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Abstract 

One new tradition that has emerged from early 
research on autonomous robots is embodied 
cognitive science.  This paper describes the 
relationship between embodied cognitive science 
and a related tradition, synthetic psychology.  It 
is argued that while both are synthetic, embodied 
cognitive science is anti-representational while 
synthetic psychology still appeals to 
representations.  It is further argued that modern 
connectionism offers a medium for conducting 
synthetic psychology, provided that researchers 
analyze the internal representations that their 
networks develop.  Some case studies that 
illustrate this approach are presented in brief. 
 
Keywords: embodied cognitive science, synthetic 
psychology, connectionism 

1. EMBODIED COGNITIVE 
SCIENCE 

Cognitive science is an intensely 
interdisciplinary study of cognition, perception, 
and action.  It is based on the assumption that 
cognition is information processing [1], where 
information processing is generally construed as 
the rule-governed manipulation of data structures 
that are stored in a memory.  As a result of this 
assumption, a basic aim of cognitive science is 
identifying the functional architecture of 
cognition – the primitive set of rules and 
representations that mediate thought [2]. 

 
Of course, not all researchers are comfortable 

with adopting this research program, because 
they have fundamental disagreements with this 
foundational assumption.  For example, starting 
in the early 1980s many connectionists argued 
against the need to define information processing 
in terms that require explicit rules and 
representations [3, 4].  They pushed instead for a 

form of information processing that is more 
analog and more biologically plausible. 

 
Another tradition of research has arisen in 

reaction to classical cognitive science in recent 
years, and has been associated with a variety of 
labels.  These include behaviour-based robotics 
[5], new artificial intelligence, based-based 
artificial intelligence, and embodied cognitive 
science [6].  The embodied cognitive science 
movement is gaining popularity, and is 
challenging the traditional symbol-based 
conception of artificial intelligence and cognitive 
science along many of the same lines that were 
adopted by connectionist researchers in the early 
1980s.  Embodied cognitive science is a reaction 
against the traditional view that human beings as 
information processing systems “receive input 
from the environment (perception), process that 
information (thinking), and act upon the decision 
reached (behaviour).  This corresponds to the so-
called sense-think-act cycle” [6].  The sense-
think-act cycle, which is a fundamental 
characteristic of conventional cognitive science, 
is an assumption that the embodied approach 
considers to be fatally flawed.   

 
Embodied cognitive science argues that 

theories of intelligence should exhibit two basic 
characteristics.  First, they should be embodied, 
meaning that the theory should take the form of a 
working computer simulation or robot.  Second, 
they should be situated, meaning that the 
simulation or robot should have the capability of 
sensing its environment. 

 
Why are these two properties fundamental?  

The answer to this question emerges from 
considering the answer to a second: From where 
does the complexity of behaviour arise?  Simon 
[7] imagined an ant walking along a beach, and 
that its trajectory along the beach was traced.  
Accounting for the behaviour of the ant would be 
equivalent to explaining how the many twists 
and turns of this function arose.  One might be 
tempted to attribute the properties of this 
function to fairly complicated internal 
navigational processes.  However, Simon 
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1.1.1 The Homeostat. One important 
historical example of emergence comes from the 
study of feedback interactions between generic 
machines by Ashby [8].  For Ashby, a machine 
was simply a device which, when given a 
particular input, generates a corresponding 
output.  Of particular interest to Ashby was a 
system of four different machines coupled 
together with feedback, as is shown in Figure 1.  
Ashby [9] makes the following observation 
about a system of this complexity:  “When there 
are only two parts joined so that each affects the 
other, the properties of the feedback give 
important and useful information about the 
properties of the whole.  But when the parts rise 
to even as few as four, if every one affects the 
other three, then twenty circuits can be traced 
through them; and knowing the properties of all 
the twenty circuits does not give complete 
information about the system.” 

pointed out that this would likely lead to an 
incorrect theory.  “Viewed as a geometric figure, 
the ant’s path is irregular, complex, hard to 
describe.  But its complexity is really a 
complexity in the surface of the beach, not a 
complexity in the ant” (p. 51).  In other words, 
fairly simple dispositions of the ant – following 
the scent of a pheromone trail, turning in a 
particular direction when an obstacle is 
encountered – could lead to a very complicated 
trajectory, if the environment being navigated 
through was complicated enough. 

 
Embodied cognitive scientists create 

embodied, situated agents in order to take 
advantage of exactly this type of emergence.  
One of the aims of embodied cognitive science is 
to replace the sense-think-act cycle with 
mechanisms of sensory-motor coordination [6] 
that might be construed as forming a sense-act 
cycle.  The purpose of this change is to reduce, 
as much as possible, thinking -- the use of 
internal representations to mediate intelligence.  
What makes this a plausible move to consider is 
the possibility that if one situates an autonomous 
agent in the physical world in such a way that the 
agent can sense the world, then no internal 
representation of the world is necessary.  “The 
realization was that the so-called central systems 
of intelligence – or core AI as it has been 
referred to more recently – was perhaps an 
unnecessary illusion, and that all the power of 
intelligence arose from the coupling of 
perception and actuation systems” [5]. 

 
How, then, can the behaviour of such a 

system be studied?  Ashby [8] dealt with this 
question by constructing a device, called the 
homeostat, that allowed him to observe the 
behaviour of this complicated set of feedback 
relationships. 

 
The homeostat was a system of four identical 

component machines.  The input to each 
machine was an electrical current, and the output 
of each machine was also an electrical current.  
The purpose of each machine was to transform 
the input current into the output current.  This 
was accomplished by using the input current to 
change the position of a pivoted magnet mounted 
on the top of the component.  In essence, each 
machine output an electrical current that was 
approximately proportional to its needle’s 
deviation from its central position. All things 
being equal, a large current that was input to the 
component would cause a large deflection of the 
magnet (and needle), which in turn would result 
in a proportionately large current being output. 

1.1 Historical Examples Of 
Emergence 

Embodied cognitive science is an attractive 
approach, because it can call on a long history of 
success stories in which extremely interesting 
behaviours emerged from fairly simple devices. 

 
 
 

Figure 1. 
Feedback 
relationships 
between four 
different 
machines. 

  
The four units were coupled together to create 

a system of the type that was drawn in Figure 1.  
Specifically, the electrical current that was input 
to one unit was the sum of the electrical currents 
that was output by each of the other three units, 
after each of these three currents was passed 
through a potentiometer.  The purpose of the 
potentiometer was to determine what fraction of 
an input current would be passed on to deflect 
the magnet, and thus each potentiometer was 
analogous to a connection weight in a PDP  
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network.  The result of this interconnectedness 
was a dynamic system that was subject to a great 
deal of feedback.  “As soon as the system is 
switched on, the magnets are moved by the 
currents from the other units, but these 
movements change the currents, which modify 
the movements, and so on” [8]. 

 
In order to dictate the influence of one unit 

upon another in the homeostat, one could set the 
resistance value of each potentiometer by hand.  
However, Ashby [8] used a different approach to 
allow the homeostat to automatically manipulate 
its potentiometers.  Each unit was equipped with 
25-valued uniselector or stepping switch.  Each 
value that was entered in the uniselector was a 
potentiometer setting that was assigned 
randomly.  A unit’s uniselector was driven by 
the unit’s output via the deflected needle.  If the 
output current was below a pre-determined 
threshold level, the uniselector did not activate, 
and the potentiometer value was unchanged.  
However, if the output current exceeded the 
threshold, the uniselector activated, and 
advanced to change the potentiometer’s setting 
to the next stored random resistance.  With four 
units, and a 25-valued uniselector in each, there 
were 390,625 different combinations of 
potentiometer settings that could be explored by 
the device. 

 
In general, then, the homeostat was a device 

that monitored its own internal stability (i.e., the 
amount of current being generated by each of its 
four component devices).  If subjected to 
external forces, such as an experimenter moving 
one of its four needles by hand, then this internal 
stability was disrupted and the homeostat was 
moved into a higher energy, less stable state.  
When this happened, the homeostat would 
modify the internal connections between its 
component units by advancing one or more of its 
uniselectors to modify its potentiometer settings.  
The modified potentiometer settings enabled the 
homeostat to return to a low energy, stable state.  
The homeostat was “like a fireside cat or dog 
which only stirs when disturbed, and then 
methodically finds a comfortable position and 
goes to sleep again” [10]. 

 
The homeostat was tested by placing some of 

its components under the direct control of the 
experimenter, by manipulating these 
components, and by observing the changes in the 
system as a whole.  For example, in a simple 
situation only two of the four components might 

be tested [8] Figure 8/4/1.  In this kind of study, 
the feedback being studied was of the type M1 
↔ M2.  The relation M1 → M2 could be placed 
under the control of the experimenter by 
manipulating the potentiometer of M1 by hand 
instead of using its uniselector.  The reverse 
relationship M2 → M1 was placed under 
machine control by allowing the uniselector of 
M2 to control its potentiometer.  After starting up 
the homeostat and allowing it to stabilize, Ashby 
manipulated M1 to produce instability.  The 
result was one or more advances by the 
uniselector of M2, which resulted in stability 
being re-attained. 

 
Even with this fairly simple pattern of 

feedback amongst four component devices, 
many surprising emergent behaviours were 
observed.  For example, in one interesting study 
Ashby [8] demonstrated that the system was 
capable of a simple kind of learning.  In this 
experiment, it was decided that one machine 
(M3) was to be controlled by the experimenter as 
a method of “punishing” the homeostat for an 
incorrect response.  In particular, if the needle of 
M1 was forced by hand to move in one direction, 
and the homeostat did not respond by moving the 
needle of M2 to move in the opposite direction, 
then the experimenter would force the needle of   
M3 into an extreme position to introduce 
instability.  On the first trial of this study, when 
the needle of M1 was moved, the needle of M2 
moved in the same direction.  The homeostat 
was then punished, and uniselector-driven 
changes ensued.  On the next trial, the same 
behaviour was observed and punished; several 
more uniselector-driven changes ensued.  After 
these changes had occurred, movement of M1’s 
needle resulted in the needle of M2 moving in the 
desired direction – the homeostat had learned the 
correct response.  “In general, then, we may 
identify the behaviour of the animal in ‘training’ 
with that of the ultrastable system adapting to 
another system of fixed characteristics.”  Ashby 
went on to demonstrate that the homeostat was 
also capable of adapting to two different 
environments that were alternated. 

 
1.1.2 The Tortoise. Ashby’s homeostat could 

be interpreted as supporting the claim that the 
complexity of the behaviour of whole organisms 
largely emerges from a) a large number of 
internal components and from b) the interactions 
between these components.  In the late 1940s, 
some of the first autonomous robots were built to 
investigate a counter-claim [10-12].  Grey 
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Walter’s research program “held promise of 
demonstrating, or at least testing the validity of, 
the theory that multiplicity of units is not so 
much responsible for the elaboration of cerebral 
functions, as the richness of their 
interconnection” [10].  His goal was to use a 
very small number of components to create 
robots that generated much more life-like 
behaviour than that exhibited by Ashby’s 
homeostat. 

 
Grey Walter (1963) whimsically gave his 

autonomous robots the biological classification 
Machina speculatrix because of their propensity 
to explore the environment.  Because of their 
appearance – small tractor-like vehicles 
surrounded by a plastic shell -- his robots were 
more generally called tortoises.  A very small 
number of components (two miniature tubes, two 
relays, two condensers, two motors, and two 
batteries) were used to create two sense reflexes.  
One reflex altered the behaviour of the tortoise in 
response to light.  The other reflex altered the 
behaviour of the tortoise in response to touch. 

 
At a general level, a tortoise was an 

autonomous motorized tricycle.  One motor was 
used to rotate the two rear wheels forward.  The 
other motor was used to steer the front wheel.  
The behaviour of these two motors was under the 
control of two different sensing devices.  The 
first was a photoelectric cell that was mounted 
on the front of the steering column, and which 
always pointed in the direction that the front 
wheel pointed.  The other was an electrical 
contact that served as a touch sensor.  This 
contact was closed whenever the transparent 
shell that surrounded the rest of the robot 
encountered an obstacle. 

 
Of a tortoise’s two reflexes, the light-sensitive 

one was the more complex.  In low light, the 
machine was wired in such a way that its rear 
motor would propel the robot forward while the 
steering motor slowly turned the front wheel.  As 
a result, the machine could be described as 
exploring its environment.  The purpose of this 
exploration was to detect light -- when moderate 
light was detected by the photoelectric cell, the 
steering motor stopped.  As a result, the robot 
moved forward, approaching the source of the 
light.  However, if the light source were too 
bright, then the steering motor would be turned 
on again at twice the speed that was used during 
the robot’s exploration of the environment.  As a 
result, “the creature abruptly sheers away and 

seeks a more gentle climate.  If there is a single 
light source, the machine circles around it in a 
complex path of advance and withdrawal” [11]. 

 
The touch reflex that was built into a tortoise 

was wired up in such a way that when it was 
activated, any signal from the photoelectric cell 
was ignored.  When the tortoise’s shell 
encountered an obstacle, an oscillating signal 
was generated that rhythmically caused both 
motors to run at full power, turn off, and to run 
at full power again.  As a result, “all stimuli are 
ignored and its gait is transformed into a 
succession of butts, withdrawals and sidesteps 
until the interference is either pushed aside or 
circumvented.  The oscillations persist for abut a 
second after the obstacle has been left behind; 
during this short memory of frustration Elmer 
darts off and gives the danger area a wide berth” 
[11]. 

 
In spite of their simple design, Grey Walter 

was able to demonstrate that his robots were very 
capable of complex and interesting behaviours.  
He mounted small lights on them, and used long-
exposure photography to trace out their 
trajectories in a fashion that foreshadows 
Simon’s parable of the ant.  His records 
demonstrate that a robot is able to move around 
an obstacle, and then orbit a light source with 
complicated movements that do not take it too 
close, but also do not take it too far away.  If 
presented two light sources, complex choice 
behaviour is observed: the robot first orbits 
around one light source, and then wanders away 
to orbit around the second.  If it encountered a 
mirror, then the light source being used to record 
its behaviour became a stimulus for its light 
sensor, and resulted in what became known as 
the famous “mirror dance”.  The robot “lingers 
before a mirror, flickering, twittering and jigging 
like a clumsy Narcissus.  The behaviour of a 
creature thus engaged with its own reflection is 
quite specific, and on a purely empirical basis, if 
it were observed in an animal, might be accepted 
as evidence of some degree of self-awareness” 
[10]. 

1.2 The Synthetic Approach 

These two historical examples illustrate two 
different themes.  First, they both show the 
wisdom of Simon’s parable of the ant, in the 
sense that they demonstrate that complex 
behaviours can emerge from interactions 
involving fairly simple components.   
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Clearly, the synthetic approach is worth 

exploring, particularly if it offers the opportunity 
to produce simple theories of complex, and 
emergent, behaviours.  For this reason, 
Braitenberg has called for the development of a 
new approach in psychology that he has named 
synthetic psychology [13].  However, the 
synthetic approach as it appears in embodied 
cognitive science is associated with a view that 
many psychologists would not be comfortable in 
endorsing. 

Second, they are both prototypical examples 
of what has become known as the synthetic 
approach [13].  Most models in classical 
cognitive science and in experimental 
psychology are derived from the analysis of 
existing behavioural measurements.  In contrast, 
both the homeostat and the tortoise involved 
making some assumptions about primitive 
capacities, building working systems from these 
capacities, and then observing the resulting 
behaviour.  In the synthetic approach, model 
construction precedes behavioural analysis. 

 1.3 Reacting Against Representation 
Braitenberg [13] has argued that psychology 

should adopt the synthetic approach, because 
theories that are derived via analysis are 
inevitably more complicated than is necessary.  
This is because cognitive scientists and 
psychologists have a strong tendency to ignore 
the parable of the ant, and prefer to locate the 
source of complicated behaviour within the 
organism, and not within its environment.  
Pfeifer and Scheier [6] call this the frame-of-
reference problem.  “We have to distinguish 
between the perspective of an observer looking 
at an agent and the perspective of the agent itself.  
In particular, descriptions of behaviour from an 
observer’s perspective must not be taken as the 
internal mechanisms underlying the described 
behaviour”.   

Modern embodied cognitive science can be 
viewed as a natural evolution of the historical 
examples that were presented earlier.  
Researchers have used the synthetic approach to 
develop systems that generate fascinatingly 
complicated behaviours [5, 6, 13]. 

 
However, much of this research is 

dramatically anti-representational.  “In particular 
I have advocated situatedness, embodiment, and 
highly reactive architectures with no reasoning 
systems, no manipulable representations, no 
symbols, and totally decentralized computation” 
[5]. One of the foundational assumptions of 
behaviour-based robotics is that if a system can 
sense its environment, then it should be 
unnecessary for the system to build an internal 
model of the world. 

 
Here we see one of the strong appeals of 

adopting the synthetic approach.  By building a 
system and taking advantage of nonlinear 
interactions (such as feedback between 
components, and between a system and its 
environment), relatively simple systems can 
surprise us, and generate far more complicated 
behaviour than we might expect.  By itself, this 
demonstrates the reality of the frame-of-
reference problem.  However, the further appeal 
of the synthetic approach comes from the belief 
that if we have constructed the simple system, 
then we should be in a very good position to 
propose a simpler explanation of the complicated 
behaviour.  In particular, we should be in a better 
position than would be the case if we started 
with the behaviour, and attempted to analyze it in 
order to understand the workings an agent’s 
internal mechanisms.  “Only about 1 in 20 
[students] ‘gets it’ -- that is, the idea of thinking 
about psychological problems by inventing 
mechanisms for them and then trying to see what 
they can and cannot do” (Minksy, 1995, personal 
communication). 

 
This is strongly reminiscent of a failed 

tradition in experimental psychology, called 
behaviourism, that attempted to limit 
psychological theory to observables (namely, 
stimuli and responses), and which viewed as 
unscientific any theories that attempted to 
describe internal processes that mediated 
relationships between sensations and actions. “I 
believe we can write a psychology, define it as 
Pillsbury, and never go back upon our definition: 
never use the terms consciousness, mental states, 
mind, content, introspectively verifiable, 
imagery, and the like. I believe that we can do it 
in a few years without running into the absurd 
terminology of Beer, Bethe, Von Uexküll, Nuel, 
and that of the so-called objective schools 
generally. It can be done in terms of stimulus and 
response, in terms of habit formation, habit 
integrations and the like” [14]. 
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2. SYNTHETIC PSYCHOLOGY 

2.1 The Need For Representation 

The resemblance of embodied cognitive 
science to behaviourism is unfortunate, because 
it decreases the likelihood that the advantages of 
the synthetic approach will be explored in 
psychology.  The reason for this is that many 
higher-order psychological phenomena require 
an appeal to internal representations in order to 
be explained. 

 
That stimulus-response reflexes are not 

sufficient to account for many higher-order 
psychological phenomena is a theme that has 
dominated cognitivism’s replacement of 
behaviorism as the dominant theoretical trend in 
experimental psychology.  In the study of 
language, this theme was central to Chomsky’s 
[15] critical review of Skinner [16].  Many of the 
modern advances in linguistics were the direct 
result of Chomsky’s proposal that generative 
grammars provided the representational 
machinery that mediated regularities in language 
[17-19].  Similar arguments were made against 
purely associationist models of memory and 
thought [20].  For example, Bever, Fodor, and 
Garrett [21] formalized associationism as a finite 
state automaton, and demonstrated that such a 
system was unable to deal with the clausal 
structure that typifies much of human thought 
and language.  Paivio [22, 23] used the 
experimental methodologies of the verbal 
learners to demonstrate that a representational 

construct – the imageability of concepts – was an 
enormously powerful predictor of human 
memory.  The famous critique of “old 
connectionism” by Minsky and Papert [24] could 
be considered a proof about the limitations of 
visual systems that do not include mediating 
representations.  These examples, and many 
more, have lead to the status quo view that 
representations are fundamental to cognition and 
perception [1, 2, 25-27]. 

 
Some robotics researchers also share this 

sentiment, although it must be remembered that 
behavior-based robotics was a reaction against 
their representational work [5].  Moravec [28] 
suggests that the type of situatedness that 
characterizes behavior-based robotics (for 
example, the simple reflexes that guided Grey 
Walter’s tortoises) probably provides an accurate 
account of insect intelligence.  However, at some 
point systems built from such components will 
have at best limited abilities.  “It had to be 
admitted that behavior-based robots did not 
accomplish complex goals any more reliably 
than machines with more integrated controllers.  
Real insects illustrate the problem.  The vast 
majority fail to complete their life cycles, often 
doomed, like moths trapped by a streetlight, by 
severe cognitive limitations.  Only astronomical 
egg production ensures that enough offspring 
survive, by chance”.  Internal representations are 
one obvious medium for surpassing such 
limitations. 

 
The question that this leads to is this: can the 

synthetic approach be conducted in a way that 

 Analytic Synthetic 

 

 

Representational 

• Production system 
generated from analysis of 
verbal protocols 

• e.g. (Newell & Simon, 
1972) 

• Multilayer connectionist 
network for classifying patterns 
using abstract features 

• e.g. (Dawson, Boechler & 
Valsangkar-Smyth, 2000) 

 
 

Non-Representational 

• Mathematical model of 
associative learning based 
upon analysis of learning 
behavior of simple 
organisms 

• e.g. (Rescorla & Wagner, 
1972) 

• Behavior-based robotics system 
constructed from a core of 
visuomotor reflexes 

• e.g. (Brooks, 1989) 

Table 1. Classification of research traditions along two orthogonal dimensions: analytic vs. synthetic and 
representational vs. non-representational 
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provides the advantages that have been raised in 
previous chapters, but that also provides insight 
into representational processing? 

2.2 Connectionism, Synthesis, 
Representation 

Of course, the answer to the question that was 
just raised is a resounding yes.  There is nothing 
in the synthetic approach per se that prevents one 
from constructing systems that use 
representations.  Describing a model as being 
synthetic or analytic is using a dimension that it 
is completely orthogonal to the one used when 
describing a model as being representational or 
not.  This is illustrated in Table 1, which 
categorizes some examples of research programs 
in terms of these two different dimensions. 

 
Synthetic psychology should involve research 

that is both synthetic and representational.  In 
Table 1, one example of research that fits these 
two characteristics is connectionist modeling. 

 
With respect to synthesis, connectionist 

research typically proceeds as follows:  First, a 
researcher identifies a problem of interest, and 
then translates this problem into some form that 
can be presented to a connectionist network.  
Second, the researcher selects a general 
connectionist architecture, which involves 
choosing the kind of processing unit, the possible 
pattern of connectivity, and the learning rule.  
Third, a network is taught the problem.  This 
usually involves making some additional choices 
specific to the learning algorithm – choices about 
how many hidden units to use, how to present 
the patterns, how often to update the weights, 
and about the values of a number of parameters 
that determine how learning proceeds (e.g., the 
learning rate, the criterion for stopping learning).  
If all goes according to plan, at the end of the 
third step the research will have constructed a 
network that is capable of solving a particular 
problem. 

 
Many of the early successes in connectionism 

merely involved showing that a PDP network 
was capable of accomplishing some task that was 
traditionally explained by appealing to rule-
governed symbol manipulation.  However, 
modern analyses have demonstrated conclusively 
that a broad variety of PDP architectures have 
the same computational power as the 
architectures that have been incorporated into 

symbolic accounts of cognition [1].  What this 
means is that a connectionist network can learn 
to perform any task that can be accomplished by 
a classical model.  As a result, the mere fact that 
a network can learn a task is no longer an 
emergent phenomenon of any interest to 
researchers. 

 
Where, then, does emergence enter a 

synthetic psychology that uses PDP models?  
The answer to this question is that while it is 
neither interesting nor surprising to demonstrate 
that a network can learn a task of interest, it can 
be extremely interesting, surprising, and 
informative to determine what regularities the 
network exploits.  What kinds of regularities in 
the input patterns has the network discovered?  
How does it represent these regularities?  How 
are these regularities combined to govern the 
response of the network?  In many instances, the 
answers to these questions can reveal properties 
of problems, and schemes for representing these 
properties, that were completely unexpected.  In 
short, this means that before connectionist 
modelers can take advantage of the emergent 
properties of a PDP network that is being used as 
paradigm for synthetic psychology, the modelers 
must analyze the internal structure of the 
networks that they train. 

 
Unfortunately, connectionist researchers 

freely admit that it is extremely difficult to 
determine how their networks accomplish the 
tasks that they have been taught. “If the purpose 
of simulation modeling is to clarify existing 
theoretical constructs, connectionism looks like 
exactly the wrong way to go.  Connectionist 
models do not clarify theoretical ideas, they 
obscure them” [29]. 

 
Difficulties in understanding how a particular 

connectionist network accomplishes the task that 
it has been trained to perform has raised serious 
doubts about the ability of connectionists to 
provide fruitful theories about cognitive 
processing.  Because of the problems of network 
interpretation, McCloskey [30] suggested 
“connectionist networks should not be viewed as 
theories of human cognitive functions, or as 
simulations of theories, or even as 
demonstrations of specific theoretical points”.  
Fortunately, connectionist researchers are up to 
this kind of challenge.  Several different 
approaches to interpreting the algorithmic 
structure of PDP networks have been described 
in the literature.  My students and I have been 
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very successful in generating insights into 
cognitive functioning by interpreting networks 
that we have trained on a variety of cognitive 
tasks. 

3. CASE STUDIES 

3.1 Spatial Judgements  

Dawson, Boechler, and Valsangkar-Smyth 
[31] trained a particular type of backpropagation 
network, called a network of value units [32], on 
psychologically interesting spatial judgement 
task.  Input units were used to represent 13 
different cities in Alberta.  Output units were 
used to represent ratings of distance between 
pairs of cities.  The network was trained to make 
accurate spatial judgements for all possible 
combinations of city pairs that could be 
represented.  

 
The hidden units were analyzed by 

considering them to be analogous to place cells 
found in the hippocampus [33].  A location for 
each hidden unit on the map was found that 
maximized the correlation between connection 
weights feeding into the unit and distances on the 
map between cities and the hidden unit location.  
All of the hidden units could be positioned on 
the map in such a way that very high correlations 
between weights and distances were observed. 

 
It was observed that an individual hidden 

unit’s responses to different stimuli were not 
necessarily accurate.  For instance, when 
presented two cities that were relatively close 
together, a unit might generate internal activity 
very similar in value to that generated when 
presented two other cities that were much further 
apart.  How is it possible for such inaccurate 
responses to result in accurate outputs from the 
network?  

 
The answer to this question is that the hidden 

unit activations in the network are a form of 
representation called coarse coding.  In general, 
coarse coding means that an individual processor 
is sensitive to a broad range of features, or at 
least to a broad range of values of an individual 
feature (e.g., [34]).  As a result, individual 
processors are not particularly useful or accurate 
feature detectors.  However, if different 
processors have overlapping sensitivities, then 
their outputs can be pooled, which can result in a 

highly useful and accurate representation of a 
specific feature. 

 
Dawson et al. [31] called the representational 

scheme that they discovered coarse allocentric 
coding.  In the literature on the biological 
foundations of animal navigation, researchers 
have been very critical of the notion that the 
hippocampus represents a cognitive map, 
because single-cell recording studies have shown 
that it does not exhibit a topgraphically 
organized, map-like structure.  However, the 
major hypothesis about the hippocampus that 
was suggested by the spatial judgment network 
is that place cells also implement a coarse 
allocentric code.  As a result, the place cells need 
not be organized topographically, because they 
don’t represent the environment in the same way 
as a graphical map.  Instead, locations of 
landmarks in the environment could be 
represented as a pattern of activity distributed 
over a number of different place cells.  If this 
were the case, then in spite of their individual 
limitations, coarse coding of place cell activities 
could be used to represent a detailed cognitive 
map without necessarily being coordinated with 
other neural subsystems.  In other words Dawson 
et al’s [31] discovery of coarse allocentric coding 
in their network provides one plausible account 
of how to reconcile the spatial abilities of the 
hippocampus with its non-maplike organization. 

 
3.2 The Mushroom Problem.   

 
The mushroom problem is a benchmark 

training set for machine learning [35], and can 
also be obtained from the UCI Machine Learning 
Repository.  It consists of 8124 different 
patterns, each defined as a set of 21 different 
features.  The task is to use these features to 
decide whether a mushroom is edible or not. 
 

Dawson et al. [36] interpreted a network of 
value units trained a variation of the mushroom 
problem.  This variation involved extra output 
learning, in which the network not only had to 
use an output unit to represent whether a 
mushroom was edible or not, but also had to use 
other output units to represent the reason for this 
decision.  This network used 21 input units, 5 
hidden units, and 10 output units.  The first 
output unit indicated if the mushroom was 
edible.  The remaining nine output units each 
represented a reason for making a decision, 
where each reason corresponded to a particular 
terminal branch in a classical decision tree 
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created for the mushroom problem.  The purpose 
of this network was to determine whether the 
decision tree could be translated into an ANN 
using standard connectionist training techniques. 
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Connectionism And The Philosophy Of 
Psychology. Cambridge, MA: MIT 
Press, 1996. 

[5] R. A. Brooks, Cambrian Intelligence: 
The Early History Of The New AI. 
Cambridge, MA: MIT Press, 1999. 

 
After training, the responses of the 5 hidden 

units to each of the 8124 patterns were recorded, 
and k-means cluster analysis was conducted on 
these responses.  It was determined that the 
patterns of hidden units activities should be 
assigned to 12 different clusters.  Dawson et al. 
[36] translated the classical decision tree into a 
set of nine condition-action rules that defined a 
small production system.  They then 
demonstrated a unique mapping in which all of 
the patterns that belonged to a particular cluster 
map directly onto one of these productions.  In 
other words, they were able to show that when 
the 5 hidden units had a particular pattern of 
activity -- a pattern that could be assigned to one 
of the clusters -- this could be translated into a 
claim that the network was executing a specific 
production rule.  This demonstrates that standard 
training procedures can be used to translate a 
symbolic theory into a connectionist network, 
and blurs the distinction between these two types 
of theories. 

[6] R. Pfeifer and C. Scheier, 
Understanding Intelligence. Cambridge, 
MA: MIT Press, 1999. 

[7] H. A. Simon, The Sciences Of The 
Artificial, Third ed. Cambridge, MA: 
MIT Press, 1996. 

[8] W. R. Ashby, Design For A Brain, 
Second Edition. New York, NY: John 
Wiley & Sons, 1960. 

[9] W. R. Ashby, An Introduction To 
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1956. 
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Scientific American, vol. 182, pp. 42-
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[12] W. Grey Walter, "A machine that 
learns," Scientific American, vol. 184, 
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In Synthetic Psychology. Cambridge, 
MA: MIT Press, 1984. 

3.3 Implications 

[14] J. B. Watson, "Psychology as the 
behaviorist views it," Psychological 
Review, vol. 20, pp. 158-177, 1913. 

The preceding case studies have indicated that 
one can use connectionism to conduct synthetic 
psychology, and use the interpretations of 
networks to contribute to such issues as the 
debate about the nature of the cognitive map, or 
the difference between symbolic and PDP 
models.  We have also used this approach to 
contribute to other psychological domains, 
including solving logic problems [37], deductive 
and inductive reasoning [38], cognitive 
development [39], and the relation between 
symbolic and subsymbolic theories of mind [40].  
Synthetic psychology would appear to be a field 
that is both tractable and representational. 

[15] N. Chomsky, "A review of B.F. 
Skinner's Verbal Behavior," Language, 
vol. 35, pp. 26-58, 1959. 

[16] B. F. Skinner, Verbal Behavior. New 
York, NY: Appleton-Century-Crofts, 
1957. 

[17] N. Chomsky, Aspects Of The Theory Of 
Syntax. Cambridge, MA: MIT Press, 
1965. 

[18] N. Chomsky and M. Halle, The Sound 
Pattern Of English. Cambridge, MA: 
MIT Press, 1991. 

[19] N. Chomsky, The Minimalist Program. 
Cambridge, MA: MIT Press, 1995. 4. REFERENCES 

[20] J. R. Anderson and G. H. Bower, 
Human Associative Memory. Hillsdale, 
NJ: Lawrence Erlbaum Associates, 
1973. 

[1] M. R. W. Dawson, Understanding 
Cognitive Science. Oxford, UK: 
Blackwell, 1998. 

[2] Z. W. Pylyshyn, Computation And 
Cognition. Cambridge, MA.: MIT 
Press, 1984. 

[21] T. G. Bever, J. A. Fodor, and M. 
Garrett, "A formal limitation of 
associationism," in Verbal Behavior 
And General Behavior Theory, T. R. 
Dixon and D. L. Horton, Eds. 

[3] A. Clark, Microcognition. Cambridge, 
MA: MIT Press, 1989. 

 21 



 22 

Englewood Cliffs, NJ: Prentice-Hall, 
1968, pp. 582-585. 

[22] A. Paivio, "Mental imagery in 
associative learning and memory," 
Psychological review, vol. 76, pp. 241-
263, 1969. 

[23] A. Paivio, Imagery And Verbal 
Processes. New York: Holt, Rinehart & 
Winston, 1971. 

[24] M. Minsky and S. Papert, Perceptrons, 
3rd Edition. Cambridge, MA: MIT 
Press, 1988. 

[25] J. A. Fodor, The Language Of Thought.  
Cambridge, MA:  Harvard University 
Press, 1975. 

[26] R. Jackendoff, Languages Of The Mind. 
Cambridge, MA: MIT Press, 1992. 

[27] D. Marr, Vision. San Francisco, Ca.: 
W.H. Freeman, 1982. 

[28] H. Moravec, Robot. New York, NY: 
Oxford University Press, 1999. 

[29] M. Seidenberg, "Connectionist models 
and cognitive theory," Psychological 
science, vol. 4, pp. 228-235, 1993. 

[30] M. McCloskey, "Networks and theories:  
The place of connectionism in cognitive 
science," Psychological science, vol. 2, 
pp. 387-395, 1991. 

[31] M. R. W. Dawson, P. M. Boechler, and 
M. Valsangkar-Smyth, "Representing 
space in a PDP network: Coarse 
allocentric coding can mediate metric 
and nonmetric spatial judgements," 
Spatial Cognition and Computation, 
vol. 2, pp. 181-218, 2000. 

[32] M. R. W. Dawson and D. P. 
Schopflocher, "Modifying the 
generalized delta rule to train networks 
of nonmonotonic processors for pattern 
classification," Connection Science, vol. 
4, pp. 19-31, 1992. 

[33] J. O'Keefe and L. Nadel, The 
Hippocampus As A Cognitive Map. 
Oxford: Clarendon Press, 1978. 

[34] P. S. Churchland and T. J. Sejnowski,   
The computational brain.  Cambridge, 
MA:  MIT Press, 1992. 

[35] J. S. Schlimmer, "Concept acquisition 
through representational adjustment," in 
Department of Information and 
Computer Science. Irvine, CA: 
University of California Irvine, 1987. 

[36] M. R. W. Dawson, D. A. Medler, D. B. 
McCaughan, L. Willson, and M. 
Carbonaro, "Using extra output learning 
to insert a symbolic theory into a 

connectionist network.," Minds And 
Machines, vol. 10, pp. 171-201, 2000. 

[37] M. R. W. Dawson, D. A. Medler, and I. 
S. N. Berkeley, "PDP networks can 
provide models that are not mere 
implementations of classical theories," 
Philosophical Psychology, vol. 10, pp. 
25-40, 1997. 

[38] J. P. Leighton and M. R. W. Dawson, 
"A parallel distributed processing model 
of Wason's selection task," Cognitive 
Systems Research, vol. 2, pp. 207-231, 
2001. 

[39] C. L. Zimmerman, "A network 
interpretation approach to the balance 
scale task," Unpublished Ph.D. 
dissertation in Psychology. Edmonton: 
University of Alberta, 1999. 

[40] M. R. W. Dawson and C. D. Piercey, 
"On the subsymbolic nature of a PDP 
architecture that uses a nonmonotonic 
activation function," Minds and 
Machines, vol. 11, pp. 197-218, 2001. 


	Abstract
	1. EMBODIED COGNITIVE SCIENCE
	Historical Examples Of Emergence
	1.2 The Synthetic Approach
	1.3 Reacting Against Representation

	2. SYNTHETIC PSYCHOLOGY
	2.1 The Need For Representation
	2.2 Connectionism, Synthesis, Representation

	3. CASE STUDIES
	3.1 Spatial Judgements
	3.3 Implications

	4. REFERENCES

