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Artificial neural networks were trained to discriminate between two different notes from the
“chick-a-dee” call of the black-capped chickadee �Poecile atricapillus�. An individual note was
represented as a vector of nine summary features taken from note spectrograms. A network was
trained to respond to exemplar notes of one type �e.g., A notes� and to fail to respond to exemplar
notes of another type �e.g., B notes�. After this training, the network was presented novel notes of
the two different types, as well as notes of the same two types that had been shifted upwards or
downwards in frequency. The strength of the response of the network to each novel and shifted note
was recorded. When network responses were plotted as a function of the degree of frequency shift,
the results were very similar to those observed in birds that were trained in an analogous task
�Charrier et al., J. Comp. Psychol. 119�4�, 371–380 �2005��. The implications of these results to
simulating behavioral studies of animal communication are discussed.
© 2006 Acoustical Society of America. �DOI: 10.1121/1.2211509�
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I. INTRODUCTION

An artificial neural network �ANN� is a computer pro-
gram that can learn to accomplish tasks such as pattern rec-
ognition �Pao, 1989�. It is a simulation of neuron-like pro-
cessors that accept incoming signals from one or more other
processors, convert these signals into a level of internal ac-
tivity, and finally convert this activity into an output signal.
Signals are sent through weighted, modifiable connections
that are analogous to synapses. A brief tutorial on ANNs is
provided by Dawson et al. �2006�. For a more extensive
introduction to such networks, a number of sources are avail-
able �Bachetl and Abrahamsen, 1991; Caudill and Butler,
1992; Dawson, 2004; Gluck and Myers, 2001; Quinlan,
1991; Ripley, 1996�.

ANNs are increasingly popular statistical tools in the
study of animal vocalization and communication. For ex-
ample, they have been used to classify bat species on the
basis of echolocation calls �Parson and Jones, 2000�, to cat-
egorize different calls produced by false killer whales �Mur-
ray et al., 1998�, to identify dolphin echolocation clicks
�Houser et al., 1999�, to recognize stress calls of domestic
pigs �Schon et al., 2001�, to distinguish particular female sea
lions on the basis of their mother-pup contact calls �Camp-
bell et al., 2002�, to assign a variety of Manitoban songbirds
to their species on the basis of recorded songs �MaIlraith and
Card, 1997�, and to classify the component notes of the
“chick-a-dee” call of the black-capped chickadee �Dawson et
al., 2006�.

In addition to their statistical use, ANNs can also serve
as models of animal behavior. In particular, ANNs provide

interesting accounts of classical conditioning and discrimina-
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tion learning �Dawson and Spetch, 2005; Delamater et al.,
1999; Gluck and Myers, 2001; Pearce, 1987�. In such simu-
lations, a single output unit of a network represents an ani-
mal’s response. The unit is trained to turn on when the un-
conditioned stimulus �US� is presented, and to turn off when
the US is absent. A set of input units is used to represent the
present or absence of a particular conditioned stimulus �CS�.
For example, consider a simple network with two input units
that are used to represent the presence of conditioned stimuli
A and B �e.g., Dawson and Spetch, 2005�. To simulate a
positive patterning paradigm, this network would be trained
to turn on when both input units were activated to represent
a compound stimulus �i.e., AB+�, and to turn off when only
one input unit was activated to represent that only one of the
stimulus components was present �i.e., A−, B−�.

The purpose of this paper is to examine the ability of
such a network to deal with what would appear to be a more
complicated discrimination learning task from the animal
communication literature �Charrier et al., 2005�. In the simu-
lations below, rather than representing individual CSs �local
representation�, each input unit represents the value of a
stimulus feature. An individual stimulus is defined by the
entire vector of input unit values �distributed representation�.
The network is trained to respond to some feature vectors,
and to not respond to others. There are two questions ad-
dressed in the simulations below. First, can a simple network
perform discrimination learning when it is defined in this
distributed fashion? Second, if such discrimination learning
is possible, how well does the behavior of the networks re-
semble the choice behavior of animals trained to perform an

analogous task?
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A. Chickadee discriminations of notes
and frequency-shifted notes

The chick-a-dee call of the black-capped chickadee �Po-
ecile atricapillus� contains four note types �A, B, C, and D�
produced in a fixed order �A→B→C→D�, but note types
can be repeated or omitted to produce chickadee calls with
seemingly infinite combinations of notes �e.g., ACCCCD,
ABDDD�. Many researchers are interested in the composi-
tion of this call, as it more closely resembles human lan-
guage syntax than any other animal system �Haliman and
Ficken, 1986�. As a result, numerous studies have explored
the regularities, and the information contained, in chickadee
call syntax �Baker et al., 1987; Charrier and Sturdy, 2005;
Clucas et al., 2004; Ficken et al., 1994; Freeberg and Lucas,
2002; Haliman et al., 1985�.

However, in addition to the study of the syntax of the
chickadee call, an analysis of its constituent notes is also
important. This is because the individual notes in a call can
themselves communicate crucial information, such as the in-
dividual identity and gender of the caller �Charrier et al.,
2004�. Playback studies have shown that chickadees can dis-
criminate the calls of their own flock from those of foreign
flocks �Nowicki, 1983�, a function that is apparently medi-
ated by D notes �Mammen and Nowicki, 1981�. C notes may
indicate the location or availability of food sources �Freeberg
and Lucas, 2002�. Individual A, B, C, and D notes can be
used to distinguish black-capped chickadees from another
species, the mountain chickadee P. gambeli �Dawson et al.,
2006�.

Discrimination learning provides one paradigm for
studying the ability of chickadees to process component
notes of the chickadee call. For example, Charrier et al.
�2005� first trained black-capped chickadees to discriminate
two individual note types �e.g., A and B� by responding after
hearing one �by visiting a feeder� and by withholding a re-
sponse after hearing the other �by refraining from visiting a
feeder�. Then, they studied the responses of the birds to
modified notes in a second phase. Birds were presented notes
that had been frequency shifted up or down by between 0.5
and 2.5 standard deviations, in 0.5-SD steps. The responses
of the birds to these shifted notes �i.e., whether or not the
birds flew to a feeder� were used as an index of how the birds
classified the transformed stimuli. Charrier et al. found, for
example, that shifting the frequency of A notes down re-
sulted in them being classified as being “B-like,” while shift-
ing the frequency of B notes upwards produced behavior that
indicated that they were classified as being “A-like.”

The purpose of the present study is to explore the ability
of simple ANNs to simulate the experiment conducted by
Charrier et al. �2005�. In a training phase, ANNs learned to
discriminate between two different types of notes from the
chickadee call. In different conditions, this discrimination
learning used the same pairings as those studied by Charrier
et al. �i.e., A+B−, A−B+, B+C−, and B−C+�. In a gener-
alization phase, the ANNs were presented novel notes from
the call, as well as notes whose frequency had been shifted
up or down. Of interest was whether the networks could

learn to discriminate between different note types, and
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whether the responses of the networks to the novel and
shifted notes would simulate the behavioral data collected
previously by Charrier et al.

II. MATERIALS AND METHODS

A. Training stimuli

Sixty notes that were originally used by Charrier et al.
�2005� were used to create training set to teach ANNs to
discriminate between different note types �A, B, and C�.
Twenty notes each of A, B, and C-note types were randomly
selected from black-capped chickadee calls obtained from
Colorado, USA and Ontario, Canada. Equal representations
of both sources were used and all notes were of high quality.
The notes were bandpassed filtered �1–10 kHz� to remove
background noise and call-note amplitude was equalized us-
ing SIGNAL v 4.0 �Beeman, 2002; Engineering Design, CA�.
Only non-D notes were utilized, as D notes cannot be quan-
tified on the same features as the A, B, and C notes; more
specifically, D notes are acoustically dissimilar from non-D
notes and are rarely confused with adjacent notes. For ex-
ample, D notes are longer duration and consist of a harmonic
series �Charrier et al., 2004�.

For each note, nine acoustic features were measured us-
ing a standard methodology �Nowicki and Nelson, 1990� that
was also employed by Charrier et al. �2004� and Dawson et
al. �2006�. These features consisted of SF �start frequency�,
EF �end frequency�, PF �peak frequency�, AD �ascending
duration�, DD �descending duration�, TD �total duration�,
FMasc �slope of the ascending frequency modulation�, FMdesc

�slope of the descending frequency modulation�, and Fmax

�highest amplitude frequency�.
The frequency measurements �SF, EF, PF� were ob-

tained in a digital spectrogram �window size 1024 points,
frequency precision=43 Hz� using a cutoff amplitude of
−35 dB relative to peak amplitude in the note. Maximum
frequency �Fmax� was measured in a power spectrum using a
window size of 4096 points �frequency precision=11 Hz�.
We measured the main �highest amplitude� harmonic of A
and B notes, and the fundamental harmonic of C notes. The
duration measurements �AD, DD, TD� were quantified in a
digital spectrogram �window size 256 points, temporal
precision=5.8 ms�. FMasc, slope of ascending frequency
�Hz/ms�, and FMdesc, slope of descending frequency
�Hz/ms�, were calculated using the following formulas:
�PF−SF� / �AD� and �EF−PF� / �DD�, respectively. Therefore,
nine summary features formed a vector that was used to de-
scribe each note, and was used as a stimulus for the ANN to
discriminate.

Prior to being presented to the network, each of the nine
features for the training set was converted into a z score.
Dawson et al. �2006� had done this to reduce the range of the
input features �which can cause problems when networks are
trained� while maintaining the essential characteristics of the
raw data.

B. Probe and shifted stimuli

A set of 330 test stimuli was also created to examine the

responses of ANNs to notes to which they had not been
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exposed to during training. Thirty of these were probe notes
�10 A, 10 B, 10 C� used by Charrier et al. �2005� which were
standard notes that were randomly sampled according to the
same procedures that were described for the training stimuli.
These 30 probe notes were then linearly shifted upwards or
downwards in frequency to create the remaining 300 test
stimuli, using the same shifts as those studied by Charrier et
al.

Shifted notes were created by raising or lowering each
probe note’s frequency while maintaining natural amplitude
and temporal structure. In essence, the entire spectrogram
was shifted in frequency, and then the frequency features
used to represent the spectrogram were recomputed. The
only features that were changed by this procedure were SF,
PF, EF, and Fmax. These features were manipulated by either
adding or subtracting those values used by Charrier et al.
�2005� from the SF, PF, EF, and Fmax values within each
vector for each note �see Table I for examples of positive and
negative frequency-shifted vectors�. Charrier et al. �2005�
shifted each probe note up or down by the following stan-
dard deviations of frequency: ±0.5, ±1.0, ±1.5, ±2.0,
±2.5 SD. Each of the 30 test notes in the current study was
treated in exactly the same fashion, creating 10 new shifted
notes for each, and ultimately producing 330 stimuli �10
standard and 100 shifted A, B, and C notes, respectively; see
Table I for an example from one note�. The SDs used to shift
the three different note types were 800 Hz for A notes,
500 Hz for B notes, and 150 Hz for C notes �Charrier et al.,
2004, 2005�. The nine-feature vectors used to represent each
test stimulus were also converted to z scores, using the
means and standard deviations of the training stimuli.

C. Network architecture

The networks trained in this study were integration de-
vices �Dawson, 2004�. An integration device is a perceptron
�Rosenblatt, 1962� that uses the sigmoid-shaped logistic
equation as an activation function in its output unit. Each
network had one output unit, used to represent the strength of

TABLE I. Examples of feature vectors used to represent notes as inputs to t
produced by shifting the frequency values of this note upwards or downwar

Inp

Frequency shift
in SD SF PF EF AD

−2.5 0.38 −1.04 0.59 −1.4
−2.0 0.64 −0.53 1.17 −1.4
−1.5 0.89 −0.01 1.75 −1.4
−1.0 1.15 0.50 2.32 −1.4
−0.5 1.40 1.02 2.90 −1.4
0 1.65 1.53 3.48 −1.4
0.5 1.91 2.04 4.06 −1.4
1.0 2.16 2.54 4.63 −1.4
1.5 2.42 3.07 5.21 −1.4
2.0 2.67 3.58 5.79 −1.4
2.5 2.92 4.10 6.36 −1.4
its response to a presented stimulus. Each network also had
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nine input units, each of which represented the value of a
summary feature when a stimulus note was presented to the
network.

D. Discrimination learning

To conduct discrimination learning with a network, 40
patterns �i.e., the vectors representing 40 different notes�
were selected from the 60 training stimuli that were de-
scribed earlier. Twenty patterns were all notes of one type
�A, B, or C�, and the remaining patterns were all notes of
another type. The network was trained to respond to every
instance of one note type, and not to respond to every in-
stance of the other. Following Charrier et al. �2005�, four
different combinations of note type/response type pairings
were used: A+B−, A−B+, B+C−, and B−C+.

Prior to training an individual network, all of its connec-
tion weights were set to random values selected from the
range between −0.1 and 0.1. The biases of the output units
�i.e., the “thresholds” of the logistic activation functions�
were initialized to 0. Because a network began with small,
random connection weights, 20 different networks were
trained in independent simulations. Each network was
viewed as a “subject” in an experiment, with the results of
the experiment being averaged over each subject.

The networks were trained with a gradient descent ver-
sion of the delta rule �Dawson, 2004, 2005�. This rule modi-
fies network weights in a fashion that is identical to how the
output unit weights in a more complex multilayer network
�i.e., a network that has a layer of processors between input
and output units� are trained by the generalized delta rule
�Rumelhart et al., 1986�. Such a learning rule presents a
stimulus, measures the error in the network’s response to the
stimulus, and then uses this error to modify the connection
weights in the network. These modifications are such that the
next time the pattern is presented to the network, its response
error will be smaller. During a training sweep, each pattern is
presented once, and connection weights are modified after

tworks. The examples below are based on one A note �0 SD shift�, and are
ll feature values have been converted into z scores as described in the text.

it encoding of note features

DD TD FMasc FMdesc Fmax

1.40 −0.92 −0.47 2.01 −0.94
1.40 −0.92 −0.47 2.01 −0.42
1.40 −0.92 −0.47 2.01 0.10
1.40 −0.92 −0.47 2.01 0.62
1.40 −0.92 −0.47 2.01 1.13
1.40 −0.92 −0.47 2.01 1.65
1.40 −0.92 −0.47 2.01 2.17
1.40 −0.92 −0.47 2.01 2.69
1.40 −0.92 −0.47 2.01 3.20
1.40 −0.92 −0.47 2.01 3.72
1.40 −0.92 −0.47 2.01 4.24
he ne
ds. A

ut un

3
3
3
3
3
3
3
3
3
3
3

each presentation. The order in which patterns are presented
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is randomized every sweep. A dependent measure of interest
is the number of sweeps of training required for a network to
converge to a solution.

The networks were trained with the ROSENBLATT pro-
gram �Dawson, 2005� that is available free of charge
from �http://www.bcp.psych.ualberta.ca/%7emike/Software/
Rosenblatt/index.html�. The learning rate for the simulations
was 0.5, with zero momentum. Training ends once the net-
work generates a “hit” to every pattern. A hit occurs when
the network produces a response of 0.9 or more to every
pattern to which it is supposed to respond, or when it pro-
duces a response of 0.1 or less to every pattern to which it is
not supposed to respond.

E. Testing responses to probe notes and shifted
notes

After a network was trained according to the procedure
described above, it was presented 20 probe notes and 200
shifted notes that had not been used during discrimination
learning. As in the Charrier et al. �2005� study, the probe
notes and the shifted notes were of the same two types as
those presented during discrimination learning. For instance,
in the A+B− condition, a network would be presented the 10
probe A notes, the 10 probe B notes, the 100 shifted A notes
�i.e., each probe note shifted up or down by the amount
previously described�, and the 100 shifted B notes. The de-
pendent measure for this phase of the study was the strength
of a network’s response to each of these 220 new stimuli.

III. RESULTS

A. Discrimination learning

The first question of interest was whether simple ANNs
could learn this discrimination task when a distributed code
was used to represent stimulus notes. The results indicated
that this was not a problem for this architecture, because
every network in every condition converged to a solution.
The average number of sweeps required for this was 639.1
for the ten networks in the A−B+ condition, 638.9 for the
A+B− condition, 259.4 for the B−C+ condition, and 259.3
for the B+C− condition. There were no significant differ-
ences in speed of learning between the networks in the two
AB conditions, or between the networks in the two BC con-
ditions. When all of the AB condition networks and all of the
BC condition networks were treated as being in the same
learning condition, it was found that the speed of conver-
gence for the BC networks was significantly faster than that
of the AB networks �t=259.308, df =18, p�0.0001�.

B. Responses to shifted notes

The second question of interest was how the trained net-
works would respond to the novel notes �probe notes and
shifted notes�. In particular, to what extent would network
responses to these notes simulate the responses of birds?

Figure 1 presents a plot of the average network re-
sponses to novel A notes and B notes after both the A−B+
and the A+B− discrimination learning. Qualitatively, these

results are very similar to the bird responses that were re-
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ported by Charrier et al. �2005�. Consider the A notes in the
A−B+ condition. When they are shifted up in frequency,
there is little change in response: the networks continue not
to respond to these notes. However, when the notes are
shifted down in frequency, these notes become more “B-
like,” because the networks begin to generate weaker re-
sponses to them. Now consider the B notes in the same con-
dition. When they are shifted up, these notes become more
“A-like,” because the networks reduce their response to
them. When they are shifted down, the networks actually
increase their response, indicating that the notes seem more
“B-like”. A similar account can be made for the other two
lines in the graph �from the A+B− condition�, which are
essentially mirror images of the two lines that have just been
discussed.

Figure 2 presents a plot of the average network re-

FIG. 1. Average response of networks to shifted notes after AB discrimina-
tion learning. The symbol �A, B� indicates the type of note presented to the
network. Solid lines represent results from trials in which the network was
trained to respond to a note, while dashed lines represent results from trials
in which the network was trained to not respond to a note.

FIG. 2. Average response of networks to shifted notes after BC discrimina-
tion learning. The symbol �B, C� indicates the type of note presented to the
network. Solid lines represent results from trials in which the network was
trained to respond to a note, while dashed lines represent results from trials

in which the network was trained not to respond to a note.
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sponses to novel B notes and C notes after both the B−C+
and the B+C− discrimination learning. Again, these results
are very similar to the bird responses that were reported by
Charrier et al. �2005�. Consider the B notes in the B−C+
condition. When these notes are shifted up in frequency,
there is a decrease in network response. However, when the
notes are shifted down in frequency, these notes become
more “C-like,” because the networks begin to generate stron-
ger responses to them. Now consider the C notes in the same
condition. Regardless of whether they were shifted up or
down, there was little effect of the shift on network response.
This is consistent with the result of Charrier et al., who
found no significant effect of frequency shift on bird re-
sponses to C notes. Again, a similar account can be made for
the other two lines in the graph �from the B+C− condition�,
which are essentially mirror images of the two lines that
have just been discussed �Fig. 3�.

To provide an additional quantitative assessment of the
relationship between the network and animal responses, cor-
relations were computed between the data used to plot the
eight different lines in Figs. 1 and 2, and the analogous data
used by Charrier et al. �2005� to plot average chickadee re-
sponses to shifted notes in their Figs. 4 and 5. Each of these
correlations is based upon 11 pairs of responses, and is pre-
sented in Table II. As can be seen from this table, for all eight
graphs there was a substantially high positive correlation,

FIG. 3. Comparison of average response of black-capped chickadees and
ANN to shifted A notes after AB discrimination learning. The symbol �B, N�
indicates whether the function is produced by a bird �B� or an ANN �N�.
Solid lines represent results from A+B− trials, while dashed lines represent
results from A−B+ trials.

TABLE II. Correlations between bird responses and
lines plotted in Figs. 1 and 2 in the current paper, an

Relations between responses
to shifted A and B notes after

AB discrimination learning

A−B+
Condition

A+B−
Condition

A 0.97 0.92
B 0.83 0.79
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indicating that the network responses were excellent simula-
tions of the bird responses. The overall correlation between
the two datasets �i.e., between all 88 data pairs taken as a
group� was 0.69.

IV. DISCUSSION

To summarize, a number of simple ANNs were trained
to discriminate between two different component notes from
the chick-a-dee call of the black-capped chickadee. After this
training was accomplished, the network was presented novel
notes that had been shifted in frequency. When the responses
of networks to shifted notes was compared to the responses
of birds trained in an analogous task, a high degree of cor-
respondence was observed.

Previous research has shown that the nine summary fea-
tures used to represent stimuli in the current study can be
used to classify important aspects of the chick-a-dee call. For
example, Dawson et al. �2006� demonstrated that component
notes of this call �i.e., A, B, and C notes� could be classified
to a high degree of accuracy on the basis of these features.
This was true for both ANNs and linear discriminant analy-
sis. Similarly, �Dawson et al., 2006� represented A, B, C, and
D notes with these summary features. They found that linear
discriminant analysis could use these features, for any of the
four note types, to discriminate black-capped chickadees
from mountain chickadees.

While this previous research has indicated that the sum-
mary features used in the current study are extremely useful
with respect to the statistical analysis of these notes, it says
little about whether the birds themselves might be sensitive
to similar features when processing the different notes in the
chick-a-dee call. The simulation results in the current paper
are one step towards modeling how the birds themselves
might process and respond to the component notes.

The goal of simulation research is to develop models
that are strongly equivalent to the agents or the phenomena
that are being modeled �Pylyshyn, 1984�. A strongly equiva-
lent model of how chickadees discriminate component notes
would generate the same performance as the birds, and
would do so by exploiting the same procedures, mechanisms,
and representations. A fundamental issue in validating simu-
lations is collecting evidence to support the claim that they
are strongly equivalent. This is particularly problematic
when a researcher does not have direct access to the entity
being simulated �e.g., the internal processes used by chicka-
dees to identify notes�. What kind of evidence is available to
simulation researchers?

ork responses to shifted notes for the eight different
Figs. 4 and 5 from Charrier et al. �2005�.

Relations between responses
to shifted B and C notes after

BC discrimination learning

B−C+
Condition

B+C−
Condition

B 0.86 0.66
C 0.85 0.75
netw
d in
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Pylyshyn �1984� has suggested that one type of informa-
tion that can be used to evaluate a simulation is error evi-
dence: when the simulation makes mistakes, are these mis-
takes similar to those generated by the modeled subjects?
The current results provide error evidence that can be used to
evaluate the ANNs. When both the ANNs in the current
study, and the birds in the Charrier et al. �2005� study, were
presented the shifted notes, these were novel and deviant
stimuli. The extent to which the responses �e.g., misclassifi-
cations� of the birds correspond to the responses of the
ANNs is the extent to which error evidence supports these
networks as models of the bird behavior. The high degree of
correspondence that was observed between the two types of
data �Table II� indicates that these ANNs are excellent mod-
els of chickadee discriminations between note types.

What, then, do these networks say about this discrimi-
nation learning task? First, they indicate that a linear combi-
nation of the nine summary features that were taken from the
spectrograms provides sufficient information to accomplish
this task. Second, the likelihood of responding to a note can
be modeled as a nonlinear function of these combined fea-
tures �e.g., the sigmoid activation function�. Third, higher-
order featural combinations �of the sort that would be pro-
vided by the hidden units in a multilayer network� are not
required to accomplish this task.

This last point is relevant to a more general implication
of the current simulation results. One important issue in the
discrimination learning literature concerns how animals pro-
cess information contained in compound stimuli. One ap-
proach to this issue is elemental �Rescorla, 1973, 1988,
2003; Rescorla and Wagner, 1972; Wagner, 2003�. According
to this approach, animals independently process the elemen-
tal components that define a compound stimulus. A second
approach to this issue is configural �Pearce, 1987, 1994,
1997, 2002; Pearce and Bouton, 2001; Wasserman and
Miller, 1997�. According to this approach, compound stimuli
are processed holistically: while a compound stimulus is re-
lated to its components, there is additional information that is
represented that reflects the notion that a compound stimulus
is not merely the sum of each element.

The elemental and configural approaches have strong
implications for representing stimuli to be presented to
ANNs. A typical elemental representation would have a
single input unit representing the presence or absence of the
elements of a compound stimulus, and no other input units
�e.g., Pearce, 1997, p. 131�. For example, a simple network
would use two units that could represent the presence of
stimulus elements A and B. The presence of the compound
stimulus AB would be indicated by turning both of these
units on as an elemental representation. In contrast, a typical
configural representation includes additional units that are
turned on only when a compound stimulus is presented �e.g.,
Pearce, 1997, p. 132�. For example, three units would be
required to represent compound stimulus AB: one for ele-
ment A, another for element B, and a third to represent
unique configural properties �AB�. This third element is only
activated when all of the stimulus compounds are presented.

More complex configural representations—in particular,
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those that can be changed via learning—are represented in
the hidden units of multilayer networks �Delamater et al.,
1999�.

The current simulations provide a stimulus representa-
tion that does not fit neatly into any of the categories de-
scribed above. The reason for this is that the networks use a
representation that appears to be elemental from the descrip-
tion in the preceding paragraph. However, the stimuli that are
presented to the network are feature configurations. Indeed,
Dawson et al. �2006� found that all of the presented features
were necessary for classifying chickadee call notes. The fact
that the current networks were able to learn to discriminate
note types on the basis of vectors of stimulus features sug-
gests that configural learning may not necessarily require the
presence of units that explicitly represent configurations of
elements. Further studies of this sort of representation are
required to explore the implications of networks like ours to
the elemental/configural debate.
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