ral subsystems.  In other words, Dawson, Boechler and Valsangkar-Smyth's (2000) discovery of 
coarse allocentric coding in their network provides one plausible manner in which the spatial abili-
ties of the hippocampus can be reconciled with its non-maplike organization. 

 
8.3.6.1 Coarse Allocentric Coding And Nonmetric Judgments 

 
The spatial nature of the network’s internal representations is perhaps not surprising, 

given that the network was trained to internalize a metric space.  However, as was noted earlier 
in this chapter, there does exist a tension between the metric properties of a representation and 
the properties of the behavior that the representation mediates.  Specifically, is it possible for a 
metric representation to mediate nonmetric behavior?   

 
This issue is important, because the discovery that human similarity judgments were 

nonmetric had a severe impact on proposals about the representations that mediated this behav-
ior.  Tversky and his colleagues conducted a number of experiments that demonstrated that simi-
larity judgments were not metric, because in different situations it could be shown that these 
judgments were not always symmetric, did not always conform to the minimality principle, and did 
not always conform to the triangle inequality (Tversky, 1977; Tversky & Gati, 1982).  As a result, 
many researchers completely abandoned the notion of the similarity space, and instead moved to 
feature based comparison models that could easily handle nonmetric regularities.  This was in 
spite of the fact that it is possible to elaborate a perfectly metric representational space in such a 
way that it can be used to mediate nonmetric judgments.  For example, Krumhansl (1978, 1982) 
demonstrated that if one took a metric space and augmented the kind of operations that were 
applied to it one could easily account for asymmetric similarity judgments. 

 
Dawson, Boechler and Valsangkar-Smyth's (2000) discovery of the coarse allocentric 

code was exciting because it raised the possibility of a metric representation that might be flexible 
enough to mediate spatial judgments that were not completely metric.  In other words, they were 
interested in the possibility that coarse allocentric coding could support nonmetric judgments 
without the need for additional rules or processes. 

 
One of the reasons for the rise in the popularity of connectionist networks over symbol-

based models is that network models degrade gracefully and are damage resistant (McClelland, 
Rumelhart, & Hinton, 1986).  To say that a network degrades gracefully is to say that as noise is 
added to its inputs, its output responses become poorer, but it does not stop responding 
(Dawson, 1998).  The model deals as best it can with less than perfect signals.  To say that a 
network is damage resistant is to say that as noise is added to its internal structure (e.g., by dam-
aging connections or by ablating hidden units), its output responses become poorer, but it still 
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functions as well as it can.  Traditional symbol-based models do not degrade gracefully, and are 
not damage resistant. 

 
The damage resistance and graceful degradation of PDP networks is due to the redun-

dancy of their internal representations when they employ coarse coding.  One further advantage 
that this kind of representation can provide, which is related to graceful degradation, is generali-
zation.  When presented with a new stimulus – one that the network was never trained on – a 
network often can generate a plausible response, taking advantage of the similarity between the 
new stimulus and old stimuli, and the fact that such similarity can be easily exploited in redundant 
representations.  In fact, if too many hidden units are used, and if these units start to pay attention 
to specific stimuli, then generalization will be poorer.  This is one aspect of what is called “the 
three bears” problem (Seidenberg & McClelland, 1989). 

 
In a second simulation, Dawson, Boechler and Valsangkar-Smyth (2000) were concerned 

with a different type of generalization – the generalization of representation type from one prob-
lem to another.  Specifically, imagine if the spatial judgment network’s task was changed in such 
a way that the distance ratings violated one of the metric properties of space.  Could allocentric 
coarse coding still be used to represent a solution to the problem?  Or would a change in task 
result in a completely different representational approach?   

 
 The problem that Dawson, Boechler and Valsangkar-Smyth (2000) trained a network to 
solve in the second simulation was a distance estimation 
task that was identical to the one that we have described 
above, with the exception that the network was trained to 
make different judgments when asked to judge the distance 
between a city and itself.  In the first simulation, such judg-
ments obeyed the minimality principle of metric space, and 
the network was trained to make a judgment of 0 when pre-
sented such stimuli.  In the second simulation, the minimality 
principle was violated.  Instead of making a judgment of 0 
when rating the distance of a city to itself, the network was 
trained to make a rating of 0, 1, or 2 depending upon the 
city.  
 
 When the minimality constraint was violated in this 
way, Dawson, Boechler and Valsangkar-Smyth (2000) found 
that the ratings task became more difficult.  In particular, the 
problem could not be solved when the network had six hid-
den units.  An additional hidden unit was required.  When 
seven hidden units were used in the network, it learned to 
solve the problem in 2057 learning epochs. 
 
 In spite of the task being more difficult, though, there 
was no evidence that the network created a qualitatively different representation to solve the 
problem.  Dawson, Boechler and Valsangkar-Smyth (2000) analyzed this second network in the 
same fashion that they used to analyze the first network, and which was described above.  They 
found that the second network used allocentric coarse coding to make distance judgments.  Each 
hidden unit could be considered as occupying a position on the map of Alberta, and the weights 
feeding into each unit were correlated with the distances between the hidden units and the Alber-
tan cities.  The responses of individual hidden units provided relatively inaccurate sensitivity to 
distance information.  However, when the responses of all seven hidden units were pooled, very 
accurate distance judgments were possible.  Finally, and most importantly, there was no evi-
dence that any one of the hidden units had a special role in making the subset of judgments that 
defined the violation of the minimality principle. 

Figure 8-4.  The position of 
the seven hidden units in the 

second spatial judgement 
network. 
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In particular, one possibility that Dawson, Boechler and Valsangkar-Smyth (2000) con-
sidered was that six of the hidden units in the new network were performing the same function as 
were the six in the first network, and that the seventh hidden unit was a special purpose unit de-
signed to deal with the nonmetric judgments taken from the diagonal of the new ratings matrix.  
This was not the case – all seven hidden units could be described in the same general way, and 
all seven were involved in coarse allocentric coding.  Figure 8-4 illustrates the positions of the 
seven hidden units of this network on the map of Alberta. 
 
8.3.6.3 Implications 
 

Earlier in this chapter, we briefly considered three different research areas related to spa-
tial cognition: similarity spaces, mental imagery, and cognitive maps.  For each of these areas, it 
was argued that there existed a tension between behavioral regularities and representational 
properties.  For example, consider the relationship between similarity judgments (which are 
strongly related to the distance judgments used in the current study) and representational pro-
posals.  In the beginning, similarity judgments were assumed to obey the metric properties of 
space, and as a result researchers proposed that these judgments were mediated by a metric 
spatial representation (Romney et al., 1972; Shepard et al., 1972).  However, later research re-
vealed that the judgments that subjects made were not always metric.  What were the 
representational implications due to these behavioral observations? 
 
 One alternative was to completely abandon metric spatial representations, and to adopt 
representations that were less structured.  For example, some researchers replaced the similarity 
space with a proposal in which concepts were represented as sets of features, and nonmetric 
behavioral regularities emerged from the procedures used to compare feature sets (Malgady & 
Johnson, 1976; Ortony, 1979; Tversky, 1977; Tversky & Gati, 1982).  This approach has the ad-
vantage of being able to account for nonmetric behavioral regularities.  However, it has disadvan-
tages as well.  The ability to fit nonmetric behavior emerges from manipulating constants in fea-
ture comparison equations.  These constants provide additional degrees of freedom that must be 
fit from study to study to predict human judgments.  Because of these additional degrees of free-
dom, this kind of theory is less powerful -- less constrained -- than the similarity space that it re-
placed (Pylyshyn, 1984). 
 
 A second alternative was to modify the similarity space proposal in such a way that this 
metric space could mediate nonmetric behaviors.  For instance, Krumhansl (1978, 1982) modified 
the similarity space by including new rules that measured the density of points in the space, 
where density reflected the number of neighbors that were close to a point in the space. Krum-
hansl included density calculations in addition to distance in the rules that were used to compare 
different points in the space.  The inclusion of density permitted nonmetric judgments to emerge 
from the space.  This approach has the advantage of maintaining some of the attractive proper-
ties of the similarity space.  However, the density calculations also introduce new degrees of 
freedom that reduce the explanatory power of theory. 
 
 A third example is provided by the synthetic approach taken by Dawson, Boechler and 
Valsangkar-Smyth (2000).  A model based on relatively simple building blocks, with few underly-
ing representational hypotheses, was trained to generate metric spatial judgments.  Once the 
model had been synthesized, they took great pains to analyze its internal structure.  The result 
was the discovery of a particular kind of representation, allocentric coarse coding, that would not 
have been an obvious proposal had our starting point been the analysis of behavior.  A second 
study demonstrated that this kind of representation was also capable of mediating spatial judg-
ments that violated the minimality principle of metric space.  In other words, the synthetic ap-
proach utilized by Dawson, Boechler and Valsangkar-Smyth (2000) has shown how a connection-
ist representation can account for both metric and nonmetric regularities. 
 

8.4 SUMMARY AND CONCLUSIONS 
 

Synthetic Psychology © M.R.W. Dawson Please do not quote! 



 - 27 - 

 In Chapters 6 and 7, the synthetic approach was illustrated with examples that used ro-
bots, toy and otherwise.  Much of this research, which is now known as behavior-based robotics 
and embodied cognitive science, is aimed at challenging the assumption that cognition and intel-
ligence is based upon mental representations.  While it is of considerable interest that many 
complicated behaviors can be produced by systems that only exploit visuomotor reflexes, many 
domains of cognitive science and psychology are still likely to need to appeal to representations.  
One question addressed in this chapter was whether the synthetic approach could be employed 
in a fashion that still permitted representations to be explored. 
 
 It was argued in this chapter that PDP models offered one plausible method for conduct-
ing psychological research that was both synthetic and representational.  The synthetic compo-
nent of this kind of research involves using components defined by a selected connectionist archi-
tecture to construct a (multi-layer) network capable of solving some problem of interest.  Once the 
network has been constructed, its internal structure is analyzed in detail.  The purpose of this 
analysis is to discover the regularities in the training patterns that are used by the network to 
solve the problem, as well as the manner in which these regularities are represented in the net-
work’s connections.  Once this analysis is complete, it is expected that the discovered regularities 
and representations will lead to unexpected insights into the problem.  In other words, in a con-
nectionist synthetic psychology emergence will follow analysis. 
 
 This chapter also presented one case study in synthetic psychology, the spatial judgment 
network of Dawson, Boechler and Valsangkar-Smyth (2000).  One reason for choosing this ex-
ample was to show that fairly simple components could be used to construct a system capable of 
performing a task of psychological interest.  A second reason for this example was to illustrate an 
instance of “representational emergence”.  When the spatial judgment network was originally cre-
ated, the only general issue in mind was building a PDP system that could respond as if it had 
internalized a spatial map.  We were interested in identifying how such a map was internalized, 
but had no pet theory about its structure.  At the end of the analysis, when we had identified the 
coarse allocentric coding in the hidden units, we found that we had something to say about spa-
tial representation in the hippocampus and about the ability to generate judgments that were 
nonmetric.  These insights were surprising to us, and demonstrate some of the power that can 
emerge from adopting a synthetic paradigm. 
 
 We have now come to the end of Part I of this book.  We have discussed different types 
of models, and have contrasted analytic and synthetic approaches.  We have ended with a case 
study that shows how connectionism can contribute to synthetic psychology.  In Part II of the 
book, we will turn to a more careful study of different connectionist architectures, and use this 
information to get a richer sense of what a connectionist synthetic psychology might look like.   
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