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Artificial neural networks were trained to discriminate between different note types from the
black-capped chickadee �Poecile atricapillus� “chick-a-dee” call. Each individual note was
represented as a vector of summary features taken from note spectrograms and networks were
trained to respond to exemplar notes of one type and to fail to respond to exemplar notes of another
type. Following initial network training, the network was presented novel notes in which individual
acoustic features had been modified. The strength of the response of the network to each novel and
shifted note was recorded. When network responses were plotted as a function of the degree of
acoustic feature modification and training context, it became clear that modifications of some
acoustic features had significant effects on network responses, while others did not. Moreover, the
training context of the network also played a role in the responses of networks to manipulated test
notes. The implications of using artificial neural networks to generate testable hypotheses for animal
research and the role of context are discussed. © 2007 Acoustical Society of America.
�DOI: 10.1121/1.2770540�
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I. INTRODUCTION

A perceptron is a simple artificial neural network �ANN�
that consists of input processing units that encode stimuli, as
well as output processing units that represent responses to
these input patterns. These two sets of processing units are
linked by a set of modifiable, weighted, connections. The
weights are initially random, but with the use of a learning
rule they achieve values that mediate a desired stimulus-
response mapping �Rosenblatt, 1962; for a more general in-
troduction, see Dawson, 2004�.

Perceptrons are very simple ANNs because they do not
have intermediate processing units �called hidden units� that
intercept and modify input unit signals before they reach the
output units. As a result, a perceptron’s response is based
solely upon the sum of the weighted signals from each input
unit. In the absence of hidden units, there are many stimulus-
response mappings that cannot be computed by a perceptron
�Minsky and Papert, 1988�. Because of this, many research-
ers prefer to use more powerful networks that include hidden
units, such as the multilayered perceptron �e.g., Rumelhart et
al., 1986�.

However, even though perceptrons cannot learn to com-
pute every stimulus-response mapping, the subset of map-
pings that they can represent is informative and interesting.
In particular, perceptrons have been shown to be important
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models in the domain of discrimination learning �Dawson,
2005; Dawson and Spetch, 2005; Nickerson et al., 2006;
Yaremchuk et al., 2005�. The purpose of the current paper is
to explore the utility of perceptrons in the context of a par-
ticular discrimination learning paradigm that explores the
component notes of the “chick-a-dee” call of the black-
capped chickadee �Poecile atricapillus�.

A. Note discrimination by black-capped chickadees

Black-capped chickadees produce a chick-a-dee call that
consists of four note types categorized as A, B, C, and D by
bioacousticians �Ficken et al., 1978; see Fig. 1 for exemplar
note types�. Each note type can be repeated or omitted, but
the note types always appear in a fixed order within the call.
For instance, A notes occur before B notes, B notes before C
notes, and C notes before D notes. The fixed sequence in
which these note types occur in the black-capped chickadee
call is analogous to the syntax of human language �Hailman,
1985; Hailman and Ficken, 1986�. That is, the call’s genera-
tive syntax allows for countless note combinations, which
parallels the human language system in the ability to gener-
ate an infinite variety of sentences from a finite vocabulary.

Pursuing this analogy, different combinations of notes in
the chick-a-dee call might convey different messages, with
each combination representing a different “sentence.” In fact,
Ficken et al. �1994� noted that the chickadee call syntax aids
in species identity, mate choice, and territory defense, and

the call composition differs according to context in Mexican
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chickadees �Poecile sclateri�. As well, Charrier and Sturdy
�2005� found that the black-capped chickadee fails to re-
spond to atypical note ordering, and concluded that a fixed
order is required to educe behavior. Finally, Templeton et al.
�2005� showed that chick-a-dee calls and their notes vary
with the perceived threat level of a predator. Clearly, accu-
rate perception of chick-a-dee calls and note type composi-
tion are important to the survival of chickadees in the field.

Researchers have also studied the functions of the con-
stituent notes in the chick-a-dee call, independently of note
ordering within calls. Playback studies have indicated that
the black-capped chickadee D note mediates information on
species and flock identification �Mammen and Nowicki,
1981; Nowicki, 1983�, while the C note reveals information
about food location and availability �Freeberg and Lucas,
2002�. In addition, individual notes within the call may offer
information about the caller such as identity and gender
�Charrier et al., 2004�. Statistical analyses have also shown
that any constituent note �A, B, C, or D� carries enough
information to determine whether the note was uttered by a
black-capped chickadee or by another species, the mountain
chickadee �Poecile gambeli; Dawson et al., 2006�.

Considering that both the syntax and the component
notes of the chick-a-dee call appear to have functional roles,
chickadees must be able to categorize these notes into note
types �e.g., to process syntax�. Indeed, black-capped chicka-
dees can differentiate between the bioacoustically defined A-,
B-, C-, and D-note types �Sturdy et al., 2000�. For instance,
Sturdy et al. �2000� found that between-category learning
was faster than within-category learning of these note types.
This result has led to subsequent research that studies the
specific features and mechanisms used by black-capped
chickadees to perceive and subsequently categorize indi-
vidual notes.

For instance, Charrier et al. �2005� more closely exam-
ined how black-capped chickadees categorized the non-D
note types in an operant discrimination experiment using a
GO/NO GO paradigm. Of particular interest was a second
phase that was conducted after the birds had successfully
completed the acquisition phase of the discrimination. Char-
rier et al. �2005� investigated note classification mechanisms
by presenting trained birds with notes that had been acousti-
cally manipulated. In particular, they took exemplar notes

FIG. 1. Sound spectrogram of a “chick-a-dee” call �note types AABCD-
DDD� with exemplars of A, B, C, and D note types.
�A, B, and C� and shifted their spectral features up or down
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by shifting the entire spectrogram of a note up or down a
specific interval from its original starting frequency. Charrier
et al. �2005� found that black-capped chickadees could accu-
rately categorize note types based on frequency characteris-
tics alone �e.g., start frequency and ascending frequency
modulation�, and that adjacent note types were misclassified
when the notes were modified by these spectral features �e.g.,
A notes shifted down were confused with B notes, while B
notes shifted up were confused with A notes�. That is, shift-
ing the entire spectrogram of a note produced a systematic
pattern of misclassifications by the birds.

B. Note discrimination by perceptrons

While is was clear that overall note frequency controlled
note-type classification, what remained to be determined was
why chickadees miscategorize shifted notes in the particular
fashion observed by Charrier et al. �2005�. Nickerson et al.
�2006� began to answer this question by creating a model of
note discrimination. They trained perceptrons in a simulation
of the Charrier et al. �2005� experimental paradigm. These
perceptrons used nine input units to represent each note as a
set of summary features taken from sound spectrograms. A
single output unit was trained to turn on when the network
was presented a note of one type �e.g., an A note� and to turn
off when the network was presented a note of a different type
�e.g., a B note�. All of the discrimination learning conditions
in the Charrier et al. �2005� study were successfully simu-
lated in this fashion.

After training, featural representations of shifted notes
were presented to the trained perceptrons, and the output unit
responses were analyzed. Results from the perceptron re-
sponse activities were compared to the classifications made
by the black-capped chickadees, and strong parallels between
the ANNs and the birds were found. For example, as A notes
were shifted downwards in frequency both the chickadees
and the perceptron responded as if they were B notes. Like-
wise, B notes shifted upwards in frequency were responded
to as if they were A notes. Given the high degree of corre-
spondence between perceptrons and chickadees when pre-
sented shifted notes, it appeared that the networks provided a
solid first step in developing a model to determine how birds
perform these classifications.

However, in both the Nickerson et al. �2006� simulation
study, and in the Charrier et al. �2005� chickadee study, when
novel notes were created by shifting frequencies, all of the
frequency features were affected by the shift, and none of the
duration features were modified at all. As a result, in these
studies it was not possible to examine how individual sum-
mary features independently contributed to note-type recog-
nition. This is unfortunate, because previous studies do indi-
cate that different features are important for classifying
different notes types. For example, Dawson et al. �2006�
presented the non-D note types to a multilayer perceptron as
a categorization task. They found that only four of the nine
summary features were reliable identifiers of note type when
considered across a number of predictor methods �ANN,

multiple regression, and linear discriminant analysis�.
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There is another general and prevalent issue in animal
learning and cognition that was not addressed by either the
Nickerson et al. �2006� or the Charrier et al. �2005� study,
namely the effect of learning context on performance. It has
been well established that contextual cues have strong and
pervasive effects on learning performance. For instance, as
so elegantly predicted by Miller’s �2006� comparative hy-
pothesis, context, when salient, can control conditioned re-
sponding to such an extent that putative CSs are ignored by
animals and the context of the conditioning apparatus itself
controls responding. Further, Bouton’s �2004� research on
extinction has shown in a wide variety of experiments the
effects that context can have on the recovery of a previously
extinguished behavior.

Context has also been shown to be crucial to chickadee’s
processing of auditory stimuli. Lee et al. �2006� revealed that
chickadees are sensitive to context when testing generaliza-
tion in an absolute pitch discrimination task. Lee et al.
�2006� found that birds tested with novel tones in the ab-
sence of training tones failed to maintain their previously
learned discrimination and did not show evidence of transfer
to the novel tones. In contrast, birds that were tested with
both training and novel tones presented in the same session,
showed solid evidence of generalization from training to
novel tones. Clearly, as in other studies of learning, context
plays a vital role in songbird auditory perception. The second
aim, then, of the current research was to determine what, if
any, were the effects of discrimination training context on
perceptron performance both in the acquisition of the task,
and in the generalization to novel, manipulated notes.

In summary, the purpose of the present simulation study
is twofold. First, we wanted to more directly examine the
contribution of each individual summary feature to note dis-
crimination, including duration features. To do so we ma-
nipulated each acoustic feature independently in each note
type in an effort to specify the features potentially used by
birds to classify notes into types, and more specifically, to
establish which features determine how the shifted notes
were categorized by a perceptron. Second, we set out to de-
termine whether learning context affected either acquisition
or transfer to manipulated notes by the perceptrons. To ac-
complish our second aim, we included training contexts not
used in either Charrier et al. �2005� or in Nickerson et al.
�2006� and compared performance during initial training and
during generalization tests.

II. METHODS

A. Training stimuli

Sixty notes �20 A, 20 B, and 20 C� previously utilized by
Charrier et al. �2005� were used to create the training sets for
the perceptrons. D notes were not included in this set be-
cause they are acoustically dissimilar from non-D notes, and
cannot be represented using the same summary features used
to represent non-D notes. In addition, D notes are rarely con-
fused with other note types �Charrier et al., 2004; Sturdy et
al., 2000�.

The 60 training notes were randomly selected from 60

different calls recorded from birds from Colorado, and On-
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tario, Canada. An equal representation of both locations was
included, and all notes were of high quality. Call-note ampli-
tude was equalized using SIGNAL v 4.0 �Engineering Design,
Berkeley, CA�. As well, each call was bandpassed filtered
�1–10 kHz� to remove background noise.

Each note was represented as a vector composed of
seven numerical values. These values were of seven sum-
mary features that have been used in several previous studies
to represent chick-a-dee call notes �Dawson et al., 2006;
Nickerson et al., 2006; Nowicki and Nelson, 1990�. These
features were start frequency �SF�, peak frequency �PF�, end
frequency �EF�, maximum �loudest� frequency �Fmax�, as-
cending duration �AD�, descending duration �DD�, and total
duration �TD�. These particular features were selected be-
cause of their mutual independence. That is, any one of these
features could be manipulated without affecting any of the
other six features.

The spectral measurements �SF, PF, EF, Fmax� were
quantified in digital spectrograms �window size 1024 points,
frequency precision=43 Hz� using a cutoff amplitude of
−35 dB relative to peak amplitude. We used the loudest har-
monic of A and B notes �i.e., the carrier frequency�, and the
fundamental frequency of C notes in our measurements. The
temporal measurements �AD, DD, TD� were likewise quan-
tified in a digital spectrogram �window size 256 points, du-
ration precision=5.8 Hz�.

After obtaining the feature measurements, we converted
each value into a z-score. This reduced the range of values
presented to the input units of the perceptrons while main-
taining the essential characteristics of the raw data �Dawson
et al., 2006�.

B. Test stimuli

The 60 training stimuli were also used to create a large
set of shifted stimuli �4200 notes� to be used to test a per-
ceptron’s responses after it had learned to discriminate train-
ing stimuli. Each training stimulus was used to create 70
different shifted notes. Each shifted note was identical to the
training stimulus with the exception that the value of one of
its features was shifted either upwards or downwards in
value. Each feature was shifted by one of ten different
amounts �±0.5, ±1.0, ±1.5, ±2.0, and ±2.5 s.d.�. The 70
shifted variants of each note resulted by applying each of
these ten shifts to each of the training note’s seven features.

When shifted notes were created, they were created from
the raw feature summary vectors. That is, they were not cre-
ated from the z-score representation of note features. The
approach to creating the shifted notes was analogous to that
described by Charrier et al. �2005�. The s.d. values for the
shifts of each feature were dependent on note type, and were
based on values previously reported by Charrier et al. �2004;
see Table I�. Once the shifted notes were created from the
raw feature values, they were converted to z-scores using the
means and s.d. of the original training stimuli.

C. Network architecture

All of the perceptrons trained in the simulations reported

in the following consisted of seven input units �one for each
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note feature� and a single output unit. The output unit used
the logistic equation to convert the sum of the weighted sig-
nals from the input units �the net input� into an activation
value that ranged between 0 and 1. The logistic equation is a
sigmoid-shaped function that is frequently used in ANNs to
apply a nonlinear transformation to net inputs �e.g., Rumel-
hart et al., 1986�.

D. Network training on unshifted notes

The training set of 20 A, 20 B, and 20 C notes was used
to replicate the training conditions used by Charrier et al.
�2005�. For example, the discrimination group A+B− was
comprised of 20 A notes and 20 B notes. Perceptrons that
served as subjects in this condition were trained to turn their
output unit “on” when presented A notes and to turn their
output unit “off” when presented B notes. This approach was
used to create four different discrimination learning condi-
tions that paralleled the four studied by Charrier et al.
�2005�: A+B−, A−B+, B+C−, and B−C+. Ten different
networks served as “subjects” in each of these four condi-
tions. Each subject was different from another because prior
to learning, all of the connection weights in a perceptron
were set to random values selected from the range between
−0.1 and 0.1.

A gradient descent rule was used to train each percep-
tron �Dawson, 2004, 2005�. This rule modifies connection
weights in such a way that output unit error decreases as
patterns are repeatedly presented. Connection weights were
modified by this learning rule after each note was presented
during training. Training proceeded by presenting patterns in
“epochs.” In a single epoch, the network was trained on each
of the 40 stimuli being used for a particular condition. The
order of pattern presentation was randomized every epoch.
The learning rate for the simulations was set at 0.5. The
training was conducted with the Rosenblatt program �Daw-
son, 2005�.

Training proceeded until a perceptron generated a “hit”
for each of the 40 stimuli that made up its training set. A hit
was defined as the output unit producing activity of 0.9 or
higher when the desired response to a pattern was on, or

TABLE I. Provided here are the s.d. values that were used for shifting
individual features according to note and feature type. The value was mul-
tiplied by each of the s.d. increments, and then added to or subtracted from
the original value measured from the spectrogram of that note depending on
direction of shift. For example, the SF s.d. values for an A note were �824
�0.5�, �824�1�, �824�1.5�, �824�2�, and �824�2.5�, and each of these
products, added to and subtracted from the original measured A note SF
value, gave the shifts across s.d.

Feature A B C

SF �Hz� 824 518 144
PF �Hz� 381 660 938
EF �Hz� 631 451 126

Fmax �Hz� 397.6 647.3 1009
AD �ms� 13.1 5.7 5.1
DD �ms� 6.3 4.8 2.2
TD �ms� 17.4 8.5 4.4
producing activity of 0.1 or lower when the desired response
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to a pattern was off. Every perceptron that was trained in
these simulations successfully learned the correct pattern of
discrimination responses to all 40 patterns that it was pre-
sented.

E. Network testing on shifted notes

After a perceptron had successfully learned to discrimi-
nate one type of note from another �e.g., A+B−�, it was then
presented each of the 4200 shifted notes. Instead of training
the perceptrons on these notes, we merely recorded the out-
put unit’s activity to each of these shifted stimuli. The re-
sponses of the perceptrons to these novel, shifted notes could
then be used to explore the contribution of each individual
feature to the overall responses that had previously been ex-
amined in birds �Charrier et al., 2005� and in perceptrons
�Nickerson et al., 2006�.

III. RESULTS

A. Training results

The networks trained in both AB discrimination learning
conditions converged �i.e., successfully learned responses to
all 40 input patterns� after an average of 818.5 epochs. The
networks trained in both BC conditions converged after an
average of 357.4 epochs. This difference is statistically sig-
nificant �t=365.31, df =18, p�0.001�, and is consistent with
the fact that the visual appearance of the sound spectrograms
�and thus the summary features� for A and B notes are more
similar to one another than to the spectrograms of C notes.
Because of this, it is not surprising to find that one discrimi-
nation task is harder to learn than another.

B. Testing results

1. Analysis of network responses to shifted notes

After discrimination training, each trained network was
presented each of the 4200 shifted notes, and the activity
produced in a network’s output unit was recorded. These
activities were then averaged over the ten perceptrons that
served as subjects in each condition. These averaged re-
sponses were plotted as a function of shifted feature and note
type, producing 21 different graphs. Each graph depicts how
a network that was trained in a particular discrimination con-
dition responded to one of the two note types presented in
that set. These responses were plotted as a function of the
shifts of one of the note’s seven descriptive features. For
instance, one graph would illustrate the responses of net-
works trained in the A+B− discrimination condition and
other networks trained in the A−B+ condition when pre-
sented an A note that had its starting frequency �SF� shifted
upwards and downwards.

One can easily convert the information derived from a
graph to a brief qualitative description of the effects shifting
the values of a note’s feature. Table II provides a summary of
these qualitative descriptions for all of the graphs that were
produced in the analyses of network responses to notes with
shifted features. The notation used in Table II indicates

whether a feature shift resulted in a note becoming more like
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one of the note types �e.g., ↑ A indicates that a shift causes a
note to be more A-like�, less like one of the note types �e.g.,
↓ A�, or had no effect at all �---�.

An examination of Table II reveals several different
regularities. First, when a feature shift affected network re-
sponses, this effect depended upon the specific reinforcement
condition that perceptrons were trained in. For example,
when SF was shifted downward in an A note, this led to the
note being less A-like for perceptrons trained in the A+B−
condition, and to the note being more B-like for perceptrons
trained in the A−B+ condition. A second property is that
shifts of some features were more likely to affect network
responses than were shifts of other features. For instance,
shifts of PF produced changes in network performance in ten
different cells of Table II, while modifications of DD only
produced changes in two of the table’s cells. A third property
revealed by Table II is that the effect of a feature shift was
context dependent, in the sense that the effect depended upon
which two types of notes were involved in discrimination
learning. For instance, manipulations of SF had effects on
networks that were trained to discriminate A notes from B
notes, but did not affect networks that were trained to dis-
criminate C notes from B notes.

2. Analysis of network connection weights

Why do the perceptrons respond in the fashion that is
summarized in Table II? Ultimately, the responses of a per-
ceptron are governed by the weights of the connections be-
tween the input units and the output unit. An input feature
that has a strong excitatory influence on the output unit will
have a large positive weight. An input feature that has a

TABLE II. A qualitative account of specific training conditions and the co
features.

SF PF EF

� � � � � �

A A+B− ↓ A ¯ ↓ A ¯ ¯ ↓ A
A−B+ ↑ B ¯ ↑ B ¯ ¯ ↑ B

B A+B− ¯ ↑ A ↓ A ↑ A ¯ ¯

A−B+ ¯ ↓ B ↑ B ↓ B ¯ ¯

B+C− ¯ ¯ ↓ B ¯ ↓ B ¯

B−C+ ¯ ¯ ↑ C ¯ ↑ C ¯

C C−B+ ¯ ¯ ¯ ↑ B ¯ ¯

C+B− ¯ ¯ ¯ ↓ C ¯ ¯

TABLE III. Connection weight average values and t
ciation between an input unit and the output unit.

SF PF EF

A+B− 7.86
�0.032�

3.47
�0.026�

−1.7
�0.023

A−B+ −7.83
�0.018�

−3.48
�0.011�

1.7
�0.018

B+C− −0.23
�0.031�

3.71
�0.020�

2.7
�0.015

B−C+ 0.21
�0.043�

−3.70
�0.018�

−2.6
�0.024
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strong inhibitory influence on the output unit will have a
large negative weight. An input feature that has little influ-
ence on the output unit will have a near-zero weight. An
examination of the connection weights of the trained percep-
trons should provide insight into the regularities that are ap-
parent in Table II.

Table III presents the connection weights for each dis-
crimination learning condition averaged over the ten percep-
trons that served as “subjects” in the condition. The pattern
of weights presented in Table III is consistent with the pat-
tern of network responses that was summarized in Table II,
as is detailed in the following.

First, Table III shows that SF and Fmax were important
when differentiating between A and B note types because
they had the largest absolute values of connection weights in
the AB discrimination learning conditions. Similarly, AD and
Fmax were the most important features used to differentiate
between B and C note types. In general, though, Fmax and
PF were the most significant indicators of note type because
they had large connection weights in all of the discrimination
learning conditions.

Second, several summary features were associated with
near zero connection weights, and therefore had little impor-
tance for differentiating between note types. This was par-
ticularly true for DD in the AB note discrimination condi-
tions and for SF in the BC note discrimination conditions.
Overall, DD was the least relevant feature in differentiating
between note types.

Third, there was a distinct reflection of connection
weights depending upon which note was reinforced in a par-
ticular discrimination learning condition. For example, con-

onding network generalizations to each note type with individually shifted

Fmax AD DD TD

� � � � � � � �

¯ ↓ A ↓ A ¯ ¯ ¯ ↓ A ¯

¯ ↑ B ↑ B ¯ ¯ ¯ ↑ B ¯

↑ A ¯ ¯ ↑ A ¯ ¯ ¯ ↑ A
↓ B ¯ ¯ ↓ B ¯ ¯ ¯ ↓ B
↓ B ¯ ¯ ↓ B ¯ ↓ B ¯ ↓ B
↑ C ¯ ¯ ↑ C ¯ ↑ C ¯ ↑ C
¯ ↑ B ↑ B ¯ ¯ ¯ ↑ B ¯

¯ ↓ C ↓ C ¯ ¯ ¯ ↓ C ¯

tandard deviations in each training set for the asso-

AD DD TD Fmax

1.86
�0.029�

0.04
�0.017�

4.10
�0.008�

−6.79
�0.028�

−1.85
�0.014�

−0.04
�0.014�

−4.10
�0.004�

6.82
�0.016�

−4.46
�0.041�

−1.28
�0.007�

−2.80
�0.020�

4.22
�0.031�

4.45
�0.035�

1.28
�0.010�

2.80
�0.015�

−4.23
�0.037�
rresp
heir s

3
�
4
�
0
�
9
�
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sider the PF feature in the A+B− condition, which produced
an average connection weight of 3.47. In the complementary
A−B+ condition, this feature had a weight of nearly the
same size, but of opposite sign �i.e., −3.48�. A similar pattern
is evident for all of the features, in either the AB or the BC
discriminations.

IV. DISCUSSION

Previously, Charrier et al. �2005� studied how black-
capped chickadees respond to artificial notes that had their
entire spectrogram shifted up or down in frequency. They
reported a systematic pattern of note misclassifications by
these animals. Nickerson et al. �2006� replicated this study in
artificial neural networks, and found a very strong agreement
between the behavior of their networks and the behavior of
the birds. There were two limitations of both of these studies.
First, by shifting the frequency of the entire note, all of the
frequency features were manipulated at the same time. Sec-
ond, by only shifting note frequency, none of the duration
features of the spectrogram were manipulated at all. The pur-
pose of the above-reported simulations was to examine the
response of artificial neural networks that had every note
feature �frequency and duration� manipulated independently.
In the following discussion, we first consider the effects of
manipulating the frequency features. We then consider the
effects of altering the duration features. Finally, we reflect
upon the implications of these simulated results.

A. Frequency manipulations

An examination of Table II reveals several interesting
patterns of results concerning the independent manipulation
of the frequency features of the notes. The most general of
these is that changing any of the frequency features �SF, PF,
EF, or Fmax� produced changes in the responses in at least
some of the trained perceptrons. That is, none of the columns
of Table II for these features are empty.

Of more interest is the fact that not all of these features
were of equal importance. In particular, Table II demon-
strates that ten different effects were observed when PF was
manipulated, and eight different effects were detected when
Fmax was changed. In contrast, altering SF and EF produced
only four observable effects apiece.

Of most interest is the fact that the effect of manipulat-
ing a frequency feature was highly context dependent. That
is, whether a manipulation had an effect, and the nature of
the effect that was produced, depended critically upon the
type of discrimination learning that a perceptron had been
given prior to being presented the manipulated notes. For
example, consider SF. When networks had undergone AB
discrimination learning, decreases in SF made A notes more
B-like, and increases in SF made B notes more A-like. How-
ever, when networks had undergone BC discrimination learn-
ing, manipulations of SF had no effect on network responses
at all.

The context dependence of PF manipulations is much
more striking. First, consider the context of AB discrimina-
tion learning. Decreases in PF made both A notes and B

notes more B-like in this context, while increases in PF made
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B notes more A-like. In the context of BC discrimination
learning, decreases in PF made B notes more C-like, while
increases in PF made C notes more B-like. Notice the strik-
ing context dependence on responses to B notes: In one con-
text, decreases in PF produce network responses that indicate
that B notes are more B-like, but in the other context these
same decreases generate network responses that indicate that
B notes are less B-like.

The context dependence of EF manipulations is also evi-
dent. In the AB context, increases in EF make A notes more
B-like, but no other effects are evident. In particular, manipu-
lating EF does not affect B notes in this context. However, in
the BC context, decreases in EF make B notes more C-like.

Finally, consider the pattern of results produced by
Fmax manipulations. In the AB context, increases in Fmax
made A notes more B-like, and decreases in Fmax made B
notes more A-like. In the BC context, increases in Fmax
made C notes more B-like while decreases in Fmax made B
notes more C-like. These results are the least context-
dependent of the frequency manipulations, in the sense that
there was a qualitatively consistent pattern of effects on B
notes across the two learning contexts.

How do these simulated frequency results compare to
results from black-capped chickadees? In their extensive
bioacoustic analysis of the chick-a-dee call, Charrier et al.
�2004� examined the extent to which each summary feature
was important for determining a particular, and unmodified,
note type �A, B, or C�. They did this by computing the po-
tential for note-type coding �PNTC� for each feature. The
PNTC is an adaptation of the method for the potential for
individual identity coding in animal vocalizations �Charrier
et al., 2004; Robisson et al., 1993�, and is computed for a
feature by taking the ratio of its between-note-type variation
to its within-note-type variation. A high PNTC value for an
acoustic feature suggests that the feature is crucial for clas-
sifying the note as belonging to one of the three note types
�A, B, and C�. Charrier et al. �2004� found that SF had a
particularly high PNTC value �2.7�, and that EF had a mod-
erately high PNTC value �1.6�. They also found that PF and
Fmax had PNTC values near unity �1.06 and 1.03, respec-
tively�, indicating that these features were not crucial for
distinguishing types of notes. All of these results are at odds
with the above-reported simulation results. However, one
factor that is absent from PNTC calculations is a learning
context. The simulation results strongly suggest that which
features are important for note discrimination depends upon
which two notes are being discriminated.

B. Duration manipulations

The general pattern of results revealed for frequency
features can also be seen in Table II for the three different
duration features of ascending duration �AD�, descending
duration �DD�, and total duration �TD�. First, manipulations
of all three features produced changes in behavior in some of
the perceptrons. Second, some of the duration features ap-

peared to be more important than others: AD and TD both
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reveal eight effects in Table II, while DD only reveals two.
Third, the effects of manipulating a note’s features once
again appear to be context dependent.

The most striking example of context dependence is evi-
dent in manipulations of DD. In the AB context, altering this
feature does not generate any changes in perceptron behav-
ior. In the BC context, increases in DD cause B notes to
become more C-like, but no other effects are evident.

Manipulations of the other two duration variables appear
to be less context dependent, in the sense that these manipu-
lations appear to have similar effects on B notes in both
discrimination learning contexts. In the AB context, in-
creases in AD cause B notes to become more A-like, while
decreases in AD cause A notes to become more B-like. In the
BC context, increases in AD cause B notes to become more
C-like, while decreases in AD cause C notes to become more
B-like. The identical pattern of results is revealed in the ma-
nipulations of TD in the two contexts.

In terms of relating these results to previous studies,
Charrier et al. �2004� found that TD had a PNTC value of
1.6, AD had a PNTC value of 1.5, and DD had a PNTC value
of 1.3. The fact that DD had a lower PNTC value than did
the other two duration features is consistent with our finding
that DD did not play as important a role for the perceptrons
as did the other two features. However, as with the frequency
effects, discussed earlier, these PNTC values did not take
context dependence into account.

C. Implications

What are the implications of the simulation results that
we have reported? One implication comes from a standard
empiricist approach to evaluating models: A model is only as
good as the number of new experiments that it generates.
Our simulations have revealed some general regularities that
need to be explored using birds as subjects. First, the percep-
trons reveal that their behavior can be changed by altering
individual spectrogram features. Second, the perceptrons
suggest that some of these manipulations are more
powerful—or at least more likely to produce effects—than
are others. Third, the perceptrons indicate that the effect of
manipulating a particular feature is strongly context depen-
dent.

Here we do not claim that black-capped chickadees can
independently modify the features in their call notes in ex-
actly the same manner that we have in this report. In fact,
there is a good likelihood that they may not be able to ma-
nipulate individual features in their notes without also affect-
ing other features in the process due to anatomical and physi-
ological constraints on the vocal apparatus �reviewed in
Podos and Nowicki, 2004; Suthers, 2004�. That being said,
there is natural variation in all of the acoustic features in
normal chickadee call notes that we manipulated here to pro-
duce modified stimuli for our networks �Charrier et al.,
2004�. Therefore, in spite of the fact that birds may not nec-
essarily be able to produce notes of the type that we are using
to test network performance they do produce notes in a vari-
able manner. Further, what we are attempting to do here is to

determine which feature �or features�, observed to vary in
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nature during normal vocal production, is �or are� the most
important for controlling note type discrimination and cat-
egorization. That being said, further studies on anatomical
and physiological performance limits on vocal production in
chickadees would be an interesting avenue for future re-
search.

The second implication reveals another important con-
tribution that simulation studies can make to empirical re-
search. Animal research is both costly and time consuming.
It would be highly advantageous to have a priori knowledge
about what effects are likely to be revealed in a study that
uses animals as subjects. The above-reported simulations
provided hypotheses about the potential effects of a large
number of feature manipulations—recall that the test set con-
sisted of 4200 different notes. To the extent that the percep-
trons provide an applicable model of note discrimination in
birds �a fact that was previously established by Nickerson et
al., 2006�, they have permitted a search of a staggeringly
large set of manipulations in an attempt to identify experi-
mental variables that are likely to produce results. Our cur-
rent work involves testing the hypotheses generated by these
simulations using real birds as subjects.

The third implication, that context plays a role in learn-
ing and generalization by the perceptrons, places this re-
search into a broader framework of contextual effects on
learning and cognition. As noted in Sec. I, context can over-
shadow CSs, and cause previously extinguished behavior to
reemerge. Moreover, and important for the current research,
songbirds performing auditory discriminations appear to be
very sensitive to the context during generalization tests with
pure tonal stimuli �Lee et al., 2006�, to the extent that with-
out a familiar training context, birds fail to show generaliza-
tion to novel stimuli. Here, modeling call note discrimina-
tions using perceptrons, we show a similar and striking effect
of training context on acquisition, with significant differ-
ences among the different discrimination tasks, and of gen-
eralization, with differential responding to transfer notes con-
tingent upon the discrimination context of the perceptrons.
Whether this contextual effect is observed in birds perform-
ing these same discriminations presents an exciting future
avenue of research.
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