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Abstract

Recent work on a network interpretation technique called
“banding analysis” has shown how symbolic rules can be
easily extracted from trained connectionist networks [2].
This method, however, is limited to “local” interpretations,
and cannot take full advantage of the distributed nature of
neural networks. In this paper we discuss a technique for ex-
tracting distributed symbolic rules from trained connection-
ist networks. This technique is based on thek-means cluster
analysis of activation values across all hidden units instead
of single units as in the banding analysis. A novel stopping
rule—based on domain specific heuristic information—is
defined such that the optimum number of clusters are ex-
tracted from the network. Once the appropriate clusters
are determined, simple statistics are computed to determine
the shared characteristics of all patterns within a cluster.
The utility of this technique is illustrated on two benchmark
problems. It is concluded that this form of distributed rule
extraction is more succinct than simple local analysis of in-
ternal structure.

Introduction

One of the most challenging problems facing connection-
ist researchers is the interpretation of the internal structure
of trained neural networks; that is, the extraction of “rules”
from the network in order to understand how the network
is solving a particular problem. Such extraction techniques
are beneficial to the development of expert systems and data
mining techniques based on neural networks.

There are two main approaches to network interpretation:
analysis of network topology (i.e., connection weights and
unit biases [4]), and analysis of network behavior in terms
of either input/output mappings [10] or internal activation
states [2]. The first interpretation technique gives a static
picture of how a network solves a problem, whereas the sec-

ond technique gives a more dynamical view. In this paper,
we will focus on this second form of analysis; specifically,
this work is based on the analysis of hidden unit activations
distributed throughout a network.

In [2] it was shown how a network interpretation
technique—dubbed “banding analysis”—could extract
symbolic rules from a particular type of connectionist
network using non-monotonic processing units. This
technique depends upon the analysis of local properties of
individual hidden units; When plotted with a jittered density
plot, hidden unit activations of non-monotonic units [2] [5]
are arranged into distinct and interpretable bands. We
show in [6] that this banding reflects sets of points lying in
hyperplanes perpendicular to the weight vector of a given
unit. The analysis of these bands, however, only reveals the
local structure within each hidden unit.

It is possible that these local bands may merely be an arti-
fact of more general regularities that are distributed across
a number of different hidden units. In other words, the lo-
cal analysis may reveal structures that are inconsequential
for solving the problem, whereas a more distributed analy-
sis may be able to extract those properties actually required
for solving the problem. For instance, many of the “bands”
identified by the local analysis often contain “micro-bands”
that share very few (if any) common features when grouped
together.

In such cases, variations of more traditional analytic tech-
niques, such as cluster analysis, may be more appropri-
ate to use than banding analysis. We show here that dis-
tributed symbolic rules can be extracted from connectionist
networks by means of a cluster analysis on hidden unit acti-
vations, and that the local rules extracted by banding analy-
sis may be insufficient for overall network interpretation.

In this paper, we introduce a distributed rule extraction tech-



nique based on the analysis of hidden unit activations using
a cluster analysis with a novel stopping rule. We then illus-
trate the utility of this technique on two benchmark prob-
lems, with a brief comparison between local and distributed
analysis techniques. It is concluded that this distributed
analysis is both simpler and more complete than local anal-
yses as it reveals regularities across network units often hid-
den by local analyses.

Method

Analysis Technique

Both the local and distributed approaches to network analy-
sis begin by recording the activites produced by each input
pattern within each of the hidden units. This step produces
anm × n data matrix, wherem is the number of patterns
andn is the number of hidden units.

For local analyses, each column is plotted in a jittered den-
sity plot (e.g., see Figure3), and simple statistics (i.e.,
means, standard deviations, and pair-wise correlations) are
performed on the patterns falling into each “band” defined
by the plots (see [6]). This local interpretation is limited by
two factors: (i) the identification of unique bands is quali-
tative in nature, and (ii) it is blind to the regularities in the
patterns of activities distributed across units.

However, we can use these activity patterns for a distributed
analysis of the network. Specifically, we can extract dis-
tributed rules from a network by performing ak-means clus-
ter analysis on the vectors of hidden unit activities. Thek-
means cluster analysis is an iterative process that assigns
each pattern to one ofk specific clusters such that the as-
signed pattern is closer to the centroid of that cluster than to
any other cluster.

One problem inherent to cluster analysis is determining the
number of clusters,k, to use. Normally, one starts with a
fairly small number of clusters, and then adds clusters until
a suitable number is found as determined by a predefined
“stopping rule”. Here we propose a novel stopping rule spe-
cific to neural networks. As the network has already found
a solution to the problem, we define the new stopping rule
as the minimum number of clusters required such that all
patterns within a single cluster produce the same network
output.

As with local band interpretation, we can then perform a
definite feature analysis [2] to uncover common character-
istics of the input patterns corresponding to the activity vec-
tors in each cluster. These definite features can then be used
to create a symbolic rule base.

Problem Types

Two different bench-mark problems were considered: the
first of the “3-Monks” problem [9], and the “Mushroom”
problem [8]. The first of the3-Monksproblem consists of
124 training patterns and 432 test patterns defined by six at-
tributes (a1 → a6; see Table1). The network is trained on
the target concept (head-shape = body-shape) OR (jacket-
color = red) [i.e., (a1 = a2) ∨ (a5 = 1)]. The network in-
puts were encoded using a unary encoding scheme such that
only one input unit for each characteristic—as indicated by
the input groupings in Figure1—was active at any one time.

Table 1. Monk Attributes

ATTRIBUTE VALUE

a1 head-shape 1round, 2square,3octagon
a2 body-shape 1round, 2square,3octagon
a3 is-smiling 1yes, 2no
a4 holding 1sword, 2balloon, 3flag
a5 jacket-color 1red, 2yellow, 3green,4blue
a6 has-tie 1yes, 2no

Table 2. Mushroom Attributes

ATTRIBUTE VALUE

a1 cap-shape 1bell, 2conical, 3convex, 4flat, 5knobbed,
6sunken

a2 cap-surface 1fibrous, 2grooves,3 scaly, 4smooth
a3 cap-color 1brown, 2buff, 3cinnamon, 4gray, 5green,

6pink, 7purple, 8red, 9white, 10yellow
a4 bruises 1no, 2yes
a5 odor 1almond, 2anise, 3creosote,4fishy, 5foul,

6musty, 7none,8pungent,9spicy
a6 gill-attachment 1attached,2descending,3free, 4notched
a7 gill-spacing 1close,2crowded,3distant
a8 gill-size 1broad,2narrow
a9 gill-color 1black, 2brown, 3buff, 4chocolate, 5gray,

6green, 7orange, 8pink, 9purple, 10red,
11white, 12yellow

a10 stalk-shape 1enlarging,2tapering
a11 stalk-surface-above-ring 1fibrous, 2scaly, 3silky, 4smooth
a12 stalk-surface-below-ring 1fibrous, 2scaly, 3silky, 4smooth
a13 stalk-color-above-ring 1brown, 2buff, 3cinnamon,4gray, 5orange,

6pink, 7red, 8white, 9yellow
a14 stalk-color-below-ring 1brown, 2buff, 3cinnamon,4gray, 5orange,

6pink, 7red, 8white, 9yellow
a15 veil-type 1partial, 2universal
a16 veil-color 1brown, 2orange,3white, 4yellow
a17 ring-number 1none,2one, 3two
a18 ring-type 1cobwebby, 2evanescent,3flaring, 4 large,

5none,6pendant,7sheathing,8zone,
a19 spore-print-color 1black, 2brown, 3buff, 4chocolate,5green,

6orange,7purple, 8white, 9yellow
a20 population 1abundant, 2clustered, 3numerous,

4scattered,5several,6solitary
a21 habitat 1grasses, 2 leaves, 3meadows 4paths,

5urban,6wastes,7woods

The Mushroomproblem consists of the hypothetical de-
scription of 8124 different mushrooms, each characterized
by 21 different multi-featured properties; the network’s goal
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is to classify the mushrooms as edible (4208 instances) or
poisonous (3916 instances). Two modifications were made
to the original data set. First, one characteristic (stalk-root)
that had missing information was removed from the data set
as it was not essential for classification. Second, the data set
was expanded by adding extra output encodings correspond-
ing to previous “rules” as determined by prior processing
(see [7] and Figure4). Therefore, the network was actually
trained to produce both a classification and a “reason” for
the classification1.

As the mushroom characteristics were multi-featural, the
features were represented by discrete, real numbers between
0 and 1. That is, if a characteristic had five features, the fea-
tures were represented as the values 0.00, 0.25, 0.50, 0.75,
and 1.00. For later analysis, the input features were con-
verted into a 119 unary code; again, only one feature was
active at any one time within each characteristic group.

Network Architecture and Training

Value unitnetworks (networks with non-monotonic process-
ing units [3]) trained with a modified generalized delta rule
were trained for both problems. For the3-Monksproblem,
the network consisted of 17 input units, 2 hidden units, and
1 output unit with full connectivity between layers (see Fig-
ure 1). Network weights were randomized between±0.1
and all biases were initialized to 0.0. A learning rate of 0.1
with no momentum was used; the network was trained to
a tolerance level of 0.01 (meaning a value of 0.9 or higher
when the target is 1.0, and 0.1 or lower when the target is
0.0).

a2 a3a1 a4 a5 a6

Input

Output

Figure 1. Network architecture for the 3-Monks prob-
lem. Note that unary encoding is being used.

For theMushroomproblem, the network consisted of 21 in-
put units, 5 hidden units, and 10 output units. One output
unit was used to indicate edible or poisonous, and the other
9 units were used to represent the classification rule (only

1It should be noted that this elaboration is not necessary for the network
to solve the problem.

one of these nine units was on at any time; see Figure2).
For theMushroomproblem, a learning rate of 0.005 with no
momentum was used. Weights were randomized between
±1.0 and biases were initialized to zero. The network was
trained to a tolerance of 0.0025.

E/P R1e R1p R2e R2p R3e R4e R4p R5e R5p

Input

Output

Figure 2. Network architecture for the Mushroom prob-
lem. The leftmost output unit, labeled “E/P”, was
trained to classify the mushroom as either edible or poi-
sonous. The remaining 9 output units were trained to
represent the rule used to classify the mushroom (e.g.,
“R1e” for “Rule 1, edible”, “R1p” for “Rule 1, poi-
sonous”, etc.).

Results

The3-MonksProblem

The network trained on the3-Monksproblem converged on
a solution in 433 epochs (where an epoch is defined as the
full presentations of the data set). The trained network was
also able to correctly classify all test patterns. For compari-
son, both the local and distributed methods of rule extraction
are performed on this network.

Banding Analysis From the local banding analysis, six
bands could be identified across the two hidden units; the
individual bands are labeled alphabetically (clusters are la-
beled numerically for comparison) in Figure3 and their in-
terpretations are given in Table3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 23 4

A B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 2 34

A B C D

HU0 HU1

Figure 3. The jittered density plots for the two hidden
units. Local bands within each unit are labeled alpha-
betically. Distributed clusters are labeled numerically.

It should be noted that definite feature analysis is based on
individual input units; for the sake of clarity, however, the
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individual units have been collapsed into their respective at-
tributes. For example, in H0-B (Hidden Unit 0; Band B),
the correlation between input unit 3 (i3) and input unit 6
(i6) was -1. This can be logically collapsed into the expres-
sion “a1 6= a2” as the unary encoding precludes more than
one value being active within an attribute. The other bands
are similarly interpreted.

Table 3. Band interpretation for the 3-Monksproblem.
UNIT BAND PATS INTERPRETATION

H0
A 73 No definite features
B 51 a1 6= a2[i3 6= i6]; a5 6= 1

H1

A 68 No definite features
B 16 a3 = 1; a2 = 3; a5 6= 1
C 29 a1 6= a2 {i1, i4 = 0; i2 6= i3}; a5 6= 1
D 11 a1 6= a2 {i3, i6 = 0; i1 6= i4}; a5 6= 1

The interpretation of each band follows. Bands H0-A and
H1-A have no definite features (this is typical of bands
near 0.0; see [6]). All other bands have a unique encod-
ing of “head-shape is not equal to body-shape” as well as
the common interpretation “jacket-color is not red.” Band
H0-B picks out those patterns in which either “head-shape
is round” or “body-shape is round.” Band H1-B picks out
those patterns with attributes “head-shape is round, body-
shape is octagon.” Bands H1-C and H1-D are somewhat
more complicated: H1-C detects “head-shape is round,
body-shape is square” or “head-shape is square, body-shape
is round” whereas H1-D picks out “head-shape is square,
body-shape is octagon” or “head-shape is octagon, body-
shape is square.”

Consequently, from the local analysis, it appears the net-
work is solving the logical negation of the problem. That is,
the network only produces a correct response2 if it doesn’t
detect any of the invalid patterns.

Cluster Analysis Although the local band analysis gives
an idea as to the role of each hidden unit in solving the prob-
lem, it is unclear how these units combine their resources.
Cluster analysis on the pattern of activations across units,
however, gives you this information explicitly.

Table4 lists the four clusters (number of patterns, output ac-
tivation state, mean, and standard deviation of each cluster)
extracted from the network and Table5 lists the interpre-
tations of each cluster. Clusters are labeled numerically in
Figure3.

Similar to the local banding analysis, Cluster 1 (C-1) con-
tains no definite features; however, from the cluster analysis,
we know that all patterns in C-1 are valid patterns. The three
other clusters are variations on “head-shape is not equal to

2The bias of the output unit was +0.008, which means the maximum
activation value of 1 is produced when the summed inputs are near zero.

Table 4. The four clusters extracted for the 3-Monks
problem. With each cluster is listed the number of pat-
terns in the cluster, the output state of the network, and
the mean activity (and standard deviation) of the cluster
in each hidden unit.

CLUSTER PATS OUT HU0 HU1

1 62 1
0.002 0.005

(0.005) (0.005)

2 29 0
0.948 0.876

(0.059) (0.014)

3 11 0
0.000 0.998

(0.000) (0.003)

4 22 0
0.963 0.032

(0.046) (0.019)

body-shape” and “jacket-color is not red”. In fact, it is clear
that the three clusters exhaustively encode the three, spe-
cific exclusive relationships. That is, C-2 encodes “round
vs. square”, C-3 encodes “square vs. octagon”, and C-4
encodes “round vs. octagon.” By collapsing across the last
three clusters, we extract the symbolic rule “head-shape6=
body-shape AND jacket-color6= red” which is the logical
negation of “head-shape = body-shape OR jacket-color =
red”.

Table 5. Cluster analysis for the 3-Monks problem.
CLUSTER INTERPRETATION

1 No definite features
2 a1 6= a2 {i1, i4 = 0}; a5 6= 1
3 a1 6= a2 {i3, i6 = 0}; a5 6= 1
4 a1 6= a2 {i2, i5 = 0}; a5 6= 1

In comparison to the banding analysis, the cluster analysis
is simpler and cleaner. Furthermore, as these clusters are
distributed across the units, we also explicitly know how the
network is solving the problem.

The Mushroom Problem

In this section, we show how this technique can be success-
fully used on a much larger problem—theMushroomprob-
lem contains more patterns (8124), attributes (21), and pos-
sible values (up to 12). Furthermore, the decision rules to
correctly classify all mushrooms are more complicated (e.g.,
see Figure4 for one possible solution to the problem). The
network was able to converge on the correct solution after
8699 epochs. As before, the first step in the analysis is to
record the hidden unit activations produced by each of the
input patterns.
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Figure 4. One possible decision tree for solving the mush-
room problem. This solution was extracted using a mod-
ification of the ID3 algorithm [ 7].

The hidden unit activations are shown in Figure5. A pre-
vious banding analysis has been performed on this net-
work [7], and these bands are labeled alphabetically within
the figure; however, as there are 40 distinct bands across the
five hidden units, the current results are restricted to a dis-
tributed cluster analysis only.

As opposed to the 40 bands identified in Figure5, the clus-
ter analysis identifies 12 clusters; these clusters and their
accompanying statistics are listed in Table6. The interpre-
tations for each of the clusters are listed in Table7. A quick
caveat must be made—many of the clusters contain other
definite features than those listed, but these irrelvant features
(e.g., features constant across all patterns) can be removed
by a simple redundancy reduction algorithm. The interpre-
tations listed here have had this algorithm applied.

By moving through the table from the simplest to most com-
plex, Table7provides a simple, algorithmic method for clas-
sifying mushrooms. In fact, these clusters can be directly
translated into the decision tree shown in Figure4. That is,
we are able to easily extract an interpretable, symbolic rule
base from a trained neural network. As the interpretation is
based on the activation values distributed across units, the
rules extracted from the network are complete, as opposed
to being sensitive to local structure that may be irrelevant to
solving the problem (for such an analysis, see [7, 1]).

Figure 5. Jittered density plots of the activation values in
the five hidden units for the mushroom problem. Local
bands as determined by previous analyses are shown.

Table 6. The 12 clusters extracted for the mushroom
problem. Listed with each cluster is the number of pat-
terns, the network output state, and the mean (and stan-
dard deviation) associated with the cluster.

CLS PATS OUT HU0 HU1 HU2 HU3 HU4

1 3796 R1p 0.046 0.000 0.012 0.001 0.001
(0.031) (0.000) (0.015) (0.002) (0.003)

2 704 R1e
0.903 0.879 0.000 0.602 0.409

(0.026) (0.002) (0.000) (0.210) (0.132)

3 96 R1e
0.982 0.000 0.000 0.213 0.000

(0.001) (0.000) (0.000) (0.007) (0.000)

4 528 R3e
0.000 0.000 0.017 0.942 0.000

(0.000) (0.001) (0.022) (0.026) (0.002)

5 40 R4p 0.290 0.000 0.974 0.001 0.645
(0.058) (0.000) (0.026) (0.001) (0.016)

6 72 R2p 0.000 0.969 0.000 0.927 0.000
(0.000) (0.001) (0.000) (0.005) (0.000)

7 12 R4e
0.081 0.000 0.421 0.762 0.581

(0.000) (0.000) (0.001) (0.000) (0.000)

8 12 R5e
0.910 0.000 0.868 0.748 0.579

(0.001) (0.000) (0.001) (0.000) (0.000)

9 2832 R2e
0.025 0.000 0.000 0.001 0.872

(0.081) (0.000) (0.000) (0.001) (0.050)

10 8 R5p 0.001 0.000 0.860 0.115 0.000
(0.000) (0.000) (0.001) (0.000) (0.000)

11 12 R4e
0.050 0.000 0.385 0.284 0.998

(0.000) (0.000) (0.001) (0.000) (0.000)

12 12 R5e
0.814 0.000 0.836 0.295 0.998

(0.001) (0.000) (0.001) (0.000) (0.000)
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Table 7. Interpretation of the 12 clusters for theMushroomproblem. Note that the clusters are listed in order of complexity.

CLUSTER INTERPRETATION

2 If (a5 = 1 ∨ 2) then edible
3 If (a5 = 1 ∨ 2) then edible
1 If (a5 = 3 ∨ 4 ∨ 5 ∨ 6 ∨ 8 ∨ 9) then poisonous
9 If (a5 = 7) and (a19 = 1 ∨ 2 ∨ 3 ∨ 4 ∨ 6 ∨ 9) then edible
6 If (a5 = 7) and (a19 = 5 ∨ 7) then poisonous
4 If (a5 = 7) and (a19 = 8) and (a8 = 1) then edible
7 If (a5 = 7) and (a19 = 8) and (a8 = 2) and (a11 = 1) then edible
11 If (a5 = 7) and (a19 = 8) and (a8 = 2) and (a11 = 1) then edible
5 If (a5 = 7) and (a19 = 8) and (a8 = 2) and (a11 = 2 ∨ 3) then poisonous
8 If (a5 = 7) and (a19 = 8) and (a8 = 2) and (a11 = 4) and (a4 = 1) then edible
12 If (a5 = 7) and (a19 = 8) and (a8 = 2) and (a11 = 4) and (a4 = 1) then edible
10 If (a5 = 7) and (a19 = 8) and (a8 = 2) and (a11 = 4) and (a4 = 2) then poisonous

Discussion

Networks with non-monotonic processing units tend to de-
velop hidden unit representations that are very regular due
to the positioning of hyperplanes (defined by the weight
vectors) within the problem space [6]. Although individual
units lend themselves to a local “banding” analysis, we can
exploit the distributed nature of connectionist networks by
performing ak-means cluster analysis on the activation val-
ues within all hidden units of the network. This clustering
technique is dependent on a novel stopping rule based upon
trained network responses; that is, all patterns falling within
a cluster will produce the same network output. Thus, the
interpretation of such clusters provides a unique solution to
how the network is solving the problem.

The clusters extracted from the networks also tend to have a
simpler interpretable structure when compared to the local
banding analysis. Whereas the local banding analysis picks
out all related properties of input patterns falling within a
single hyperplane, the cluster analysis picks out the subset
of properties shared by patterns falling at the intersection of
two or more hyperplanes. In other words, cluster analysis
provides a more succinct interpretation by extracting only
those properties relevant to solving the problem.

Importantly, the related activation values extracted by the
cluster analysis can be readily converted into a symbolic
rule base. Furthermore, as the clusters are based on the ac-
tivation values across all units, these rules will give a com-
plete description of how the network is solving the problem.
That is, we can take full advantage of the distributed nature
of neural networks without sacrificing clear interpretation.
This interpretation is a critical step in understanding how
connectionist networks solve problems.
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