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Abstract

Lesioning studies are often used in cognitive neuroscience to make inferences about the architecture of cognition. Recently, com-
putational models have been used to address some of the underlying assumptions—such as modularity and locality—often implicitly
used when interpreting lesion data. In this article, we explore the ‘‘functional localization’’ assumption and its role in interpreting
lesioning data, especially from double dissociations. The functional localization assumption states that units or subunits within an
information processing system become functionally specialized for dealing with specific aspects of the input environment. Networks
were trained on one of two problems—an abstract ‘‘rules and sub-rules’’ problem, and a more concrete ‘‘logic classification’’ prob-
lem—and then systematically lesioned. Networks were analyzed in terms of their overt behavior, and more importantly, in terms of
their internal structure. Performance deficits in both form and magnitude could be directly related to the ablated internal structure
of the networks. That is, if an ablated area had little or no functional localization, then little or no behavioral dissociations were
observed. If, however, the ablated area had very specific internal structure, then very specific behavioral dissociations were observed.
It is important to note, however, that there was not a one-to-one correspondence between internal structure and behavioral disso-
ciations, implying that cognitive neuroscientists must be careful when using lesioning data to theorize about the functional archi-
tecture of cognition.
� 2004 Elsevier Inc. All rights reserved.
1. Introduction

One of the major goals of cognitive neuroscience is to
define the functional architecture of cognition. That is,
cognitive neuroscientists are interested in discovering
the building blocks of cognition and relating these
blocks to the physiology of the brain. To aid in this en-
deavor, cognitive neuroscientists have an arsenal of dif-
ferent tools at their disposal—from behavioral
observations following brain lesions, to imaging the in-
tact brain, to computational modeling of specific cogni-
tive functions.
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Initially, inferences about the functional architecture
were limited to assigning specific cognitive functions to
specific brain regions. Perhaps the best-known examples
of this form of inference are the observations and con-
clusions of Paul Broca and Carl Wernicke. Broca�s pa-
tients (suffering lesions to the posterior left frontal
lobe) had relatively normal comprehension, but could
not speak. Wernicke�s patients (suffering lesions to the
posterior superior temporal lobe) could speak, but had
little comprehension. Taken together, the observations
of Broca and Wernicke illustrate a classic double dissoci-
ation (DD).

Farah (1994) coined the term ‘‘locality assumption’’
to describe one possible underlying assumption used
by cognitive neuroscientists when interpreting lesion
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data, especially data representing double dissociations.
Specifically, the locality assumption relates the func-
tional architecture of cognition to the notion of Fodo-
rian modularity; that is, cognitive tasks can be
described in terms of isolable subsystems with limited

interactivity. This type of assumption is often implicit
within the interpretation of patient data. For example,
if a patient suffers a lesion to the left frontal operculum
and subsequently looses the ability to speak yet main-
tains language comprehension and motor control (i.e.,
Broca�s aphasia), it is assumed that region of the brain
is important for language production. If, however, a pa-
tient suffers damage to the posterior superior temporal
lobe near the superior temporal gyrus and subsequently
loses the ability to understand language and speak in
coherent sentences (i.e., Wernicke�s aphasia), then it is
assumed that region of the brain is important for lan-
guage comprehension.

The locality assumption maintains that these two
subsystems can be damaged independently of each
other, and that disrupting one module will not affect
the processing in the other module. This is because
the limited interactivity imposed by the locality assump-
tion precludes the ongoing processing in one module
from having a direct and measurable effect on the
ongoing processing in the other module. Farah (1994)
showed—via a number of interactive models—that this
strong form of the locality assumption was false; that
is, double dissociations could be observed in fully inter-
active systems. A distinction remains, however, be-
tween the locality assumption that describes the
connectivity pattern between regions, and the func-

tional localization assumption that describes the idea
that brain regions may be specialized for particular
tasks. Indeed, all of the models that Farah (1994) de-
scribes and most previous computational models have
relied on some form of functional localization to pro-
duce double dissociations. This functional localization
is either explicitly assumed, or it is implicitly pre-wired
into the network structure.

The question that remains is whether or not behav-
ioral dissociations (specifically, double dissociations)
can be related to learned functional localization. Conse-
quently, in these studies, we investigated (1) whether
networks will develop functional locality across different
tasks and architectures, and (2) if observed behavioral
dissociations in lesioned networks can be related to the
ablation of such functionally local structure.
2. Method

2.1. Problem type

We trained the networks on two different problem
sets. The first problem was Bullinaria and Chater�s
(1995) ‘‘rules and sub-rules’’ task which captures the
essences of the quasi-regularity in grapheme-to-pho-
neme translation. The data set follows the basic
‘‘rule’’ of straight image translation (i.e., reproducing
the input pattern on the output units) and the ‘‘sub-
rule’’ of flipping the last three bits whenever the first
four bits are �0000� or �1111.� The second problem was
Bechtel and Abrahamsen�s (1991) ‘‘logic problem’’
data set. This problem set consists of four classes of
problem: modus ponens (MP: ‘‘If... then’’), modus
tollens (MT: ‘‘If... then), alternative syllogism (AS:
‘‘Or’’), and disjunctive syllogism (DS ‘‘Not
both . . . and’’).
2.2. Network architecture

We trained two different types of feed-forward net-
work architectures; the value unit architecture uses a
Gaussian activation function, and the integration device

architecture uses a standard sigmoidal activation func-
tion (Dawson & Schopflocher, 1992). The ‘‘rules and
sub-rules’’ network had 8 input units, 16 hidden units,
and 8 output units. The ‘‘logic problem’’ network had
14 input units, 9 hidden units, and 3 output units.
Weights and biases were randomized, and the networks
were trained with either a modified (value unit architec-
ture) or the standard (integration device) generalized
delta rule.
2.3. Lesioning networks

There are many different approaches that researchers
have taken to lesioning PDP networks: for example,
adding noise to existing connection weights, cutting
specific connections between processing units, and
removing entire processing units from the network. It
is this latter approach that was used in our experiments.
In these simulations, we took our intact PDP network
and ablated a single processing unit from it. This was
accomplished by forcing the ablated units to always
generate an internal activation that was equal to zero,
regardless of what stimulus was being presented to
the network. In other words, each lesioned network,
or ‘‘patient,’’ was missing one hidden processing unit,
and each lesioned network differed from all others in
terms of which hidden unit had been destroyed. By
restricting ourselves to the removal of entire processing
units from the intact network, we place ourselves in a
position to take maximum advantage of our knowledge
about the internal structure when interpreting behav-
ioral deficits (i.e., qualitative changes in network out-
puts). Furthermore, the ablation of individual
processing units provides a simple and useful context
for asking questions about the functional localization
assumption.
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2.4. Network analyses

We performed three different analyses on the net-
works: (i) a qualitative measure of the number and type
of errors made, (ii) an analysis of the internal structure
of the networks, and (iii) a quantitative measure of the
simple structure of the network as measured by activa-
tion variance.

Following each lesion, the training patterns were re-
presented to the network and the number of incorrect
responses was tabulated by thresholding the response
to compel the network into a forced-choice paradigm.
From this measure, we can determine both the number
of errors made, and the types of errors made (in the case
of the logic problem).

The second analysis consisted of extracting the
‘‘rules’’ from the networks by interpreting the activation
levels of the hidden units within the networks (Medler,
McCaughan, Dawson, & Willson, 1999). Basically, a
pattern is presented to the network, and the activation
pattern across the hidden units is recorded, much like
single cell recording. These activation patterns can then
be clustered, and the common input features shared by
similar activation patterns can be extracted to produce
an interpretation of how each unit solves the problem.
In other words, we can analyze the internal structure
of an intact network to see if functional localization
has been learned.

The third analysis consisted of quantifying the local
structure of individual units using an analogy of factor
analysis. Researchers use factor analysis to find a set
of factors whose loadings are maximally interpretable;
one way to accomplish this is to rotate a factor structure
until its simple structure is optimized. Simple structure is
characterized by a number of data points having high
factor loadings—that is, they possess the ‘‘feature’’ that
the factor captures—while the remaining data points
have zero factor loadings because they do not possess
the ‘‘feature’’ captured by the factor. The degree of sim-
ple structure can be analytically described by the
amount of variance within the factor loadings; factor
loadings with high degrees of simple structure will have
more variance than factor loadings with little simple
structure. This same interpretation can be applied to
the activation patterns within the hidden units of a
network.
3. Results

3.1. Rules and sub-rules

Twenty different networks were trained on the ‘‘rules
and sub-rules’’ patterns. Each network was then system-
atically lesioned, and the number of errors tabulated.
The percentage of errors for the ‘‘rules’’ set ranged from
0 to 51%, while the range for the ‘‘sub-rules’’ set was 0–
100%. To assess whether double dissociations were ob-
served within the networks, the percentage of errors
from the rules were subtracted from the sub-rules; this
gives four possible measures of difference: zero—lesions
produced no observable behavioral deficits in either
group; equal—lesions produced equivalent error per-
centages in both groups (±10%); positive—lesions pro-
duced better performance in the rules group;
negative—lesions produced better performance in the
sub-rules group. This difference measure was computed
for each ‘‘patient’’ for each of the 20 networks. The
means (and standard deviations) for the difference
groups are as follows: zero = 2.55 (1.58); equal = 4.75
(2.40); positive = 4.75 (1.65); negative = 3.90 (1.86). As
can be seen, a behavioral double dissociation is ob-
served: some lesioned networks do better on the rules,
and some lesioned networks perform better on the
sub-rules.

Table 1 shows a detailed breakdown of the types of
errors made for a single network. An analysis of the
internal structure of the network showed that units
H1, H2, H3, H4, H5, H6, H9, H10, H14, and H15 all
encoded single bits within the input pattern. Conse-
quently, when these units were ablated, performance
on the ‘‘rule’’ patterns was affected. Conversely, units
H7, H8, and H12, encoded the specific ‘‘sub-rule’’ pat-
terns, and when lesioned, produced deficits on the sub-
rule patterns. Finally, units H11, H13, and H16 had
no interpretable structure and produced no substantial
behavioral deficits when lesioned. When we compare
the number of errors with the simple structure, we pro-
duce a significant correlation. (R2 = 0.78, p < .0001),
indicating that the network had developed functional
localization.

3.2. The logic problem

For brevity, we only report the results of one value
unit network and one integration device network that
have been trained on the logic problem. Table 1 shows
the total number of errors made for each problem type,
and the total number (56 maximum) of error types (Err).
For the value unit architecture, the average number of
error types was 5.1 (2.83), while the average number of
total errors summed across problem types was 120.7
(84.7). There is a strong positive linear correlation be-
tween the number of error types and total number of er-
rors (R2 = 0.8034, p < .005). The integration device
network, on the other hand, produced an average of
9.67 (2.73) error types and an average total of 194.4
(90.0) errors. Both of these values were significantly
more than the value unit network (t(14) = 10.69,
p < .001; t(14) = 4.66, p < .01, respectively). Although
positive, the correlation between the number of error
types and total number of errors for the integration de-



Table 1
Percent difference errors for the ‘‘rules and sub-rules’’ network and the error types and total number of errors made for the ‘‘logic problem’’ network

Architecture Hidden unit ablated

Rules and sub-rules H1 H2 H3 H4 H5 H6 H7 H8

Value unit Diff �25 �42.9 �37.5 �25.0 �35.7 �25.0 50 31.3

H9 H10 H11 H12 H13 H14 H15 H16

Diff �25.9 0 0 43.7 0 �25 �28.6 �3.6

Logic problem H1 H2 H3 H4 H5 H6 H7 H8 H9

Value unit AS 96 48 66 67 0 0 1 0 9
DS 0 48 59 0 0 192 0 0 18
MP 24 48 9 48 96 0 0 0 0
MT 72 0 58 21 96 0 1 0 9
Err 7 4 9 6 8 6 2 0 4

Integration AS 28 167 22 13 54 48 105 0 27
DS 66 0 66 0 30 67 48 144 98
MP 14 54 39 0 70 24 72 67 44
MT 43 96 21 9 25 48 24 96 21
Err 10 12 9 4 14 8 10 9 11

D.A. Medler et al. / Brain and Cognition 57 (2005) 146–150 149
vice network merely approached significance
(R2 = 0.3365, p = .10).

Importantly, behavioral analyses of the networks
show a double dissociation for both the value unit net-
work and the integration device network. Specifically,
the value unit network shows a double dissociation be-
tween H5 (cannot perform ‘‘If . . . then’’ problems) and
H6 (fails on ‘‘Not both . . . and’’ problems). Similarly,
the integration device network shows a behavioral dou-
ble dissociation between units H2 (is able to solve ‘‘Not
both . . . and’’ problems) and H8 (is perfect on ‘‘Or’’
problems); it should be noted, however, that both these
units also have difficulties with the ‘‘If . . . then’’
problems.

Analyses of the internal structure of the value unit
network confirmed that H6 specialized in detecting the
connective ‘‘Not both . . . and.’’ Conversely, analysis of
the internal structure of H5 showed that it was tuned
to the connectives ‘‘If... then’’ and ‘‘Not both . . . and.’’
In other words, the functional localization of H5 is more
than the behavioral analysis would indicate. It should be
noted that the analysis of unit H8 showed no internal
structure, and when ablated, this produced no behav-
ioral deficits. For the integration device network, analy-
ses of the units confirmed that H2 detected the
connectives ‘‘If . . . then’’ and ‘‘Or’’ while H8 was spe-
cialized for processing the connectives ‘‘If . . . then’’
and ‘‘Not both . . . and.’’ Thus, it appears that local
behavioral deficits are related to the ablation of local
internal structure, regardless of network architecture.

Finally, our third analysis technique revealed a signif-
icant positive linear relationship between the simple
structure of the units—as measured by variance of the
unit activations—and the number of error types
(R2 = 0.5815, p < .05) and the total number of errors
(R2 = 0.8074, p < .005) for the value unit networks.
Although positive, the correlations for the integration
device networks approached significance for the number
of error types (R2 = 0.4072, p = .06), but not for the to-
tal number of errors (R2 = 0.1307, p = ns).
4. Discussion

It was found that local lesions produce very local
and severe impairments in different network architec-
tures, and on different types of problems. This was
confirmed by a behavioral analysis, by an analysis of
the internal structure of the networks, and by a quan-
titative measure of the simple structure of the net-
works. In other words, for local lesions to produce
local behavioral deficits, some form of functional local-
ization must be present. Therefore, these (and previ-
ous) models confirm that the strong form of the
locality assumption is false, but these models indicate
that for a double dissociation to occur within a compu-
tational model, the model must have some form of
functional localization.

More importantly, however, these results have a
strong implication for cognitive neuroscientists study-
ing the localization of function via behavioral and le-
sion data. In our study, we found that the
functionally local structure of the network as indicated
by the internal analysis was not necessarily the same as
the local structure implied by the behavioral perfor-
mance of the network. The network structure showed
more of a coarse coding organization than a strict
modular organization; that is, multiple processing
areas contribute to the solving of any particular prob-
lem. Thus, based on the behavioral data alone, our
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conclusions about the internal structure would have
been incorrect. Therefore, this implies that cognitive
neuroscientists must be very careful when assigning
functions to local structure based on behavioral data
alone.
References

Bechtel, W., & Abrahamsen, A. (1991). Connectionism and the mind:

An introduction to parallel processing in networks. Cambridge, MA:
Blackwell.
Bullinaria, J. A., & Chater, N. (1995). Connectionist modelling:
Implications for cognitive neuropsychology. Language and Cogni-

tive Processes, 10, 227–264.
Dawson, M. R. W., & Schopflocher, D. P. (1992). Modifying the

generalized delta rule to train networks of non-monotonic proces-
sors for pattern classification. Connection Science, 4, 19–31.

Farah, M. J. (1994). Neuropsychological inference with an interactive
brain: A critique of the locality assumption. Behavioral and Brain

Sciences, 17, 43–104.
Medler, D. A., McCaughan, D. B., Dawson, M. R. W., & Willson, L.

(1999). When local isn�t enough: Extracting distributed rules from
networks. In: Proceedings of the 1999 international joint conference

on neural networks (pp. 305i–305vi). Washington DC.


	Functional localization and double dissociations: The relationship between internal structure and behavior
	Introduction
	Method
	Problem type
	Network architecture
	Lesioning networks
	Network analyses

	Results
	Rules and sub-rules
	The logic problem

	Discussion
	References


