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Abstract

An artificial neural network was trained to classify musical chords into four categories—major, dominant 
seventh, minor, or diminished seventh—independent of musical key. After training, the internal structure of 
the network was analyzed in order to determine the representations that the network was using to classify 
chords. It was found that the first layer of connection weights in the network converted the local represen-
tations of input notes into distributed representations that could be described in musical terms as circles 
of major thirds and on circles of major seconds. Hidden units then were able to use this representation to 
organize stimuli geometrically into a simple space that was easily partitioned by output units to classify 
the stimuli. This illustrates one potential contribution of artificial neural networks to cognitive informatics: 
the discovery of novel forms of representation in systems that can accomplish intelligent tasks.
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INTRODUCTION
Cognitive informatics is a field of research that 
is primarily concerned with the information 
processing of intelligent agents (Wang, 2003). 
One way to characterize cognitive informatics 
is in terms of an evolving notion of information 
(Wang, 2007). When it originated six decades 
ago, conventional accounts of information were 
concerned about using probability theory and 
statistics to measure the amount of information 
carried by an external signal. This in turn de-
veloped into the notion of modern informatics 
which studied information as “properties or 
attributes of the natural world that can be gener-

ally abstracted, quantitatively represented, and 
mentally processed” (Wang, 2007, p. iii). The 
current incarnation of cognitive informatics 
recognized that both information theory and 
modern informatics defined information in 
terms of factors that were external to brains. 
Cognitive informatics has replaced this with 
an emphasis on exploring information as an 
internal property.

This emphasis on the internal processing of 
information raises fundamental questions about 
how such information can be represented. One 
approach to answering such questions—and 
for proposing new representational accounts—
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would be to train a brain-like system to perform 
an intelligent task, and then to analyze its internal 
structure to determine the types of representa-
tions that the system had developed to perform 
this intelligent behavior. The logic behind this 
approach is that when artificial neural networks 
are trained to solve problems, there are few 
constraints placed upon the kinds of internal 
representations that they can develop. As a 
result, it is possible for a network to discover 
new forms of representation that were surprising 
to the researcher (Dawson & Boechler, 2007; 
Dawson & Zimmerman, 2003).

Cognitive informatics has been applied 
to a wide variety of domains, ranging from 
organization of work in groups of individuals 
(Wang, 2007) to determining the capacity of 
human memory (Wang, Liu & Wang, 2003) to 
modeling neural function (Wang, Wang, Patel 
& Patel, 2006). The research below provides 
an example of this approach in a new domain, 
musical cognition. There is a growing interest 
in the cognitive science of musical cogni-
tion, ranging from neural accounts of musical 
processing (Jourdain, 1997; Peretz & Zatorre, 
2003) through empirical accounts of the per-
ceptual regularities of music (Deutsch, 1999; 
Krumhansl, 1990) to computational accounts 
of the formal properties of music (Assayag, 
Feichtinger, & Rodrigues, 2002; Lerdahl & 
Jackendoff, 1983). Because music is character-
ized by both many formal and many informal 
properties, there has been an explosion of inter-
est in using artificial neural networks to study 
it (Griffith & Todd, 1999; Todd & Loy, 1991). 
The simulation below illustrates one intriguing 
possibility for such research: the discovery of 
previously unknown representations of formal 
musical structures. As such, it illustrates that ar-
tificial neural networks can be used as a medium 
to explore a “synthetic approach” to psychology 
and make important representational contribu-
tions to cognitive informatics and cognitive 
science (Dawson, 1998, 2004).

Chord Classificiation By Neural 
Networks
In a pioneering study, artificial neural networks 
(ANNs) were trained to classify musical 
stimuli as being major chords, minor chords, 
or diminished chords (Laden & Keefe, 1989). 
Laden and Keefe’s networks used 12 input units, 
where each unit represented a particular note 
or “piano key” in an octave range—a so-called 
pitch class representation (see Figure 1). They 
created a training set consisting of 36 differ-
ent chords: the major triad for each of the 12 
different major key signatures, as well as the 
minor triad and a diminished seventh triad for 
each of the 12 different minor key signatures. 
They examined a number of different networks 
by manipulating the number of hidden units 
(three, six, eight, or nine), and by manipulating 
the pattern of network connectivity.  

In general, Laden and Keefe (1989) found 
that the performance of their simple networks 
was disappointing. Their most successful simple 
network used three hidden units, and had direct 
connections between input and output units, but 
was still able to correctly classify only 72 percent 
of the presented chords. Other small networks 
had accuracy rates as low as 25 percent. Laden 
and Keefe improved network accuracy to a 
maximum level of 94 percent by using a more 
complex network that had 25 hidden units and 
which used output units to represent distances 
between musical notes (i.e., musical intervals) 
rather than chord types.

The current study is an extension of Laden 
and Keefe’s (1989) research. It examines a sim-
ple network that uses a pitch class representation 
and three hidden units. Laden and Keefe used a 
traditional sigmoid-shaped activation function 
(the logistic equation) in the processing units 
of their networks. We instead used a Gaussian 
activation function because previous research 
has demonstrated that networks that employ 
this activation function are adept at solving 
complex problems, and also lend themselves 
to detailed interpretation (Berkeley, Dawson, 
Medler, Schopflocher, & Hornsby, 1995; Daw-
son, 2004, 2005). Our working hypothesis was 
that this change in network architecture would 
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permit simple networks to classify chord types, 
and would also permit the internal structure of 
such networks to be interpreted in the search 
for new musical representations.

METHOD

Training Set
Networks were trained to identify four different 
types of musical chords: major, minor, dominant 
seventh, and diminished seventh. The training 
set was constructed as follows: First, a root note 
was selected (e.g., C). Second, the major chord 
based on this root note was created by activating 
the three input units that defined the component 
notes of this chord (e.g., C, E, and G). Third, 
the minor chord based on this root note was 
created by activating the three input units that 
defined its component notes (e.g., C, E♭, and 

G). Fourth, the dominant seventh chord based 
on this root was defined by activating the four 
input units that represented its component notes 
(e.g., C, E, G, and B♭). Fifth, the diminished 
seventh chord based on this root was defined by 
activating the four input units that represented 
its components (e.g., C, D#, F#, A). This process 
was repeated until four chords had been con-
structed for each of the 12 possible root notes 
in a dodecaphonic note system, resulting in a 
training set of 48 different chords.

Network Architecture
The network had four output units, three hidden 
units, and 12 input units. Each of the output units 
represented one of the four types of musical 
chords, and each of the input units represented 
a particular musical note in a pitch class repre-
sentation, as was illustrated in Figure 1. Three 

Figure 1. An example of an artificial neural network. Each input unit corresponds to a note on 
a 12-note keyboard. Signals from these input units are passed along for processing by three 
different hidden units through sets of weighted connections. For simplicity’s sake, only the con-
nections involving two of the hidden units are depicted. Activations from the hidden units are 
then passed through a second layer of connections to produce activity in a set of four output 
units. After training, an input stimulus will only turn on one of the output units, which will clas-
sify the stimulus as being a particular type of chord. This particular network was the one used 
in our simulation study.
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hidden units were used because pilot simulations 
had indicated that this was the smallest number 
of hidden units that would permit a network to 
correctly classify the training stimuli. All of the 
output units and all of the hidden units were 
value units that used the Gaussian activation 
function described by Dawson and Schopflocher 
(1992): G(neti) = exp (-π(neti - µi)

2). In this equa-
tion, G(neti) is the activation being calculated 
for unit i, neti is the net input for that unit, and 
µi is the Gaussian mean. When the net input to 
the equation is equal to the mean (i.e., equal 
to µi), the activity that is generated is equal to 
1.0. As net input moves away from the mean 
in either direction, unit activity quickly drops 
off to near-zero levels.

Network Training
The network was trained to classify chords by 
turning the appropriate output unit “on,” and the 
other three output units “off,” for each stimulus 
in the training set. Training was conducted 
using a variation of the generalized delta rule 
for value units (Dawson, 2004, 2005; Dawson 
& Schopflocher, 1992). The software used to 
perform this training is available as freeware 
from http://www.bcp.psych.ualberta.ca/~mike/
Software/Rumelhart/index.html.

Prior to training, all of the connection 
weights were randomly assigned values ranging 
from –0.10 to +0.10. The biases of processing 
units (i.e., the µs of the Gaussian activation 
functions) were all initially assigned a value of 
0.00. The network was trained with a learning 
rate of 0.005 and zero momentum. During a 
single epoch of training each of the 48 chords 
was presented to the network in random order. 
Connection weights were updated after each 
stimulus presentation.

Training proceeded until the network 
generated a “hit” for every output unit on 
every pattern. A hit was operationalized as an 
activation of 0.90 or higher when the desired 
activation was 1.00, and as an activation of 
0.10 or lower when the desired activation was 
0.00. The network converged on a solution to 
the problem—generating a correct response 

for each of the 48 chords—after 3,964 epochs 
of training.

RESULTS
One of the potential contributions of artificial 
neural networks to the study of music is the 
ability of ANNs to reveal novel or surprising 
regularities in musical stimuli (Bharucha, 
1999). Indeed, we believe that revealing novel 
representations of information is one of the 
primary contributions that ANNs can make to 
cognitive informatics (Dawson, 2004; Dawson 
& Boechler, 2007; Dawson, Medler, & Berkeley, 
1997; Dawson, Medler, McCaughan, Willson, 
& Carbonaro, 2000; Dawson & Piercey, 2001). 
In order for such a contribution to be realized, 
the internal structure of a trained network must 
be interpreted. The sections below present 
our interpretation of the current network, and 
show that it developed a simple, elegant—and 
surprising—representation of the relationships 
between musical notes that could in turn be used 
to classify the chord types. 

Interpretation of Weights from 
Input Units
The first step in interpreting the network was to 
examine the connection weights from the input 
units to the hidden units. Because each input 
unit was associated with a particular note, each 
of these connection weights could be viewed 
as a numerical “note name.” An inspection of 
the first layer of connection weights (see Table 
1) revealed that the network had converted the 
pitch class representation of the input units 
into a smaller set of equivalence classes that 
assigned the same connection weight or “name” 
to more than one note. For example, the notes 
A, C#, and F are all represented by different 
input units in the pitch class representation. 
However, the network assigned the same nu-
merical “note name” (i.e., a weight of –1.27) 
to each of the connections between these input 
units and Hidden Unit 1. As a result, each of 
these three notes was treated as being the same 
by this hidden unit.

An examination of Table 1 reveals that 
both Hidden Units 1 and 3 convert the pitch 
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class representation of 12 different notes into 
4 equivalence classes that each contains 3 
notes. Each of these equivalence classes can be 
described in formal musical terms as a “circle 
of major thirds.” That is, each of the notes in 
one of these classes differs from the other two 
by a musical interval of a major third, or four 
semitones. For instance, if one moves a major 
third up from A, then one reaches the note C#. 
If one then moves another major third up from 
C#, then one reaches the note F. If one finally 
moves yet another major third up from F, then 
one completes the circle and returns to the note 
A. The first four rows of Table 1 identify four 
different groups of three notes that can each be 
described as a circle of major thirds.

Hidden Unit 2 also employs connection 
weights from input units that group notes 
into equivalence classes, but not according to 
circles of major thirds. Instead, notes are clas-
sified as belonging to one of two groups that 
correspond to circles of major seconds. In this 
representation, each note in the group is exactly 
two semitones apart from the next on a scale. 
The connection weights that define these two 
equivalence classes are also presented in Table 

1; the final two rows of this table identify two 
groups of six notes that can each be described 
as a circle of major seconds.

Using Hidden Unit Responses to 
Classify Chords
How does the network use circles of thirds and 
seconds representations to classify chords? 
When we examined hidden unit responses, we 
found that each hidden unit responds to some 
stimuli, but not to others. For instance, Hidden 
Unit 1 generates a strong response (i.e., an 
activity level of 1.00) to all of the diminished 
seventh tetrachords, as well as to half of the 
minor triads (i.e., those associated with the 
minor keys of a, b, c#, e♭, f, and g). It gener-
ates a very weak response to any other type 
of stimulus. The selective responding of the 
hidden units is directly related to the circles of 
thirds and seconds.  

For example, any diminished seventh tet-
rachord is defined by four notes. With respect 
to the four circles of major thirds that were 
presented in Table 1, each of these notes comes 
from a different circle of major thirds. That is, 
one note from each of the first four rows in Table 
1 is required to define any diminished seventh 
chord. The connection weights that encode 
these classes for Hidden Unit 1 are such that 
when each class is represented in a stimulus, 
the resulting signal to the hidden unit causes it 
to generate a maximum response.

As well, every minor triad can be defined as 
having two notes belonging to the same circle of 
major thirds, and the third note belonging to one 
of the other circles of major thirds. Furthermore, 
the two circles of major thirds that are required 
to define the triads for the minor keys of a, b, c#, 
e♭, f, and g minor are associated with connection 
weights that also result in a signal being sent 
to Hidden Unit 1 that produces near maximum 
activity in it. However, the two circles of major 
thirds that are required to define the remaining 
minor triads (for the minor keys of b♭, c, d, e, 
f#, and a♭) are associated with weights that send 
a signal to Hidden Unit 1 that does not cause it 
to generate a strong response.

Note Name Hidden
Unit 1

Hidden
Unit 3

Hidden
Unit 2

A, C#, F -1.27 -0.28

A#, D, F# -0.61 -0.10

B, D#, G 1.28 0.28

C, E, G# 0.63 0.10

A, C#, F, B, D#, G -0.76

A#, D, F#, C, E, G# -0.68

Table 1. Correspondence between input 
notes and connection weight values for 
three hidden units in the chord classifica-
tion network. As noted in the text, the first 
four rows of the table assign notes to four 
different circles of major thirds, while the 
last two rows of the table assign notes to 
two different circles of major seconds.
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The fact that hidden units a) selectively 
respond to stimuli, but b) respond to more than 
one type of stimulus (e.g., diminished seventh 
tetrachords and minor triads) indicates that the 
hidden units are representing stimuli using a 
coarse code. In general, coarse coding means 
that an individual processor is sensitive to a 
variety of features or feature values, and is 
not tuned to detect a single feature type (e.g., 
Churchland & Sejnowski, 1992). As a result, 
individual processors are not particularly ac-
curate feature detectors. However, if different 
processors are sensitive to different feature 
varieties, then their outputs can be pooled, which 
often produces an accurate representation of a 
specific feature.

If hidden units are coarse coding musical 
chords, then the network’s response to each 
stimulus requires considering the activity that 
it produces in all three hidden units at the 
same time. To explore this possibility, one can 
graph a hidden unit space of the patterns in 
the training set. In such a graph, each pattern 
is represented as a point in space, where the 
coordinates of the point are provided by the 
activity produced by the pattern in each hidden 
unit. Figure 2A presents the three-dimensional 
hidden unit space of the music chord patterns 
for the current network.

Figure 2A indicates that the hidden unit 
space provides a very simple representation of 
the 48 patterns in the training set. In particular, 
many different chords are mapped into the 
identical location in this graph. For example, all 
12 diminished seventh tetrachords are located 
at the same position in Figure 2A, the location 
indicated by the symbol d.

How is such a hidden unit space used to 
classify patterns? An ANN can be described as 
a tool that “carves” such a space into distinct 
decision regions (Lippmann, 1989). All of the 
stimuli (i.e., all of the points in a space) that 
fall into one decision region are classified as 
belonging to the same type, and lead the network 
to generate one kind of classification response. 
In order to solve a problem, the network must 
learn how to partition the hidden unit space in 

Figure 2. (A) The hidden unit space for the 
network. Major chords are represented by M, 
minor chords are represented by m, dominant 
seventh chords are represented by D, and 
diminished seventh chords are represented by 
d. (B) An example of how an output value unit 
could partition the space of Figure 2A in such 
a way to separate the dominant seventh chords 
from all others. The other output units classify 
chords by adopting a similar partitioning of 
the hidden unit space.
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such a way that it makes the correct response 
for every stimulus.

Recall that the output units in the current 
network were all value units that used the Gauss-
ian activation function. Value units partition 
spaces by making two parallel cuts to separate 
some patterns from others (e.g., Dawson, 2004; 
see also Figure 2B). This type of partitioning 
could easily be used to separate the hidden unit 
space of Figure 2A into four different decision 
regions that could be used to correctly classify 
all 48 of the stimuli. For example, Figure 2B 
illustrates the orientation of two straight cuts 
that could be used by the output unit to separate 
dominant seventh chords from the other three 
chord types. The other three output units could 
make similar cuts to separate their chord type 
from all of the others.

Discussion
In their original study of chord classification, 
Laden and Keefe (1989) were unable to train 
a network to correctly classify 100 percent of 
their training set of 36 major, minor, and dimin-
ished seventh triads. One important result of 
our simulation was that our network was able 
to classify all of the chords in our training set, 
including 12 dominant seventh chords that were 
not studied by Laden and Keefe. This result was 
achieved even though our network was simpler 
than the best performing network that Laden 
and Keefe reported.

There are several likely explanations for 
this result. As was noted earlier, while our simu-
lation was conducted in the spirit of Laden and 
Keefe’s (1989) research, there were a number of 
differences between our simulation and theirs. 
First, we used value units in our networks, 
instead of processors that use sigmoid-shaped 
activation functions. Because value units carve 
up pattern spaces in a different fashion than do 
these latter units, they are likely more suited 
to the chord classification problem. Second, 
we defined diminished seventh and dominant 
seventh stimuli as tetrachords instead of triads. 
As was shown in the analysis of the behavior 
of both Hidden Units 1 and 3, the network was 
able to take advantage of the “balancing” of four 

incoming signals to respond to stimuli (e.g., to 
generate high responses to diminished seventh 
tetrachords). In short, moderate changes to the 
network architecture and to stimulus representa-
tion produced conditions that made the chord 
classification problem easier for our network 
than was the case in Laden and Keefe’s earlier 
simulations.

A more important result concerns the 
interpretation of network structure. One of 
connectionism’s potential contributions to the 
psychology of music is its ability to reveal 
novel regularities in stimulus structure, or to 
suggest new approaches to represent musical 
patterns. In order for this potential to be real-
ized, it must be possible to analyze the internal 
structure of a network after it has been trained. 
Our study demonstrated that the internal struc-
ture of the chord classification network could 
be interpreted. It revealed that the network 
classified chord structure first by representing 
individual notes in terms of circles of major 
thirds and major seconds, and then by combin-
ing these representations to position chords in 
a three-dimensional hidden unit space. To our 
knowledge, the only previous occurrence of 
this kind of representation was the distributed 
coding scheme that was used by Franklin (2004) 
to represent inputs to a network. While there 
is a growing body of evidence concerning spe-
cialized neural processing of tones and chords 
(e.g., Peretz & Zatorre, 2005), this evidence is 
not yet sufficiently precise to indicate whether 
distributed representations based on tone circles 
are used by the brain. We know of no example 
in the literature of a study that has shown an 
ANN reorganizing an input encoding scheme 
into this type of representation. This raises the 
question of whether circles of thirds and seconds 
are pertinent to human subjects’ representation 
of musical stimuli, an issue that we are currently 
exploring.
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