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Abstract. PDP networks that use nonmonotonic activation functions often produce hidden unit
regularities that permit the internal structure of these networks to be interpreted (Berkeley et al.,
1995; McCaughan, 1997; Dawson, 1998). In particular, when the responses of hidden units to a set
of patterns are graphed using jittered density plots, these plots organize themselves into a set of
discrete stripes or bands. In some cases, each band is associated with a local interpretation. On the
basis of these observations, Berkeley (2000) has suggested that these bands are both subsymbolic and
symbolic in nature, and has used the analysis of one network to support the claim that there are fewer
differences between symbols and subsymbols than one might expect. We suggest below that this
conclusion is premature. First, in many cases the local interpretation of each band is difficult to relate
to the interpretation of a network’s response; a more appropriate relationship only emerges when a
band associated with one hidden unit is considered in the context of other bands associated with other
hidden units (i.e., interpretations of distributed representations are more useful than interpretations
of local representations). Second, the content that a band designates to an external observer (i.e., the
interpretation assigned to a band by the researcher) can be quite different from the content that a
band designates to the output units of the network itself.. We use two different network simulations –
including the one described by Berkeley (2000) – to illustrate these points. We conclude that current
evidence involving interpretations of nonmonotonic PDP networks actually illustrates the differences
between symbolic and subsymbolic processing.
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1. Introduction

One major debate in cognitive science concerns potential differences (and similar-
ities) between symbolic models and connectionist networks (e.g., Dawson, 1998).
For example, it has been argued that, in contrast to symbolic theories, parallel
distributed processing (PDP) networks aresubsymbolic(Smolensky, 1988). To say
that a network is subsymbolic is to say that the activation values of its individual
hidden units do not represent interpretable features that could be represented as
individual symbols. Instead, each hidden unit is viewed as indicating the presence
of a microfeature. Individually, a microfeature is unintelligible, because its “inter-
pretation” depends crucially upon its context (i.e., the set of other microfeatures
which are simultaneously present (Clark, 1993)). However, a collection of micro-
features represented by a number of different hidden units can represent a concept
that could be represented by a symbol in a classical model.
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Smolensky’s (1988) notion of “subsymbolic” processing was introduced as an
alternative to the classical notion that the mind is a product of a physical symbol
system (Newell, 1980). However, some researchers have argued that architectures
that appear to be subsymbolic are actually symbolic in nature, and can be quite
comfortably absorbed into a physical symbol system account. For example, con-
sider a recent attempt to incorporate situated action theories (including connection-
ism) into classical cognitive science. Vera and Simon (1993) have argued that any
situation-action pairing can be represented either as a single production in a pro-
duction system, or (for complicated situations) as a set of productions. “[Situated
action] systems are symbolic systems” (p. 8).

Much of the position championed by Vera and Simon (1993) depends upon
what some would call a fairly liberal definition of the term symbol. For Vera and
Simon, the first major property of a symbol is that it is a pattern. This pattern
can be compared to other symbols/patterns to be identified as being the same or
different, and a physical symbol system’s behavior depends on the outcome of this
comparison. The second major property of a symbol is that it designates or denotes.
This means that the symbol references some object (e.g., other symbols, patterns
of sensory stimuli, motor actions); the physical symbol system can gain access to
the referenced object via the designating symbol.

Disagreements about what counts as a symbol are at the heart of the reaction
to Vera and Simon’s (1994) position. Some researchers have called for a more
restrictive definition of the term symbol. For example, Touretzky and Pomerleau
(1994) argue against Vera and Simon’s symbolic reconstrual of a particular net-
work, ALVINN, by noting that its internal features “are not arbitrarily shaped
symbols, and they are not combinatorial. Its hidden unit feature detectors are tuned
filters” (p. 348). (But for responses to this view, see also (Greeno and Moore, 1993;
Vera and Simon, 1994)). Other researchers have sought a compromise between
these views. For instance, Greeno and Moore (1993) take the middle road in their
analysis of ALVINN, suggesting that “some of the processes are symbolic and
some are not” (p. 54). It appears the relationship between symbols and subsymbols
is controversial, and is an issue that deserves further investigation.

1.1. BANDS, SYMBOLS, AND SUBSYMBOLS

Recently, Berkeley (1997) has used a property of one type of PDP network, called
networks of value units, to investigate the relationship between subsymbolic and
symbolic descriptions. Networks of value units are a PDP architecture whose pro-
cessors use a Gaussian activation function, and whose connection weights are
trained using a variation of the generalized delta rule (Dawson and Schopflocher,
1992). One property that emerges from this PDP architecture is a marked “band-
ing” of its hidden unit activities (Berkeley et al., 1995; Dawson et al., 1997; Dawson,
1998). This banding is revealed when the responses of hidden units to each of a set
of training patterns are plotted in a type of one-dimensional scatter plot called a
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Figure 1. An example of banding injittered density plots of the hidden units of a value unit
network. These particular plots are for the network that was trained in the first simulation
which is reported later in the paper.

jittered density plot (Chamberset et al., 1983). One jittered density plot is drawn
for each hidden unit in a network. For each pattern in a training set, a dot is added
to the density plot. Thex-position of the dot indicates the activity produced in that
hidden unit by an input pattern. They-position of the dot is randomly selected to
reduce the overlap of different points. For the hidden units of a value unit network,
the dots in ajittered density plot are not “smeared” uniformly across the graph.
Instead, the plot is typically organized into a set of distinct bands or stripes (see
Figure 1).

This banding phenomenon can be important, because the bands sometimes en-
able a researcher to determine the algorithm that is used by a trained network to
accomplish a particular pattern recognition task. Training patterns that fall into
the same band in a hidden unit do so because they share one or more properties,
calleddefinite features(Berkeley et al., 1995). By identifying the definite features
in a layer of hidden units, and by determining how such features are exploited
by output units, one can specify in great detail the kinds of features to which a
particular hidden unit is sensitive.

For example, Berkeley et al. (1995) trained a network of value units to cat-
egorize a set of logic problems devised by Bechtel and Abrahamsen (1991). When
this network (called L1O) was analyzed, its hidden units were highly banded, and
bands were associated with specific local features (e.g., type of logical connective,
relations among variables in the logic problems). The network combined these
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local features in such a way that its internal structure represented many of the
traditional rules of logic, such asmodus ponens(Dawson et al., 1997).

As will be described in more detail below, Berkeley (2000) used the interpret-
ation of the logic network to argue that subsymbolic and symbolic accounts are
more similar in nature than one would expect from reading the existing literature:

“However, if a broader definition of ‘symbol’, closer to Vera and Simon’s
(1993) conception is ultimately judged to be the most appropriate, then the
evidence discussed above suggests that the difference between symbols and
subsymbols may not be as great as has previously been supposed. Hopefully,
future evidence from the analysis of trained connectionist networks will serve
to provide evidence which will clarify the issues in the debate over the appro-
priate definition for symbols. In the meantime, it appears that the Berkeley et al.
(1995) logic network analysis provides suggestive evidence for aprima facie
case to be made that connectionist networks are, in fact, symbolic systems.”

Our position is that such a conclusion is premature, for two general reasons.
First, the “symbolic” nature of the bands in the logic network (i.e., a local in-

terpretation denoting or representing a specific content) is not often seen in value
unit networks. When most other examples of such networks are interpreted with
the banding technique, individual bands do not typically denote entities that would
be represented as symbols in a classical theory. Instead, the bands themselves seem
much more akin to subsymbols, and the “symbolic” interpretation of a network’s
internal structure only emerges after considering combinations of bands distributed
over a number of different hidden units, much in the manner originally suggested
by Smolensky (1988).

Second, the notion of designation used to assign content (definite features) to
bands is not the same as the notion of designation used by Vera and Simon (1993)
to define symbolhood. For Vera and Simon, designation is a property defined within
the context of the operations of a physical symbol system. When a symbol desig-
nates an entity, it does so for the symbol system – the system accesses that entity
(e.g., carries out some action) in virtue of the symbol’s designation. In contrast, the
interpretation of definite features relies on content associated with bands in such a
way that the content is designated for some external observer of the system, and not
for the system itself. These can lead to the situation in which the content assigned
to the band by the external viewer does not really correspond to content that can be
used to predict the network’s behavior.

The purpose of this paper is to explore these matters in more detail, by consid-
ering two different PDP simulations. The first is a network of value units which
has been trained to solve a variation of a kinship problem originally reported by
Hinton (1986). The second is the network discussed by Berkeley (2000), which
was originally reported by Berkeley et al. (1995). Both of these networks reveal
distinct bands in their hidden value units. However, the interpretation of how the
information revealed by such bands is used by both networks is highly context
dependent – the functional role of the feature associated with one band depends
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Figure 2. The structure of the kinship problem that was presented to the network.

strongly upon what other activation values are present in other hidden units in the
network at the same time. In other words, the interpretation of network behavior
requires considering definite features from one hidden unit in the context of definite
features from others. With respect to the “cognitive science” of artificial neural net-
works, this does not support Berkeley’s (2000) claim that the subsymbols of a PDP
network seem to be symbolic in nature. Instead, interpretations of nonmonotonic
PDP networks actually provide an excellent example of thedifferencesbetween
symbolic and subsymbolic processing.

2. Simulation 1: The Kinship Problem

2.1. METHOD

2.1.1. Problem Representation

In Hinton’s kinship problem (Hinton, 1986), a network was given an individual’s
name and a relationship (e.g., “James, father”). This input represented a question
about a person (i.e., “Who is James’ father?”). The network’s task was to generate
the name or names representing the correct answer to the question (i.e., “Andrew”).

In Hinton’s original version of the problem, a network was trained on 100 of the
104 possible relationships in two different family trees of identical structure (i.e.,
the structure illustrated in Figure 2). In our version of this problem, we used six
different versions of this family tree (i.e., six different families with the identical
family tree structure), training the network on 52 relationships in each tree, for a
total of 312 instances.

The network had 21 input units. The first 9 represented a person’s name using
the following coding scheme: The first three bits indicated which of the six families
the individual belonged to (001 = family 1, 010 = family 2, 011 = family 3, 100
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= family 4, 101 = family 5, 110 = family 6). The fourth bit indicated whether the
individual was male (activity = 1) or female (activity = 0). The fifth and sixth bits
indicated the generation within the family tree to which the person belonged (01
first generation, 10 second generation, 11 = third generation). The seventh, eighth,
and ninth bits were local codes that, in combination with gender bit 4, individuated
different people belonging to the same generation of the family tree (see Figure 2).
The advantage of the local code in these final bits is that the network could generate
two names by turning two of these bits on, which is necessary when asked to name
the aunts or uncles of Generation 3 children.

The remaining 12 input units of the network represented a relationship using
Hinton’s local coding scheme (Hinton, 1986). A relationship was encoded by tum-
ing one of these 12 units on and by turning the other 11 off. In order from input
unit 10 to input unit 21 the represented relations were nephew, niece, aunt, uncle,
brother, sister, father, mother, daughter, son, wife, and husband.

The network had 6 hidden units and 9 output units, all of which were value units.
The 9 output units encoded an individual’s name using the same coding scheme that
was used to represent names in the input units.

In each family tree, there is a total of 52 different relationships that can be
queried (4 nephew, 4 niece, 2 aunt, 2 uncle, 3 brother, 3 sister, 6 father, 6 mother,
6 daughter, 6 son, 5 wife, 5 husband). Note that there are only 2 aunt and 2 uncle
queries because each of these queries results in the network generating a name
output that represents two different individuals by turning two of the “local bits”
on. Because we trained the network on these 52 relationships for 6 different family
trees there was a total of 312 patterns in the training set.

2.1.2. Network Training

The network biases and connections were randomly selected from the range
[−0.1,0.1], and the network was trained using a variation of the generalized delta
rule developed for value unit networks (Dawson & Schopflocher, 1992) with a
leaming rate of 0.001 and a momentum of 0. Connection weights and biases were
updated after every pattern presentation. During one sweep of training, each of the
312 training patterns was presented to the network. The order of pattern presenta-
tion was randomised before every sweep.

The network was said to have converged on a solution to the problem when a
“hit” was recorded for the output unit for every pattern presented during the epoch.
A “hit” was defined as output unit activity of 0.9 or greater when the desired output
was 1.0, or as output unit activity of 0.1 or less when the desired output was 0.0.
Convergence was achieved after 2734 sweeps.
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Table I. Definite features for each band in each hidden unit. Beside each band label is the number
of patterns that belong to that band. Key for definite features: F = father, M = mother, B = brother,
Sr = sister, Sn = son, D = Daughter, W = wife, H = husband, Nc = niece, Np = nephew, U = uncle,
A = aunt, G = generation, P = person, FG = female of generation, MG = male of generation

Unit Band Definite Features

Hidden AN=52 Family 3

Unit B N=52 Family 1

0 CN=52 Family 2

D N=52 Family 5

EN=52 Family 6

FN=52 Family 4

Hidden AM=156 Not A and Not U

Unit B N=36 (Sn of G01 P001) or (A or U of G11 P001)

1 CN=18 (H of FG10 P001) or (W of MG10 P001) or (B of F G10 P010)

D N=24 (D of G01 P001) or (Sr of G10 P001) or (B of G10 P100)

EN=30 (D of 601 P010) or (Sr or W or H of G10 P010) or (Sr or W or H of G10 P100)

FN=12 Sn of G01 P010

GN=36 (F or M or W or H of G10 P010) or (F or M of G11 P001

Hidden AN=240 No definite features

Unit B N=12 (M of F G10 P010) or (F of F G10 P010)

2 CN=24 (H of FG01 P001) or (W of MG01 P001) or (M or F of MG10 P001)

D N=12 (F of FG10 P100) or (M of FG10 P100)

EN=24 (H or W of G01 P010) or (F or M of G10 P010)

Hidden AN=66 Not Np and Not Nc and Not U and Not Sn

Unit B N=96 Np or Nc or B or Sr or D

3 CN=24 (Sn of G01 P001) or (Sn of G10 P010)

D N=36 (W or H of G01 P010) or (F or M of G10 P010)

EN=6 B of FG10 P010

FN=24 (Sn of G01 P010) or (W or H of G10 P001)

GN=60 (F or M or W or H of P001) or (F or M or W or H of P010)

Hidden AN=156 Family 2 or Family 3 or Family 4

Unit B N=52 Family 1

4 CN=52 Family 6

D N=52 Family 5

Hidden AN=156 Np or U or B or F or Sn or H

Unit B N=72 Nc or Sr or D or W

5 CN=12 D of G01 P010

D N=6 Sr of M G10 P010

EN=12 (W of MG01 P001) or (W of MG P010)

FN=24 (M of G10 P001) or (M of G11 P001) or (M of G01 P100)

GN=6 W of MG01 P010

H N=12 M of G01 P010

I N=12 A of G11 P001



204 MICHAEL R.W. DAWSON AND C. DARREN PIERCEY

2.2. RESULTS

2.2.1. Network Interpretation

The jittered density plots that were previously presented in Figure 1 were actually
plots for each of the 6 hidden units in the converged kinship network. It is apparent
from these diagrams that there is marked banding in all six of these units. The
interpretation of these bands can be accomplished by using descriptive statistics to
identify the definite unary and binary features in each of these bands in accordance
with previously published methods (Berkeley et al., 1995). The interpretations of
the definite features that were found are presented in Table I.

From Table I, it can be seen that two of the hidden units are completely devoted
to representing which of the six possible family trees is being queried. Each of the
six bands observed in hidden unit 0 is composed of stimulus questions about only
one of the six families. For example, Band A contains all of the questions about
family 3 (see Table I for more details). Similarly, each non-zero band in Hidden
unit 4 contains questions about a specific family.

The network’s discovery that some of the input bits correspond to family name
is important, because the remaining hidden units can be used to represent regularit-
ieswithin the family tree structure. These regularities can be applied to all six of the
family trees. Therefore, the regularities represented in the bands of the remaining
four hidden units ignore the first three bits of any input name. Table I indicates that
all four of the remaining hidden units have bands associated with specific definite
features, all of which pertain to structure within the family tree, and which ignore
the family feature.

Given the Table I account of the bands for the hidden units in this network, how
does it solve the kinship problem? Qualitatively speaking, the network’s algorithm
appears to involve two different tasks. When asked a question like“Who is person
X’s mother?”, the network uses two of its hidden units (i.e., units 0 and 4) to
identify the family name that is required in the answer, and to write this family
name into the first three output units by activating them appropriately. There does
not appear to be much of a mystery about how this “writing” is done: hidden units 0
and 4 act as the bottleneck in a 3-2-3 encoder network. In such a network, the values
of 3 input units are compressed into a 2-hidden unit representation; the hidden unit
activity is then uncompressed to produce a copy of the input bits into the 3 output
units.

The second task for the network is to identify the individual’s name, and to
“write” this into the remaining six output units. How this task is accomplished is
much more mysterious, though, because the kind of definite features listed in Table
I appear to refer to groups of people, and do not refer to individuals. How does the
network utilise these general features to represent the identity of the individual
whose name is to be “written” into the output units?

The answer to this question is that the network usescoarse codingto represent
individuals (or more specifically, particular nodes in the family tree) using the Table
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I features. In general, coarse coding means that an individual processor is sensitive
to a broad range of features, or at least to a broad range of values of an indi-
vidual feature (e.g., Churchland and Sejnowski, 1992, pp. 178–179). As a result,
individual processors are not particularly useful or accurate feature detectors. How-
ever, if different processors have overlapping sensitivities, then their outputs can be
pooled, which can result in a highiy useful and accurate representation of a specific
feature. Indeed, the pooling of activities of coarse-coded neurons is the generally
accepted account of hyperacuity, in which the accuracy of a perceptual system is
substantially greater than the accuracy of any of its individual components (e.g.,
Churchland and Sejnowski, 1992, pp. 221–233).

In the trained kinship network, each of the four hidden units that is not involved
in representing a particular family tree is instead involved with the coarse coding
of a particular node within a family tree. The network can pick out an individual
node in the family tree by pooling (or combining, or intersecting) the coarse coded
representation of the four hidden units.

To illustrate this, let us imagine that for any one of the family trees, we asked
the network“Who is the father of the female Person 2 Generation 2?”(e.g., for
the family tree given in Figure 2, the network would be asked“Who is Victoria’s
father?”). Ignoring hidden units 0 and 4 (which are concerned with picking out
family trees, and not concerned with picking out relations within the tree structure),
this query will produce activity that falls in Band A of hidden unit 1, Band B of
hidden unit 2, Band D of hidden unit 3, and Band A of hidden unit 5.

Importantly, none of these bands picks out an individual node in the family tree
by itself, as is revealed in Table I. Hidden unit 1 Band A picks out 156 different
individuals (across family trees) who are not aunts and not uncles. Hidden unit 2
Band B picks out 12 different individuals who are either the mother or the father
of the female person 010 in the second generation. Hidden unit 3 Band D picks
out the 36 different individuals who are the wife or husband of person 010 in
generation 1, or who are the father or mother of person 010 in generation 2. Band
A of hidden unit 5 picks out the 156 different individuals who are either nephews,
uncles, brothers, fathers, sons, or husbands (i.e., any individual who is male).

While none of the bands by themselves pick out an individual, theintersection
of the nodes picked out by each of these four bands selects the appropriate indi-
vidual within the family tree: the only node pointed to by every one of these bands
is the male Person 1 in Generation I. This is the essence of coarse coding – the
overlap of the receptive fields of broadly tuned detectors can be used to represent
finely detailed information.

Likewise, we could ask the network a very similar question:“Who is the mother
of the female Person 2 Generation 2?”This question will produce the identical
band activity in the network as was produced in the previous example, with one
exception: it will produce activity in hidden unit 5 that falls in Band H, and not
in Band A. Because of this change, the result of intersecting the subsets of nodes
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pointed to by all the bands changes: now, the only node pointed to by all of the
bands is the female Person 1 in Generation 1.

Finally, let us consider the two hidden units that detect which of the 6 family
trees is being queried. As was noted earlier, and as can be observed in Table 1, the
bands for both of these units have very specific local interpretations. However, it
is important to realize that their activities must also be pooled in order to “write”
the correct family name into the appropriate output units. For instance, when a
network is asked about a relationship for a person in Family 5, this will produce
activity that falls in Band D of hidden unit 0 and that falls in Band D of hidden unit
4. Both of these bands must be active for the correct family output to be generated.
For instance, if hidden unit 0 was ablated from the network, and the network was
asked a question about Family 5, the activity of hidden unit 4 by itself would not
produce the correct output in the network, even though the local interpretation of
hidden unit 4’s activity is “Family 5”. For the network, the complete representation
of family is a result of a distributed representation – a combination of hidden unit
0 and hidden unit 4 activities.

2.3. DISCUSSION

According to Smolensky (1988), subsymbols are constituents of traditional sym-
bols. “Entities that are typically represented in the symbolic paradigm are typically
represented in the subsymbolic paradigm by a large number of subsymbols” (p. 3).
As a result, “it is often important to analyze connectionist models at a higher level;
to amalgamate, so to speak. the subsymbols into symbols”.

The analysis of the kinship network that was reported above is completely
consistent with this view. To summarize this analysis, the following discoveries
were made. First, the jittered density plots revealed a great deal of structure (i.e.,
bands). Second, the definite features of most of these bands didnot correspond to
a particular local concept (e.g., an individual’s name, or the name of a particular
relationship). Instead, the bands usually corresponded to disjunctions of general
features that picked out sets of individuals (e.g., Hidden Unit 3 Band D), or in some
cases a single feature shared by a large number of individuals (e.g., Hidden Unit
5 Band A’s detection of “male”). Third, an account of how the network uses such
broadly tuned representations to identify particular individuals relies on the notion
of coarse coding. Specifically, the intersection of the sets of individuals represented
in all of the bands in which the activity of an input pattern falls picks out a single
individual, permitting the network to correctly respond to an input question. In
short, the bands illustrated in Figure 1 appear to be acting as subsymbols, and the
“symbolic” behavior of the network (i.e., its generation of an individual’s name
in its output units) depends upon the ability of the output units to combine – to
intersect – the sub symbolic representations realized as activation values of the
hidden units.
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Figure 3. Coarse coding in the kinship network. Each plot indicates which individuals within
a family tree belonged to a particular band in one of the hidden units. Note that each plot
represents a set of individuals associated with each band. The intersection of these graphs
indicates that only one individual is associated with each of the bands in question. See text for
details.

3. Simulation 2: Lesioning the LlO Network for the Logic Problem

The preceding study described a network that had learned to solve one version of
Hinton’s (1986) kinship problem. The hidden value units of this network demon-
strated marked banding, and the bands were associated with definite features. How-
ever, an examination of these definite features indicated that they revealed subsym-
bolic characteristics, and didnotappear to be particularly symbolic in nature. This
result provides an illustration of the subsymbolic nature of networks of value units.

Other networks of value units that have been interpreted support this general
view – hidden value unit bands represent subsymbolic content, and symbolic inter-
pretations of network behavior require considering the content of one band in the
context of other bands in other hidden units. For example, Dawson et al., (2000)
used a training technique called extra output learning to insert a symbolic theory
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into a network of value units. When the network was interpreted (to verify theory
insertion), a precise relationship between the network and the symbolic theory only
emerged when cluster analysis was performed on the basis of activations across all
the hidden units in the network Similarly, Leighton (1999) trained a network of
value units to solve the Wason (1966) card selection task, in which a subject must
select cards to be examined to test a logical argument. In one version of the network
trained to generate the logically correct responses to the task, pairs of hidden units
cooperated to activate an output unit (i.e., to select a card for examination). The
network behavior could not be understood by examining individual hidden units.
Finally, Zimmerman (1999) trained a network of value units to generate solutions
to the balance scale task used to study cognitive development (Inhelder and Piaget,
1958). In this task, the network is presented a configuration of weights on either
side of a balance scale, and has to judge whether the scale would tip to the left,
tip to the right, or balance. Zimmerman found that the network solved this task by
performing a function approximation that required a coarse-coding combination
of activities from all of the network’s hidden units. Importantly, in all three of
these examples, banding was found for the hidden units of the networks. However,
the local interpretations of these bands could not adequately explain the network’s
behavior.

Results like those above are consistent with the view that hidden value unit
bands are subsymbolic in nature. However, these results do not rule out the pos-
sibility that a network of value units can solve a problem by creating an internal
representation in which its subsymbolic states (as revealed by banding analysis) are
essentially symbolic in nature. lndeed, Berkeley (2000) has argued that the network
of value units that he calls Lb, and which has been previously reported (Berkeley
et al., 1995; Dawson et al., 1997) is one such network.

For example, two of the hidden units in L1O (units 6 and 8) reveal a striking
set of bands that indicate that these two units are responsible for L10’s detection
of the connective in any presented logic problem (Berkeley et al., 1995, Figure 2).
Hidden unit 6 has two distinct bands, one near 0 activity, the other near activity of
1. For logic problems that fall into the first band, the only definite feature shared
is that the connective isnot OR. All of the logic problems that fall into the second
band share the definite feature that the connective is OR. So, it would appear that
hidden unit 6 is an “OR detector”. Hidden unit 8 has 3 distinct bands. The first
falls around activity of 0; all of the logic problems that fall into this band share
the definite feature that the connective is “OR”. The second falls around activity
of 0.11; all of the logic problems that fall into this band share the definite feature
that the connective is “IF...THEN”. The third falls around activity of 0.82; all of the
logic problems that fall into this band share the definite feature that the connective
is “NOT BOTH....AND”. Berkeley (2000) points out that “The detailed analysis
and interpretation of the bands of hidden unit 8 of the network makes it very clear
that the function of this unit within the network was to act as a connective detector.”
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The existence of bands like those in hidden unit 8 of L10 provides the evidence
that Berkeley (2000) uses to argue for similarities between subsymbolic and sym-
bolic descriptions. After describing the bands of hidden unit 8, Berkeley states that
“This must then be what Smolensky had in mind when he talked of subsymbols.”
However, the fact that these bands are associated with specific content suggests that
they are also symbolic:

“Moreover, these dots also fairly unambiguously satisfy Vera and Simon’s
(1993) condition of symbolhood. Individual dots in the jittered density plot
of hidden unit 8 (the unit described earlier as a ‘connective detector’) ‘des-
ignate or denote’ particular main connectives in the problem set. This being
the case, subsymbols fall within the class of ‘representations’, as Touretzky
and Pomerleau (1993) use the term, but they fail to satisfy their conditions for
symbolhood. This is not the appropriate place to attempt to adjudicate between
the alternative definitions of ‘symbol’ proposed by Vera and Simon (1993), and
Touretzky and Pomerleau (1993). However, if a broader definition of ‘symbol’,
closer to Vera and Simon’s (1993) conception is ultimately judged to be the
most appropriate, then the evidence discussed above suggests that the differ-
ence between symbols and subsymbols may not be as great as has previously
been supposed.”

Importantly, the force of this argument depends on a specific interpretation of
the notion of “designation” used by Vera and Simon (1993). For Berkeley (2000),
a band designates a particular content if one can provide an interpretation to the
definite feature or features associated with this band. We will call this notion
“designation for the external observer”, because this definition of describes what
content a band designates to an observer examining the network from the outside.

However, other notions of designation are perhaps more plausible. For Vera and
Simon (1993), designation is not from the perspective of an external observer, but
is instead from the perspective of the information processing system that contains
the symbols: “We call patterns symbols when they can designate or denote. An
information system can take a symbol token as input and use it to gain access to
a referenced object in order to affect it or be affected by it in some way” (p. 9).
In this quote, it is clear that designation concerns what the information processing
system itself can gain access to via its symbols.

The analysis reported by Berkeley et al. (1995) provides an account of what
bands designate for the external observer. But what do the bands of units like
hidden unit 6 and 8 denote for the L10 network itself? To answer this question,
we took the original L10 network, and examined its behavior after lesioning its
internal structure.
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3.1. METHOD

3.1.1. Problem Description

Each pattern in Bechtel and Abrabmsen’s (1991) training set was a logical argu-
ment consisting of two sentences and a conclusion. The first sentence was com-
posed of a connective and two variables; the second sentence and the conclusion
were each composed of a single variable. Each of the four variables in an argument
could be negated or not negated. The problem set consisted of four classes of
problem (modus ponens (MP), modus tollens (MT), alternative syllogism (AS),
and disjunctive syllogism (DS)); there were two different versions of each AS and
DS problem type.

Each argument was represented as pattern of on/off activity in a set of 14 in-
put units using the representational scheme adopted by Bechtel and Abrahamsen
(1991). Different examples of each argument type were constructed by selecting
two variables from a set of four letters (A,B,C,D). A variable letter could also be
negated (e.g., Not A). For each type of argument, 48 different valid instances (the
conclusion follows from the two sentences) and 48 different invalid instances (the
conclusion does not follow from the two sentences) were used, creating a total
training set of 576 patterns.

3.1.2. Network Structure

We studied the L10 network that was originally reported by Berkeley et al. (1995).
This was a network of value units with 14 input units, 10 hidden value units,
and 3 output value units that was trained to solve the Bechtel and Abrahamsen
(1991) logic problem using a backpropagation procedure developed by Dawson
and Schopflocher (1992). We took the connection weights from the L10 network
and used them to construct a Microsoft Excel spreadsheet that could be used to
observe L10’s behavior when any of the logic problems were presented to it. Table
2 provides the connection weights and values for ji that were used to create this
spreadsheet.

3.1.3. Lesioning Procedure

In all of the studies described below, at least one hidden unit was ablated from the
original L10 network by “cutting” the connections from the hidden unit(s) to each
of the three output units. This was accomplished by setting the weight of a “cut”
connection to a value of 0. Three different lesioned networks were studied. In the
first, hidden unit 6 was removed from the L10 network. In the second, hidden unit
8 was removed from the L10 network. In the third, both hidden units 6 and 8 were
removed from the L10 network. We chose these two units for study because they
had been previously identified as providing L10’s ability to detect the connective
in a presented logic problem (Berkeley et al., 1995).
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Table II. The structure of (Berkeley et al., 1995) L10 network. (A) Bias of each hidden unit (µ) along with the connection weight to each hidden unit from
the 14 different input units. (B) Bias of each output unit along with the connection weight to each output unit from the 10 different hidden units

Source H0 H1 H2 H3 H4 H5 H6 H7 H8 H9

µ −4.17E−02 3.74E−02 −1.12E−01 −2.21E−01 −2.39E−01 2.65E−01 4.91E−02 3.90E−02 1.91E−02 −2.45E−02
Input 0 9.18E−02 5.20E+00 −6.36E+00 4.04E+00 3.28E+00 −1.08E−01 4.22E−02 −3.08E−03 −1.08E−03 3.63E+00
Input 1 −3.34E+00 7.63E−01 2.09E+00 −2.97E+00 2.98E+00 1.15E+00 −6.85−02 2.33E−02 −4.27E−02 −1.29E+00
Input 2 −1.42E+00 −2.75E−01 1.50E+00 −1.62E+00 2.30E+00 1.84E+00 −4.48E−02 −4.72E−02 −8.84E−02 −2.87E−01
Input 3 2.17E−01 −3.94E+00 −4.14E−02 −7.13E−02 −5.61E−02 −7.36E−02 −1.48E+00 −5.20E−03 −2.20E−01 3.55E+00
Input 4 5.07E+00 7.68E−01 4.19E−01 −3.97E+00 2.54E-01 5.04E+00 8.60E−02 4.98E−01 1.08E+00 −2.41E+00
Input 5 −5.42E+00 5.97E−01 −5.41E−05 −1.12E−01 −4.23E−01 −4.66E+00 −1.65E−02 −1.02E−04 3.96E−03 4.21E−02
Input 6 3.38E+00 −5.15E−01 −2.45E+00 2.67E+00 −3.14E+00 −1.14E+00 −5.87E−02 1.92E−02 −4.58E−02 1.15E+00
Input 7 1.33E+00 3.71E−01 −1.20E+00 1.31E+00 −2.25E+00 −1.90E+00 −6.67E−02 −3.88E−02 −9.43E−02 7.94E−02
Input 8 1.66E−02 3.55E+00 5.36E+00 −1.68E−01 −4.31E−01 −4.66E+00 −7.61E−02 −8.89E−01 4.83E−03 −1.19E+00
Input 9 3.34E+00 5.34E−01 −2.10E+00 −2.69E+00 3.14E+00 1.13E+00 6.00E−02 −1.38E−02 3.86E−02 −1.12E+00
Input 10 1.41E+00 −3.29E−01 −1.49E+00 −1.34E+00 2.24E+00 1.90E+00 6.56E−02 3.79E−02 8.96E−02 1.97E−01
Input 11 −5.42E+00 −1.52E+00 −3.13E−03 3.90E+00 −3.29E+00 −1.16E−01 −4.73E−02 −6.07E−04 −7.50E−03 −4.89E+00
Input 12 −3.37E+00 −7.71E−01 2.44E+00 2.97E+00 −2.99E+00 −1.15E+00 6.70E−02 −1.92E−02 3.75E−02 1.26E+00
Input 13 −1.33E+00 3.16E−01 1.17E+00 1.60E+00 −2.32E+00 −1.85E+00 3.87E−02 4.24E−02 8.62E−02 −1.08E03

A
Source Out 0 Out 1 Out 2

µ 2.32E−01 −1.31E−01 9.82E−02
H0 7.06E−01 6.15E−01 2.14E+00
H1 4.94E−04 −1.34E−02 4.14E+00
H2 −1.24E+00 −1.06E+00 −8.87E−01
H3 2.77E−03 1.92E−03 1.29E+00
H4 −7.04E−01 −8.61E−01 1.66E+00
H5 7.17E−01 8.94E−01 −1.70E+00
H6 5.55E−01 −3.29E−O1 −4.02E-01
H7 −4.84E−01 2.44E−01 9.12E−01
H8 −2.18E+00 2.32E+00 7.54E−02
H9 −3.27E−02 4.72E−03 1.21E+00

B
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After a lesioned network had been produced by cutting the appropriate con-
nections, each of the 576 logic problems was presented to the network, and the
response of the network to each problem was recorded. These responses were
then used to categorize network responses into eight different categories: invalid
disjunctive syllogism (DSI), valid disjunctive syllogism (DSV), invalid modus pon-
ens (MPI), valid modus ponens (MPV), invalid modus tollens (MTI), valid modus
tollens (MTV), invalid alternative syllogism (ASI) and valid alternative syllogism
(ASV). This was done by thresholding the observed activations of each output unit.
If an activation was greater than 0.5, then it was assigned a value of 1. Otherwise, it
was assigned a value of 0. Once the output values had been thresholded in this way,
the categorized response of the network could be compared to desired response.

3.2. RESULTS

The behavior of each of the three lesioned versions of the L10 network was repres-
ented in an 8×8 confusion matrix (see Table III). Each row of the confusion matrix
is associated with the known category of a problem presented to the network. Each
column of the confusion matrix is associated with the observed category of the
network’s response. Each numerical entry in the matrix represents the number of
times that a pattern of the type associated with the entry’s row is identified as being
a pattern of the type associated with the entry’s column. Correct responses are
represented in the entries along the diagonal of the matrix. Incorrect responses are
represented in the off-diagonal entries of the matrix.

When hidden unit 6 is ablated from the L10 network, it becomes unable to cor-
rectly identify either invalid or valid alternative syllogisms, but correctly classifies
all other problem types (see Table IIIA). This is consistent with the interpretation
of this unit serving as an “OR detector”, because OR is the connective used to
define an alternative syllogism.

When hidden unit 8 is ablated from the L10 network, it has marked difficulty
classifying disjunctive syllogisms, although it still correctly classifies some of these
problems (see Table IIIB). 25 of the 96 DSI problems are correctly classified (26%
accuracy), and 24 of the 96 DSV problems are correctly classified (25% accuracy).
Interestingly, for all of the problems that are misclassified by this lesioned network,
all of the mistakes are made with respect to connective type. The network never
makes a mistake on problem validity. For instance, while it frequently mistakes a
DSI problem as being an MPI problem, it never classifies a DSI problem as being
of type MPV. This network never misclassified any of the other six types of logic
problems.

When both hidden units 6 and 8 are ablated from the network (Table IIIC), the
results are almost identical to summing the effects of the individual lesions (Table
IIIA and IIIB). These lesions cause the network to misclassify about 75% of the
disjunctive syllogisms, while maintaining a correct judgement about the validity
of these problems. The network never misclassifies a modus ponens or a modus
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Table III. Confusion matrices representing response of the
L10 logic network after (A) hidden unit 6 has been re-
moved, (B) hidden unit 8 has been removed, and (C) both
hidden units 6 and 8 have been removed. The eight response
categories reflect problem type and validity (DS = disjunct-
ive syllogism, MP = modus ponens, MT = modus tollens,
AS = alternative syllogism, I = invalid, V = valid). Each
number in the table indicates the frequency of times that
an input problem of the type corresponding with the cell’s
row was classified as being of the type corresponding with
the cellŠs column. Off-diagonal numbers that are greater
than 0 (shaded cells) reflect errors generated by lesioning
the network
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tollens problem. Finally, the network has great difficulty classifying alternative
syllogisms. Interestingly, though, when both hidden units 6 and 8 are lesioned, the
performance of this network on alternative syllogisms actually improves compared
to the case of when only hidden unit 6 is removed. With only one hidden unit
ablated, the network had 0% accuracy on both ASI and ASV problems. How-
ever, when hidden unit 8 is also removed, it correctly classifies 10 of the 96 ASI
problems (10% accuracy) and 1 of the 96 ASV problems (1% accuracy).

4. Discussion

At first glance, the behavior of the lesioned versions of the L10 network are con-
sistent with the expectations derived from assigning interpretations to the bands
of hidden units 6 and 8. Ablating these units causes the network to have difficulty
classifying particular types of problems, and these difficulties appear to be related
to an inability to identify the connective in a presented logic problem. However, a
closer examination of the confusion matrices presented in Table III suggests that
connective detecting is actually more complex for L10 than the local interpretations
of the bands would predict. In short, what these bands designate for the external
observer is actually quite different from what they designate to the network itself.

First, consider hidden unit 6. As was noted earlier, the interpretations of its
bands indicate that this unit serves as an “OR detector”. When this unit is removed
from L10, it became unable to correctly identify either valid or invalid alternat-
ive syllogisms, which are the only problem types in the training set that use the
connective “OR”. However, “OR detection” – as far as the network is concerned
– cannot only be mediated by hidden unit 6. This is because when both hidden
unit 6 and hidden unit 8 are absent from L10, its ability to categorize alternative
syllogisms actually improves! This suggests that the ability to detect “OR” is not
simply housed in hidden unit 6.

Second, consider hidden unit 8. The interpretations of its bands suggest, to the
observer that it is a connective detector. It basically adopts three different levels of
activity, and each level designates one of the three connectives used in the logic
problems that comprise the training set. However, one would arrive at a completely
different interpretation of its functional role on the basis of the errors produced by
L10 when hidden 8 is removed. On the one hand, the network only has problems
with disjunctive syllogisms, indicating that instead of being a general connective
detector, hidden unit 8 is a “NOT BOTH...AND detector”. On the other hand, this
interpretation cannot be completely correct, because the network is still able to cor-
rectly identify approximately 25% of both the DSI and the DSV problems. At the
very least, this behavioral evidence suggests that this unit is involved in detecting
“NOT BOTH... AND” for some, but not all, of the disjunctive syllogisms. This
kind of interpretation is quite a bit different from the one arrived at by examining
the three bands of this unit – there is no behavioral evidence from the lesioning



THE SUBSYMBOLIC NATURE OF A PDP ARCHITECTURE 215

experiments that hidden unit 8 is responsible for designating each of the three
connective types to the network.

Third, consider one aspect of L10’s performance that is not affected by these
lesions: its categorization of modus ponens and modus tollens problems. From the
interpretation of hidden unit 8’s bands, one would predict that one of its functions is
to detect the connective “IF...THEN”. However, lesioning this unit, with or without
lesioning hidden unit 6, produces absolutely no change in the network’s ability to
process logic problems that use this connective. Clearly, hidden unit 8 is not – as
far as the network is concerned – a general connective detector, and the network’s
ability to detect “IF...THEN” must be mediated by other processors than the two
that were lesioned in this study.

As a matter of fact, there is a good deal of evidence in the L10 network that
functions like connective detecting are distributed across a number of different
hidden units, and that a symbolic account of L10’s behavior cannot be determined
by providing interpretations to individual bands, but instead requires identifying
regularities distributed throughout the network.

For instance, Berkeley et al. (1995) provided definite features for most of the
bands identified in the L10 network (Table II). We have already reviewed the in-
terpretation of the bands for hidden units 6 and 8, which are associated with the
different connectives involved in the logic problems. Importantly, these connectives
also emerge as definite features in several other bands in the other hidden units of
this network. For example, the presence of the connective “IF...THEN” is one of
the definite features associated with hidden unit 0 bands B and C, and with hidden
unit 4 band B. As well, the presence of the connective “NOT BOTH...AND” is one
of the definite features associated with hidden unit 2 band C, hidden unit 4 band
C, hidden unit 5 band B, and hidden unit 7 bands A and C. Similarly, the presence
of the connective “OR” is one of the definite features associated with hidden unit
3 band B, and with hidden unit 4 band D. In most of these cases, the presence of
a connective is only one of the definite features associated with the band; usually
other features involving properties of the variables are also present. This evidence
suggests that the bands of L10 are actually picking out complicated subsets of logic
problems, much in the same way that the bands in the kinship network were picking
out subsets of individuals within a family tree.

If this is the case, then one would predict that a symbolic account of L10 would
emerge by seeking regularities distributed across bands in different hidden units,
which would be completely consistent with Smolensky’s (1988) notion of the rela-
tionship between subsymbols and symbols This is exactly what happens with Lb.
When the internal states of the L10 network are examined across hidden units,
one can identify a small number of rules for identifying valid instances of the
different problems (Berkeley et al., 1995; Berkeley, 2000; Dawson et al., 1997).
The majority of these rules are classical in nature. In other words, even the L10
network supports the claim that the bands of hidden value units are subsymbolic in
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nature, and that symbolic properties of these networks are represented as patterns
distributed across bands in different units.

5. General Discussion

This paper has described the results of two different simulation studies that have
used network interpretation as a tool with which to explore the relationship between
subsymbols and symbols. In the first simulation, the jittered density plots of hidden
units of a network trained to solve a kinship problem revealed distinct bands. These
bands were associated with definite features. However, the definite features that
could be assigned to the bands were very difficult to relate to the desired output
of the network. Instead of describing particular individuals, these features were
characteristics of sets of individuals. Their role in determining how the network
solved the problem – that is, how the network picked the name of an individual –
only emerged after considering them from as components of a distributed repres-
entation. The functional role of one hidden unit’s activity depended crucially on
the activities that were simultaneously present in the other hidden units.

In the second simulation, we examined the effects of removing “connective
detecting” units from a network trained to solve a particular logic problem. These
units had a known local interpretation that was derived by using a previously de-
rived analysis of hidden unit bands (Berkeley et al., 1995). The question of interest
was the degree of correspondence between the interpretation of the units based
on this technique, versus the interpretation that would be derived on the basis of
observed responses in the damaged network. The behavior of the lesioned network
did not show strong agreement with the local interpretation, suggesting that as far
as the network’s outputs were concerned, it was not correct to view these units as
detecting specific connectives. Instead, the representation of connective in the logic
problem appears to be distributed across a number of different hidden units.

Together, in combination with other results (Dawson et al., 1997; Leighton,
1999; Zimmerman, 1999; Dawson et al., 2000), these findings are consistent with
the notion that the bands that are often revealed in jittered density plots of value
units are subsymbolic in nature. If a network of value units can be described
using a symbolic vocabulary, then its symbolic regularities emerge from a dis-
tributed representation – that is, by combining bands from different hidden units.
The notion of a symbolic account emerging from the combination of subsymbolic
information that is distributed throughout a PDP network is completely consistent
with Smolensky’s (1988) account of subsymbolic processing. These results are not
consistent with Berkeley’s (2000) notion that individual bands of a value unit are
both subsymbolic and symbolic.

There are two methodological implications of these results. The first concerns
the examination of subsymbolic representations in PDP networks. If value unit
bands are indeed subsymbolic, then the analysis of these bands using the Berkeley
et al. (1995) technique can provide a great deal of information about what kind of
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subsymbolic features are being detected by hidden units. The second concerns the
examination of symbolic behavior in PDP networks. If the value unit bands are sub-
symbolic, then the local analysis of individual bands is not an appropriate technique
to use in an attempt to generate symbolic descriptions. Instead, an attempt must be
made to identify regularities distributed across hidden units. One technique that has
been used to do this with some success involves the cluster analysis of vectors of
hidden unit activities, coupled with the identification of definite features associated
with each cluster (Dawson et al., 2000).
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