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Abstract. This paper examines whether a classical model could be translated into a PDP network
using a standard connectionist training technique called extra output learning. In Study 1, standard
machine learning techniques were used to create a decision tree that could be used to classify 8124
different mushrooms as being edible or poisonous on the basis of 21 different Features (Schlimmer,
1987). In Study 2, extra output learning was used to insert this decision tree into a PDP network being
trained on the identical problem. An interpretation of the trained network revealed a perfect mapping
from its internal structure to the decision tree, representing a precise translation of the classical theory
to the connectionist model. In Study 3, a second network was trained on the mushroom problem
without using extra output learning. An interpretation of this second network revealed a different
algorithm for solving the mushroom problem, demonstrating that the Study 2 network was indeed a
proper theory translation.
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1. Introduction

One current debate in cognitive science centers on whether human information
processing is best described in terms of a classical or a connectionist architec-
ture (Bechtel and Abrahamsen, 1991; Born, 1987; Churchland, 1995; Church-
land and Sejnowski, 1992; Clark, 1989; Clark, 1993; Dawson, 1991; Dawson,
1998; Dawson, Medler and Berkeley, 1997; Dawson and Schoptiocher, 1992a;
Dawson and Shamanski, 1994; Fodor and McLaughlin, 1990; Fodor and Pylyshyn,
1988; Garson, 1994; Graubard, 1988; Horgan and Tienson, 1996; McCloskey, 1991;
Pinker and Prince, 1988; Ramsey, Stich and Rumelhart, 1991; Schneider, 1987;
Seidenberg, 1993; Smolensky, 1988; VanLehn, 1991). Much of this debate is rooted
in the belief that connectionist networks and classical models are fundamentally
different. For example, it is widely held that classical systems use explicit rules
arranged in a hierarchy to manipulate symbols in a serial manner, whereas connec-
tionist systems rely on parallel processing of sub-symbols via statistical proced-
ures.
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To what extent does connectionism represent an alternative to the classical ap-
proach? There is a growing body of theoretical work that suggests that though
these two views of cognitive science exhibit interesting differences, they are in fact
highly similar (for example, see many of the papers in (Ramsey et al., 1991). These
similarities are rooted in the fact that connectionists havenotabandoned the found-
ational assumption that cognition is information processing. For instance, after
reviewing a number of differences between digital computers and brains (Church-
land, Koch and Sejnowski, 1990, p. 48, their italics) note that “these dissimilarities
do not imply that brains are not computers, but only thatbrains are not serial com-
puters.” Later, after discussing some foundational issues concerning computation,
they go on to point out “the question now is whether it is appropriate to describe
various structures in nervous systems as computing. The summary answer is that it
certainly is” (p. 50).

In short, while classical and connectionist researchers disagree about the spe-
cific details, they do agree on the general principle that cognition is information
processing (see also Von Eckardt, 1993, pp. 125–141). Dawson (1998) has argued
that this agreement means that the architectural debate between classical models
and PDP networks must be carefully evaluated in the context of the very different
kinds of analyses that must be performed to provide an account of information pro-
cessing. Specifically, Dawson endorses the tri-level hypothesis proposed by such
researchers (e.g., Marr, 1982; Pylyshyn, 1984), and argues that insight into this
architectural debate will only be achieved if classical and connectionist theories
are compared at the computational, algorithmic, and implementational levels of
analysis.

1.0.1. Computational level comparison

At the computational level, we ask the question “What information processing
problem is being solved by a system of interest” With respect to comparing the
two views of cognitive science at this level, some classical researchers have argued
that the connectionist architecture does not have the computational power to solve
the same kind of problems as the classical architecture (e.g., Lachter and Bever,
1988). At the same time, some connectionist researchers (McClelland, 1992) have
argued that classical approaches do not actually possess the power that they claim
(especially with regards to the compositionality of language) and that it is the
connectionist framework that captures the true nature of language.

However, it has been long established that connectionist networks have the same
in principle computational power as do classical architectures. In some of the earli-
est work on neural networks, McCulloch and Pitts (1943) examined finite networks
whose components could perform simple logical operations like AND, OR, and
NOT. They were able to prove that such systems could compute any function that
required a finite number of these operations. From this perspective, the network
was only a finite state automaton (see also Hopcroft and Ullman, 1979; Minsky,
1972). However, McCulloch and Pitts went on to show that a Universal Turing
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Machine (UTM) could be constructed from such a network, by providing the net-
work the means to move along, sense, and rewrite an external “tape” or memory.
“To psychology, however defined, specification of the net would contribute all that
could be achieved in that field” (McCulloch and Pitts, 1943/1988, p. 25).

Some more modern results have established the equivalence between classical
and connectionist architectures with respect to specific computational and rep-
resentational issues. For example, Fodor and Pylyshyn (1988) have pointed out
that thought is highly structured, and as a result it is very systematic. This means
that if an information processor can express one belief (e.g., “John loves Mary”),
then it should also be capable of expressing related beliefs built from the same
components (e.g., “Mary loves John”). However, Fodor and Pylyshyn argue that
connectionist representations are not structured in this way, and as a result the prin-
ciples of connectionism cannot, by themselves, explain the systematicity of thought
(pp. 48–50). In response to this argument, Hadley (Hadley, 1994a, 1994b; Hadley,
1997) has argued that Fodor and Pylyshyn’s (1988) notion of systematicity glosses
over several important distinctions, and has proposed a more sophisticated notion
in which systematicity can be exhibited to different degrees. This reformulation is
strongly tied to the ability of a system to generalize its behavior to new stimuli, and
defines degrees of systematicity in terms of varying degrees of generalization. Had-
ley has shown that many different connectionist networks achieve sufficiently high
degrees of sytematicity. In addition, Hadley and Hayward (1997) have described a
network that demonstrates Hadley’s strongest degree of systematicity.

Other modern results have validated and extended the pioneering research of
McCulloch and Pitts (1943/1948). For instance, one popular kind of PDP model
is a recurrent network, which can process temporal stimuli because some of its
components act as an internal memory. Recurrent networks are computationally
very powerful. Kremer (1995) has shown that a particular type of recurrent net-
work (Elman, 1990) is formally equivalent to a discrete finite automaton. Given
the existence of this type of equivalence, it is not surprising that recurrent networks
can be used to construct the machine head of a UTM (Williams and Zipser, 1989).
However, more interesting results have involved determining whether all of the
components of a UTM could be constructed within a single network (e.g., Siegel-
mann, 1999). Early work of Siegelman and Sontag (1991) developed a proof that a
such a network was possible in principle, but this proof limited the absolute size of
this network to a relatively large value (a maximum of 105 processing units). Kilian
and Siegelmann (1993) have developed a general proof that recurrent networks
that use logistic activation functions are indeed equivalent to Turing machines.
One specific example of such equivalence has been provided by Siegelmann and
Sontag (1995), who proved that Minsky’s (1972) well known 4-symbol, 7-machine
state UTM could be built from a recurrent network that used 886 processing units.
“Turing universality is a relatively common property of recurrent neural network
modes” (Kilian and Siegelmaun, 1993, p. 137).
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These results show that classical models and PDP networks are, in principle,
computationally equivalent. This is because, for either architecture, one can defend
the claim that they have the same competence as a UTM. This kind of claim is
important for two reasons. First, it establishes one kind of identity between the
two different approaches to cognitive science. Second, given this relationship at
the computational level, it now makes sense to compare classical and connectionist
models in terms of the algorithms that they carry out.

1.0.2. Algorithmic level comparison

At the algorithmic level, we ask the question “What specific information processing
steps are being carried out to solve an information processing problem?”. Given the
computational equivalence of classical and connectionist architectures, it is now
important for cognitive scientists to determine (a) whether the two architectures
carry out qualitatively different algorithms, and (b) if the algorithms are different,
then which provides a better account of human cognition (Dawson, 1998).

Why, at the algorithmic level, are PDP networks thought to be different from
classical theories? One reason is network “appearance” – at first glance, PDP net-
works do not look like classical algorithms (Churchland and Sejnowski, 1989).
A second reason – which increases reliance on network appearance – is that the
internal structure of a trained network is extremely difficult to interpret (Andrews,
Diederich, and Tickle, 1995; Hecht-Nielsen, 1987; McCloskey, 1991; Mozer and
Smolensky, 1989; Seidenberg, 1993; Smith, 1996, pp 64–65). As a result, detailed
algorithmic accounts of how a PDP network converts its inputs into an output
response are rarely seen in the literature, and are even less frequently compared
to classical algorithms. Marvin Minsky has pointed out that “connectionists take
pride in not understanding how a network solves a problem” (Stork, 1997, p. 18).

In recent years, however, some researchers have developed techniques for in-
vestigating the internal structure of PDP networks (Andrews et al., 1995; Berkeley,
Dawson, Medler, Schopflocher, and Homsby, 1995; Gallant, 1993; Hanson and
Burr, 1990; Hinton, 1986; McCaughan, 1997; Omlin and Giles, 1996). In some
cases the application of these techniques has revealed that a network’s algorithm
can be much more similar to a classical theory than one might initially expect
(Dawson et al., 1997). For example, Berkeley et al. (1995) analyzed a network
that had been trained on a logic task, and discovered in its internal structure five
different network states that corresponded to traditional rules of logic. They argued
that this result blurred the difference between classical and connectionist accounts
of cognition.

The studies in the current paper represent an attempt to go beyond a mere
“blurring” of the differences between a classical algorithm and a connectionist
algorithm. In the philosophy of science, if two apparently different theories are
in fact identical, then one should be able to translate one theory into the other. This
is called intertheoretic reduction(Churchland, 1985; Churchland, 1988; Hooker,
1979; Hooker, 1981). The widely accepted view that classical and connectionist
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cognitive science are fundamentally different (Schneider, 1987) amounts to the
claim that intertheoretic reduction between a symbolic model and a PDP network
is impossible. Below, we examine this belief directly by asking whether we can
translate a classical algorithm into a PDP network using standard connectionist
training techniques.

1.1. EXTRA OUTPUT LEARNING AND ALGORITHM INSERTION

One of the most crucial stages in the design of a pattern recognition system is
selecting the correct set of input features (Ripley, 1996). This can be thought of
as a stage in which the input patterns are preprocessed. Such preprocessing often
involves identifying those features in the input that are relevant for classification
and those features that are redundant and therefore can be removed. In other words,
preprocessing is typically used to reduce the amount of information at the input,
by eliminating information that is not thought to be useful for the task at hand.

However, another perspective on preprocessing the data would be to add in-
formation to aid the pattern recognition task. A pattern classification system is
normally only informed about what the correct label for a pattern should be. For
instance, later in this paper we describe a mushroom classification problem, in
which a system would normally only be taught to generate the label “edible” or the
label “poisonous” when presented a set of mushroom features. But, it is often the
case that more information than this is actually available. Specifically, there often
exists prior information aboutwhyan input pattern belongs to one class or another.
This information could be included either with the inputs or with outputs. Adding
this information to the outputs, however, had one distinct advantage: this structure
(i.e., the extra output units and any connections feeding into them) can be removed
from the network following training without affecting the network’s performance
on the primary task.

Thus, one could add this information to the pattern classification problem by
teaching the system not only to generate a label of interest (e.g., “edible”, “poison-
ous”) but to also generate a reason for assigning this label (e.g., “passed Rule 1”,
“failed Rule 4”). Adding this information amounts to requiring the system to make
a more complex categorization of the instances that it is presented. This is because
the network in essence has to assign each instance to a major category of interest as
well as to a subcategory which represents the reason for making this assignment.

Elaborating a classification task along the lines described above has been called
injection of hints or extra output learning(Abu-Mostafa, 1990; Caruana and de Sa,
1997; Gallmo and Carlstrom, 1995; Suddarth and Kergosien, 1990; Suddarth, Sut-
ton, and Holden, 1988; Yu and Simmons, 1990). It has been found that extra output
learning often speeds up the training of PDP networks because the requirement to
subcategorize input patterns places constraints on the potential configurations of
network weights. This helps restrict the “search space” that is traversed during
training as the network attempts to find a state which minimizes its overall error.
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We were not interested in using extra output learning to affect the speed of
training a PDP network. Instead, we hypothesized that extra output learning could
be used as a technique to insert a classical algorithm into a PDP network while
the network was being trained to solve a pattern recognition problem. Imagine a
identification problem in which input features are used to classify mushrooms as
being edible or poisonous. Imagine further a set of classical rules that are known
to accomplish this task (e.g., Rule x, Rule y, Rule z). With the existence of these
rules, one could use extra output learning to train a network to generate responses
of the type “this mushroom is poisonous because of Rule z” for every mushroom in
the training set. If the network could learn to make these types of assertions, then
it would stand to reason that the network had internalized the classical algorithm
during training. Therefore, we should be able to interpret the internal structure of
the trained network, and discover a precise mapping between network states and
the rules that define the classical algorithm. The studies below test this hypothesis.

The remainder of this paper proceeds as follows: First, we describe a particular
pattern classification problem, and use traditional machine learning techniques to
derive a classical algorithm capable of solving it. Second, we use extra output learn-
ing in an attempt to insert this classical algorithm directly into a PDP network. An
analysis of this network is presented to show that a precise mapping was achieved
between internal network states and the rules of the classical algorithm. Third, we
discuss the training of a second network, in which no attempt is made to insert
the classical rules, and we show that this network does not map onto the classical
algorithm. This demonstrates that our intertheoretic reduction is genuine; it is not
an artifact of the particular classification problem that we selected.

2. Study 1

2.1. METHOD

The field of machine learning is concerned with the development of automatic
procedures that are capable of learning to correctly classify a set of example pat-
terns (Ripley, 1996). Each pattern is a set of features. Consequently, one task of a
machine learning algorithm is to discover how to use some or all of these features
to determine a label or class for each pattern.

Importantly, this is not the only task of a machine learning algorithm. In ad-
dition, it is required to generate a mapping between features and labels that can
be comprehended and used by humans (Michie, Speigelhalter, and Taylor, 1994).
“Machine Learning aims to generate classifying expressions simple enough to be
understood easily by humans. They must mimic human reasoning sufficiently well
to provide insight into the decision process” (p. 2). For this reason, many machine
learning algorithms are classical in nature, and deliver a set of rules or a program
which, if followed, will tell a human exactly how to use observed features to
classify patterns.



SYMBOLIC THEORIES AND CONNECTIONIST NETWORKS 177

One example of a classical machine learning algorithm is a technique that will
induce a decision tree from a set of examples, such as the ID3 procedure (Quinlan,
1986). A decision tree is a hierarchically structured classifier. The tree starts at
a root node, and branches outward from this node into intermediate nodes and,
eventually, into a set of terminal leaves. Each terminal leaf represents a label that
is assigned to a pattern. In the 1D3 algorithm, each node in the tree represents
a decision used to “split” training examples into positive or negative instances.
In other words, the outcome of a test at a node determines where to send the
pattern for its next evaluation in the tree. This is continued until the pattern is
assigned a label by being moved into a terminal leaf. Consequently, any decision
tree produced by the ID3 algorithm is equivalent to a series of classical inference
rules (e.g.,married(m)� man(m)→ bachelor (m)). The set of decision rules can
easily be understood by human users of an ID3 program. We used a variation of the
1D3 algorithm to induce a decision tree for a benchmark problem in the machine
learning literature. We wanted this problem to be a real world problem that would
be challenging to an artificial (or human) classifying system, so that the resulting
classical theory would be rich and nontrivial.

The problem that we selected was the classification of mushrooms as being
either edible or poisonous on the basis of a number of observable features (Schlim-
mer, 1987). The data set consisted of the hypothetical description of 23 different
mushrooms in theAgaricusandLepiotafamily (Lincoff, 1981. pp. 500–525). Each
mushroom was described as a set of the 21 different features that are shown in
Table 1. Multiple featural descriptions of one species of mushroom are possible
because one species might be found in several different habitats, have more than
one possible odor, etc. As a result, the total data set consisted of 8124 different
instances. 4208 of these patterns corresponded to edible mushrooms; the remaining
3916 patterns corresponded to inedible mushrooms (i.e., mushrooms that were def-
initely poisonous, or were of unknown edibility and therefore not recommended).
The mushroom database can be retrieved via ftp from ftp.ics.uci.edu: pub/machine-
learning-databases, or through the WWW at http://www.ics.uci.edu>mlearn
/MLRepository.html.

2.2. INDUCING A DECISION TREE FOR THE MUSHROOM PROBLEM

A variation of the 1D3 algorithm (Quinlan, 1986) that was developed by one of
the authors (Medler, 1998) was used to induce a decision tree for the mushroom
problem. Whereas the original 1D3 algorithm is limited to creating trees with at
most two children at each node (e.g.,yellow, ∼yellow), the new algorithm was
modifed to allow multiple branching from each node (e.g.,yellow, white, purple,
orange, etc.). The decision tree that was generated by the algorithm defined a se-
quence of 5 rules that could be used to correctly classify all 8124 of the example
mushrooms. This set of rules is given in Table 2. An examination of this table
indicates clearly that these rules are classical in nature. They are explicit, local,
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Table I. The 21 different types of features, and their possible values, used in the Schlimmer (1987)
mushroom classification problem

Mushroom Feature Possible Values of the Feature

Cap Shape Bell, conical, convex, flat, knobbed, sunken

Cap Surface Fibrous, grooves, scaly, smooth

Cap Color Brown, buff, cinnamon, gray, green, pink, purple, red, white,

yellow

Bruises No bruises, bruises

Odor Almond, anise creosote, fishy, foul, musty, none, pungent, spicy

Gill Attachment Attached, descending, notched

Gill Spacing Close, crowded, distant

Gill Size Broad, narrow

Gill Color Black, brown, buff, chocolate, gray, green, orange, pink, purple,

red, white, yellow

Stalk Shape Enlarging, tapering

Stalk Surface Above Ring Fibrous, scaly, silky, smooth

Stalk Surface Below Ring Fibrous, scaly, silky, smooth

Stalk Color Above Ring Brown, buff, cinnamon, gray, orange, pink, red, white, yellow

Stalk Color Below Ring Brown, buff, cinnamon, gray, orange, pink, red, white, yellow

Veil Type Partial, universal

Veil Color Brown, orange, white, yellow

Ring Number None, one, two

Ring Type Cobwebby, evanescent, flaring, large, none, pendant, sheathing,

zone

Spore Print Color Black, brown, buff, chocolate, green, orange, purple, white, yellow

Population Abundant, clustered, numerous, scattered, several, solitary

Habitat Grasses, leaves, meadows, paths, urban, wastes, woods

and digital (Haugeland, [985). Furthermore, executing this algorithm would require
that each rule be considered in a particular serial order.

3. Study 2

The results of Study 1 have provided us with a set of five tests or rules that represent
a classical algorithm for solving the mushroom problem. The purpose of Study 2
was to see whether this algorithm could be inserted into a PDP network using extra
output learning. This required us to train a network using extra output learning, and
then to analyze its internal structure to determine whether there existed a mapping
from network states to the rules that defined the classical algorithm.
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3.1. METHOD

Input Units. The network that was trained had 21 different input units, one for
each mushroom feature in the data set. All of the features were coded as discrete
activation values between 0.0 and 1.0. Each activation value corresponded to a
different value of the particular feature encoded in that input unit. For example, if
there were four different values of a feature, they would be represented by setting
the input value of that feature’s unit to 0.0, 0.33, 0.66, or 1.0, depending on which
of the four values of that feature were to be presented to the network at that time.

Hidden Units. The network was trained with five hidden units, because pilot tests
indicated that if fewer hidden units were used, then the network would fail to find
a solution to the problem. All of the hidden processors werevalue units(Dawson
and Schopflocher, 1992b). A value unit is similar to the processing units found in
standard multilayer perceptrons trained using error backpropagation (Rumelhart,
Hinton and Williams, 1986). However, instead of using a sigmoid activation func-
tion (such as the logistic equation), value units use a Gaussian activation function
that has a minimum of 0, a maximum of 1, and a standard deviation of 1. As a result,
a value unit will only generate high activity to a narrow range of incoming signals.
We elected to use the value unit architecture in the current study because previous
results have shown that it permits us to train networks with fewer hidden units,
that networks can be trained more quickly, and that the trained network is likely to
be easier to interpret than is the case with more traditional types of processing
units (Berkeley et al., 1995; Dawson, 1990; Dawson et al., 1997; Dawson and
Schopflocher, 1992b; Dawson, Shamanski, and Medler, 1993).

Output Units. Ten different output value units were used in the network. One
output unit encoded the edible/poisonous classification, and the other 9 output units
were used to inject the hints that were available from the classical algorithm that
we had obtained in Study 1. Table 3 provides the mapping between the classical
algorithm and the network’s output units. As can be seen from the table, the extra
output units were used to encode the decision point in the algorithm at which each
mushroom was classified as being edible or poisonous. There were 9 additional
output units because, as can be seen from Table 2, there were only 9 different
decision points in the algorithm. In other words, for each mushroom pattern, the
network of value units was trained to activate two output units. One of these units
indicated whether the mushroom was poisonous or not. The other unit indicated the
point in the classical algorithm could be used to justify the network’s classification.
The complete network structure is illustrated in Figure 1.

Training the Network. The complete network, which is illustrated in Figure 1.
was trained using the variation of the generalized delta rule designed for value unit
networks (Dawson and Schopflocher, 1992b), using a learning rate of 0.005 and no
momentum. Prior to training, the network’s connection weights were randomized
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Table III. The translation from the de-
cision point in the classical algorithm
(from Table 3) to a 10-bit output vector for
the network. In the output vector, the first
bit indicates whether the presented mush-
room is edible (1) or not (0). One of the
other bits is turned on to indicate the de-
cision point in the classical algorithm at
which the edible/not edible decision would
have been made

Decision Point in Extra Output

the Algorithm Encoding for

the Network

Rule 1 Edible 1 1 0 0 0 0 0 0 0 0

Rule 1 Poisonous 00 1 0 0 0 0 0 0 0

Rule 2 Edible 1 0 0 1 0 0 0 0 0 0

Rule 2 Poisonous 00 0 0 1 0 0 0 0 0

Rule 3 Edible 1 0 0 0 0 1 0 0 0 0

Rule 4 Edible 1 0 0 0 0 0 1 0 0 0

Rule 4 Poisonous 00 0 0 0 0 0 1 0 0

Rule 5 Edible 1 0 0 0 0 0 0 0 1 0

Rule 5 Poisonous 00 0 0 0 0 0 0 0 1

between±1.0, and the biases of all value units (i.e., the mean of the Gaussian for
each unit) were initialized to zero. Network connections and biases were updated
after every pattern presentation, and pattern presentation was randomized every
epoch. (In our procedure, one epoch consists of one presentation of each of the
8124 patterns in the training set.) The network was trained until a ‘hit’ was recorded
for every output unit for every pattern in the training set. A hit was defined as being
an activation of 0.95 or greater when the desired output was 1, and as being an
activation of 0.05 or less when the desired output was 0. Convergence (i.e., a hit on
every output unit for every pattern) was achieved after 8699 epochs of training.

4. Results

The purpose of Study 2 was to insert the classical algorithm that was obtained in
Study 1 into a PDP network. The fact that the network converged to a solution
to the extra output learning version of the mushroom problem does not by itself
indicate that this translation was successful. To determine whether the classical
algorithm was actually converted into a network requires an interpretation of the



182 DAWSON ET AL.

Figure 1. The neural network that was trained in Study 2. All of the output and all of the
hidden processors were value units, as indicated by the dark squares with the white diagonal
ber running through them. The leftmost output unit, labeled "E/P" was trained to represent
the primary classification (i.e., whether a presented mushroom was edible or poisonus). The
remaining 9 output units provided the extra output learning as described in the text, where
"R1e" stands for "Rule 1 edible", "R1p" stands for "Rule one poisonous", and so on.

internal states of the PDP model (i.e., patterns of hidden unit activations), and a
mapping of these internal states back to the classical algorithm.

Cluster Analysis of Hidden Unit Activities.In previous research (Berkeley et al.,
1995; Dawson et al., 1997), the internal structure of value unit networks was in-
terpreted by exploiting local regularities within each hidden unit. However, this
technique will not work in all cases. This is because it is blind to regularities that
can be represented as patterns of activities distributed across sets of hidden units.
We have found that cluster analysis of hidden unit activities is an alternative ap-
proach to network interpretation that overcomes this problem, and which provides
rich interpretations of the internal structure of trained networks.

The first step in a cluster analysis of a network of value units is to “wiretap”
the hidden units by recording the activity of each hidden processor when each
of the training patterns are presented to the network after it has converged on a
solution to the desired problem. (This wiretapping phase was also central to the
interpretation of the local structure of units in our previous research (Berkeley et
al., 1995; Dawson et al., 1997).) For example, after wiretapping the network trained
in Study 2, we created a data matrix consisting of 5 columns (one for each hidden
unit) and 8124 rows (one for each stimulus in the training set). Each entry in this
data matrix represented the activations produced in a hidden unit when one of the
mushrooms was presented to the network.
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The second step is to perform a k-means clustering of the data matrix created
by wiretapping the network. The k-means algorithm is an iterative procedure that
assigns data points tok different clusters in such a way that each member of a
cluster is closer to the centroid of that cluster than to the centroid of any other
cluster to which other data points have been assigned. Whenever cluster analysis is
performed, one question that must be answered is “How many clusters should be
used?” (in other words, what should the value ofk be?). Unfortunately, no single
method for determining the optimal number of clusters in a data set has been agreed
upon (Aldenderfer and Blashfield, 1984; Everitt, 1980). This is reflected in the fact
that a large number of different types of methods exist for dealing with this issue
(Milligan and Cooper, 1985).

While no general method exists for determining the optimal number of clusters,
one can take advantage of heuristic information concerning the domain that is
being clustered to come up with a satisfactory method for this domain. When the
hidden unit activities of a trained network are being clustered, we know that there
is a correct mapping from these activities to output responses. This is because if
the network has correctly learned the task that it was presented, then the network
itself has discovered one such mapping. This knowledge can be used to create the
following heuristic stopping rule: extract the smallest number of clusters such that
every hidden unit activity vector in the cluster produces the same output response
in the network. We found that when the hidden unit activities were assigned to 12
different clusters that each cluster mapped onto a unique network output, indicating
that this was the appropriate number of clusters to use to describe this network.
Table 4 illustrates the mapping from these 12 clusters to the 9 different outputs that
the network was trained to generate.

Cluster Interpretation. Once the k-means analysis of the “wiretap” data has been
completed, the third step in network analysis is to identify the input features shared
by all of the members of each cluster. This is done using the same technique that
was used to identify “definite features” associated with local structures found in
individual hidden value units (Berkeley et al., 1995). For each cluster, we com-
pute the mean and standard deviation of each of the 21 input features, looking for
features that are constant across all cluster members (i.e., features with a standard
deviation of 0). When this analysis was performed for the 12 clusters extracted
from the Study 2 network, a large number of such definite features were identified
in each cluster. These definite features are detailed in Table 5.

From Clusters to Rules. The sets of definite cluster features listed in Table 5 can
be thought of as conditions used by the network to judge whether a mushroom is
edible or not. For instance, one of the “network rules” for identifying a mushroom
as being poisonous is the conjunction of all of the features listed for Cluster 1.
However, while “network rules” of this type are perfectly legitimate mushroom
classifiers, they are more complicated than is necessary. Some of the features in
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Table V. Definite features for each of the clusters of hidden unit activities from the Study 2 network.
The feature labeled “N” indicates the number of patterns in the cluster

Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

N 3796 704 96 528 40 72
Cap Shape ∼ Bell ∼ Conical Convex or ∼ Conical ∼ Sunken Bell or

∼ Conical ∼ Knobbed Flat ∼ Sunken Flat
∼ Sunken ∼ Sunken

Cap Surface ∼ Grooves ∼ Fibrous ∼ Grooves ∼ Grooves ∼ Grooves ∼ Fibrous
∼ Grooves ∼ Scaly ∼ Smooth ∼ Grooves

Cap Color ∼ Green Brown or White or ∼ Green Brown or Buff or
∼ Purple White or Yellow ∼ Purple Yellow Pink or

Yellow ∼ Yellow White
Bruises Bruises Bruises No Bruises Bruises
Odor Creosote or Almond or Almond or None None None

Fishy or Anise Anise
Foul or
Musty or
Pungent or
Spicy

Gill ∼ Descending Free Free Free Free Free
Attachment ∼ Notched
Gill Spacing ∼ Distant Close Crowded Close or Close or Close

Crowded Crowded
Gill Size Broad Narrow Broad Narrow Broad
Gill Color ∼ Green Black or Brown or Gray or White or Gray or

∼ Orange Brown or Pink or Pink or Yellow Green or
∼ Red Gray or White Red or White

Pink or White
White

Stalk Shape Enlarging Tapering Enlarging Enlarging Enlarging
Stalk Surface Above

Ring ∼ Scaly Smooth Smooth ∼ Fibrous Scaly or Smooth
Silky

Stalk Surface Below
Ring Silky or Smooth ∼ Fibrous Scaly Smooth

Smooth
Stalk Color Above

Ring ∼ Gray White White Brown or White or White
∼ Orange Red or Yellow
∼ Red White
∼ Yellow

Stalk Color Below
Ring ∼ Gray White White Brown or Brown or White

∼ Orange Red or White or
∼ Red White Yellow
∼ Yellow
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Table V. Continued

Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Veil Type Partial Partial Partial Partial Partial Partial
Veil Color White White White White White or White

Yellow
Ring Number ∼ Two One One Two One Two

Ring Type ∼ Cobwebby Pendant Pendant Evanescent or Evanescent Pendant

∼ Flaring Pendant
∼ Sheathing

∼ Zone

Ring Number ∼ Two One One Two One Two
Ring Type ∼ Cobwebby Pendant Pendant Evanescent or Evanescent Pendant

∼ Flaring Pendant
∼ Sheathing

∼ Zone

Spore Print
Color ∼ Buff Black or Brown or White White Green

∼ Green Brown Purple
∼ Orange

∼ Purple

∼ Yellow
Population ∼ Abundant Numerous or Several ∼ Abundant Clustered Or Several

∼ Numerous Scattered or Several
Solitary

Habitat ∼ Meadows Grasses or Woods ∼ Leaves Leaves or Grasses or

∼ Waste Meadows or ∼ Meadows Woods Meadows
Paths ∼ Urban

Feature Cluster 7 Cluster 8 Cluster 9 Cluster 10 Cluster 11 Cluster 12

N 12 12 2832 8 12 12

Cap Shape ∼ Bell ∼ Bell ∼ Conical ∼ Convex ∼ Bell ∼ Bell

∼ Conical ∼ Conical ∼ Sunken ∼ Conical ∼ Conical

∼ Sunken ∼ Sunken ∼ Sunken ∼ Sunken
Cap Surface ∼ Grooves ∼ Grooves ∼ Grooves ∼ Fibrous ∼ Grooves ∼ Grooves

∼ Smooth ∼ Smooth ∼ Smooth ∼ Smooth ∼ Smooth
Cap Color Brown or Brown or ∼ Buff White Brown or Brown or

Cinnamon Cinnamon ∼ Cinnamon Cinnamon Cinnamon

∼ Pink
∼ Yellow

Bruises No Bruises No Bruises No Bruises Bruises No Bruises No Bruises

Odor None None None None None None
Gill Free Free Attached or Free Free Free

Attachment Free
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Table V. Continued

Feature Cluster 7 Cluster 8 Cluster 9 Cluster 10 Cluster 11 Cluster 12

N 12 12 2832 8 12 12

Gill Spacing Crowded Crowded Close or Crowded Crowded Crowded

Crowded

Gill Size Narrow Narrow Narrow Narrow Narrow

Gill Color White White ∼ Buff White White White

∼ Green

∼ Red

Stalk shape Enlarging Enlarging Enlarging Enlarging Enlarging

Stalk Surface Above

Ring Fibrous Fibrous ∼ Scaly Smooth Fibrous Smooth

∼ Silky

Stalk Surface Below

Ring Fibrous Fibrous ∼ Scaly Smooth Smooth Smooth

∼ Silky

Stalk Color Above

Ring White White Gray or White White White

Orange or

Pink or

White

Stalk Color Below

Ring Brown Brown Gray or White Brown Brown

Orange or

Pink or

White

Veil Type Partial Partial Partial Partial Partial Partial

Veil Color White White ∼ Yellow White White White

Ring Number One One One One One One

Ring Type Evanescent Evanescent Evanescent or Pendant Evanescent Evanescent

Flaring or

Pendant

Spore Print Color White White Black or White White White

Brown or

Buff or

Chocolate or

Orange or

Yellow

Population Several Several ∼ Numerous Clustered Several Several

Habitat Leaves Leaves ∼ Meadows Leaves Leaves Leaves

∼ Paths

∼ Waste
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the rule given above are not diagnostic, and therefore could be deleted from the
rule. For example, “partial veil” is one of the definite features for Cluster 1. How-
ever, this feature is true for all of the mushrooms in the training set, and therefore
is irrelevant to the task of making a judgement about a mushroom. It would be
extremely useful if unnecessary features like “partial veil” could be removed from
the description of the clusters in order to simplify our account of how the network
maps inputs to outputs.

One general approach for simplifying the featural accounts of clusters is to per-
form a linear discriminant analysis of their features (see Study 3 below). However,
for the network in Study 2, a more specific approach is available. As this network
is an attempt to translate a set of classical rules into a PDP model, it should be pos-
sible to simplify the description of the network’s algorithm by finding a mapping
from the clusters to the classical algorithm.

Our first step in seeking this mapping was to translate the classical algorithm
into an intermediate form that could tractably be mapped onto network states. As
was discussed earlier, this kind of translation is central to new wave reductionism.
Our translation consisted in converting the step-by-step program given in Table 1
into an equivalent set of production rules. These rules simply describe the prop-
erties of mushrooms that must be true at each decision point. For instance, at the
“Rule 1 Edible” decision point, one could create the production rule “If the odour is
anise or almond, then the mushroom is edible”. Similar productions can be created
for later decision points in the algorithm, but these productions will involve a longer
list of mushroom features. The complete set of productions that were created for
the decision tree algorithm are provided in Table 6.

The next step in the new wave reduction of the classical algorithm to the PDP
network is to establish a mapping between the Table 6 productions and network
states. First, note that with the encoding used for the extra output learning, each
production in Table 6 is represented by a unique output unit encoding for the
network (see Table 2). This is because each production is basically an elaborate ac-
count of each decision point in the decision tree. Second, note that we have already
established that each cluster of hidden unit activities maps uniquely onto an output
unit encoding (see Table 4). In other words, there exists a unique mapping from
internal network states (i.e., vectors of hidden unit activities) to the productions
that define a classical algorithm. The complete mapping from hidden unit clusters
to the productions is given in Table 6.

5. Discussion

The analysis of the Study 2 network has revealed a new wave intertheoretic reduc-
tion between a classical algorithm and a PDP model. We found that a k-means
cluster analysis of the mushroom network’s hidden unit activities produced 12
clusters, each of which was associated with a rich set of definite features. We also
found a precise mapping between these clusters and a set of production rules that
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represented the decision points in the decision tree algorithm that was discovered
in Study 1. In turn, there is a direct mapping from any of the 9 productions back to
the decision tree algorithm. This provides extremely strong evidence that we were
able to use extra output learning to provide an exact translation of the classical
algorithm into the network of value units.

However, one further point must be tested before considering the implications
of this intertheoretic reduction. It is possible that the only way of categorizing the
mushrooms was with the algorithm that was derived in Study 1. If this is the case,
then the network would be forced to derive this algorithm when it converged on
a solution to the problem, and our notion of theory translation would be brought
into question. To increase our confidence in the view that the classical algorithm
had indeed been translated into a PDP network, it is important to show that when
extra output learning is not used then the network can solve the mushroom problem
using a procedure that doesnot correspond to the classical algorithm.

6. Study 3

The purpose of this study was to determine whether a PDP network could discover
a different algorithm (i.e., one that does not correspond to the Study 1 decision
tree) to solve the mushroom problem. To accomplish this, we trained a different
network of value units on the mushroom problem. In this case, we did not use extra
output learning. We simply used one output unit to encode whether the presen-
ted mushroom was poisonous or not. After training the network, we used cluster
analysis to interpret its internal structure. This analysis revealed that the network
had discovered a different procedure for classifying the mushrooms, which in turn
supports the claim that Study 2 represents a true translation of a classical theory
into a PDP network.

6.1. METHOD

Training Set. The network was trained on the identical set of 21 input features,
encoded using the same technique as described in Study 2. The only change in
the training set was with respect to the output activation – the network was only
required to judge whether a mushroom was edible or not. In other words, extra
output learning was not used in this study.

Network Architecture. The network had 21 input units, four hidden value units,
and one output value unit. This architecture was selected because pilot results
demonstrated, in contrast to Study 2, that when extra output learning was not used
a network with only four hidden units could learn this task. The output value unit
was trained to generate a response of “1” to an edible mushroom, and a response
of “0” to an inedible mushroom. Initial connection weights for the network were
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randomly selected from the range from –1.0 to 1.0. The biases of each hidden unit
and of the output unit were set to 0, and were not modified during training.

Network Training. The network was trained with the Dawson and Schopflocher
(1992) learning rule, with a learning rate of 0.01 and with no momentum. The
network converged (i.e., achieved a hit on every pattern) after 1852 sweeps through
the training set.

7. Results

Cluster Analysis of the Network.In order to interpret how this network was solv-
ing the mushroom problem, k-means cluster analysis was performed on the 8124
vectors of hidden unit activities that were obtained by “wiretapping” the four hid-
den units of this network after it had converged. Once again, we extracted the
smallest number of clusters such that each member of each cluster mapped onto
the same network output state. By following this stopping rule, it was determined
that 13 clusters were required to describe the internal states of the network. The
relationship between the different clusters and network output states is provided in
Table 7A.

Relation of Hidden Unit Clusters to the Classical Rules.The key question to be
addressed in this study is the relationship between hidden unit states (i.e., clusters)
and the classical rules of the Study 1 decision tree. In Study 2, we discovered a
unique mapping from clusters to rules, as every cluster mapped onto one and only
one of the decision points in the Study 1 algorithm. Was this the case for the Study
3 algorithm?

As can be seen by examining Table 7B, there was not a unique mapping of
clusters to classical rules for the Study 3 network. For example, Cluster 1 is com-
posed of hidden unit activity vectors that are all produced by edible mushrooms.
However, by examining the Cluster 1 row of Table 7B it can be seen that these
edible mushrooms could not be identified by applying only one of the decision
tree rules. Some of the mushrooms would be classified by Rule 1 Edible, others
by Rule 2 Edible, and still others by Rule 3 Edible. Similar cases can be made for
most of the other clusters for this network. Whatever rules are being used by the
network, they are different from those described by the Study 1 decision tree, and
therefore are also different from those embodied by the internal states of the Study
2 network.

Extracting a Decision Rule from the Network.While Table 7B indicates that the
Study 3 network is not using the Study 1 algorithm, for completeness sake it is
important to describe the procedure that it is using. We obtained such an account
by carrying out the following three steps.
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Table VII. (A) Crosstabulation table indicating the frequency of patterns classified in terms of (i) the
cluster to which they belong and (ii) the network output that they produce. (B) Crosstabulation table
indicating the frequency of patterns in terms of (i) the cluster to which they belong and (ii) problem
type as determined by the Study 1 decision tree.

Output State of the Network

Cluster Not Edible Edible

(Output = 0) 1

1 0 3288

2 0 224

3 976 0

4 0 408

5 36 0

6 264 0

7 1296 0

8 0 288

9 720 0

10 528 0

11 8 0

12 16 0

13 72 0

A

Type of Response in terms of the Study 1 Decision Tree

Cluster Rule 1 Rule 1 Rule 2 Rule 2 Rule 3 Rule 5 Rule 4 Rule 5 Rule 4

Poisonous Edible Edible Poisonous Edible Edible Poisonous Poisonous Edible

1 0 776 2496 0 16 0 0 0 0

2 0 0 0 0 224 0 0 0 0

3 960 0 0 0 0 0 16 0 0

4 0 0 72 0 228 24 0 0 24

5 36 0 0 0 0 0 0 0 0

6 256 0 0 0 0 0 0 8 0

7 1296 0 0 0 0 0 0 0 0

8 0 24 264 0 0 0 0 0 0

9 720 0 0 0 0 0 0 0 0

10 528 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 8 0 0

12 0 0 0 0 0 0 16 0 0

1 0 0 0 72 0 0 0 0 0

B
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Table VIII. Definite features for each of the 13 clusters from the Study 3 network

Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

N 3288 224 976 408 36 264

Cap Shape ∼ Conical ∼ Bell ∼ Conical ∼ Conical ∼ Bell ∼ Sunken

∼ Sunken ∼ Conical ∼ Sunken ∼ sunken ∼ Conical

∼ Sunken ∼ Sunken

Cap Surface ∼ Grooves ∼ Fibrous ∼ Grooves ∼ Grooves Scaly∼ Fibrous

∼ Grooves

Cap Color ∼ Buff ∼ Green Brown or Brown or Brown or Brown or

∼ Cinnamon ∼ Purple Gray or Cinnamon or Cinnamon White

∼ Green ∼ White White or Gray or

∼ Pink ∼ Yellow Yellow White

∼ Purple

Bruises Bruises No Bruises No Bruises No Bruises Bruises

Odor Almond or None Creosote or None Musty None or

Anise or Foul or Pungent

None None

Gill Free Free Free Attached or Attached or Free

Attachment Free Free

Gill Spacing Close or Close Close or Close or Close Close or

Crowded Crowded Crowded Crowded

Gill Size Broad Broad Narrow

Gill Color ∼ Buff Red or ∼ Black ∼ Black White or Black or

∼ Green White ∼ Buff ∼ Buff Yellow Brown or

∼ Orange ∼ Green ∼ Chocolate Pink or

∼ Red ∼ Orange ∼ Green White

∼ Yellow ∼ Red ∼ Purple

∼ Yellow ∼ Red

Stalk Shape Enlarging Enlarging Enlarging Enlarging Enlarging

Stalk Surface Above ∼ Silky Smooth Silky or ∼ Scaly Silky Smooth

Ring Smooth

Stalk Surface Below ∼ Silky Smooth ∼ Fibrous ∼ Scaly Scaly Smooth

Ring

Stalk Color Above Ring Brown or Red or Brown or Orange or Cinnamon White

Grey or White Buff or White

Pink or Pink or

White White

Stalk Color Below Ring Brown or Red or Brown or Brown or Cinnamon White

Grey or White Buff or Orange or

Pink or Pink or White

White White

Veil Type Partial Partial Partial Partial Partial Partial

Veil Color White White White ∼ Yellow White White

Ring Number One or Two One One or None One

Two Two
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Table VIII. Continued

Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

N 3288 224 976 408 36 264

Population ∼ Clustered Clusteredr ∼ Abundant ∼ Abundant Clustered ∼ Abundant

or Several ∼ Clustered ∼ Solitary ∼ Numerous

or Solitary ∼ Numerous ∼ Solitary

Habitat Grasses or Paths or Grasses or Grasses or Woods Grasses or

Meadows Waste Paths or Leaves Leaves or

or Paths Woods Urban

or Woods

Cap Shape ∼ Bell ∼ Conical ∼ Bell Convex or ∼ Convex ∼ Conical Bell or

∼ Conical ∼ Conical Flat ∼ Sunken ∼ Sunken Flat

∼ Sunken ∼ Sunken

Cap Surface∼ Fibrous ∼ Grooves ∼ Fibrous ∼ Grooves Scaly ∼ Grooves ∼ Fibrous

∼ Grooves ∼ Grooves ∼ Smooth ∼ Grooves

Cap Color Brown or ∼ Buff ∼ Cinnamon Gray or Yellow Brown or Buff or

Buff or ∼ Cinnamon∼ Green Pink or Yellow Pink or

Grey or ∼ Pink ∼ Pink White or White

Red or ∼ Red ∼ Purple Yellow

White ∼ Yellow

Bruises No Bruises No Bruises No Bruises Bruises

Odor Foul or Anise or Fishy or Creosote or None None None

Spicy None Foul Foul

Gill Free Attached or Free Free Free Free Free

Attachment Free

Gill Spacing Close Close or Close Close Crowded Close Close

Crowded

Gill Size Narrow Narrow Broad

Gill Color Buff or ∼ Buff Buff or Brown or White or White Gray or

Chocolate ∼ Green Chocolate or Chocolate Yellow Green or

or Pink or ∼ Red Pink or White

Ring Type Evanescent Evanescent Evanescent or Evanescent None Pendant

or Pendant or Pendant Large or or Pendant

Pendant

Spore Print Black or White Black or Brown or Orange or White Black or

Color Brown or Chocolate or White or Brown or

Purple or White Yellow White

White
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Table VIII. Continued

Feature Cluster 7 Cluster 8 Cluster 9 Cluster 10 Cluster 11 Cluster 12 Cluster 13

N 1296 288 720 528 8 16 72

White white Or Gray or

Pink or

Purple

Stalk Shape Tapering Tapering Enlarging Enlarging Enlarging Enlarging

Stalk Surface ∼ Scaly Smooth Silky or ∼ Fibrous Scaly Silky Smooth

Above Ring Smooth ∼ Scaly

Stalk Surface ∼ Scaly ∼ Scaly ∼ Scaly ∼ Fibrous Scaly Scaly Smooth

Below Ring ∼ Silky ∼ Scaly

Stalk Color Pink or Orange or Pink or Brown or Yellow White White

Above Ring White White White Buff or

Pink or

White

Stalk Color Pink or Orange or Pink or Brown or Yellow Yellow White

Below Ring White White White Buff or

Pink or

White

Veil Type Partial Partial Partial Partial Partial Partial Partial

Veil Color White ∼ Yellow White White Yellow White White

Ring Number One One One One One One Two

Ring Type Evanescent or Flaring or Evanescent Large or Evanescent Evanescent Pendant

Pendant Pendant Or Pendant Pendant

Spore Print Chocolate or ∼ Green Chocolate or Black or White White Green

Color White White

∼ Purple Brown or

∼ White Chocolate

∼ Yellow

Population Scattered or Clustered or Scattered or Scattered Clustered Several Several

Several Several or Several Or Several

Solitary Or Solitary

Habitat ∼ Meadows Leaves or ∼ Meadows Grasses or Leaves Woods Grasses or

∼ Waste Urban or ∼ Waste Woods Meadows

Woods

First, we identified the definite features associated with each cluster, using the
same method that was used in Study 2. Recall that a definite feature is an input
feature that is shared by all of the members of the same cluster. As was the case for
Study 2, we were able to identify a rich set of definite features for each of the 13
clusters, as can be seen in Table 8.

The second step was to recode each column in Table 8 in a numerical format.
When all of the possible values of the 21 different mushroom features are con-
sidered (i.e., all of the different values in the second column of Table 1), there are
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119 different features that could be present or absent for a cluster. We took each
column of Table 8 and generated a binary code for the features that it represented.
If a feature could be present in a cluster, then we coded it with a value of 1. If a
feature could not be present in a cluster, then we coded it with a value –1. As a
result, we produced 13 different binary vectors, each of which was 119 features
long.

The third step was to perform a discriminant analysis using these 13 different
vectors. Each of the 119 features in the vector was used a predictor. The pre-
dicted variable was network response – whether the feature vector was associated
with mushrooms that were edible or not. When this analysis was performed, the
following discriminant function was produced:

Y = 30∗(capcolor = cinnamon) + 55∗(odor = anise)

−8∗(gillcolor = white) + 19∗(stalkcolorabovering = white)

+11∗(ringtype = evanescent) − 8∗(habitat = meadows)

−16∗(habitat = woods) − 11

This function is a linear weighting of 7 different features, each of which is either
true (+1) or false (–1) of a cluster. This function, derived from the internal states
of the network, will correctly classify all of the mushrooms. If the function returns
a negative value, then the mushroom is edible. If the function returns a positive
value, then the mushroom is not edible. While this function is a perfect classifier
of mushroom type, it is not the same as the decision tree algorithm which was
discovered in Study 1, and which was inserted into a PDP network in Study 2. In
other words, the classical algorithm that was recovered from the Study 2 network
is not the only procedure that could be used to solve the mushroom problem.

8. General Discussion

In Study 1, we used standard machine learning techniques to derive a classical
decision tree for the mushroom problem. In Study 2, we used extra output learning
to attempt to insert this decision tree into a network of value units. Our analysis of
the trained network indicated a unique mapping from internal network states (i.e.,
clusters of hidden unit activities) to a set of productions that were equivalent to
the Study 1 algorithm. This mapping is an instance of an intertheoretic reduction
between the Study 1 algorithm and the Study 2 network. In Study 3, we determined
whether other network algorithms – procedures that did not map onto the Study 1
decision tree – were possible. We found that a network trained on the problem
without using extra output learning classified the mushrooms using a procedure
that was unlike the method that was discovered in Study 1. This indicated that the
extra output learning technique used in Study 2 was responsible for inserting the
classical algorithm into the network of value units.

What are the implications of this finding for the architectural debate that is
being conducted in cognitive science? The main implication is that one cannot as-
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sume that classical models and connectionist networks are fundamentally different,
because we have demonstrated that one can take one and translate it into the other.
In other words, the main result of the current paper is to demonstrate that at the
algorithmic level it is possible to have a classical model that is exactly equivalent
to a PDP network.

This is not to say, of course, that every classical model is algorithmically equiv-
alent to a PDP network, or vice versa. However, given that we have shown that in
some cases the two types of theories can be equated at this level, if one wants to
say that a PDP model is different from a classical theory, then one must justify this
claim by interpreting the network. The interpretation of the Study 2 network has
indicated that something that doesn’t look very much like a classical algorithm can
in fact be precisely equivalent to that algorithm.

To complete a discussion from the introduction, the final level of analysis to
consider for a comparison between classical and connectionist models is the level
of implementation. At this level, the question that is addressed is “What physical
properties are required to build the functional architecture into a physical device?”
(Dawson, 1998). This level has been the source of a great deal of controversy in the
debate between these two approaches to cognitive science. On the one hand, many
proponents of connectionism have argued that PDP models are more biologically
plausible than are classical systems (Clark, 1989; Clark, 1993; Dreyfus and Drey-
fus, 1988; McClelland, Rumelhart, and Hinton, 1986). On the other hand, classical
supporters have claimed that if connectionist models are to be taken as biological
accounts, then they are not part of cognitive science because they do not appeal
to a cognitive vocabulary (Broadbent, 1985; Fodor and Pylyshyn, 1988; Pylyshyn,
1991). “The problem with Connectionist models is that all the reasons for thinking
that they might be true are reasons for thinking that they couldn’t be psychology”
(Fodor and Pylyshyn, 1988, p. 66).

However, there are many reasons to delay a comparison between the two ap-
proaches at the implementational level. First, many researchers have pointed out
that many properties of PDP networks are not biologically plausible (Crick and
Asanuma, 1986; Douglas and Martin, 1991; Smolensky, 1988). Second, many ana-
lyses of connectionism indicate (at the very least) that it is unclear whether PDP
networks are to be understood as implementational theories or as cognitive theories
(Broadbent, 1985; Dawson, 1998; Rumelhart and McClelland, 1985). Third, it has
been shown that novel cognitive (as opposed to implementational) theories can be
extracted from connectionist networks (Dawson et al., 1997).

While our position is that an implementational comparison of classical and
connectionist models is premature, the results that we have reported above present
an interesting opportunity for future research. Our simulations have demonstrated
that extra output learning can be used to translate a particular classical theory into
one connectionist network. An area that remains to be explored is determining the
extent to which extra output learning can be used as a general technique for theory
translation. Can all classical theories be translated into PDP networks? Or are there
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limitations on the kinds of translation that are possible? If at some future point it is
established that PDP models are more appropriate for cognitive science because of
implementational or architectural considerations, then classical cognitive science
may be in need of answers to such questions about theory translation.
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