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Chapter 7:  
Uphill Analysis, Downhill Synthesis? 

  

7.1 INTRODUCTION 
  
  The previous chapter used the construction, observation, and analysis of toy ro-
bots to provide a concrete example of the three basic steps that are required in synthetic psy-
chology.  The first step is the synthesis of a working system from a set of architectural compo-
nents.  The second step is the study of this system at work, looking in particular for emergent 
properties.  The third step is the analysis of these properties, with the goal of explaining their ori-
gin.  This general approach was given the acronym SEA, for synthesis, emergence, and analysis. 
 
 The demonstration project that was presented in Chapter 6 provides a concrete example 
of these three basic steps, but is not by its very nature a particularly good example of synthetic 
psychology.  In terms of advancing our introduction of synthetic psychology, the “thoughtless 
walkers” that we discussed at best raise some important issues that need to be addressed in 
more detail.  These issues were mentioned near the end of Chapter 6. 
 
 The purpose of the current chapter is to go beyond our toy robots to consider two related 
issues in more detail.  First, we are going to be concerned with the attraction of the synthetic ap-
proach.  Why might a researcher choose it instead of adopting the more common analytic ap-
proach?  Second, we are going to consider claims about the kind of theory that the synthetic ap-
proach will produce.  Specifically, one putative attraction of the synthetic approach is that theories 
that emerge from synthetic research are considerably less complex than those that are generated 
from analytic research.  The theme of this chapter will be that the synthetic approach does offer 
an attractive perspective for explaining complex behaviors.  However, it is not an approach that 
necessarily produces theories that are simpler than those that come from analytic research.  In-
deed, synthetic research depends heavily upon analysis if its goal is to explain, and not merely 
produce, emergent phenomena. 
 
 This chapter adopts an historical context to explore these issues concerning the relation-
ship between synthetic and analytic traditions.  Starting from an example from early research in 
cybernetics, the chapter will introduce some of the pioneering work on autonomous robots from 
the early 1950s.  Then, the chapter will briefly describe a rebirth – of sorts – of this work in the 
early 1980s.  In reviewing this research, we will see several examples of simple devices that pro-
duce behavior that is both intricate and interesting.  But we will also become aware that even the 
researchers who constructed these devices did not have an easy task in explaining their perform-
ance. 
 

7.2 FROM HOMEOSTATS TO TORTOISES  
 
 In the early stages of the Second World War, it was realized that advances in aviation 
technology needed to be met in kind by advances in anti-aircraft artillery.  Specifically, the speed 
and maneuverability of German aircraft were such that classical methods of aiming this artillery 
were obsolete.  New techniques for aiming – techniques that were capable of predicting the future 
position of a targeted plane, and sending a projectile to this predicted position – had to be devel-
oped, and had to be built right into artillery controlling mechanisms (Wiener, 1948). 
 
 One of the scientists who worked on this applied problem was Norbert Wiener (b. 1894, 
d. 1964), who had received his PhD in mathematical philosophy from Harvard when he was only 
18, studied at Cambridge under Russell, and eventually became a professor in the mathematics 
department at MIT.  Wiener realized that feedback was a key factor in designing a mechanism for 
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aiming anti-aircraft artillery.  For example, “when we desire a motion to follow a given pattern the 
difference between this pattern and the actually performed motion is used as a new input to 
cause the part regulated to move in such a way as to bring its motion closer to that given by the 
pattern” (Wiener, 1948, p. 6).  Wiener also realized that processes like feedback were central to a 
core of problems involving communication, control, and statistical mechanics.  He provided a uni-
fying mathematical framework for studying these problems, and this framework defined a new 
discipline that Wiener called cybernetics, which was derived from the Greek word for “steersman” 
or “governor”.  “In choosing this term, we wish to recognize that the first significant paper on 
feedback mechanisms is an article on governors, which was published by Clerk Maxwell in 1868” 
(p. 11). 
 

7.2.1 Feedback And Machines 
 

 A more definite understanding of feedback, and its 
relationship to synthetic psychology, begins with a very gen-
eral definition of a machine (Ashby, 1956).  William Ross 
Ashby (b. 1903, d. 1972) was one of the pioneering figures 
for the field of cybernetics, and was director of research at 
Barnwood House Hospital in Gloucester, and later was the 
director of the Burden Neurological Institute in the Depart-
ment of Electrical Engineering at the University of Illinois, 

Urbana.  For Ashby, a machine is simply a device which, when given a particular input, generates 
a corresponding output.  In other words, a machine is a device that performs a transformation of 
an input signal to an output response.  Figure 7-1 illustrates this simple and general definition of a 
machine. 

Figure 7-1. Simple defini-
tion of a machine. 

 
 When a machine is defined in this way, then one can 
easily imagine a situation in which two machines are coupled 
together.  In the simplest case, this is accomplished by having 
the output of one machine serve as the input to a second ma-
chine.  With this kind of coupling, the behavior of the second 
machine is completely determined by the behavior of the first 
machine.  For example, in Figure 7-2a the behavior of machine 
M2 is completely determined by the behavior of machine M1.  
This means that considering the machines separately does not 
really provide any additional insight into the function that trans-
forms the input into the output.  We could replace the two ma-
chines with a single machine (M3) that maintained the same 
input/output relationship, as is shown in Figure 7-2b.  We saw 

this kind of relationship earlier 
in the book when we dis-
cussed the linear nature of 
regression equations, and 
noted that the behavior of the entire regression equation w

Figure 7-2. Simple coupling 
of two machines. 

as 
xactly equal to the sum of its parts. e

 
 A more complicated relationship between machines oc-
curs with a different kind of coupling.  The straightforward behav-
ior of the two machines in Figure 7-2 occurred because the in-
puts of machine M1 were independent of the outputs of machine 
M2.  If the output of M2 is fed backwards to serve as the new in-
put to M1, then much more complicated behavior will result.  The 
relationship between machines that is illustrated in Figure 7-3 is 

the basic sort of feedback that is of central interest to cybernetics.  At one level of description, the 
“mechanical feedback” that was described in our analyses of the thoughtless walkers in Chapter 

Figure 7-3.  Feedback 
between two machines 
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6 is of this type: the forces generated by the robot (machine M1) are transmitted to the surface 
2), wh

d 
rough them; and knowing the properties of all the twenty cir-

cuits does not give complete information about the system.” 

ynthetic answer to this question by 
ties of feedback 

 which in turn would result 
tely large current being output 

(M ich in turn transmits forces back to the robot. 
 
 Descriptions of feedback need not be limited to pairs 
of machines.  Many more machines may be coupled together 
to create a more complicated system.  Of particular interest to 
Ashby was a system of four different machines coupled to-
gether with feedback, as is shown in Figure 7-4.  To fore-
shadow observations that we will be making later in this chap-
ter about whether synthetic theories are simple or not, Ashby  
(1956, p.54) makes the following observation about a system 
of this complexity:  “When there are only two parts joined so 
that each affects the other, the properties of the feedback give 
important and useful information about the properties of the 
whole.  But when the parts rise to even as few as four, if every 
one affects the other three, then twenty circuits can be trace
th

 
7.3.1 Ashby’s Homeostat 

 
 Imagine if a researcher was interested in studying a system like the one illustrated in Fig-
ure 7-4.  If understanding its twenty component circuits cannot provide complete information 
about the system, then how should the research proceed?  Ashby (1960) provid

ships in a system of four 
different machines.

mutual feedback relation-

Figure 7-4.  The double-
headed arrows indicate 

ed a decidedly 
constructing an interesting system that he called the homeo-

amongst four mutually coupled machines. 
s
stat to study the proper
 
7.3.1.1 Basic Design 
 
 The homeostat was a system of four 
identical components, and is illustrated in Figure 
7-5.  The input to each component was an elec-
trical current, and the output of each component 
was also an electrical current.  The purpose of 
each component was to transform the input cur-
rent into the output current.  This was accom-
plished by using the input current to change the 
position of a pivoted magnet mounted on the top 
of the component.  In essence, each magnet 
could rotate a needle back and forth.  The nee-
dle was connected to a wire that was dipped into 
a trough of water through which another con-
stant electric current was passed.  With this 
physical arrangement, it was possible for the 
component to output an electrical current that 
was approximately proportional to the needle’s 
deviation from its central position. All things be-
ing equal, a large current that was input to the 
component would cause a large deflection of the 
magnet (and needle),

Figure 7-5.  Ashby’s (1960) photograph 
of the homeostat.  Each of the four units 

pivoting magnet is on top of each unit.
is in the picture; the water trough and 

 (I will need to get the rights to use this 
picture!) 

in a proportiona
from the component. 
  
 The four units were coupled together to create a system of the type that was drawn in 
Figure 7-4.  Specifically, the electrical current that was input to one unit was the sum of the elec-
trical currents that was output by each of the other three units, after each of these three currents 
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was passed through a potentiometer.  The purpose of the potentiometer was to determine what 
fraction of an input current would be passed on to deflect the magnet, and thus each potentiome-
ter was analogous to a connection weight in a PDP network.  The result of this interconnected-
ness was a dynamic system that was subject to a great deal of feedback.  “As soon as the sys-

m is switched on, the magnets are moved by the currents from the other units, but these move-

 next stored random resistance.  With four 
nits, and a 25-valued uniselector in each, there were 390,625 different combinations of potenti-

ble state.  
as “like a fireside cat or dog which only stirs when disturbed, and then methodi-

oes to sleep again” (Grey Walter, 1963, p. 123). 
 

e homeostat and allowing it to stabilize, Ashby manipulated M1 to pro-
uce instability.  The result was one or more advances by the uniselector of M2, which resulted in 

e system adapting to another system of fixed 

te
ments change the currents, which modify the movements, and so on” (Ashby, 1960, p. 102). 
 
 In order to dictate the influence of one unit upon another in the homeostat, one could set 
the resistance value of each potentiometer by hand.  However, Ashby (1960) used a different ap-
proach to allow the homeostat to automatically manipulate its potentiometers.  Each unit was 
equipped with 25-valued uniselector or stepping switch.  Each value that was entered in the 
uniselector was a potentiometer setting that was assigned randomly.  A unit’s uniselector was 
driven by the unit’s output via the deflected needle.  If the output current was below a pre-
determined threshold level, the uniselector did not activate, and the potentiometer value was un-
changed.  However, if the output current exceeded the threshold, the uniselector activated, and 
advanced to change the potentiometer’s setting to the
u
ometer settings that could be explored by the device. 
 
 In general, then, the homeostat was a device that monitored its own internal stability (i.e., 
the amount of current being generated by each of its four component devices).  If subjected to 
external forces, such as an experimenter moving one of its four needles by hand, then this inter-
nal stability was disrupted and the homeostat was moved into a higher energy, less stable state.  
When this happened, the homeostat would modify the internal connections between its compo-
nent units by advancing one or more of its uniselectors to modify its potentiometer settings.  The 
modified potentiometer settings enabled the homeostat to return to a low energy, sta
The homeostat w
cally finds a comfortable position and g
 
7.3.1.2 Behavior Of The Homeostat 
 
 The homeostat was tested by placing some of its components under the direct control of 
the experimenter, manipulating these components, and observing the changes in the system as a 
whole.  For example, in a simple situation only two of the four components might be tested 
(Ashby, 1960, Figure 8/4/1).  In this kind of study, the feedback being studied was of the type M1 
↔ M2.  The relation M1 → M2 could be placed under the control of the experimenter by manipulat-
ing the potentiometer of M1 by hand instead of using its uniselector.  The reverse relationship M2 
→ M1 was placed under machine control by allowing the uniselector of M2 to control its potenti-
ometer.  After starting up th
d
stability being re-attained. 
 
 Even with this fairly simple pattern of feedback amongst four component devices, many 
surprising emergent behaviors were observed.  For example, in one interesting study Ashby  
(1960) demonstrated that the system was capable of a simple kind of learning.  In this experi-
ment, it was decided that one machine (M3) was to be controlled by the experimenter as a 
method of “punishing” the homeostat for an incorrect response.  In particular, if M1’s needle was 
forced by hand to move in one direction, and the homeostat did not respond by moving the nee-
dle of M2 to move in the opposite direction, then the experimenter would force the needle of   M3 
into an extreme position to introduce instability.  On the first trial of this study, when the needle of 
M1 was moved, the needle of M2 moved in the same direction.  The homeostat was then pun-
ished, and uniselector-driven changes ensued.  On the next trial, the same behavior was ob-
served and punished; several more uniselector-driven changes ensued.  After these changes had 
occurred, movement of M1’s needle resulted in the needle of M2 moving in the desired direction – 
the homeostat had learned the correct response.  “In general, then, we may identify the behavior 
of the animal in ‘training’ with that of the ultrastabl
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characteristics.  Ashby went on to demonstrate that the homeostat was also capable of adapting 
ments that were alternated. 

nterested in drawing parallels between the 
ehaviors of the homeostat and behaviors of the nervous system and entire organisms, although 

nto the device.  The second comes from the relatively large number of internal 
tates that could be adopted by the machine when its uniselectors were used to modify potenti-

 current and tracing out the wires to the relays” (Grey Walter, 
63, p 24).  In other words, it is much easier to produce interesting behavior in the homeostat 

than it is to exp
 

 delta waves.  His EEG research and his 

to two different environ
 
7.3.1.3 Implications 
 
 The homeostat counts, perhaps, as one of the earliest examples of the synthetic ap-
proach in action.  It was a fairly simple analog device, constructed from well-understood compo-
nent machines.  It was wired up in such a way that complex feedback could be established 
among these components, and was used to study the dynamic processes that resulted.  It had 
the advantage of permitting these processes to be studied at a time when a mathematical ac-
count of the device was not well established, and also at a time when computer simulations of 
this kind of feedback were not really possible.  It demonstrated emergent behaviors, including 
interesting kinds of learning.  Ashby (1960) was quite i
b
he was also aware of many limitations in his machine. 
 
 The interesting behavior of the homeostat arises from two general sources.  The first is 
the rich possibilities of interactions between machines, as defined by the feedback relationships 
that were wired i
s
ometer settings. 
 
 As a prelude to one theme that will be developed in more detail later in this chapter, the 
large number of different internal states that are available to a working homeostat provides the 
machine with many degrees of freedom with which to produce a low energy state.  However, 
these same degrees of freedom make it difficult for the experimenter to explain the specific 
mechanisms that the homeostat uses to achieve this state.  “A very curious and impressive fact 
about it, however, is that, although the machine is man-made, the experimenter cannot tell at any 
moment exactly what the machine’s circuit is without ‘killing’ it and dissecting out the ‘nervous 
system’ – that is, switching off the
19 . 1

lain this behavior. 
  

7.3.2 Grey Walter’s Tortoises 
 
 Ashby’s (1960) homeostat could be interpreted as 
supporting the claim that the complexity of the behavior of 
whole organisms largely emerges from a) a large number of 
internal components and from b) the interactions between 
these components.  In the late 1940s, William Grey Walter 
(b. 1910, d. 1977) built some of the first autonomous robots 
to investigate a counter-claim (Grey Walter, 1950, 1951, 
1963).  His research program “held promise of demonstrat-
ing, or at least testing the validity of, the theory that multiplic-
ity of units is not so much responsible for the elaboration of 
cerebral functions, as the richness of their interconnection” 
(Grey Walter, 1963, p. 125).  His goal was to use a very 
small number of components to create robots that generated 
much more life-like behavior than that exhibited by Ashby’s 
homeostat. Grey Walter was a neurophysiologist who con-
ducted pure and applied research at a variety of London 
hospitals from 1935 to 1939, and at the Burden Neurological 
Institute in Bristol from 1939 to 1970.  While our interest in 
his research is with his robotics work, he was also a pioneer 
in the use of the electroencephalogram, and was the discov-

Figure 7-6. The tortoise Elsie 
emerges from her hutch. (I need 

permission for this image) 
erer of theta and
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robotics work are both described in his 1963 text The Living Brain. 
 

 

response to light.  The other 
flex altered the behavior of the tortoise in re-

ted.  The other was an electrical contact that served as a touch sensor.  
his contact was closed whenever the transparent shell that surrounded the rest of the robot en-

 abruptly 
heers away and seeks a more gentle climate.  If there is a single light source, the machine cir-

illations persist for abut a second after the obstacle 
as been left behind; during this short memory of frustration Elmer darts off and gives the danger 

(Grey Walter, 1950, p. 45). 

 
7.3.2.1 Basic Design 
 
 Grey Walter (1963) whimsically gave his 
autonomous robots the biological classification 
Machina speculatrix because of their propensity 
to explore the environment.  (He gave Ashby’s 
(1960) homeostat the classification Machina 
sopora, pointing out that if it were to be judged 
“entirely by its behavior, the naturalist would 
classify it as a plant” (p. 124).)  Because of their 
appearance, which is illustrated in Figure 7- 6, 
his robots were more generally called tortoises. 
A very small number of components (two minia-
ture tubes, two relays, two condensers, two mo-
tors, and two batteries) were used to create two 
sense reflexes.  One reflex altered the behavior 
of the tortoise in 
re
sponse to touch. 
 
 At a general level, a tortoise was an 
autonomous motorized tricycle (see Figure 7-7).  
One motor was used to rotate the two rear 
wheels forward.  The other motor was used to steer the front wheel.  The behavior of these two 
motors was under the control of two different sensing devices.  The first was a photoelectric cell 
that was mounted on the front of the steering column, and which always pointed in the direction 
that the front wheel poin

that is currently at the Smithsonian. 
Figure 7-7. A picture of a copy of Elsie 

T
countered an obstacle. 
 
 Of a tortoise’s two reflexes, the light-sensitive one was the more complex.  In conditions 
of low light or darkness, the machine was wired in such a way that its rear motor would propel the 
robot forward while the steering motor slowly turned the front wheel.  As a result, the machine 
could be described as exploring its environment.  The purpose of this exploration was to detect 
light -- when moderate light was detected by the photoelectric cell, the steering motor stopped.  
As a result, the robot moved forward, approaching the source of the light.  However, if the light 
source were too bright, then the steering motor would be turned on again at twice the speed that 
was used during the robot’s exploration of the environment.  As a result, “the creature
s
cles around it in a complex path of advance and withdrawal” (Grey Walter, 1950, p. 44). 
 
 The touch reflex that was built into a tortoise was wired up in such a way that when it was 
activated, any signal from the photoelectric cell was ignored.  When the tortoise’s shell encoun-
tered an obstacle, an oscillating signal was generated that rhythmically caused both motors to run 
at full power, turn off, and to run at full power again.  As a result, “all stimuli are ignored and its 
gait is transformed into a succession of butts, withdrawals and sidesteps until the interference is 
either pushed aside or circumvented.  The osc
h
area a wide berth” 
 
7.3.2.2 Behavior 
 
 (Grey Walter, 1950, 1963) built two tortoises, and named them Elsie and Elmer using the 
initials of the terms that described them – “Electro Mechanical Robots, Light-Sensitive, with Inter-
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nal and External stability.”  The question of interest to him was whether the intricate relationships 
between the small number of robot components, and the interactions between the robots and 
their environment, would be sufficient to generate complicated and interesting behaviors.  He at-
tempted to answer this question by observing the actions of the robots, together and separately, 
in a number of different environments.  He mounted a light source on the robots, and recorded 
their behavior using time-lapse photography.  As a result, the trajectory of a tortoise was traced 

ut on the photograph by the light.  The behavior that he observed was “remarkably unpredict-

“Thus the machine 
he candle” (Grey 

use two exactly equal piles of hay were precisely the 

n animal, might be accepted as evidence of some degree 

ntered the hutch, 

o
able” (Grey Walter, 1950, p. 44). 
 
 For example, consider the behavior re-
corded in Figure 7-8.  When this experiment was 
started, the light was hidden from view by an obsta-
cle.  As a result, Elsie began with its exploratory mo-
tion.  As a result of this exploration, Elsie collided 
with the obstacle, which produced the avoidance 
behavior.  Because of the movements taken to avoid 
the obstacle, the robot was able to detect the light.  
It approached the light, but circled it, because when 
it came too close to the light it was too bright, and 
caused the robot to veer away.  
an avoid the fate of the moth in t

28). 
 
  

c
Walter, 1963, p. 1

 In a second experiment, Elsie was placed in an envi-
ronment in which there were two lights, and (as can be seen 
in Figure 7-9) exhibited choice behavior.  The robot started 
by being attracted to one of the two lights, and approached 
it.  However, when it moved too close to that light, it veered 
away.  As a result of veering away, it detected the second, 
“pleasantly” dimmer light, which it approached.  Thus, the 
robot avoided the problem “of Buridan’s ass, which starved 
to death, as some animals acting trophically in fact do, be-

stacle.  (rights needed!) 

Figur n an 
experiment with a light and an ob-

e 7-8.  Elsie’s behaviour i

ca
same distance away” (Grey Walter, 1963, p. 128). 
 
 In a third experiment, the robot encountered a mir-
ror, and its behavior was driven by the combined effects of 
its ability to detect its own reflected (and relatively dim) light 
source, and of its physical contact with the mirror.  The result 
was the so-called “mirror dance”, which is illustrated in Fig-
ure 7-10.  The robot “lingers before a mirror, flickering, twit-
tering and jigging like a clumsy Narcissus.  The behavior of a 
creature thus engaged with its own reflection is quite spe-
cific, and on a purely empirical basis, if it were observed in 
a
of self-awareness” (Grey Walter, 1963, pp. 128-129). 
 

 The electric components that were used to create the tortoises themselves led to an in-
teresting emergent behavior.  In particular, the sensitivity to light was dependent upon the degree 
to which the battery of a tortoise was charged.  When fully charged, a bright light would repel the 
robot.  However, when its battery was much weaker, the same bright light would attract the robot, 
because it would be recorded as being of moderate intensity.  This enabled Grey Walter to use 
lights to control the ability of a tortoise to recharge itself.  A hutch was built (see Figure 7-6); if the 
robot entered the hutch its battery would be recharged.  Inside the hutch was a light.  When a 
tortoise’s battery began to fail, the robot was attracted by the bright hutch light, e

needed) 

Figure 7-9.  Choice behav-
r as Elsie first visits oiou ne

light source, and then vis-
its the other.  (rights 
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and recharged.  However, when the battery was fully re-

d to a high-
itched whistle.  In general, the results of all of his experi-

or readers of the electronic version of this book, direct links to the in-
tructions for building this robot, a listing of the program used to control it, and a movie illustrating 

ded at the end of this chapter.  For other readers, this material has been 
cluded on the CD that accompanies the text. 

he ant” (p. 
1).  In other words, fairly simple dispositions of the ant – following the scent of a pheromone trail, 

uman psychology – which M. speculatrix is 
esigned to illustrate: the uncertainty, randomness, free will or independence so strikingly absent 

charged, the bright hutch light repelled the robot, so that it 
left the hutch and began to explore its environment once 
again. 
 
 (Grey Walter, 1950, 1951, 1963) reported the results 
of many different kinds of experiments, including some that 
involved a particularly complicated environment because it 
included two tortoises.  He also designed a later version of 
the machine, Machina docilis, which was capable of being 
classically conditioned.  It learned to be attracte
p
ments demonstrated quite clearly that the complexity of the 
behavior of his robots far exceeded the complexity of the 
components from which they were constructed. 
 
 Recently, with the availability of robot construction toys such as Lego Mindstorms, new 
generations of Grey Walter’s tortoises have appeared.  For example, Figure 7-11 illustrates one 
such robot that my son Christopher and I constructed from Lego Dacta components.  While not 
identical to a tortoise of the late 1940s, we attempted to build into it much of the functionality of 
Grey Walter’s machines.  F

dance. (rights required) 
Figure 7-10.  The mirror 

s
its behavior, are inclu
in
 
7.3.2.2 Implications 
 
 From where does the complexity of behavior arise?  Simon (1996) explored this question 
with his famous parable of the ant.  He imagined an ant walking along a beach, and that its trajec-
tory along the beach was traced.  This trajectory might be thought of as being a very complicated 
function; explaining the behavior of the ant was equivalent to explaining how the many twists and 
turns of this function arose.  One might be tempted to attribute the properties of this function to 
fairly complicated internal navigational processes.  Indeed, if one were to adopt an analytic ap-
proach, this kind of attribution would be expected.  The trajectory would be taken as raw data, 
analyzed into key components, and the mechanisms that generate these key components would 
be attributed to the ant.  However, Simon pointed out that this would likely lead to an incorrect 
theory.  “Viewed as a geometric figure, the ant’s path is irregular, complex, hard to describe.  But 
its complexity is really a complexity in the surface of the beach, not a complexity in t
5
turning in a particular direction when an obstacle is encountered – could lead to a very compli-
cated trajectory, if the environment being navigated through was complicated enough. 
 
 Grey Walter’s tortoises provide a robotic analog to the parable of the ant.  As we have 
seen in the preceding section, the trajectories traced in the photographs of robot behavior are 
very complicated.  However, this complexity is not reflected in the internal complexity of the tor-
toise.  The inner workings of Grey Walter’s robots were very simple and straightforward by de-
sign.  The complexity in the observed behavior must be rooted in the complexity of the interaction 
between a simple robot and its environment.  “So a two-element synthetic animal is enough to 
start with.  The strange richness provided by this particular sort of permutation introduces right 
away one of the aspects of animal behavior – and h
d
in most well-designed machines” (Grey Walter, 1950, p. 44).  Again, feedback is a key – in this 
case feedback between the world and the machine. 
 
 Consider this issue from a different perspective, the analytic one that had to be taken by 
the “kids in the hallway” who were discussed in Chapter 1.  When I introduce synthetic psychol-
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ogy in lectures, I often use Grey Walter’s tortoises as an introduction.  However, when I do this, I 
describe the performance of the robots first, presenting images like Figure 7-8, 7-9, 710 as 
behavioral data.  Students are asked to infer the internal mechanisms of the machines on the 
basis of these images.  Invariably, after analyzing the data that I have presented to them, they 
propose a far more complicated theory – one that involves many more internal properties – than 
is actually required.  This is exactly the same situation that was observed in our Chapter 1 exam-

les.  It would appear that psychology students – and psychologists – have a strong tendency to 
nore t

ined by only appealing 
 internal mechanisms; an agent’s behavior is always presumed by them to be the result of a 

uld be 
 a better position than would be the case if we started with the behavior, and attempted to ana-

lyze it in order to understand the workings an agent’s internal mechanisms.  Later in this chapter I 
ill argue that while this perspective is appealing, it is also very deceptive and dangerous. 

p
ig he parable of the ant, and prefer to locate the source of complicated behavior within the 
organism, and not within its environment. 
 
 Pfeifer and Scheier (1999) call this the frame-of-reference problem.  “We have to distin-
guish between the perspective of an observer looking at an agent and the perspective of the 
agent itself.  In particular, descriptions of behavior from an observer’s perspective must not be 
taken as the internal mechanisms underlying the described behavior” (p. 112).  This is because 
Pfeifer and Scheier believe that the behavior of a system cannot be expla
to
system-environment interaction.  “The complexity we observe in a particular behavior does not 
always indicate accurately the complexity of the underlying mechanisms.” 
 
 Here we see one of the strong appeals of adopting the synthetic approach.  By building a 
system and taking advantage of nonlinear interactions (such as feedback between components, 
and between a system and its environment), relatively simple systems can surprise us, and gen-
erate far more complicated behavior than we might expect.  By itself, this demonstrates the reality 
of the frame-of-reference problem.  However, the further appeal of the synthetic approach comes 
from the belief that if we have constructed the simple system, then we should be in a very good 
position to propose a simpler explanation of the complicated behavior.  In particular, we sho
in

w
   

7.4 VEHICLES  
 
 Surprisingly and disappointingly, Grey Walter’s tortoises appear to have had a very short-
lived academic impact, and had essentially disappeared from the scene by the end of the 1950s.  
The original machines, Elmer and Elsie, were constructed in 1948 and 1949.  They were fairly 
unreliable machines when publicly demonstrated in 1949 and 1950, and were probably scrapped 
in 1951.  That year, Grey Walter’s technician Bunny Warren constructed six new, more reliable, 
tortoises that were demonstrated in public throughout the 1950s.  Three of these had been on 
display at the 1951 Festival of Britain exhibition; two were auctioned off and later destroyed in an 
Australian house fire.  The third is currently at the Smithsonian Institute.  Of the other three, one 
went missing after being shipped to the United States.  A second was dismantled, and never re-
assembled, after an ill-fated attempt by an American company to use it to design a new toy. The 
third remained with Grey Walter until his death in 1977, and then was in the possession of his son 
Nicolas.  This final machine was displayed in 1985, and was saved from disposal by Nicolas 
some years later.  Stored in his basement for several years, it was rediscovered after a long 
search in 1995.  It was refurbished, and used as a model for less fragile modern replicas.  On 
isplay now at Bristol University, the Intelligent Autonomous Systems Engineering Laboratory 
ere m

d
th aintains a great deal of historical information about the tortoises at the Grey Walter Online 
Archive (http://idle.uwe.ac.uk/IAS/gwonline.html). 
 
 To my mind, one of the most striking examples of the disappearance of the tortoises is 
that Grey Walter’s research was not cited in the book that provides the renaissance of his theo-
retical perspective.  In Vehicles, Valentino Braitenberg proposed a series of 14 different thought 
experiments (Braitenberg, 1984).  Each of these experiments involved conceptualizing a fairly 
simple machine, and considering how that machine might behave in different environments. 
Some of these machines are reminiscent of Elmer and Elsie.  As Braitenberg’s book progresses, 
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the hypothetical machines become more sophisticated, as does their consequent behavior.  One 
of the main themes of the book is one that is familiar from the current chapter: simple machines 
an generate far more complicated behavior than one might expect.  A second theme pursued by 

Braitenberg is that his synth tions than those that would 
e attained if vehicle behaviors were approached analytically.  

an it may have seemed up to this point” (Braitenberg, 1984, p. 95).  In general, Braitenberg 

tion, we will briefly explore Braitenberg's (1984) approach by considering a 
ouple of the devices that he proposed.  After we have introduced some of these machines, we 

will be in a better position to seri nd cons of adopting a synthetic 
search strategy. 

7.4.2 Some Example Vehicles 

rate evolutionary sequence that is traced from his 
arly vehicles to the later ones.  His early machines are very simple, and are easily thought of as 

n.  Under the 
ssumption that this vehicle is moving in the real world, it will become under the influence of 

ould say, and does not like warm water.  But it is quite stupid, since it is 
ot able to turn back to the nice cold spot it overshot in its restlessness.  Anyway, you would say, 

seen a particle of dead matter move around quite like that” 
raitenberg, 1984, p. 5). 

 output of sensors.  However, for these devices, there are two motors, one on each side at 

c
etic approach will lead to simpler explana

b
 

7.4.1 Braitenberg’s General Approach 
 
 Valentino Braitenberg (b. 1926) is the emeritus director of the Max Planck Institute of Bio-
logical Cybernetics, an emeritus professor at the Institute of Medical Psychology and Behavioral 
Neurobiology of the Eberhard-Karls-University in Tübingen, Germany, and is the director of the 
cognitive science laboratory at the University of Trento in Italy.  Braitenberg is a leading re-
searcher in cybernetics and neuroscience, and the thought experiments that he presents in Vehi-
cles are an attempt to understand some of the characteristics of the brain by adopting the syn-
thetic approach.  The final chapter of the book “sketch a few facts about animal brains that have 
inspired some of the properties of our vehicles, and their behavior will then seem less gratuitous 
th
takes an anatomical property of interest, reduces it to a very simple form, and considers the be-
havior of a simple machine that incorporates it. 
 
 In this sec
c

ously consider some of the pros a
re
 

 
7.4.2.1 Vehicle 1: Getting Around 
 
 Braitenberg (1984) constructed a delibe
e
organisms that swim around in water.  The later, more sophisticated devices are better thought of 
as “little carts moving on hard surfaces” (p. 2). 
 
 His simplest vehicle is a swimming device that is best thought of as a cylinder or torpedo, 
with a sensor at one end (the front) and a motor at the other.  The foundational design principle 
for this vehicle is the proportional relationship between the response of the sensor and the speed 
of the motor.  As the sensor detects more of whatever quality it is designed to detect, the motor 
increases its speed.  As the sensor detects less of this quality, the motor slows dow
a
asymmetrical frictional influences.  As a result, it will not travel in a perfectly straight line, but will 
instead follow a complicated trajectory that is both difficult to predict and to explain. 
 
 From the synthetic perspective used to create this vehicle, its overall behavior is very un-
derstandable.  However, if faced with analyzing the behavior of the vehicle in the absence of any 
knowledge about its internal structure, it is likely to be very complicated.  On observing this ma-
chine, “it is restless, you w
n
it is ALIVE, since you have never 
(B
 
7.4.2.2 More Advanced Vehicles 
 
 The next set of vehicles proposed by Braitenberg (1984) are similar in spirit to Vehicle 1 
in that they can be viewed as swimming devices propelled by motors whose speed is determined 
by the

Connectionism And Psychological Modeling  © M.R.W. Dawson Please do not quote! 



 - 81 - 

the back of the vehicle.  Each sensor drives its own motor.  The two sensors are mounted on 

 different speeds, 
ausing the vehicle to turn away from the source.  Braitenberg (1984) describes this vehicle as 

 of it, then the vehicle will turn towards the source instead of away from 
.  Braitenberg (1984) designates this vehicle as being AGGRESSIVE: “it, too, is excited by the 

ver, if the goal is to produce complex behavior from a simple system, then these vagaries of 
e environment become advantages.  By adopting the synthetic approach “what seems like 

complex

ver-
ion of this book, direct links to the instructions for building these robots, a listing of the program 

each side at the front of the vehicle.  Of interest is the anatomy of the connections between mo-
tors. 
 
 For instance, one vehicle might have excitatory connections (i.e., the same kind of sen-
sor-motor relationship described for Vehicle 1) between the sensor and the motor on the same 
side of the vehicle.  If the signal source being detected by the sensors is straight ahead of this 
vehicle, both motors will run at equal speeds, and the vehicle will run into the source.  However, if 
the source is to one side, then the sensor nearer to the source will detect a stronger signal than 
will the sensor further from the source.  As a result, the two motors will run at
c
DISLIKING sources, becoming “restless in their vicinity and tends to avoid them, escaping until it 
safely reaches a place where the influence of the source is scarcely felt” (p. 9). 
 
 One could take the vehicle just described and cross its connections, so that the sensor 
on the right drives the motor on the left, and the sensor on the left drives the motor on the right. 
With these crossed connections, the sensor nearest the source drives the motor on the other side 
faster than the other sensor will drive the motor nearer the source.  If the source is directly in front 
of the source, the vehicle will drive through it, as was the case for the previous vehicle.  However, 
if the source is to one side
it
presence of sources, but resolutely turns toward them and hits them with high velocity, as if it 
wanted to destroy them.” 
 
 One common approach to studying the two types of vehicles that have just been de-
scribed is to actually construct them, for instance using Lego Mindstorms or Lego Dacta compo-
nents.  The advantage of doing this is that their behavior is removed from the idealized domain of 
the thought experiment, and becomes subject to real-world influences.  These influences include 
differential forces of friction on different robot parts, and the fact that no two presumably identical 
robot components will work in exactly the same way.  “This means that it is usually more difficult 
than it seems to get a consistent and reliable automatic response to a stimulus” (Webb, 1996, p. 
94).  If the goal is to design a robot that will move in a straight line, then this is a serious problem.  
Howe
th

 behavior in a robot can come from a surprisingly uncomplicated control algorithm” (p. 
95). 
 

The robots that were briefly described as being observed by the “kids in the hallway” in 
Chapter 1, and illustrated in Figure 1-1, were versions of the Braitenberg vehicles described in 
this subsection.  These Lego Dacta machines were constructed and programmed by my daughter 
Michele and myself.  Each robot used one motor to drive one rear wheel, and the speed of rota-
tion of the wheel depended upon the output of a light sensor.  In one robot, the connections be-
tween sensors and motors were crossed, in the other they were not.  The only addition to these 
particular robots was that we used a “shell” to serve as an obstacle detector, as was the case 
with the Lego version of the tortoise that was described earlier.  For readers of the electronic 
s
used to control them, and a movie illustrating their behaviors, are included at the end of this chap-
ter.  For other readers, this material has been included on the CD that accompanies the text. 
 
 Braitenberg (1984) goes on to consider minor advances in the design of this kind of vehi-
cle.  For instance, the sensors might be tuned to be maximally sensitive to a particular range of 
signal from a source.  When this is done, with crossed connections, the behavior of the vehicle 
mimics the phototropism exhibited by Grey Walter’s tortoises.  The connections between sensors 
and motors can be made inhibitory, so that a motor slows down when the sensor detects more of 
the signal.  Motors can be driven by more than one sensor, each sensitive to a different kind of 
signal.  In theory, one such vehicle would be straightforward to build, but would exhibit extremely 
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complex behavior: “It dislikes high temperature, turns away from hot places, and at the same time 
seems to dislike light bulbs with even greater passion, since it turns toward them and destroys 

em” (p. 12).   Again we see that producing emergent properties – where the whole of a system’s 
e one of the key goals of the synthetic 

pproach. 

 the table, and the goal of this team is to build new vehicles.  The way that this process 
orks is that a researcher takes one of the vehicles from the table, and uses it as a model for the 

icle is picked up 
nd used as a model for a different vehicle component when the copy is being constructed.  Of 

lts in a longer life span for the copy, then this vehicle will be 
ore likely to be picked up and used as the model for later generation systems. 

ore advanced vehicles.  Some of these vehicles have spatially organ-
ed sensors that permit them to detect the shapes of objects.  Others have simple connectionist 

 

th
performance far exceeds the sum of its simple parts – ar
a
 
7.4.2.3 Vehicle 6: Selection, The Impersonal Engineer 
 
 When Braitenberg (1984) vehicles emerge from the sea to occupy the land, evolutionary 
ideas take a decidedly different role in his book.  Braitenberg imagines a collection of vehicles, all 
operating on a table, a table that is surrounded by spare parts.  A team of researchers also sur-
rounds
w
creation of a copy from spare parts.  Then both the original and the copy are placed back on the 
table. 
 
 A further twist to this thought experiment is the notion that the copies are being made in a 
hurry, and therefore the builders don’t have much time to check their work, or to test the ade-
quacy of each copy.  As a result, some of the copies that are placed back on the table will not be 
identical to the original that was used as a model.  Many of these copies will be defective, and will 
therefore fall off the table to be used as parts for later generations of copies.  “But it is also possi-
ble that we will unwittingly introduce a particularly shrewd variation into the pattern of connec-
tions, so that our copy will survive forever while the original may turn out to be unfit for survival 
after all” (Braitenberg, 1984, p. 27).  Braitenberg argues that this is particularly likely if one vehicle 
is picked up and used as a model for one vehicle component, and a different veh
a
course, if the lucky mutation resu
m
 
7.4.2.4 Further Sophistications 
 
 Braitenberg (1984) proposes several additional modifications, and describes how they 
can be used to develop m
iz
networks that enable them to learn from experience.  Still others have feedback loops that enable
them to predict the future. 
 
 e 

-
ely complicated behaviors 

an emerge. “It is pleasurable and easy to create little machines that do certain tricks. It is also 
quite easy to s beyond 

hat we had originally planned, as it often does“ (Braitenberg, 1984). 
 

All of these sophistications have two things in common.  First, they are all made possibl
through the use of fairly straightforward materials and engineering.  Second, when they are com
ponents of vehicles that are placed in interesting environments, extrem
c

observe the full repertoire of behavior of these machines -- even if it goe
w

7.5 SYNTHESIS AND EMERGENCE: SOME MODERN EXAMPLES 
 

The historical examples that have been considered thus far in the chapter all point to two 
underlying themes.  First, it is definitely possible to construct informative models by building com-
plete systems from some set of assumed components, without the need of basing the model on 
extensive analyses of existing data.  In other words, if one looks back at the previous examples, 
then one striking feature that should be noted is that neither the homeostat, the tortoises, nor the 
vehicles were models that were intended to fit extant behavior.  Second, when this synthetic ap-

roach is taken, it is almost always the case that interactions between system components, and 
betwee

 

p
n these components and a complex environment, can produce surprising and interesting 

emergent behavior that usually exceeds the expectations of the system designer. 
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The research that has been reviewed above has inspired a great many modern research 
programs.  In order to reinforce these two themes, let us take a moment to briefly review three 

ore modern examples of complex behavior emerging (often unintentionally) from relatively sim-
ple systems that have been created via the synthetic approach. 

).  This is because the pronunciation of some 
peech sounds will change as a function of context.  The LTS thread has a series of rules that 

s processing resources.  Producing the highest quality output consumed 
9% of the CPU’s resources.  DECtalk has only become more portable recently because of ad-

vances 

eralized quite well to words that it 
viously.  Interestingly, the network was able to perform at this high level without 

requiring a large separate lookup table as is used in DECtalk. 

m

 
7.5.1 NETtalk 

 
 DECtalk is a program for converting text into audible speech (Hallahan, 1996), and is 
widely viewed as the best commercially available product for this task.  DECtalk consists of eight 
different processing “threads”, each of which is concerned with a major stage of processing, rang-
ing from buffering text in an input memory to generating audio via a computer’s sound hardware.  
It does this by following a two-stage process.  Of particular interest in the context of the current 
chapter is the letter-to-sound (LTS) thread that converts sequences of ASCII text into sequences 
of phonemes. First, the LTS thread separates the text stream into clauses, and normalizes the 
text by applying special processing rules to idiosyncratic text entries (numbers, abbreviations, and 
so on).  Second, the remaining unprocessed test items are converted into phonemes in one of 
two ways. First, a word is looked up to see if it exists in a pronunciation dictionary of common 
words.  (If this first lookup fails, the word will be tested for an English suffix.  If the suffix is found, 
it will be removed, and the remaining word stem will be looked up in the dictionary again.)  Sec-
ond, if the word is not found in that dictionary, then it is converted into speech by applying a set of 
phonological rules that decompose the text into a sequence of morphemes.  The phonological 
representation of the text that is generated by this two-stage process is then converted into audi-
ble speech by applying a set of transition rules to it, and then applying digital speech synthesis.  
During this stage of processing, the LTS thread will identify syllables in the morpheme se-
quences, and mark some of them for additional stress to make the ultimate speech output as 
natural sounding as possible.  Also, the LTS thread will identify the context in which a particular 
phoneme is found (i.e., surrounding phonemes
s
instantiate these context-dependent alterations. 
 
 While DECtalk exhibits outstanding performance, this is accomplished with considerable 
cost. (Hallahan, 1996) notes that the program is the product of over 30 man-years of develop-
ment, and consists of around 160,000 lines of code.  This large amount of code is required be-
cause there is a considerable amount of specific knowledge that is built into the program.  For 
instance, the LTS thread alone has more than 1,500 rules of pronunciation.  Even with this large 
number of rules, it still requires a dictionary of exceptional words that has over 15,000 entries.  
On older hardware, running DECtalk at settings that produced medium quality output resulted in 
its using 69% of a CPU’
8

in CPU design. 
 

NETtalk is a connectionist network that was intended to replace much of the LTS thread 
in DECtalk.  Rather than handcrafting a large number of rules, and a dictionary of exceptional 
words, NETtalk was intended to be a fairly small program that learned to convert text into speech 
(Sejnowski & Rosenberg, 1988).  The network had 7 groups of 29 input units per group to repre-
sent text, 80 hidden units, and 26 output units that represented phonemes for a total of 309 units 
and 18,629 weighted connections.  Text was moved through an input “window”, so that the net-
work was trained to pronounce the text in the middle of the “window”, while at the same time be-
ing aware of the text’s context (i.e., the text on either side of the “window”, which had either just 
been pronounced or was to be pronounced next).  The network was trained on two different texts.  
One was phonetic transcription from the informal speech of a child.  The other was over 20,000 
different words from a dictionary.  Training was accomplished using the generalized delta rule 
(Rumelhart, Hinton, & Williams, 1986).  By the time the network had learned about 5000 words, 
its performance was nearly perfect, and its performance gen
had not seen pre
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emergent behavior suggested that it might shed light on some topics of psychological in-
terest. 

 
7.5.2   Cricket Phonotaxis 

 briefly re-
views the central points of Webb’s synthetic study of this phenomenon (Webb, 1996). 

 same time.  The 
mechanisms underlying cricket phonotaxis are not yet completely understood. 

l, the cricket’s eardrum that is closer 
to the sound source will have higher amplitude of vibration. 

he higher will be the spike train fre-
quency of the neuron, and the sooner will it start to respond. 

ires postulating additional neural mechanisms for picking out the song with the correct 
rhythm. 

not clear that this simple theory is sufficient to account for 
the regularities of cricket phonotaxis. 

 
NETtalk was explicitly designed to exhibit some of the functionality of DECtalk.  It was not 

intended to have any implications at all for psychology or cognitive science.  However, during 
training, NETtalk’s output was channeled into audio hardware.  Sejnowski and Rosenberg (1988) 
noted, “during the early stages of learning in NETtalk, the sounds produced by the network are 
uncannily similar to early speech sounds in children” (p. 670).  They use this surprising finding to 
hypothesize that NETtalk might have discovered representations that are particularly efficient for 
use by a parallel networks, and that these representations may be similar to those employed by 
humans.  They go on to suggest that the developmental regularities that have been observed in 
NETtalk and other networks (e.g., Elman et al., 1996; Rumelhart & McClelland, 1986) “may be a 
general property of incremental learning in networks with distributed representations” (p. 672).  In 
other words, even though NETtalk was only intended as a particular feat of engineering, its sur-
prising 

 
A second example comes from the study of cricket phonotaxis.  This section

 
Phonotaxis, the ability to identify a particular sound and move towards it, is fundamental 

to a female cricket’s choosing of a mate (Webb, 1996).  A male cricket will generate a song as a 
series of syllables produced at a specific frequency and with a specific rhythm.  A female cricket 
can use these properties to isolate the song of a male cricket of her own species from any other 
sound.  After selecting the song, the female cricket will move towards the male producing it, even 
under conditions in which other males of the same species are chirping at the

 
Sounds from the world provide external stimulation to a cricket’s eardrums, which are 

mounted on its forelegs.  Sound also travels inside the cricket’s body to the ears through a tra-
cheal tube that connects the two ears to each other and to openings on the cricket’s body called 
spinnacles.  These internal and external sounds travel different distances, and therefore arrive at 
the same ear at different times, resulting in their being out of phase.  The amount of phase shift 
depends upon the direction of the sound source.  In genera

 
What mechanisms are responsible for converting differences between eardrum vibration 

amplitudes into movements in the direction of the detected sound?  Each eardrum stimulates a 
neuron that encodes amplitude.  The larger the amplitude, t

 
There are two theories of how the responses of the two neurons are used to direct the 

cricket’s locomotion.  One popular theory is that the cricket turns in the direction of the side with 
the neuron that is firing more frequently.  However, this account would work for any sound, and 
thus requ

 
A second, simpler theory is that with each sound burst the cricket turns in the direction of 

the side whose neuron begins to fire first.  In other words, this theory ignores spike train fre-
quency.  This second theory has the advantage that it does not require additional rhythm-
detecting circuitry, because changes in the rhythm of the detected song will naturally alter the 
onset of neural firing.  However, it is 

 
Webb (1996) adopted the synthetic approach to evaluate the adequacy of this second 

theory.  Se constructed a LEGO robot with specialized electronics that mimicked the functionality 
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of the neural circuits in the cricket’s auditory system.  The robot had two wheels driving it from the 
rear, each rotated by its own engine.  When both motors were running, they pushed the robot 
forward.  The robot was programmed to stop the engine of the side whose “ear circuit” reached 
threshold first.  This resulted in the robot turning in that side’s direction – with the aim of having it 
turn in the direction of the detected song. 

or faster 
rates.  So the robot not only succeeds like a cricket but tends to fail like one too” (p. 98). 

 mechanisms with particular sound 
fields that produces this interesting – and useful – behavior.” 

iments with actual crickets presented with this laboratory situation 
produced very similar results. 

 a simple control 
echanism, provided it interacts in the right way with its environment” (p. 99). 

 
7.5.3 Stigmergy And Group Behavior 

 
The “ear circuitry” of the robot was optimally sensitive to a sound that had a specific fre-

quency and rhythm.  Webb (1996) began to test the adequacy of the theory by placing it at one 
side of an arena, and placing a speaker on the other side.  She recorded the trajectory taken by 
the robot when sounds were broadcast from the speaker.  When the sound was of the optimal 
frequency and rhythm, Webb found that the robot followed a zigzag path towards the speaker that 
was very similar to the trajectory taken by a female cricket.  When the properties of the sound 
deviated from the optimal, the phonotactic behavior of the robot became far less successful.  For 
example, when the syllable rate of the sound was increased, the robot drove through the arena in 
predominately straight lines.  When the syllable rate was decreased, the robot followed a curved 
path towards the speaker, but rarely reached the speaker’s actual location.  These robot behav-
iors began to establish the adequacy of the second theory.  “I discovered afterward that real 
crickets, too, tend to take curved paths at slower rates while failing more completely f

 
Female crickets will choose between songs generated by two different males of the same 

species, usually moving to the louder of the two songs.  Webb (1996) realized that she had not 
explicitly programmed this ability into her robot.  Nevertheless, she decided to see what the robot 
would do in an arena in which two speakers were present, and in which the same sound was be-
ing played through both.  “To my surprise, the robot seemed to have no problem making up its 
mind (so to speak) and went almost directly to one speaker or the other” (p. 99).  This suggests 
that the simple theory of phonotaxis may not only explain the general phenomenon of song isola-
tion, but might also account for how a female cricket chooses one mate over another.  “Again it 
appears that it is the interaction of the robot’s uncomplicated

 
Webb (1996) used this experimental situation to generate a sound scenario that was 

completely unnatural.  She alternated the location of the sound’s generation between the two 
speakers in the arena.  Under these conditions, the robot becomes confused, and moves be-
tween the two sounds.  Exper

 
These kinds of results provide yet another demonstration of the advantages of the syn-

thetic approach.  Webb (1996) explicitly avoided building complicated capacities into her robot, 
and did not expect that the robot’s behavior would be rich and varied.  However, when this simple 
device was situated in the appropriate environment, its performance exceeded her expectations.  
“It shows that a rather competent and complex performance can come from
m

  
 If you visit the website for the Collective Robotic Intelligence Project (CRIP) at the Uni-
versity of Alberta (http://www.cs.ualberta.ca/~kube/research.html), then you will have an opportu-
nity to view some interesting video footage of a small collection of autonomous robots engaged in 
very complicated group behavior.  Six small, cylindrically shaped robots move in an arena.  In the 
middle of the arena is a brightly lit box.  At the start of the video, four of the robots move directly 
to the box, while two others wander to one side of the arena.  Of the robots that reach the box 
first, three line up side by side against it, while the fourth pauses behind this group, and then 
moves away.  The three robots attempt to push the box, fail, and then break formation.  Two re-
turn to a different position on the box, and are then joined by one of the other robots that had 
originally wandered off.  When these three robots come in contact with the box, it begins to slide 
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and turn.  The movement of the box causes the three robots to break formation, but soon they 
return to push again.  In a moment, the three other robots join them; the six robots jockey for 
position near one corner of the box, and push it quite quickly into a corner of the arena that is 
rightly lit with an overhead spotlight. 

 again.  The robot can also lose sight of the box if another robot 
omes between it and the box. 

e of them push at the same time, and so 
at they are all pushing in a fairly consistent direction. 

agents, and evolved into the performance of the 
hysical robots that is illustrated on the website. 

t incorporated most of these general behavioral principles (e.g., Kube & Bonabeau, 
000). 

) to produce a term whose meaning is “stimulating product of labor” 
olland & Melhuish, 1999). 

b
 
 This video illustrates performance on a box transport task, which is one of the benchmark 
tests used to study cooperative behavior in robots.  For each robot, the goal of this task is to lo-
cate the brightly lit box and to push it into a goal location, which is also brightly lit.  Each robot is 
equipped with light sensors that point forward (for locating the box) and upward (for locating the 
goal).  Once the robot detects a side of the box, it determines if the box is between the robot and 
the goal location.  If it is, the robot pushes against the box.  If it is not, the robot attempts to find a 
different position against the box.  In many cases, this will result in the robot losing sight of the 
box, and having to search for it
c
 
 The box transport task is designed to assess cooperative behavior, because the box is 
weighted so that at least two robots are required to move it.  In order to succeed, the robots must 
position themselves along the box so that more than on
th
 
 The astonishing thing about the behavior that can be seen in the website videos is that 
while it seems to be highly effective and coordinated, it is accomplished by very simple mecha-
nisms.  Furthermore, the robots do not explicitly communicate with each other, and are not cen-
trally controlled.  These robots are the culmination of several years of research that began with 
the study of core abilities in a group of software 
p
 
 Kube and Zhang (1994) used software agents to explore some properties of cooperative 
behavior that were inspired from the study of social insects.  They modeled the sensing and act-
ing of a group of robots totally in a software environment.  The simulated robots were provided 
with three sensors (one for the goal, one for obstacles, and one for other robots), two actuators 
(left and right wheel motors), and five simple behaviors.  The behaviors were constructed using 
the subsumption architecture of Brooks (e.g., 1999).  The default behavior is find, which causes 
the robot to move forward in a large arc.  This behavior can be suppressed when the robot de-
tects another; in this case it will change its behavior to follow the detected robot.  If it gets too 
close to another robot while following, it will activate its slow behavior.  If the goal sensor be-
comes active, then the robot will initiate the goal behavior, which causes it to move towards the 
goal.  This behavior will only be stopped by initiating the avoid behavior, which occurs when the 
robot detects that a collision with another robot is imminent.  Note that none of these behaviors 
involve communicating with other robots to coordinate their attack on a target.  The simulation 
demonstrated the collective box transport behavior of the type that was later produced in real ro-
bots tha
2
 
 How does this cooperative behavior arise in robots that do not communicate directly with 
one another?  The answer to this question again depends upon realizing that the robots (simu-
lated or real) are situated in an environment that they are both sensing and acting upon.  By 
changing the environment (e.g., by pushing the box, or blocking the path of another robot), they 
change the environment that is sensed by other robots, which in turn alters the behavior of the 
other robots.  This indirect form of communication – accomplishing by directly altering the envi-
ronment, and therefore indirectly altering the behavior of agents in the environment – is called 
stigmergy.  This term comes from combining the terms stigma (wound from a pointed object) and 
ergon (work, product of labor
(H
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 Stigmergy was a term coined by French zoologist Pierre-Paul Grassé to explain the nest 
building behavior of termites (Theraulaz & Bonabeau, 1999).  Grassé demonstrated that the ter-
mites themselves do not coordinate or regulate their building behavior, but that this is instead 
controlled by the nest structure itself.  The current state of part of the nest stimulates a termite to 
perform an activity that alters the nest; the alteration in turn triggers a new behavior from either 
the same termite or from another.  Stigmergy also provides an account of the construction of the 
nests of paper wasps (e.g., Karsai, 1999), and offers an alternative to older theories that attrib-
uted a fairly high degree of intelligence or higher-level rules to these insects.  Stigmergy is gener-
ally viewed as a fairly simple mechanism for producing complex and coordinated performances 
from a group of agents, but has not been studied extensively.  “The potential of stigmergy is still 
largely untapped in the biology community, in which it originated” (Theraulaz & Bonabeau, 1999 
p. 113).  Research on collective robotics, such as the box transport research cited above, or stud-
ies by Holland and Melhuish (1999) on how robots can exploit stigmergy to sort different objects 

to clusters, can be viewed as an attempt to increase our understanding of stigmergy, and to 

e result is complex collective behavior.  Importantly, this behavior is completely emergent, be-
cause none o interactive.   

in
identify how it can interact with other principles to organize useful, collective behaviors. 
 
 For the purpose of the present chapter, stigmergy is an example of the “law of downhill 
synthesis”, which we will consider in more detail in the next section.  From a robot designer’s 
point of view, an individual robot is provided with a very basic set of sensorimotor abilities, and is 
not required to include any facility for communicating directly with other agents.  When placed in a 
complex environment – made particularly complicated by the presence of more than one agent – 
th

f the capacities built into the robot are explicitly designed to be social or 
 

7.6 THE LAW OF UPHILL ANALYSIS AND DOWNHILL SYNTHESIS 
 

 Brooks (2002) describes the behavior of one of his graduate students interacting with 
Cog, a humanoid robot with a moving head and arm, and with camera eyes that saccade to ob-
jects of interest (Brooks, Breazeal, Marjanovic, Scassellati, & Williamson, 1999).  In this interac-
tion, the student first held a whiteboard eraser and shook it.  Then Cog would saccade to it, reach 
for it, and touch it.  This sequence of events was then repeated, and it seemed clear that the two 
were taking turns.  However, when this interaction occurred, the capacity for taking turns had not 
yet been programmed into Cog, and was not planned to be added to the robot for many years.  
The graduate student “had filled in the behavioral details so that the game of turn-taking with the 
eraser worked out.  But she had done it subconsciously.  She had picked up on the dynamics of 
what Cog could do and embedded them in a more elaborate setting, and Cog had been able to 
perform

bconsciously, that humans may have a 
natural dency to be overly generous in assigning complexity to the internal systems of agents 
that we

rprising and interesting emergent behaviors. This 
eme is evident in the examples that we have seen in this chapter, as well as when we dis-

 at a higher level than its design so far called for” (p. 92).   
 
This anecdote illustrates one theme that we have seen in the historical and modern ex-

amples of synthetic research that have been presented in this chapter: the generation of behavior 
that is more complex than expected from a simple system embedded in an interesting environ-
ment.  It also provides an example that shows, even su

ten
 see in the world, or with which we might interact. 
  
These two points are related to two complementary themes that have been argued to be   

central characteristics of the synthetic approach (Braitenberg, 1984).  The first theme is “downhill 
synthesis”, which means that it is fairly straightforward to construct simple devices that, when 
they interact with the environment, produce su
th
cussed the “thoughtless walkers” in Chapter 6. 
 
 The second theme is “uphill analysis”, which Braitenberg (1984) uses as an argument in 
favor of the synthetic approach, and against an approach in which the behaviors of existing sys-
tems are explained via analysis. "It is much more difficult to start from the outside and try to 
guess internal structure just form the observation of the data. [...] Analysis is more difficult than 
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invention in the sense in which, generally, induction takes more time to perform than deduction: in 
induction one has to search for the way, whereas in deduction one follows a straightforward path. 
A psychological consequence of this is the following: when we analyze a mechanisms, we tend to 
overestimate its complexity”.  In other words, if the goal of synthetic psychology is to explain how 
various behaviors arise, then Braitenberg is claiming that the synthetic approach will lead to sim-
pler theories than those arrived at by adopting the analytic perspective.  Braitenberg feels 
trongly enough about this position to proclaim this “the law of uphill analysis and downhill syn-
esis.” 

oach is attractive, it cannot justify abandoning analysis entirely.  As a matter of fact, for 
ynthetic psychology to succeed, synthesis and analysis must both be combined in a research 

program. 

Why is analysis a required component of the synthetic approach?  To answer this ques-

 his subsumption architecture, is not.  It is not connection-
m, nor neural networks, nor production rules, nor a blackboard control architecture, nor even 

l science?  In particular, beyond the ‘gim-
ick’ of resemblance to natural systems, is any deeper understanding of how animals behave 

ese goals in mind, merely generating complicated behavior 
 not a sufficient research program.  The synthetic approach is in the business of explaining, and 

s
th
 
 One reason that the law of uphill analysis and downhill synthesis seems to be quite plau-
sible is our sense that if a researcher has constructed a system, then he or she should have an 
excellent understanding of its inner workings, and therefore should be in an excellent position to 
offer straightforward mechanistic explanations of complex behavior.  Given that the synthetic ap-
proach can produce rich and surprising results, this seems to make it an extremely attractive al-
ternative to the more traditional analytic approach.  However, it is important to realize that while 
the law of uphill analysis and downhill synthesis can provide grounds for arguing that the syn-
thetic appr
s

 
7.6.1 From Demonstration To Explanation 

 
 
tion, let us consider for a moment what the goals of a synthetic research program might be. 
 
 Brooks (1999, pp. 96-97) takes great pains to let us know what, in general, behavior-
based robotics and, more specifically,
is
German philosophy.  What then is it? 
 
 It could be that behavior-based robotics merely demonstrates that complex behaviors 
frequently emerge from simple systems.  To this point, this chapter could be considered to be a 
short catalogue of such demonstrations. However, of biologically inspired robots like the one used 
to study cricket phonotaxis, Webb (2000, p. 545) asks, “such examples of engineering can be 
attention grabbing, but what is their value for biologica
m
brought about by the building of such robot systems?” 
 
 The answer to questions like these depends first on determining whether the synthetic 
approach to robotics is intended to be anything more than attention grabbing demonstrations.  
Even a cursory glance at the literature would indicate that roboticists are interested in going be-
yond demonstrations, and coming up with theories of intelligence.  For example, Adams, 
Breazeal, Brooks, and Scasselati (2000, p. 28) note, “just as computer simulations of neural nets 
have been used to explore and refine models from neuroscience, we can use humanoid robots to 
investigate and validate models from cognitive science and behavioral science.”  Webb (2000) 
argues that biologically inspired robots can be used to test existing hypotheses, to alter assump-
tions about stimuli and responses when confronted with a real environment, to enforce complete 
theories (and identify incomplete ones), and to produce novel hypotheses.  Pfeifer and Scheier 
(1999) propose that the goal of embodied cognitive science is to achieve a better understanding 
of intelligence. “The methodology of embodied cognitive science is synthetic, its goal is under-
standing by building” (p. 631).  With th
is
not just demonstrating. 
 
 If the synthetic approach is to generate new explanations of intelligent behavior, then 
analysis is going to be required.  To see why this is so, imagine that a researcher is constructing 
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autonomous systems according to a scheme similar to that described in Section 7.4.2.3, in which 
more successful systems are being selected for copying, and in which the copying process can 
introduce random mutations.  (This hypothetical example is not so far fetched, as it captures the 
spirit of how problems are solved by genetic algorithms (e.g., Holland, 1992; Mitchell, 1996).) 
Imagine that after this process had been carried out for a certain period of time, one of the

 
 con-

tructed systems exhibited a surprising and complicated behavior that was of considerable inter-

isms interacted with each other and with 
e environment to produce the behavior, and how the absence of such interactions resulted in 

the beh

of brains in type 6 vehicles would fail altogether: the wiring that produces their 
ehavior may be so complicated and involved that we will never be able to isolate a simple 

avior, as well as its internal states; the behavior 
 then described and analyzed statistically.  The ultimate goal of this research program is to 

“formula

f the imple-
ented hypothesis.  Behavior qualitatively similar to the animal in a few trials, while encouraging, 

cannot be taken as confirm 000, p. 553). 

s
est to psychologists.  How would this system be used to contribute to psychological theory? 
 
 Simply demonstrating the interesting behavior would be interesting, but would not be sat-
isfactory on its own.  After all, a psychologists would already know of some other system that 
generates the behavior (i.e., a person or an animal), and would only be interested in this new sys-
tem if it shed some light on how these other agents of interest worked.  If the new system that 
demonstrated the behavior did not do this, it would be actually be complicating the situation, be-
cause instead of having one unexplained system (the person or animal), we would have two (the 
person/animal and the new autonomous system).  As a result, in order to contribute to psycho-
logical theory, there would be a very strong demand for the researcher to explain the behavior of 
these new system – to say exactly how its inner mechan
th

avior not appearing in less successful systems. 
 

In this particular hypothetical example, though, synthesis does not imply an easy route to 
understanding and explanation.  The fact that the researcher constructed the system using selec-
tion implies that explanation must depend upon a later stage of analysis.  This is because the 
success of this particular system (and the failure of other similar systems) was due to some ran-
dom mutation that affected its internal mechanisms.  This mutation was caused by the re-
searcher, but not intentionally.  To explain its behavior, the researcher would have to take the 
system apart, examine its inner workings, and probably take other systems apart as well to iden-
tify the differences between successful and unsuccessful systems.  This later stage of analysis, 
while necessary, is likely to be difficult and intensive. Of vehicles created by natural selection, as 
is the case in this hypothetical example, Braitenberg (1984) writes “we can imagine that in most 
cases our analysis 
b
scheme” (p. 28).   
 
 Of course, synthetic researchers recognize that the analysis of their creations will be 
challenging.  Nevertheless, they also realize that such analysis is required to generate explana-
tions.  For example, Pfeifer and Scheier (1999, p. 131) outline a ten-step research program for 
conducting experiments with agents.  The last three steps of this program are purely analytic.  
They involve collecting data about the agent’s beh
is

te explanations of the agent’s behavior”. 
 

Webb (2000) provides an additional argument for the need for analysis in her assess-
ment of how biorobotics can contribute to biology.  She notes that just because a robot generates 
the same behavior as an animal, it is not appropriate to conclude that they two systems exploit 
the same control mechanisms.  This is because a standard realization in modeling is that the 
same behavior can be generated by, in principle, an infinite number of different algorithms (See 
also Dawson, 1998, Chapters 5 and 6).  As a result, a great deal of analysis is required to deter-
mine whether the synthetic system and the modeled animal are strongly equivalent.  “Proper ex-
perimental evaluation is needed to determine fully the real strengths or limitations o
m

ation, yet too few studies do more” (Webb, 2
 

7.6.2 Implications Of Braitenberg’s Law 
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According to Braitenberg's (1984) law of uphill analysis and downhill synthesis, synthesis 
is much easier than analysis, and is more likely to circumvent the frame-of-reference problem.  In 
other words, the synthetic approach should be capable of generating simpler theories than those 
that would be generated by the analytic approach.  However, we have just seen that synthetic 
researchers have the goal of generating explanations of intelligence and behavior, and because 
of this g

ation should first 
involve performing synthesis, and then later conducting analysis.  It is this combined approach – 
with an

ergent behavior, the fact that they have 
constructed the model should make analysis easier, because they already have an accurate un-
derstanding of the main func ould therefore be in a posi-
on to target their analyses efficiently and appropriately. 

e goal of the synthetic approach is to generate explanations, analysis 
annot be completely abandoned.  Synthetic research will usually involve early stages of synthe-

e reduced to studying non-representational systems that act on the world, or 
an the synthetic approach be applied to systems that use representations and have been of 

more interest to cogniti ions are addressed in 
e next chapter. 

oal realize that analysis is a crucial component of their research program.  What then is 
really implied by the law of uphill analysis and downhill synthesis? 

 
The law of uphill analysis and downhill synthesis is not a claim that analysis should be 

abandoned, but is instead a claim that the route to understanding and explan

 emphasis on early synthesis -- that holds the promise of generating simpler theories than 
an approach that exclusively involves analyzing the behavior of existing agents. 

 
One reason for this promise is the fact that, as we have seen repeatedly, the synthetic 

approach is an explicit attempt to make the most by using the least.  Synthetic modelers usually 
attempt to design fairly simple systems, in the hope that complex behaviors will emerge when 
they are situated in an environment.  A second reason for this promise is that even in cases when 
researchers may not know precisely how to explain em

tional components of their model, and sh
ti

 
7.6.3 Towards Synthetic Psychology  

 
 In this chapter, we have considered a number of examples of the synthetic approach.  
We have used these examples to demonstrate that one of the attractions of this approach is the 
fact that very simple mechanisms can generate complicated behavior when situated in a complex 
environment.  We have seen that this in turn has led to the argument that the synthetic approach 
will lead to simpler theories than those that can be generated by the analytic approach.  However, 
we have also seen that if th
c
sis that are followed by later stages of analysis, as was foreshadowed by the SEA approach that 
was outlined in Chapter 6. 
 
 Almost all of the examples of synthetic research that we have considered to this point 
have involved sensorimotor systems – in particular, robots of one sort or another.  One question 
that needs to be addressed is whether such systems define exclusively the domain of the syn-
thetic approach.  Can the synthetic approach be applied to non-robotic systems?  A second ques-
tion that must be dealt with is whether systems of the type that we have been considering, which 
are predominately anti-representational, are of any interest to psychologists.  Is synthetic psy-
chology going to b
c

ve psychology and cognitive science?  These quest
th
 

7.7 INSTRUCTIONS, PROGRAMS AND MOVIES 
 
I still have to create the material that will be included here.  It will be similar to the media support 
at the end of Chapter 6, and will show the basic structure of a couple of Lego robots, give a short 
program listing for them, and will inclu kTime movies that demonstrate their de a couple of Quic
behavior. 
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