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Abstract

How might artificial neural networks (ANNs) inform cognitive science? Often cognitive scientists
use ANNs but do not examine their internal structures. In this paper, we use ANNs to explore how
cognition might represent musical properties. We train ANNs to classify musical chords, and we inter-
pret network structure to determine what representations ANNs discover and use. We find connection
weights between input units and hidden units can be described using Fourier phase spaces, a represen-
tation studied in musical set theory. We find the total signal coming through these weighted connection
weights is a measure of the similarity between two Fourier structures: the structure of the hidden unit’s
weights and the structure of the stimulus. This is surprising because neither of these Fourier structures
is computed by the hidden unit. We then show how output units use such similarity measures to classify
chords. However, we also find different types of units—units that use different activation functions—
use this similarity measure very differently. This result, combined with other findings, indicates that
while our networks are related to the Fourier analysis of musical sets, they do not perform Fourier
analyses of the kind usually described in musical set theory. Our results show Fourier representations
of music are not limited to musical set theory. Our results also suggest how cognitive psychologists
might explore Fourier representations in musical cognition. Critically, such theoretical and empirical
implications require researchers to understand how network structure converts stimuli into responses.

Keywords: Artificial neural networks; Music theory; Discrete Fourier transform; Chord classification

1. Introduction

Cognitive scientists use models to understand cognitive phenomena. However, a model
alone may not improve understanding (Lewandowsky, 1993). For example, computer
simulations of cognition often face Bonini’s paradox (Dutton & Starbuck, 1971). Bonini’s
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Fig. 1. An example artificial neural network (ANN), a multilayer perceptron, for classifying triads. Input units
represent which pitch-classes are present in a stimulus. Hidden units detect higher-order regularities in stimuli.
Output units process hidden unit activities and represent the ANN’s response to a stimulus. In the example, the C
major triad is presented to the network; the network responds by turning the “major” output unit on, and the other
three output units off.

paradox occurs when a model is just as difficult to understand as is the phenomenon being
modeled.

Artificial neural networks (ANNs) often confront Bonini’s paradox. An ANN (Fig. 1)
is a network of processors (i.e., input units, hidden units, and output units) connected to
one another by weighted connections. Input units represent stimuli, output units represent
responses to stimuli, and hidden units detect higher-order relationships between input units
to help the network generate correct responses. ANNs lead to Bonini’s paradox because
researchers usually do not understand how networks accomplish stimulus/response mappings
(Berkeley, Dawson, Medler, Schopflocher, & Hornsby, 1995; Mozer & Smolensky, 1989;
Robinson, 1992; Swingler, 2014; Zhang et al., 2018). “One thing that connectionist networks
have in common with brains is that if you open them up and peer inside, all you can see is a
big pile of goo” (Mozer & Smolensky, 1989, p. 3).

ANNs are hard to understand for many reasons. One reason is that when multilayer per-
ceptrons (e.g., Fig. 1) learn to solve a problem, the rule used to train the network does not
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force hidden units to efficiently represent detected features. For instance, different hidden
units often detect similar features. Furthermore, hidden units often do not represent detected
features locally; instead, activities of several hidden units collectively represent a meaningful
feature (Hinton, 1986; Van Gelder, 1991). Another reason is that when many layers of hidden
units exist in a network, as in deep learning networks, interpreting networks become much
more difficult (Fan, Xiong, Li, & Wang, 2021; Huang et al., 2020; Zhang, Tino, Leonardis, &
Tang, 2021). In general, ANNs are black box models that accomplish tasks in an unspecified
manner.

However, if ANNs are black box models, then ANNs cannot provide new theories to cog-
nitive science (McCloskey, 1991; Seidenberg, 1993). McCloskey (1991, p. 387) argues if
ANNs cannot be interpreted then “connectionist networks should not be viewed as theories
of human cognitive functions, or as simulations of theories, or even as demonstrations of spe-
cific theoretical points.” To provide theory, cognitive scientists must understand what is inside
an ANN’s black box.

The current article provides a case study in attempting to avoid Bonini’s paradox by inter-
preting the internal structure of trained ANNs. Novel representations can be discovered in
ANNs and can be used to inform cognitive science. Researchers can interpret an ANN’s inter-
nal structure and explain how the network uses its structure to transform stimuli into responses
(Augasta & Kathirvalavakumar, 2012; Baesens, Setiono, Mues, & Vanthienen, 2003; Berke-
ley et al., 1995; Bullinaria, 1997; Dawson, 2004, 2005, 2018; Dawson, Perez, & Sylvestre,
2020; Dawson & Piercey, 2001; Gallant, 1993; Hayashi, Setiono, & Yoshida, 2000; Hinton,
1986; Moorhead, Haig, & Clement, 1989; Omlin & Giles, 1996; Setiono, Baesens, & Mues,
2011; Setiono, Thong, & Yap, 1998; Taha & Ghosh, 1999).

1.1. Bonini’s paradox and musical ANNs

Our case study involves multilayer perceptrons trained to classify musical triads (Fig. 1).
Many researchers use ANNs to study musical cognition (Bharucha, 1995, 1999; Dawson,
2018; Griffith, 1995; Griffith & Todd, 1999; Krumhansl et al., 2000; Krumhansl & Toivi-
ainen, 2001; Mihelac & Povh, 2020; Russo, Vempala, & Sandstrom, 2013; Stevens & Latimer,
1992; Temperley, 2013; Todd & Loy, 1991). Such “musical networks,” like most ANNs, face
Bonini’s paradox.

However, Bonini’s paradox is often ignored in such research because researchers use musi-
cal ANNs to model implicit learning of musical properties and argue interpreting an ANN
is not required (Bharucha, 1999; Tillmann, Bharucha, & Bigand, 2000, 2003). In implicit
learning, participants learn statistical regularities without experiencing explicit formal rules;
such learning is unconscious and cannot be articulated by the learner (Bigand & Poulin-
Charronnat, 2006; Tillmann & Bigand, 2004). When in ANNs model implicit learning,
researchers assume the overall pattern of network connections represents statistical regular-
ities that cannot easily be formalized. “There are no explicit rules or concepts stored in the
model” (Tillmann, Bharucha, & Bigand, 2000, p. 907). In short, musical cognitivists assume
ANNs capture informal properties (Bharucha, 1999), which cannot be described formally.
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However, our case study demonstrates that musical networks can have a rich, formal
interpretation, even when ANNs adopt distributed representations. Below, we examine the
connection weights in musical ANNs and discover the weights are related to formal music
theory, in particular, to the Fourier structure of musical sets. We also show how our networks
use Fourier structure to accomplish a particular musical task: classifying musical triads. To
begin, let us briefly introduce the Fourier analysis of musical sets.

1.2. Musical sets and Fourier phase spaces

Formal music theory begins by assuming the basic elements of Western music are the
12 pitch-classes (C, C#, D, D#, E, F, F#, G, G#, A, A#, and B). A musical entity can be
represented as a set composed of these elements (Forte, 1973; Lewin, 2007; Schuijer, 2008).
For instance, set theorists often represent a musical entity as a set called an indicator vector
(Milne, Bulger, & Herff, 2017). An indicator vector assumes pitch-classes are represented in
a particular order: (C, C#, D, D#, E, F, F#, G, G#, A, A#, B). Each entry in an indicator vector
represents the number of times each pitch-class occurs in a musical entity. That is, the first
entry indicates the number of Cs in the entity, the second indicates the number of C#s, and so.
For example, the only pitch-classes present in the C major triad are C, E, and G. As a result,
the indicator vector for the C major triad is (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0). Indicator vectors
provide an important link between musical set theory and musical ANNs. For example, the
input units in the Fig. 1 network represent the indicator vectors of musical entities. In the
figure, the stimulus is the C major triad.

Formal music theory uses mathematical operations on musical sets to uncover surprising
similarities between musical entities. One such operation is the discrete Fourier transform
(DFT), which converts a complex signal into a set of simpler components. Each compo-
nent is a cosine of a particular frequency, magnitude, and phase. Performing the DFT on an
indicator vector delivers the magnitude and the phase of different cosines, each of a differ-
ent frequency (Amiot, 2016). To reconstruct the original indicator vector, one adds together
the different cosines delivered by the DFT. Fourier representations are useful for exploring
numerous musical relationships (Amiot, 2016; Quinn, 2006, 2007; Yust, 2016, 2017a, 2019).

Our previous research discovered another important link between musical set theory and
musical ANNs (Dawson et al., 2020). In musical ANNs trained on several different musical
tasks, we discovered weights from input units to a hidden unit (see Fig. 1) represent a cosine
function of the type delivered by the DFT of a musical set. While Dawson et al. (2020)
demonstrated a link between the DFT of musical sets and the structure of musical ANNs, they
did not explore how a musical ANN uses Fourier components to perform musical judgments.
The current article fills this gap by exploring how the Fourier-like representations in our
networks are used to classify musical triads.

Our case study proceeds as follows: We begin by training two different types of ANNs
to classify triads (Fig. 1). We discover all hidden units in both types of networks represent
Fourier phase spaces (e.g., Yust, 2016) in hidden unit connection weights, replicating and
extending the results of Dawson et al (2020). We then show, for both ANN types, the signal
sent to a hidden unit by a stimulus triad measures the similarity between the DFT of the hidden
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unit weights and the DFT of the presented triad. This is astonishing because the network does
not compute the DFT of either the weights or the stimulus. Finally, we show that even though
both types of hidden units compute the same measure of DFT similarity, the measure is used
quite differently by each network type to classify triads.

Why do hidden units represent Fourier phase space projections? Below, we show our
hidden units take advantage of periodic regularities, which relate one triad to another. For
instance, many hidden units produce identical responses to same-typed triads whose roots
are a tritone apart (e.g., C is separated from F# by a tritone or six semitones). This produces
a simpler representation of triads in hidden unit space, making it easier for output units to
classify triads. Such periodic regularities emerge directly from the phase space projections
represented by hidden unit weights because—being cosine functions—phase space projec-
tions are themselves periodic.

2. Method

2.1. Task

We train all networks to classify musical triads represented as indicator vectors. In the
triad classification task, we present a network of a triad—a stimulus comprised three different
pitch-classes. The network learns to classify the stimulus as belonging to one of four different
triad types: major, minor, diminished, or augmented. Each triad type is defined by the number
of semitones separating each of its component pitch-classes (e.g., Hanson, 1960). For exam-
ple, in a major triad like C major, C is the tonic, the pitch-class E is four semitones above
the tonic, and the pitch-class G is seven semitones above the tonic. In contrast, in a minor
triad like A minor, A is the tonic, the pitch-class C is three semitones above the tonic, and the
pitch-class E is seven semitones above the tonic.

2.2. Network architectures

We train two different kinds of networks to classify triads. The first are networks of value
units (Ballard, 1986). In such a network, all output and hidden units are value units. A value
unit generates a strong response to a very narrow range of incoming signals (called net input)
as shown in Fig. 2. If net input falls outside this range (too high or too low), then a value unit
generates a weak response. Value units use the bell-shaped Gaussian equation as the activation
function (Dawson & Schopflocher, 1992): activity = exp(-π (net - μ)2). In the equation, net
represents the total signal received by a processor (i.e., net input) and μ is the Gaussian’s
mean. When net input equals μ, the equation generates a maximum activity of 1. As net input
becomes greater than or less than μ, processor activity quickly becomes near zero. In Fig. 2a,
μ equals 0. To classify triads, a network of value units uses 12 input units to represent a
triad’s indicator vector and four output units to represent the triad type (see Fig. 1). However,
unlike Fig. 1, a network of value units only requires four hidden units to correctly classify the
stimuli. Our standard practice uses pilot studies to determine the minimum number of hidden
units required by a network to reliably learn to solve a problem (e.g., Dawson, 2018). Our
pilot simulations indicated only four hidden value units are necessary for classifying triads.
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Fig. 2. Two examples of different activation functions used by processors in multilayer perceptrons. (a) The bell-
shaped activation function of a value unit, defined by the Gaussian equation. (b) The sigmoid-shaped activation
function of an integration device, defined by the logistic equation.

The second architecture we trained were networks of integration devices (Ballard, 1986).
In such a network, all output and hidden units are integration devices. An integration device
uses a sigmoid-shaped activation function, “squashing” net input into a range between 0 and
1 (Fig. 2b). Our integration devices use the logistic equation as the activation function
(Rumelhart, Hinton, & Williams, 1986): activity = 1/(1 + exp(-net + θ )). In the equation,
net represents net input, and θ is the bias of the equation. Bias is analogous to a neuron’s
threshold. When net input equals θ , the equation generates activity of 0.5. In Fig. 2b, θ is
equal to 0. Pilot studies revealed the simplest network of integration devices capable of reli-
ably solving the triad classification problem requires eight hidden units as illustrated in Fig. 1.

We studied two different kinds of networks to explore three different questions. First, previ-
ous research shows networks of value units represent phase space projections (Dawson et al.,
2020). We wanted to replicate this result, and then explain how such projections are used.
Second, we wanted to determine if networks of integration devices also represent phase space
projections. Third, if both types of networks represent phase space projections, we wanted to
determine if both use such a representation in the same way to classify triads.

2.3. Training set

The training set consists of 48 different triads: the 12 major triads, the 12 minor triads, the
12 diminished triads, and the 12 augmented triads. We create these stimuli by taking each of
the 12 possible pitch-classes in Western music as a tonic for each of the four different triad
types.

We represent each stimulus as a binary vector of 12 values (i.e., as an indicator vector),
where each value indicates the presence or absence of a particular pitch-class (see the input
unit labels in Fig. 1). To illustrate our stimulus representation, the C major triad is the indicator
vector (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0), while the C minor triad is the indicator vector (1, 0, 0,
1, 0, 0, 0, 1, 0, 0, 0, 0). The entries in a stimulus indicate whether an input unit is turned on
(activity = 1) or off (activity = 0) when the triad is presented to a network.
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2.4. Training

We train a network to classify each triad in the training set. To say a network learns is to say
the network’s connection weights are modified to improve response accuracy. When a triad
is presented, the network learns to activate the output unit representing the triad’s type and
to deactivate the other three output units as illustrated in Fig. 1. In Fig. 1, the gray shading
indicates the presentation of pitch-classes C, E, and G to input units (i.e., the C major triad).

We use the generalized delta rule to train integration device networks on the triad classifi-
cation problem (Rumelhart et al., 1986). Before training, we initialize all connection weights
in a network to a random value between −0.1 and 0.1. The bias of each processor—the value
of θ in the logistic equation—is held at 0 throughout training. We use a 0.1 learning rate to
train networks of integration devices.

We use a modified version of the generalized delta rule to train networks of value units on
the triad classification problem (Dawson & Schopflocher, 1992). Before training, we initialize
all connection weights in a network to a random value between −0.1 and 0.1. The value of μ

in the Gaussian equation is held at 0 throughout training. We use a 0.005 learning rate to train
networks of value units.

Training proceeds for both network types as follows: We present a stimulus, causing a
network to respond. We use the learning rule to modify connection weights based on response
error. We update network weights after each stimulus presentation. We repeat this procedure
for the next stimulus. We present stimuli in an epoch-by-epoch fashion as is our standard
practice (Dawson, 2004, 2005). One epoch involves training a network once on each stimulus
in the training set. We randomize stimulus order before each epoch. We train a network until
it converges upon a solution. We define a converged network as one generating a “hit” for
each output unit for each stimulus in the training set. We define a “hit” as output activity 0.9
or higher when the desired response is 1, or as output activity 0.1 or lower when the desired
response is 0.

We train 20 different networks of value units and 20 different networks of integration
devices because connection weights are randomized prior to training, and each network is
a different “participant” in our study. Each network solves the triad classification problem.
On average, value unit networks converge after 6483.7 epochs (range between 2052 and
27,702 epochs). On average, integration device networks converge after 16,530.2 epochs
(range between 4888 and 39,509 epochs). It is typical for networks of value units to learn
faster than networks of integration devices (e.g., Dawson & Schopflocher, 1992).

3. Results

3.1. Defining phase space projections

Our first research question is whether the hidden units of our networks adopt the same
kind of representations previously reported by Dawson et al. (2020). Before answering this
question, let us quickly define precisely what phase space projections are.
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Fig. 3. An illustration of Yust’s (2016) circular averaging to determine the discrete Fourier transform (DFT) com-
ponents for musical sets. (a) The representation of the C major triad (C, E, G) in Ph3. The “X 2” in the Ph3 diagram
indicates that the same vector occurs twice, once for C and once for E. (b) The circular averaging (vector addition)
of the three vectors in A. The magnitude of the DFT component for Ph3 is the length of the vector, 2.24. (c) The
phase of the DFT component is represented by a vector spanning the diameter of the phase space and pointing in
the same direction as the circular average in (b). (d) Projections are taken from each pitch-class position around
the phase space to the phase representation from (c). (e) Phase space projections are the distances from the middle
of the phase representation in (d) to the projection in D and are plotted in the bar graph.

We use Yust’s method to determine an indicator vector’s DFT (Yust, 2016). Yust uses six
different representations that he calls phase spaces (Ph1, Ph2, etc.). Ph1 represents a cosine
with a frequency of 1, Ph2 represents a cosine with a frequency of 2, and so on. Yust rep-
resents each phase space as a clock face; pitch-classes are arranged around the clock face
according to the phase space’s frequency (see Fig. 3). Each phase space represents different
harmonic qualities (Hanson, 1960). Each phase space relates to a category proposed by Han-
son (Quinn, 2006, 2007). For example, musical entities consisting mostly of perfect fifths are
best described by Ph5.

Yust (2016) computes an indicator vector’s DFT as follows: Yust represents each pitch-
class present in an indicator vector by drawing a vector from a phase space’s clock center to
the pitch-class’s position on the clock face (Fig. 3). Fig. 3a represents the C major triad as
three vectors (dashed arrows) in Ph3, each vector pointing to a triad’s component (C, E, or G)
arranged around the phase space’s clock face. Fig. 3b represents the sum of the three vectors,
which Yust calls the circular average. A circular average for a phase space determines all
required properties of a component (i.e., a cosine) used to reconstruct an indicator vector.
The phase space (Ph1, Ph2, etc.) provides the frequency of the component. The length of
a circular average’s vector represents the magnitude of the component. The direction of a
circular average’s vector represents the phase of the component. Each circular average can be
represented as the (x, y) coordinate of its vector in its phase space. Later, we use the set of six
pairs of (x, y) coordinates to represent a complete DFT and compare these coordinate sets to
measure the similarity between two DFTs.

Yust (2016) uses the circular average to determine the specific cosine components to be
weighted and summed to recreate an indicator vector. Yust begins by representing phase as
a vector drawn diagonally across the phase space’s clock face (Fig. 3c). The direction of the
phase vector is the same as the direction of the circular average (e.g., compare Fig. 3b to c).
The indicated “clock time” provides a numerical representation of phase. Yust then projects
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Table 1
The mean values of the fit between hidden unit weights (i.e., the weights from the input units to a hidden unit) and
phase space projections for six phase spaces, with standard deviations provided in parentheses

Architecture Best Fit Second Best Fit Third Best Fit Fourth Best Fit Fifth Best Fit Worst Fit

Value unit 0.86 0.38 0.20 0.02 0.01 0.01
(0.12) (0.38) (0.20) (0.02) (0.01) (0.01)

Integration device 0.83 0.35 0.25 0.16 0.11 0.07
(0.13) (0.17) (0.13) (0.11) (0.08) (0.07)

each pitch-class from its position on the clock face to the phase vector (Fig. 3d). Finally, Yust
measures the distance from the clock’s center, along the phase vector, to each projection. A
positive distance is from the center in the direction of the arrow on the phase vector; otherwise,
the distance is negative. The 12 distances define the phase space projections for a phase space;
the phase space projections for the C major triad in Ph3 are graphed in Fig. 3e. The phase
space projections represent components of a cosine that has the frequency associated with
the phase space and has been shifted by the phase indicated by the direction of the circular
average. If one multiplies each set of phase space projections by magnitude (the length of the
circular average) and adds the weighted phase space projections together, then the original
indicator vector is reproduced.

Dawson et al (2020) found graphs of hidden unit weights were strikingly similar to graphs
of phase space projections like Fig. 3e and reported high correlations between hidden unit
weights and a single phase space projection for all hidden units in their musical networks of
value units. We now consider, for our triad classifying ANNs, whether we replicate this result
in our value unit networks, and whether we can extend this result to networks of integration
devices.

3.2. Hidden unit weights represent phase space projections

Do our hidden units represent phase space projections to classify triads? To answer this
question, we fit phase space projections from each of Yust’s six phase spaces to each hidden
unit’s connection weights, a method used in our previous research (Dawson et al., 2020). For
each phase space, we find the best fitting phase space projections from each of the six phases
spaces to one hidden unit’s connections, where we measure fit as the correlation between
weights and phase space projections. We then repeat this process for the next hidden unit.

Table 1 summarizes our results for all hidden units from all networks. It provides the aver-
age best fit, second best fit, and so on for the hidden units. We compute the average fit by
taking the mean correlation over the 80 hidden value units or the mean correlation over the
160 hidden integration devices. We find a very high average fit between each hidden unit’s
connection weights (i.e., the weights from the input units to the hidden unit) and phase space
projections from one phase space. For our 80 hidden value units, correlations for the best-
fitting phase space range from a maximum of 1.00 to a minimum of 0.57. The average cor-
relation for the phase space projections for the next best-fitting phase space is much lower,
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Table 2
The number of hidden units that are best fit by each of the 6 phase spaces delivered by the discrete Fourier
transform (DFT), taken over all 20 networks of each type of architecture

Architecture Ph1 Ph2 Ph3 Ph4 Ph5 Ph6

Value unit 1 5 9 21 26 18
Integration device 3 10 26 58 35 28

ranging from a maximum of 0.70 to a minimum of 0.01. These results replicate our previous
results for value unit networks trained on this task (Dawson et al., 2020).

For our 160 hidden integration devices, correlations for the best-fitting phase space range
from a maximum of 1.00 to a minimum of 0.49. The average correlation for the phase space
projections for the next best-fitting phase space is much lower, ranging from a maximum of
0.64 to a minimum of 0.01. The results for integration device networks are similar to our
results for value unit networks. Hidden unit connection weights in our integration device
networks also represent phase space projections.

Note. Fit is the correlation between phase space projections and connection weights. Fits
are averaged across 80 hidden units from the 20 different value unit networks and across
160 hidden units from the 20 different integration device networks. The “best fit” is the cor-
relation between the weights and the phase space that produces the highest correlation; the
“second best fit” is the correlation between the weights and the phase space that produces the
second highest correlation, and so on.

Table 1 indicates that hidden unit weights are the best fit by a phase space projection from
one phase space. Table 2 provides the count of how many hidden units are the best fit by
Ph1, by Ph2, and so on. Table 2 provides our first suggestion different architectures use dif-
ferent methods to classify triads. For instance, while Ph5 is the most preferred space for value
unit networks, Ph4 is most preferred by integration device networks. Similarly, phase space
preferences for value unit networks show the highest preferences for Ph4 through Ph6, while
integration device network preferences are more broadly distributed.

As we noted earlier, one hurdle to interpreting ANNs arises when different hidden units
respond to similar features. Our networks demonstrate such redundancy. For each network,
we count the number of hidden units that share a best-fitting phase space with at least one
other hidden unit in the same network. Thirteen of our 20 value unit networks had two (out
of four) hidden units best fit by the same phase space. All 20 integration device networks
included at least six hidden units best fit by the same phase space.

3.3. Net inputs to hidden units measure the similarity between DFTs

Our results from the preceding section indicate that we can describe all hidden unit weights
as phase space projections. We now consider how networks use phase space projections to
classify triads. We begin by showing when a hidden unit computes net input, net input mea-
sures the similarity between two DFT structures: one that results if we perform a DFT on the
hidden unit’s weights, and the other that results if we perform a DFT on the indicator vector.
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The activation functions (see Fig. 2) convert the total incoming signal, net input, into inter-
nal activity. For a hidden unit, net input is the sum of the signals being sent by the input
units, after each signal is scaled by a connection weight. In other words, net input is the inner
product of a vector of input unit activities and a vector of hidden unit weights.

Generally, inner products measure the similarity between two vectors. For instance, the
Pearson product-moment correlation is an inner product between two vectors after each vec-
tor is normalized to unit length. Does a hidden unit’s net input also measure the similarity
between the unit’s connection weights and a stimulus? If so, how might we describe the mea-
sured similarity?

Because hidden unit connection weights represent phase space projections, we hypothesize
net inputs measure the similarity between two DFT structures. To be more precise, we can
perform a DFT of a hidden unit’s weights, as well as of the indicator vector that serves as a
stimulus. We hypothesize net input measures the similarity between a unit’s and a stimulus’s
DFT. Such a result would be startling because a hidden unit’s basic operation (computing the
inner product between a set of weights and a set of input unit activities) does not compute
either DFT.

To test our hypothesis, we compute the DFT for the weights of each hidden unit. We also
compute the DFT for the indicator vector of each triad. Each DFT produces six different
circular averages—vectors like the one depicted in Fig. 3b—one for each phase space. As
discussed earlier, we describe each circular average by the (x, y) coordinate of the vector’s
endpoint in a phase space, and each circular average provides all the required information
about a cosine used when reconstructing an indicator vector. Thus, the set of circular averages
generated by Yust’s method provides a complete DFT. Let the (x, y) coordinates of Phase
1 circular average be named (Ph1x, Ph1y), the coordinates of Phase 2 circular average be
named (Ph2x, Ph2y), and so on. We represent the entire DFT in one vector that contains all
six pairs of coordinates (Ph1x, Ph1y, Ph2x, Ph2y, Ph3x, Ph3y, Ph4x, Ph4y, Ph5x, Ph5y, Ph6x,
Ph6y). We measure the similarity between two different DFTs by computing the inner product
between two such vectors. The higher the inner product, the greater the similarity between the
two DFTs. We compute DFT similarity between each set of hidden unit weights and each triad
(i.e., we compute 48 different inner products for each hidden unit, one for each stimulus).

We can now examine the relationship between net input and our inner product measure
of DFT similarity. We correlate the 48 net inputs and the 48 DFT similarity measures for
each hidden unit. We find a near-perfect relationship between net input and DFT similarity
for every hidden unit in every network. For the 80 hidden value units, the average corre-
lation between net input and our measure of DFT similarity is 0.99 (SD = 0.016). For the
160 hidden integration devices, the average correlation between net input and our measure of
DFT similarity is 0.98 (SD = 0.018).

In short, we can describe the net input calculated by a hidden unit as measuring the simi-
larity between the DFT of a set of hidden unit connection weights and the DFT of a stimulus
(indicator vector). This result is surprising because when net input is calculated, neither DFT
is computed: The hidden unit merely takes the inner product between a set of connections
(phase space projections) and a set of input unit activities (the indicator vector). The hidden
unit behaves as if the similarity of two DFTs is computed; it measures DFT similarity without
performing a DFT. How can hidden units calculate DFT similarity?

 15516709, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13233 by U

niversity O
f A

lberta, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 31 A. Perez et al. / Cognitive Science 47 (2023)

Fig. 4. (a) Connection weights for one hidden value unit from a network trained to classify triads. (b) Responses
of the unit from (a) to each of the 48 stimulus triads. (c) Connection weights for one hidden integration device
trained on the same problem. Note the similar pattern of weights in (a) and (c). (d) Responses of the unit from (c)
to each of the 48 stimulus triads.

A hidden unit’s net input is the inner product between a vector of connection weights and
an indicator vector. The connection weights represent phase space projections. If we were
to perform a DFT on an indicator vector, we could express the indicator vector as a sum of
weighted phase space projections (Yust, 2016). We could compute the inner product between
the connection weights and each of these DFT components. If we sum each of these inner
products, we will produce the inner product of the weights with the original indicator vector
because the indicator vector is a linear combination of the DFT components.

Why is it important to describe a basic network operation (computing net input) in terms of
measuring the similarity between DFT components? If we do not express network operations
in terms related to a domain of interest (in our case, triad classification), then we are not
interpreting network structure in a meaningful way. When we fail to relate network properties
to a domain of interest, we only have a mathematical account of network behavior, such
as “a particular output unit turns on because of the hidden unit activities produced by the
stimuli.” The mathematical account ignores the domain of interest, and therefore cannot help
researchers develop cognitive theory.

3.4. Different responses to DFT similarity

Net input measures unit/stimulus DFT similarity for both value units and integration
devices. However, the differences between the Gaussian and logistic activation functions (see
Fig. 2) cause value units and integration devices to respond to DFT similarity in different
manners.

To illustrate, consider two example hidden units, one from a value unit network and the
other from an integration device network. There is a high correlation (r = .99) between the
connection weights of the two example units shown in Fig. 4. Each hidden unit in Fig. 4
represents a similar phase space projection.

However, the two hidden units generate very different activations to identical stimuli,
despite having similar connection weights. Fig. 4’s radar charts plot the responses of each
hidden unit to each triad. A radar chart’s center represents a minimum response of 0, while
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A. Perez et al. / Cognitive Science 47 (2023) 13 of 31

a radar chart’s outer ring represents a maximum response of 1. Each radar chart arranges the
triads according to the triad root; each radar chart quadrant illustrates responses to a different
triad type. Fig. 4 shows that two different hidden units, with very similar patterns of connec-
tion weights, respond differently to the same stimuli because the units use different activation
functions.

The value unit generates very weak responses to diminished and major triads and moderate
responses to augmented triads. It produces strong responses to four minor triads, moderate
responses to another four, and no response to the remaining four.

In contrast, the integration device produces strong responses to eight diminished triads and
eight major triads, but the unit generates no response to the other four triads of either type.
It also generates moderately strong responses to all augmented triads and strong responses
to four minor triads. The integration device generates no response to the other eight minor
triads.

The different patterns of responses in Fig. 4 make sense after considering net input, as a
measure of the similarity between two DFT structures, in the context of the two Fig. 2 acti-
vation functions. Highly similar DFT structures produce a strong, positive net input. Highly
dissimilar DFT structures produce a strong, negative net input. Completely unrelated DFT
structures produce a near-zero net input. However, different activation functions will produce
different responses to identical net inputs (i.e., to identical DFT similarities).

First, consider an integration device. The logistic function monotonically increases, so an
increase in net input must produce an increase in an integration device’s activity (Fig. 2b). As
the similarity increases between the DFT structure of the hidden unit weights and the DFT
structure of the stimulus, the activity of the integration device will also increase. Metaphor-
ically, an integration device’s activity represents the processor’s “sympathetic vibration” to
the similarity between DFT structures of the stimulus and the weights.

Now consider a value unit using the Gaussian activation function (Fig. 2a). A value unit
produces weak activity when the DFT structure of the hidden unit weights is strongly unre-
lated to the DFT structure of the stimulus (negative net input). However, a value unit also
produces weak activity when the DFT structure of the hidden unit weights is strongly related
to the DFT structure of the stimulus (positive net input). A value unit only produces strong
activity when the DFT structure of the hidden unit weights is unrelated to the DFT struc-
ture of the stimulus (near-zero net input). Metaphorically, a value unit’s activity represents
“unsympathetic vibration” to the similarity between DFT structures of the stimulus and the
weights.

The strikingly different responses of different unit types to the same stimuli, even when
both units represent similar phase space projections (Fig. 4), provide further evidence that
our musical networks use Fourier representations atypically. For instance, if hidden units
represent phase space projections, one might hypothesize that output unit weights represent
phase space magnitudes, and output units classify triads by combining magnitude and phase
information. However, such an account cannot apply to both network types because responses
of hidden units to the same kind of information (DFT similarity) differ by network type. The
same explanation of network operations cannot apply to both network types.

 15516709, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13233 by U

niversity O
f A

lberta, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 of 31 A. Perez et al. / Cognitive Science 47 (2023)

The two response patterns illustrated in Fig. 4 also reveal another typical characteristic
of our hidden units: broad tuning. First, a hidden unit in our networks typically generates
different responses to triads belonging to the same type. Second, a hidden unit in our net-
works typically generates the same responses to some triads belonging to different types.
Both properties are evident in the Fig. 4 radar charts. However, we can also discover musical
systematicity in such broad tuning as we now describe.

3.5. Classifying hidden value units

Dawson (2018) notes that particular types of hidden unit value units often appear in net-
works trained on musical tasks. Different types of hidden units produce particular correlations
between the unit’s weights and the same weights rotated by a musical interval. Let a set of
weights between a hidden unit and the input units in one of our networks (Fig. 1) be the vec-
tor w = (w0, w1, w2, … w11), where w0 is the weight from the input unit representing the
pitch-class C, is the weight from the input unit representing the pitch-class C#, and so on.
We rotate w by shifting each weight to the right by the same amount, moving the rightmost
vector entries to the start of the vector. The amount of the rotation is measured in semitones.
For example, to rotate w by one semitone, we shift each weight to the right by one place in
the vector, producing (w11, w0, w1, …, w9, w10). Similarly, to rotate w by two semitones, we
shift each weight to the right by two places in the vector, producing (w10, w11, w0, …, w8, w9),
where the amount is measured in semitones. Each vector we create can be described as a row
in the circulant matrix created from w (Amiot, 2016).

We can identify different types of hidden units by examining the correlation between the
unit’s weights and the same weights rotated a particular amount. For instance, in a tritone
equivalence unit connection weights from input units representing pitch-classes a tritone (six
semitones) apart are assigned nearly identical weights. Therefore, if a tritone equivalence
unit’s weights are rotated by six semitones, a nearly perfect correlation emerges between the
original weights and the rotated weights.

We use correlations between a vector of weights and its rotations to identify types of hidden
units. First, we take each weight vector and create 12 different rotations of it (i.e., a rotation
of 0 semitones, 1, semitone, 2 semitones, etc., up to 11 semitones). We then compute the
correlation between the original vector and each rotated vector. Finally, we represent the
weights as a vector of the resulting correlations (similar to the rows in Table 3). The vector of
correlations represents the result of autocorrelating the weight vector with each of its possible
rotations.

Second, we analyze the vectors of correlations to identify different types of hidden units.
We perform k-means cluster analysis on the vectors (i.e., the 80 different vectors of corre-
lations, each representing a hidden value unit). We expect each cluster to reveal a different
hidden unit type.

We determine the optimum number of clusters to extract using the elbow method
(Thorndike, 1953). We perform a k-means cluster analysis for values of k from 1 to 10, we
sum the squared distances between each hidden unit and the centroid of its cluster, and we
plot the sum as a function of the number of clusters. We then look for the number of clusters
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Fig. 5. Weights and stimulus responses for prototypical hidden value units belonging to each Table 3 cluster. (a)
Weights for a Cluster 1 unit, whose responses are plotted in (b). (c) Weights for a Cluster 2 unit, whose responses
are plotted in (d). (e) Weights for a Cluster 3 unit, whose responses are plotted in (f). (g) Weights for a Cluster 4
unit, whose responses are plotted in (h).

at which the plot exhibits an inflection or elbow. The elbow method indicates that our hidden
value units are best described by four clusters. Table 3 provides each cluster’s summary prop-
erties: the average correlation between weights and rotated weights for each possible rotation,
where the average is taken over all units belonging to the same cluster.

Note. Each number is the average correlation between weights and rotated weights, where
the amount of rotation is indicated in the table. Averages are taken across the N members of
each cluster. The reason for naming each type of hidden unit is provided in the text.

When we examine graphs of the connection weights of hidden units assigned to the same
cluster, we note consistent patterns. To illustrate the patterns, we choose a prototypical mem-
ber of each cluster by finding the hidden unit whose weight correlations most closely match
the correlations in Table 2. We present the weights and responses of the four prototypical
units in Fig. 5. We use our examination of Fig. 5 to name each unit type in Table 3.

Cluster 1 hidden units represent what Dawson (2018) calls a tritone equivalence unit. In
such a unit, connection weights from input units representing pitch-classes a tritone (six semi-
tones) apart are assigned near identical weights (Fig. 5a). Note in the figure the connections
weights from input units for C and F# are nearly identical, as are the weights from C# and G,
and so on.
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Cluster 2 hidden units represent another type of unit, a special case of a tritone equivalence
unit. Cluster 2 hidden units have weights organized according to an interval cycle of a minor
third: input units representing pitch-classes separated by a minor third (three semitones),
which therefore belong to the same single interval cycle (Susanni & Antokoletz, 2012), are
assigned nearly identical weights. For instance, in Fig. 5c, pitch-classes D, F, G#, and B, each
belonging to one of the three cycles of minor thirds, are assigned similar negative weights.
This type of unit is a special case of a tritone equivalence unit because pitch-classes a tritone
apart also belong to the same cycle of minor thirds, and therefore have nearly identical
weights.

Cluster 3 hidden units represent what Dawson (2018) calls a tritone balance unit. In such a
unit, connection weights from input units representing pitch-classes a tritone (six semitones)
apart are assigned weights of nearly identical magnitudes but of opposite signs (Fig. 5e). Note
the bars for input units for C and F# are nearly identical but point in opposite directions, as
do the bars for C# and G, and so on.

Cluster 4 hidden units represent a fourth type of unit, a special case of a tritone balance unit.
Cluster 4 hidden units have weights organized according to an interval cycle of a major third.
That is, input units representing pitch-classes separated by a major third (four semitones),
which therefore belong to the same interval cycle (Susanni & Antokoletz, 2012), are assigned
nearly identical weights. For instance, in Fig. 5g, pitch-classes C, E, and G#, which each
belong to one of the four cycles of minor thirds, are assigned similar positive weights. Such a
unit is a special case of a tritone balance unit because pitch-classes a tritone apart in Fig. 5g
are equal in magnitude but opposite in sign.

Fig. 5 also provides radar plots of each type of hidden value unit’s responses to each stim-
ulus triad. Again, these radar plots reveal the broad tuning described in our earlier discussion
of Fig. 4. However, there is also a surprising degree of musical systematicity within this broad
tuning. For each Fig. 5 unit, and for each triad type, the unit generates identical responses to
triads with roots separated by a tritone. A closer inspection of the Fig. 5 radar charts reveals
each quadrant of each radar chart can be described as one pattern of responses that repeats
twice.

The musical regularity within each radar plot is a direct consequence of the regular struc-
ture of connection weights (i.e., tritone equivalence or tritone balance) and the Gaussian acti-
vation function. For any two triads of the same type with roots a tritone apart, the other
components of the triads will also be a tritone apart. For example, when considering C major
triad (C, E, G) and the F# major triad (F#, A#, C#), C and F# are a tritone apart, as are E and
A# and G and C#. In a tritone equivalence unit, connection weights from units representing
pitch-classes a tritone apart are equal. Therefore, the net input from the C major triad and the
net input from the F# major triad are identical. For a tritone balance unit, the two triads have
the same magnitude weights, but weights have opposite signs, causing their net input to be
the same magnitude by opposite signs. However, the Gaussian activation function produces
identical values to two such net inputs (see Fig. 2a).

Table 3 and Fig. 5 indicate hidden units in our value unit networks belong to one of two
different types, tritone equivalence units (Fig. 5a or c) or tritone balance units (Fig. 5e or
g). We noted earlier that hidden units in our value unit networks can also be described as
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representing phase space projections from one of Yust’s six different phase spaces (Table 1).
What is the relationship between a hidden unit’s phase space projections and a hidden unit’s
type?

Tritone balance unit weights represent phase space projections from odd phase spaces and
are unrelated to phase space projections from even phase spaces. Tritone balance units such
as Fig. 5a are most representative of Yust’s Ph5 (mean fit = 0.81, SD = 0.13), while tritone
balance units such as Fig. 5c are most representative of Yust’s Ph3 (mean fit = 0.91, SD
= 0.13). In contrast, tritone equivalence unit weights represent phase space projections from
even phase spaces and are unrelated to phase space projections from odd phase spaces. Tritone
equivalence units such as Fig. 5e are most representative of Yust’s Ph6 (mean fit = 0.78, SD =
0.12), while tritone balance units such as Fig. 5g are most representative of Yust’s Ph4 (mean
fit = 0.95, SD = 0.07).

In general, what combinations of hidden unit types, or combinations of represented phase
space sensitivities, are present in our 20 different value unit networks? With respect to unit
types, 13 of our networks contain two tritone equivalence units and two tritone balance
units. Five networks contain three tritone equivalence units and one tritone balance unit. The
remaining two networks contain one tritone equivalence unit and three tritone balance units.
With respect to represented phase spaces, 13 of our networks have two hidden units whose
weights represent phase space projections from the same phase space (three have duplicate
units for PH3, two have duplicate units for PH4, seven have duplicate units for PH5, and one
has duplicate units for PH6). The remaining networks have four hidden units, which each
represent projections from a different phase space.

In summary, after classifying hidden units, and relating hidden unit types to represented
phase spaces, we find that each of our networks contains hidden units that capture only a few
of the phase spaces defined by Yust (2016).

How do our networks use such sparse representations to classify triads? Some potential
hypotheses can be rejected. For example, recognizing that our hidden units represent phase
space projections, one might hypothesize our networks perform Fourier similar to those dis-
cussed by Amiot (2016). For instance, if hidden unit weights represent phase space projec-
tions, then perhaps weights between hidden units and output units represent magnitudes asso-
ciated with different Fourier phase spaces, and networks reconstruct triad type by combining
phases and magnitudes. However, such operations transform one distribution or vector into
another, and hidden units are not powerful enough to transform distributions—they deliver
single numbers (activity), not distributions. Furthermore, Fourier operations like the DFT
produce different results for different stimuli. In contrast, our hidden units represent phase
space projections that are applied to any to-be-classified triad—the same phase space rep-
resentations are used to process each stimulus. Finally, while individual hidden units do not
convert one distribution into another, perhaps distributions of Fourier components could be
represented by the activities of a set of hidden units. However, such processing is unlikely
because the value unit networks use only four hidden units, and in many networks, more than
one of the hidden units represents projections from the same phase space.

What other hypotheses might we explore? The sparse nature of hidden unit representations
in our networks suggests the networks reduce the dimensionality of the triad classification
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problem. To be more precise, each indicator vector can be represented as a point in a
12-dimensional pattern space; the coordinates of each point are given by input unit activities.
Hidden unit activities condense the pattern space into a four-dimensional hidden unit space.
Again, each stimulus is a point in the hidden unit space whose coordinates are provided by
hidden unit activities. Furthermore, each hidden unit provides an axis in hidden unit space
that represents the similarity between the hidden unit’s phase space projections and the
DFT of the stimulus. Thus, when hidden units condense the pattern space, they provide new
positions for stimuli in the hidden unit space, which reflect the relationship between each
stimulus and the four hidden unit axes.

In the next section, we show that the hidden unit axes (i.e., the learned phase space pro-
jections) permit stimuli to be positioned in hidden unit space in an arrangement that allows
output units to identify triad types. We show all triads belonging to the same type are coplanar
in hidden unit space. Different types of triads are captured by different planes. Each output
unit classifies triads by determining whether a stimulus falls in a particular plane in hidden
unit space. Thus, our networks demonstrate a novel use of phase space projections for classi-
fying triads. We detail this novel use in the next section.

3.6. Coarse coding in networks of value units

How do output value units use such broadly tuned detectors to correctly classify tri-
ads? The output units employ coarse coding. Coarse coding is a distributed representation
(Hinton, 1986; Van Gelder, 1991). A distributed representation uses activity from several hid-
den units to represent a single concept. ANNs use distributed representations when individual
hidden unit activities do not accurately distinguish one concept from another (Churchland
& Sejnowski, 1992; Hinton, McClelland, & Rumelhart, 1986). Even when individual hidden
units are poor discriminators, combined activities can accurately represent one concept when
each hidden unit represents information from different perspectives.

Earlier, we saw net inputs to hidden value units measure the similarity between the DFT
structure represented by a unit’s connection weights and the DFT structure of a triad. The
Gaussian activation function converts measured similarity into a response that is high when
there is little relationship between the DFT structures (e.g., zero correlation), which becomes
smaller as the relationship becomes stronger (e.g., a more positive or a more negative correla-
tion). We can view the activity caused in each hidden unit by a triad as the triad’s coordinates
in a four-dimensional hidden unit space.

Importantly, the musical systematicity within each hidden unit’s broadly tuned responses
produces one key property of triad coordinates: The coordinates of all triads belonging to
the same type are coplanar. For instance, the four-dimensional coordinates produced by
every major triad intersect the same three-dimensional hyperplane embedded in the four-
dimensional hidden unit space.

The coplanarity of a set of four-dimensional coordinates is established by showing that one
coordinate can be predicted from the other three (Carlson, 2014). To demonstrate coplanarity
in our networks, we use multiple regression to predict the activity in Hidden Unit 1 from
the activities produced in the other three hidden units. We perform four different regressions
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Table 4
The average R2 for predicting Hidden Unit 1 activity from the activities from the other three hidden units for each
triad type. Each average is taken over 20 different regression equations (one equation per network)

Augmented Diminished Major Minor

1.000 0.989 0.987 0.963
(0.001) (0.035) (0.039) (0.095)

for each network: one for each triad type. As shown in Table 4, we discover we can nearly
perfectly predict Hidden Unit 1 activity from the other three hidden unit activities for every
triad type in every value unit network.

When in a network’s output layer, value units carve two parallel and closely separated
hyperplanes through a hidden unit space (Dawson, 2013). The weights between output
units and hidden units define a hyperplane’s position and orientation. If a stimulus’ coor-
dinates (i.e., hidden unit activities) fall between the two hyperplanes, then the output unit
produces high activity. Otherwise, the output unit generates a weak response. In our triad
networks, same-typed triads fall on the same hyperplane, which in turn lies between the two
hyperplanes positioned by an output unit. For instance, the output unit for detecting major
triads positions its hyperplanes, so only the (coplanar) major triads fall between them.

The coplanarity of same-type triads in hidden unit space depends upon the periodic struc-
ture of hidden unit weights (i.e., tritone equivalence, tritone balance), which in turn is repre-
sented by phase space projections. For instance, the periodic structure of connection weights
causes musical systematicity (i.e., same-type triads whose roots are a tritone apart produce
identical hidden unit responses). Musical systematicity makes it easier for hidden units to
make same-type triads coplanar because only six different sets of triad coordinates need posi-
tioning, instead of 12.

3.7. Classifying types of hidden integration devices

Given our success in classifying hidden value units, we also use k-means clustering to
classify hidden integration devices. We again represent each hidden unit as a vector of corre-
lations between original weights and rotated weights. The elbow method (Thorndike, 1953)
again indicates four clusters best describe our hidden integration devices. Table 5 provides
each cluster’s summary properties.

Note. Each number is the average correlation between weights and rotated weights, where
the amount of rotation is indicated in the table. Averages are taken across the N members of
each cluster. The identification of hidden unit type is detailed in the text.

Consistent patterns emerge when we examine the connection weights of hidden units in the
same cluster. We illustrate these patterns in Fig. 6, which provide the weights and stimulus
responses for four typical hidden units, one from each cluster. The properties of the illustrated
units are most similar to the average properties for a cluster; each unit represents a cluster’s
prototype.
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Fig. 6. Weights and stimulus responses for prototypical hidden integration devices belonging to each Table 5
cluster. (a) Weights for a Cluster 1 unit, whose responses are plotted in (b). (c) Weights for a Cluster 2 unit, whose
responses are plotted in (d). (e) Weights for a Cluster 3 unit, whose responses are plotted in (f). (g) Weights for a
Cluster 4 unit, whose responses are plotted in (h).

Cluster 1 hidden units relate to one type of unit described by Dawson (2018) in which
weights are organized by interval cycles of a major second (Susanni & Antokoletz, 2012).
In such units, one cycle of major seconds (C, D, E, F#, G#, A#) had connection weights
from input units associated with one weight value, while the other cycle of major seconds
(C#, D#, F, G, A, B) had connection weights associated with a similar weight value opposite in
sign. The hidden integration devices rarely adopt such a striking organization. However, units
belonging to Cluster 1 overwhelming organize connection weights so strong positive weights
are associated with one cycle of major seconds, and strong negative weights are associated
with the other. For example, in Fig. 6a, all six of the highest connection weights come from
input units representing pitch-classes in one cycle of major seconds. All the weights coming
from input units belonging to the other cycle are either weakly positive or more strongly
negative.

To measure such organization, we take the absolute value of the difference between the
sum of weights from units associated with one cycle of major seconds and the sum of weights
associated with the other. For equally distributed positive and negative weights across the
two cycles, the absolute value will be small. However, on average the absolute difference
for Cluster 1 units is 58.95, while the average units of each other cluster have differences of
8.48, 7.18, and 19.79. The summary correlations for Cluster 1 (see Table 5) indicate more
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evidence for such organization. Note, every even rotation of the weights is associated with
a moderate positive correlation, while every odd rotation of the weights is associated with a
moderate negative correlation, only occurring if weights are organized by the two cycles of
major seconds.

Cluster 2 hidden units have weights organized according to the interval cycles of minor
thirds. For instance, in Fig. 6c one set of pitch-classes is associated with highly positive
weights, a second is associated with moderately positive weights, and a third is associated
with negative weights. Earlier, we identified many hidden value units as exhibiting such orga-
nization (e.g., compare Figs. 6c to 5c).

Cluster 3 hidden units have a characteristic pattern of spacing for negative weights. Typi-
cally, these units have two pairs of negative weights, the members separated by two semitones.
For instance, in Fig. 6e, weights from C# and D# define one pair, while G# and A# define the
other, with the pairs separated by five semitones (e.g., the distance between D# and G# in
Fig. 6e). In the resulting organization, seven semitones (a perfect fifth) separated two. Thus,
Cluster 3 units tend to turn off to particular major or minor triads because only these triads
include pitch-classes separated by a perfect fifth. The phase information encoded in the unit’s
phase space projections determines the pitch-classes assigned negative connection weights,
in turn determining which instances cause such behavior.

Cluster 4 hidden units have weights organized according to the interval cycles of major
thirds. For instance, in Fig. 6g, input units associated with one of these four cycles (C, E, G#)
have very small weights; another set (C#, F, A) has strong negative weights; a third set (D,
F#, A#) has strong positive weights; and the fourth set (D#, G, B) has even stronger posi-
tive weights. Earlier, we identified many hidden value units as exhibiting such organization
(e.g., compare Figs. 6g to 5g). This organization means pairs of negative weights are separated
by a perfect fifth (e.g., C# and G#, D# and A#, D# and G#).

Fig. 6 also provides radar plots of the responses of each hidden integration device type to
each stimulus triad. Again, these radar plots reveal the type of broad tuning described in our
earlier discussion of Figs. 4 and 5. In addition, when we compare the Fig. 6 radar plots to
Fig. 5 radar plots, hidden integration devices seem more likely to generate stronger responses
to a larger number of triads than do hidden value units. We define an “off” response as activity
less than 0.2 and an “on” response as activity greater than 0.8. We then count the number of
“off”’ and “on” responses generated by each hidden unit to the 48 stimuli. On average, hidden
value units generate “off” responses to 14.11 triads and generate “on” responses to 14.63
triads. In contrast, hidden integration devices generate “off” responses to 12.34 triads and
generate “on” responses to 32.54 triads. One general account of hidden integration devices
then is they turn off to a small subset of triads but turn on to most others.

However, we again find musical systematicity within this broad tuning. For example, con-
sider the hidden unit presented in Fig. 6e,f, with negative weights associated with C#, D#, G#,
and A#, which generate strong responses to most triads. The unit does not respond to triads
with negative weights. For instance, the unit generates near zero responses to the C#, D#,
G#, and A# minor triads, each containing two pitch-classes associated with negative weights.
For the same reason, the unit also generates weak responses to the C#, F#, and G# major tri-
ads. We can also find other musical regularities. For example, some (but not all) members of
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Clusters 1, 3, and 4 are hidden units similar to those discussed in Fig. 5. For example, Fig. 6a,c
is a noisy example of tritone balance units and generates similar responses to same-type triads
with roots a tritone apart.

In short, hidden integration devices generally generate strong responses to many stimulus
triads. However, the subset of triads to which a unit does not respond shares musical proper-
ties, typically because these triads include pitch-classes associated with negative weights, and
the spacing of negative weights is systematic, as illustrated in Fig. 6.

3.8. Coarse coding in integration device networks

The previous section shows hidden integration devices are broadly tuned, making each
individual hidden unit’s activity, on its own, a poor indicator of triad type. As a result, inte-
gration device networks must also employ coarse coding to classify triads. However, because
integration devices do not use the Gaussian activation function, a kind of coarse coding is
used in comparison to the coarse coding described earlier for networks of value units.

The logistic activation function uses input signals as evidence to compute the conditional
probability that some property is true given a set of input unit activities (Dawson, 2022;
Dawson & Gupta, 2017; Dawson, Kelly, Spetch, & Dupuis, 2010). Evidence supporting the
property’s truth (i.e., increasing the probability of being true) is associated with a positive
connection weight. Evidence not supporting the property’s truth (i.e., decreasing the proba-
bility of being true) is associated with a negative connection weight. An integration device
combines both kinds of evidence by computing net input; when net input is transformed by
the logistic, the resulting activity is literally a conditional probability of a property being true.

The output units in an integration device network combine evidence provided by hidden
units. Each hidden unit responds to a triad (e.g., Fig. 6); a hidden unit’s response provides
evidence. Each output unit weighs this evidence to generate a response (i.e., to classify a
triad). If a hidden unit provides information supporting a response, then its connection to the
output unit will have a strong positive weight. If a hidden unit provides information against a
response, then its connection to the output unit will have a strong negative weight. An output
unit will generate a strong response when the pattern of hidden unit activities is consistent
with the connection weights: Hidden units associated with negative weights will have low
activities, while hidden units associated with positive weights will have high activities. As the
consistency between connection weights and hidden unit activities decreases, so too will the
output unit’s response. A sufficient amount of inconsistency will cause the output unit to turn
off.

Table 6 illustrates how output unit responses depend upon the consistency between hid-
den unit responses and connection weights to the output units. It presents the connection
weights from the eight hidden units to each of the four output units for an example network.
Table 6 also presents the average correlation, taken over the 12 different triads of each triad
type, between hidden unit responses and the output unit’s connection weights. Note that for
each output unit, the highest correlation is observed for triads belonging to the triad type
being detected by the output unit. All other triad types produce weaker, and often negative,
correlations.
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Note. Averages are taken over the 12 different triads of each type.
One important property of Table 6 is each hidden unit always detects the same property

because the hidden unit weights are constant after training and the same weights generate
responses to each stimulus. The weights from the hidden units to the different output units
indicate that the property detected by a hidden unit can provide strong evidence a triad belongs
to one category and also provide strong evidence against a triad belonging to a different
category. For instance, consider Hidden Units 6 and 8. Table 6 indicates the two units detect a
property, which, if true, indicates a triad is not augmented because the two connection weights
to the augmented output unit are extremely negative. However, the same property supports
classifying the triad as major because the two connection weights to the major output unit are
extremely positive.

4. Discussion

The current article explored how ANNs classify musical triads when triads are represented
as indicator vectors. We replicated our discovery of Yust’s (2016) phase space projections con-
nection weights to hidden value units and extended this result to hidden integration devices.

We then considered how networks use phase space projections to classify triads. We discov-
ered a hidden unit’s net input (i.e., the inner product between a set of phase space projections
and an indicator vector) measures the similarity between the DFT structure of the hidden
unit’s weights and the DFT structure of a triad. That is, if one performs a DFT on a hidden
unit’s weights, another on an indicator vector, and measures the similarity between the two
DFTs, one can nearly perfectly predict the hidden unit’s net input when presented with the
stimulus. This is surprising and interesting because a hidden unit does not compute either
DFT when net input is calculated—but it behaves as if the DFTs are available.

While both types of hidden units compute the same measure of DFT similarity, they
respond differently to DFT similarity because of differences in activation functions (Fig. 2).
Value units generate weak responses when DFT similarity is extreme and when DFT dissimi-
larity is extreme. Value units only generate strong responses when the hidden unit and stimu-
lus DFT structure are unrelated. In contrast, integration devices generate higher responses as
the similarity between the DFT structures increases.

Although both unit types respond differently to the same measure of DFT similarity, their
responses share one key property: broad tuning. A single hidden unit’s response to a stimulus
is a poor indicator of triad type. First, different triads belonging to the same type may generate
different responses in the same hidden unit (Figs. 4, 5, and 6). Second, triads belonging to
different triad types may generate the same responses in the same hidden unit. As a result, our
musical ANNs must use coarse coding, combining multiple hidden units’ activity to classify
triads.

The musical systematicity found with the broad tuning of hidden units aids the coarse codes
we discover in our ANNs. Musical systematicity emerges from the periodicity of hidden unit
weights, periodicity reflected in the fact hidden unit weights represent phase space projections
strongly related to one phase space.
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The hidden value unit weights are organized by tritone relations between pitch-classes.
Weights associated with input units representing pitch-classes a tritone apart tend to be equal
(tritone equivalence unit) or equal in magnitude but opposite in sign (tritone balance unit),
causing same-type triads with roots a tritone apart to generate the same activity in a hidden
unit (Fig. 5). The weights of hidden integration device are organized so the unit responds to
most triads, but does not respond to a select few, because a small number of weights are neg-
ative. However, the spacing between negative weights is systematic (Table 5, Fig. 6), causing
the unit to generate weak responses to a subset of triads sharing musical properties.

The different musical systematicities evident in different types of hidden units cause archi-
tectures to adopt alternative coarse codes. Responses of hidden value units position each
stimulus as a point in a four-dimensional hidden unit space. All same-type triads have copla-
nar positions in hidden unit space (Table 4). Output value unit weights position two parallel
hyperplanes in hidden unit space to detect if a stimulus intersects a particular hyperplane.
In contrast, output integration devices treat each hidden unit response as providing evidence
for a particular type of triad. An individual hidden unit’s inaccurate evidence is overcome by
combining evidence from all eight hidden units; output unit weights have values that combine
evidence appropriately. Triads belonging to an output unit’s category generate responses most
consistent with the pattern of output unit weights.

Systematicity of broadly tuned responses permits efficient coarse coding. Value units place
stimuli in hyperplanes in hidden unit space because pairs of triads (whose roots are a tritone
apart) fall at the same location. Integration devices place stimuli in hidden unit space to permit
optimal weighting of evidence provided by each hidden unit (Table 6).

In short, our musical networks discover DFT structure—phase space projections. Hidden
units can be described as comparing the DFT structure of their weights to the DFT structure
of a stimulus, without performing either DFT. The periodic nature of hidden unit weights
permits an efficient coding of stimuli in hidden unit space, in turn permitting accurate coarse
coding of triad type.

While our case study focuses on musical triads, we expect our results to extend to other
musical networks. First, we have already discovered phase space projections in ANNs trained
on other musical problems (Dawson et al., 2020). Second, connection weights in other ANNs
trained on additional musical problems appear strongly related to phase space projections
(Dawson, 2018), and we expect these weights can be easily related to phase space projections.

We believe our results provide both theoretical and empirical implications. Theoretically,
our results indicate that musical Fourier representations are not limited to musical set theory.
Critiques of musical set theory have deemed it too abstract and too technical to account for
musical experience (Schuijer, 2008). However, music theorists hope the importance of the
DFT extends to theories of musical cognition. For example, Amiot (2016, p. 179) argues
Fourier space “is closest to our perception of music […] since Fourier qualities seem to mirror
exactly musical features processed by the human brain.” Discovering Fourier phases spaces
in musical ANNs suggests extensions of Fourier properties from musical set theory to musical
cognition, suggesting a new representation to be explored by cognitive psychologists.

The empirical implications of our results concern how cognitive psychologists might
explore Fourier representations in musical cognition. Our networks have revealed surprising

 15516709, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13233 by U

niversity O
f A

lberta, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



28 of 31 A. Perez et al. / Cognitive Science 47 (2023)

relationships between responses to different triads, such as hidden value units generating
identical responses to triads with roots a tritone apart. We suggest exploring Fourier repre-
sentations in musical cognition by examining whether the musical systematicities described
earlier also appear as human participants perceive, or learn to classify, musical entities.

Critically, the potential implications of our research only emerge when we examine and
interpret ANN structure (Dawson, 2018). Unfortunately, researchers who study ANNs rarely
determine how networks represent solutions to problems (Dawson, 2009). While some
researchers focus on ANNs capturing informal musical properties (e.g., Bharucha, 1999),
our case studies also discover surprising, formal, musical regularities. By examining musical
networks, and finding Fourier phase spaces, we reveal exciting links between formal music
theory and musical cognition.
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