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Abstract—There is a general view that instructionist and selectionist theories of adapting to 
an environment are mutually incompatible [1-4]. Below, we report the results of a series of 
computer simulations that demonstrate that this is not necessarily the case.  Our simulations 
show that the main ideas of selectionism can be incorporated into a standard instructionist 
framework, which can benefit both perspectives. 
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1. Introduction 
 

Instructionist or epigenetic theories view cognition as the ultimate product of neuronal growth [5].  In its 
most extreme form, the developing brain is viewed as initially being a tabula rasa.  As the result of interactions 
with an environment, neural structure emerges via the growth and/or strengthening of neurons and synapses.  
Parallel distributed processing (PDP) models represent one influential variant of instructionism.   

Instructionist theories have an advantage of being  highly formalized which has allowed them to be 
explored in detail using computer simulation methods, and to be linked to well established theories of pattern 
recognition and machine learning [6].  But this formalization may have been purchased at the expense of their 
biological relevance.  Many neuroscientists have raised serious questions about the neural plausibility of 
instructionist theories like PDP networks [7].  Some have argued that PDP networks are as functionalist in nature 
as the symbol-based cognitive science theories that they have been reacting against [8-10]. 

In contrast to instructionist theories, selectionist theories of cognition deny the extreme epigenetic claim 
that the brain is a structureless tabula rasa.  Instead they assume that the initial stages of brain development 
involve the generation of a large and varied amount of structure.  This structure provides a preexisting repertoire 
of responses to be elicited by the environment.  The interaction between the environment and preexisting 
structure selects some responses as being more appropriate than others, which modifies the underlying neural 
architecture.  "After initial selection, certain cell groups in the repertoire have a higher probability than others of 
being selected by a similar or identical signal pattern" [11].  This change in the probability of a response being 
elicited can either be created by a positive process (e.g., an increase in the population of neural circuits that have 
been selected by environmental signals) or by a negative process (e.g., a decrease in the population of the neural 
circuits that have not been selected by environmental signals).  In short, selectionist theories provide a "use it or 
lose it" perspective on brain structure. 

Selectionist theories maintain a high degree of biological plausibility.  For instance, they attempt to be 
extremely consistent with measurements of neural development.  Several researchers have observed that in the 
first year of human life there is a dramatic increase in both the number of neurons and in synaptic density, but 
that this is followed by a longer period of time in which both of these factors demonstrate substantial declines 
[12, 13].  This is predicted by selectionist theories in which early neuronal growth provides a large repertoire of 
neural circuits that is later pruned by environmental exposure. However, the strong biological nature of 
selectionist theories has also worked against their formalization.  While computer simulations have been used to 
study some selectionist predictions [14], they have not successfully modeled some of the higher-order 
phenomena that the more functional PDP models have been used to study.  As a result, selectionist theories have 
not had a strong impact on cognitive science in general. ”The crucial issue remains to find a learning rule 
coherent with such a Darwinian picture” [15]. 

LETTER 
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Figure 1. The sampling distribution used to randomly initialize weights in (a) Simulation 1, (b) Simulation 2, and 
(c) Simulation 3. The grey boxes indicate ranges from which weights could be randomly sampled. 
 

 
Our hypothesis was that the learning rule sought by selectionist researchers might in fact be the kind of rule 

that has already been established in instructionist models.  Specifically, there is no reason in principle why 
procedures used to train PDP models, such as the generalized delta rule [16], cannot be used in a selectionist 
paradigm.  We explore this possibility in the simulations reported below. 
 

2. Simulation 1: Increasing Structure and Hidden Unit Numbers 
 

Consider what would have to be done in order for a PDP learning rule to alter a network in accordance 
with selectionist assumptions.  If a) initial connection weights were randomly selected in such a fashion that they 
were much more structured than in typical PDP practice, and b) if many more hidden units were used than would 
ordinarily be required in a PDP network, then it might be possible to use a rule like the generalized delta rule to 
select useful, preexisting processing units from a pre-structured network. 

One of our independent variables concerned the distribution from which connection weights were 
randomly sampled prior to the training of the network.  This manipulation was used to insert initial structure into 
the PDP networks prior to training.  In the control condition, all of the weights were initialized by randomly 
sampling values from a rectangular distribution that ranged from -1 to +1.  In the experimental conditions, 
structure was added to initial weights by changing the variability (but not the mean) of this distribution.  This 
was accomplished by inserting a "gap" in the distribution from which weights were randomly initialized, as is 
detailed below (see also Figure 1(a)).  The rationale underlying this manipulation was that structure would be 
supplied to the network by ensuring that all weights began at values that were much more extreme than in the 
control condition.  Indeed, this is the rational behind the VARIMAX method for rotating factors into an 
orientation that produces simple structure:  the higher the variance, the greater the likelihood that cases cluster 
into distinct, structured, groups [17]. 

A second independent variable was the number of hidden units in the network.  In one condition, there 
were as many hidden units as there were input units. In a second condition, there were twice as many hidden 
units as there were input units.  In a third condition, there were three times as many hidden units as there were 
input units.  As the number of hidden units is increased, so does the potential number of different internal 
responses to stimulus patterns.  This is particularly true when this manipulation is combined with a condition in 
which the initial connection weights are highly structured. 

Our hypothesis was that in networks in which initial connection weights were highly structured, and in 
which there was also a large number of preexisting hidden units, the application of the generalized delta rule 
would essentially serve as a selectionist mechanism.  In other words, rather than "growing" a network for solving 
the task -- which is the selectionist view of PDP modeling -- the learning rule would select the appropriate 
hidden units from the large number that were available.  One consequence of this should be a dramatic increase 
in learning speed.  However, this should only occur under the appropriate combination of the two independent 
variables – high structure and a large number of hidden units.  Our first simulations attempted to determine 
whether this interaction between independent variables would appear. 

The first simulation was designed to test whether the selectionist approach to PDP networks would provide 
any benefits for the learning of a particularly difficult pattern recognition problem, the parity problem.  In the 



Neural Information Processing - Letters and Reviews                                                         Vol.9, No.3, December 2005 

 61

parity problem, a network has a single output unit, and it has N input units.  Each input unit is a bit that can 
either be on or off.  The network is trained to detect when an odd number of its input bits are active.  If this is the 
case, then the network is to turn its output unit on. Otherwise, the network is to turn its output unit off.  The 
parity problem is an extremely difficult benchmark for a PDP network [11]. This is because patterns that 
neighbor one another in the pattern space require the network to make opposite responses. We were interested in 
whether the performance of a network on this difficult problem could be improved by training it from a 
selectionist perspective.  In other words, we hypothesized that a combination of "high" structure in the starting 
state of the network and a large number of hidden units would lead to fast learning of the parity problem, even in 
cases when N was large. 
 
Network Architecture.  Each network had one output unit, which was trained to activate when an odd parity 
problem was presented to the input units, and to fail to activate when an even parity problem was presented to 
the input units.  The output unit was a value unit [18].  Such a unit is trained with a variant of the generalized 
delta rule, because it employs a Gaussian activation function (G(neti) = exp(-π(neti - µi)2), where neti is the net 
input to unit i, and µI is the mean of the Gaussian, which is similar to the bias of a standard unit).  

To train networks of such units, the standard error term for output units that is used in the generalized delta 
rule is changed to: E = ½ ΣΣ(tpj – apj)2 + ½ ΣΣ tpj (netpj - µj)2, where E is error, tpj is the desired value for unit j 
presented pattern p, apj is the activity, and netpj is the net input, of unit j when presented pattern p, and µj is the 
mean of the unit’s Gaussian.  With this change, the algorithm for training the network is exactly the same as the 
generalized delta rule (with the exception that the derivative of the Gaussian is used in the new equations).  
Dawson has provided details about the mathematical relationships between the two rules, and software for 
training networks of value units [9, 20].  Networks of value units were selected for this study because we have 
considerable experience in how they behave (e.g., the many examples in [9] and [20]).  This experience was 
useful in exploring whether the behavior of the networks was affected by the selectionist manipulations that we 
were exploring. 

Three different versions of the parity problem were examined.  In the 5-parity problem, the network had 5 
input units, and the training set consisted of all of the 32 binary patterns that could be represented by these units.  
In the 7-parity problem the network had 7 input units and a training set of 128 possible binary inputs.  In the 9-
parity problem, the network had 9 input units and a training set of 512 possible binary inputs.  For each network, 
the "off" state of an input unit was represented with the value 0, and the "on" state of an input unit was 
represented with the value 1. 

 
Hidden Unit Manipulation.  For each version of the parity problem, three different sizes of networks were 
trained.  One had the same number of hidden units as there were input units (i.e., N hidden units, where N is the 
number of input units).  A second had twice as many hidden units as there were input units (i.e., 2N hidden 
units).  A third had three times as many hidden units as there were input units (i.e., 3N hidden units).  In all 
simulations, every hidden unit was also a value unit. 
 
Structure Manipulation.  For each network trained on a parity problem, three different starting conditions were 
examined (Figure 1(a)).  The first was a "low structure" condition.  In this condition, all of the connection 
weights in the network were initialized by randomly sampling from the range -1 to +1.  As this is typical practice, 
this represented a control condition.  The second was a "medium structure" condition.  In this condition, all of 
the connection weights were initialized by randomly sampling from the range -2 to -1 and 1 to 2, but not from 
the range between -1 and 1.  In other words, a “gap” was inserted into the sampling distribution for weight 
initialization.  The third was a "high structure" condition. In this condition, all of the connection weights were 
initialized by randomly sampling from the range -3 to -2 and 2 to 3, but not from the range between -2 and 2.  
This had higher structure than the previous condition because the weights were more extreme (leading to higher 
variance, which can be equated with higher structure [17], and there was a larger gap in the sampling distribution.  
In all three of these conditions, the bias of each processing unit was initialized with a value of 0. 

With this structure manipulation, the mean of the sampling distribution was held constant, but the variance 
of the distribution was increased.  In general, we increased structure by changing the sampling distribution to 
make the initial network weights more extreme. 
 
Experimental Design.  This simulation can be described as a 3 X 3 X 3 factorial design.  The first factor was 
size of problem (5-parity, 7-parity, and 9-parity).  The second factor was the number of hidden units (N, 2N, and 
3N).   The third factor  was the structure  in the sampling distribution  used to  initialize connection weights (low  
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Table 1.  Mean epochs to convergence (and standard deviations) for the various conditions of Simulation 1.  
Rows correspond to different levels of the “gap” manipulation of structure, while columns correspond to 
different levels of the number of hidden units (expressed as multiples of the number of input units). 
 

 5 Parity 7 Parity 9 Parity 
 N 2N 3N N 2N 3N N 2N 3N 

Low 
Structure 

928.8 
(371.1) 

234.4 
(103.1) 

123.6
(25.1)

4633.1 
(3997.6)

460.5 
(161.3)

225.5
(51.6)

7176.9 
(3841.2) 

3791.6 
(3241.7) 

1977.8
(1413.6)

Medium 
Structure 

2065 
(4182.4) 

57.1 
(67.5) 

15 
(10.3)

9017.9 
(3105.7)

63 
(32.4) 

46.5 
(33.1)

10000 
(0.0) 

1158.0 
(3108.9) 

30.5 
(8.5) 

High 
Structure 

4015.7 
(5150.5) 

1032 
(3152.3) 

2.5 
(2.3) 

9005.7 
(3144.3)

8.1 
(7.3) 

2.4 
(0.8) 

9039.3 
(3038.0) 

2017.2 
(4207.3) 

28.5 
(29.2) 

 
 
structure, medium structure, and high structure).  In this design, there are 27 different cells.  In each cell, 10 
different networks were trained, each randomly initialized in accordance with the constraints imposed by the 
structure manipulation.  Each of these different networks (270 in total) represented a different "subject" in the 
experiment.  The dependent measure for the study was the number of training epochs required for a network to 
solve the parity problem. 
 
Network Training.  Each network was trained with a variant of the traditional generalized delta rule [16] that 
was developed for networks of value units by Dawson and Schopflocher [18].  Network connections were 
updated after every pattern presentation.  One epoch involved the presentation of every possible input pattern to 
the network.  The order of pattern presentation was randomized every epoch.  Networks were said to have 
converged on a solution to the problem when a "hit" was recorded for the output unit for every pattern presented 
during the epoch.  A "hit" was defined as output unit activity of 0.9 or greater when the desired output was 1.0, 
or as output unit activity of 0.1 or less when the desired output was 0.0.  If convergence was not achieved after 
10,000 epochs, then training was stopped, and the value of 10,000 was entered as the value for the dependent 
measure. 
 
Results.  As can be seen from Table 1, for each version of the parity problem there appears to be an interaction 
between the number of hidden units and the amount of initial structure in the network.  In general, when there 
were many hidden units and high degrees of initial structure, fast convergences were observed.  However, 
decreases in either the number of hidden units or in the amount of initial structure resulted in networks that had 
difficulty in learning the solution to the problem.  Indeed, in many cells of the experiment all 10 "subjects" failed 
to converge upon a solution to the problem after 10,000 training epochs. 

In order to examine the pattern of results in Table 1, analysis of variance (ANOVA) was conducted.  The 
ANOVA involved three independent factors (input units, structure, hidden units) that each had three levels.  The 
ANOVA revealed a significant main effect of the number of input units (F2,243 =  35.118, p < 0.0001).  An 
inspection of Table 1 indicates that this effect is due to the fact that in general a parity problem involving fewer 
input units is easier to solve than is one involving a larger number of input units.  There was also a significant 
main effect of the number of hidden units (F2,243 =  166.437, p < 0.0001).  The results in Table 1 suggest, not 
surprisingly, that increasing the number of hidden units on average leads to faster learning of solutions to the 
parity problem.  There was also a significant interaction between the number of input units and the number of 
hidden units (F2,243 =  35.118, p < 0.0001).  An inspection of Table 1 indicates that the effect of increasing the 
number of hidden units had a greater magnitude for larger versions of the parity problem than it did for smaller 
versions of this problem.  Importantly, there was also a significant interaction between the number of hidden 
units and the structure manipulation (F4,243 =  8.186, p < 0.0001).  Table 1 indicates that this interaction is 
exactly of the type to be expected if the selectionist hypothesis guiding the current study was correct: there was a 
dramatic speeding of learning in those conditions that had both a high number of hidden units and a high degree 
of structure.  However, if structure was high, but the number of hidden units was smaller, the result was slower 
learning than in conditions with both low structure and a low number of hidden units.  No other significant 
effects were revealed in the ANOVA. 
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Table 2.  Mean epochs to converge (and standard deviations) for the various conditions of Simulation 2.  Rows 
correspond to different widths of the distribution from which weights were initialized, while columns correspond 
to different levels of the number of hidden units (expressed as multiples of the number of input units). 
 

 5 Parity 7 Parity 9 Parity 
 N 2N 3N N 2N 3N N 2N 3N 

Narrow 
Range 

928.8 
(371.1) 

234.4 
(103.1) 

123.6 
(25.1) 

4633.1 
(3997.6)

460.5 
(161.3)

225.5 
(51.6) 

7176.9 
(3841.2) 

3791.6 
(3241.7) 

1977.8
(1413.6)

Medium 
Range 

3515.2 
(4483.1) 

430.7 
(441.2) 

272.3 
(191.1) 

10000 
(0.0) 

2147.2
(2819.5)

367.9 
(186.0)

10000 
(0.0) 

10000 
(0.0) 

8604.9
(1994.6)

Wide 
Range 

10000 
(0.0) 

1063.4 
(1546.5) 

196.4 
(125.4) 

10000 
(0.0) 

6950.1
(3969.7)

1034.4
(923.3)

10000 
(0.0) 

10000 
(0.0) 

10000 
(0.0) 

  
 

3. Simulation 2: Manipulating the Width of the Sampling Distribution 
 

The results of Simulation 1 were consistent with the hypothesis that selectionist approaches to training PDP 
networks can lead to improved learning.  The significant interaction between the structure manipulation and the 
number of hidden units occurred because the fastest learning conditions were those in which high structure was 
combined with a large number of hidden units.  However, alternative accounts are possible, and need to be 
explored.  In Simulation 1, the creation of the different structure conditions also produces a confound: not only is 
a gap introduced into the distribution from which weights are initialized, but the range of the distribution is also 
changed.  It is possible that the effects observed in Simulation 1 were simply due to the greater range of weights, 
and not due to the presence of any gap in the distribution at all.  Simulation 2 tested this possibility. 

 
Method. The method for Simulation 2 was identical to the method for Simulation 1, with one key exception: the 
structure manipulation of Simulation 1 was replaced with a manipulation of the range of the sampling 
distribution (Figure 1(b)).  In the “narrow range” condition, the connection weights were sampled from the range 
-1 to 1.  In the “medium range” condition, the connection weights were sampled from the range -2 to 2.  In the 
“wide range” condition, the connection weights were sampled from the range -3 to 3.  In other words, these 
conditions were the same as those in Simulation 1 with the key exception that there was no gap inserted in any of 
the sampling distributions. 

 
Results. The results of Simulation 2 are presented in Table 2 below.  An inspection of these results indicates that 
they are quite different than those of Simulation 1.  In particular, it is the narrow range of weights that appears to 
provide the fastest learning, which was not evident in Table 1.  Furthermore, the average number of epochs in 
the fastest cells in Table 2 is at least one order of magnitude slower than the fastest cells in Table 1.  Indeed, for 
the 9-parity problem convergences were never achieved in the wide range condition, regardless of the number of 
hidden units. 

Statistical analysis of the data confirms the conclusions drawn from an inspection of Table 2. The fact that 
the smaller parity problems were easier to solve than the larger ones was reflected in a main effect of the number 
of input units (F2,243 =  244.982, p < 0.0001).  An increase in the number of hidden units also tended to speed up 
learning, and a significant main effect of the number of hidden units was present (F2,243 =  158.907, p < 0.0001).  
On average, increasing the width of the sampling distribution for the weights also increased learning speed 
(F2,243 =  128.458, p < 0.0001).  However, there were significant two-way and three-way interactions amongst all 
of these variables.  For instance, increasing the number of hidden units and the width of the sampling distribution 
increased learning speed for the 5-bit and 7-bit parity problems, but slowed learning down for the 9-bit parity 
problem, producing a significant interaction between the number of input units, the number of hidden units, and 
the width of the sampling distribution (F8,243 =  15.633, p < 0.0001).  There were also significant interactions 
between the number of input units and the number of hidden units (F4,243 =  18.680, p < 0.0001), the number of 
input units and the width of the sampling distribution (F4,243 =  10.012, p < 0.0001), and between the number of 
hidden units and the width of the sampling distribution (F4,243 =  4.272, p < 0.002). 

These results point out two things.  First, the significant interactions between all the manipulations in 
Simulation 2 indicate that solutions to the parity problem can be influenced by the size of the problem, the 
number of hidden units, and the width of the sampling distribution from which weights are initially randomized.  
Second,  these influences are  quite different than was  the case in Simulation 1  in which a gap was inserted into  
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Table 3.  Mean epochs to convergence (and standard deviations) for the various conditions of Simulation 3.  
Rows correspond to different levels of the width of the gap in the sampling distribution used to initialize weights, 
while columns correspond to different levels of the number of hidden units (expressed as multiples of the 
number of input units). 
 

 5 Parity 7 Parity 9 Parity 
 N 2N 3N N 2N 3N N 2N 3N 

No Gap 3515.2 
(4483.1) 

430.7 
(441.2) 

272.3 
(191.1)

10000 
(0.0) 

2147.2
(2819.5)

367.9 
(186.0)

10000 
(0.0) 

10000 
(0.0) 

8604.9
(1994.6)

Medium 
Gap 

2566.25 
(4182.4) 

57.1 
(67.5) 

15.0 
(10.3) 

7150.8
(4595.8)

63.0 
(32.3) 

46.5 
(33.1) 

10000 
(0.0) 

1158 
(3108.9) 

30.5 
(8.5) 

Wide 
Gap 

5016.1 
(5261.1) 

2012.2 
(4209.9) 

6.3 
(6.5) 

8009.0
(4197.4)

1017.4
(3156.2)

5.3 
(2.8) 

7039.7 
(4766.7) 

26.3 
(22.4) 

13.5 
(9.3) 

 
 
 
the sampling distribution.  In other words, the presence of the gap in Simulation was a crucial factor in speeding 
up learning.  The results of Simulation 1 were not simply due to increasing the range from which weights could 
be sampled. 
 

4. Simulation 3: Manipulating Gap Size in the Sampling Distribution 
 

 The results of Simulation 2 indicated that the effects observed in Simulation 1 were not just due to an 
increase in the range of the distribution from which weights were sampled, but were also due to the presence of a 
gap in this distribution.  A second confound in Simulation 1 was that when the width of the sampling distribution 
was increased, so too was the width of the gap.  Simulation 3 explored the behaviors of networks when the width 
of the gap was manipulated, but the range of the sampling distribution was held constant. 

 
Method. The method for Simulation 3 was identical to the method for Simulation 1, with one key exception: the 
structure manipulation of Simulation 1 was replaced with a manipulation of the gap in the sampling distribution. 
At the same time, the range of the sampling distribution was held constant (Figure 1(c)). In the “no gap” 
condition, the connection weights were sampled from the range -2 to 2.  In the “medium gap” condition, the 
connection weights were sampled from the range -2 to –1 and 1 to 2.  In the “wide gap” condition, the 
connection weights were sampled from the range –2 to –1.5 and to 1.5 to 2.  

 
Results. The results of Simulation 3 are presented in Table 2 below.  An inspection of these results indicates that 
they are similar in many respects to those of Simulation 1, but are not quite as regular.  For all three parity 
problems, the fastest learning occurred in the condition with the widest gap and the largest number of hidden 
units, as was the case in Simulation 1.  In both simulation studies, these cells correspond to the conditions that 
we hypothesized were most consistent with selectionism (i.e., a large amount of pre-existing internal structure). 
However, the gap effect was moderated by the number of hidden units in different ways for different sizes of the 
parity problem.  For both the 5- and 7-parity problems, a medium gap with a medium number of hidden units 
produced faster learning than a wide gap with a medium number of hidden units.  However, the reverse was true 
for the 9-parity problem.  Clearly, when gap size is manipulated in conjunction with a manipulation of the 
sampling range (Simulation 1, Figure 1(a)), the results are more regular than when gap size is manipulated while 
holding the sampling range constant (Simulation 3, Figure 1(c)). 

An ANOVA of the Simulation 3 data reflects the regularities revealed in an inspection of Table 3.  There 
was a significant main effect of the number of input units (F2,243 =  47.818, p < 0.0001) due to the fact the 
smaller parity problems were learned faster than were large ones.  A significant main effect of the number of 
hidden units (F2,243 =  142.273, p < 0.0001) indicated that faster learning was achieved by increasing the number 
of hidden units in the network.  Increasing the width of the gap in the sampling distribution also increased 
learning speed, as was indicated by a significant main effect of gap size (F2,243 =  31.541, p < 0.0001).  However, 
further complexities in Table 3 also resulted in many significant interactions amongst these factors.  There was a 
significant interaction between the number of input units and the number of hidden units (F4,243 =  8.565, p < 
0.0001), and between the number of input units and gap size (F4,243 =  20.928, p < 0.0001).  However, the 
interaction between the number of hidden units and gap size did not quite reach statistical significance (F4,243 =  
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2.161, p < 0.074).  Given our earlier discussion of Table 3, it should be no surprise that the three-way interaction 
between the number of input units, the number of hidden units, and gap size was also significant (F8,243 =  5.012, 
p < 0.0001). 

 
5. Discussion 

  
According to selectionism, when agents encounter an environment, they are already armed with a wide 

variety of pre-existing internal structures [19].  Adaptation is accomplished when environmental pressures select 
some of these structures over others because they are (already) better suited to solving a particular problem. 

The purpose of our first simulation was to explore the possibility that an artificial neural network, trained 
with a standard learning rule, could benefit from this selectionist perspective.  We employed two manipulations 
to investigate this possibility.  First, we manipulated the distribution from which connection weights were 
initially randomized.  We increased the variability of this distribution (but not its mean) by inserting gaps of 
various widths into it, and increasing its range (Figure 1(a)).  Second, we manipulated the number of hidden 
units in the network.  The condition in which there were a very large number of hidden units, and the connection 
weights of these units were initialized by randomly sampling from the distribution of highest variation, 
represented an operationalization of the selectionist hypothesis.  The networks in this condition started with the 
greatest amount (in terms of numbers of hidden units) of pre-existing structure.  We found that this condition 
uniformly produced the fastest learning for three different sizes of the parity problem.  For example, this 
condition resulted in the 9-bit parity problem being solved incredibly quickly, after approximately 29 epochs of 
training.  This result was two orders of magnitude faster than was observed in networks that had high structure, 
but a small number of hidden units, and in networks that had a high number of hidden units, but low structure.  
In short, this result demonstrated that the selectionist approach could be incorporated into artificial neural 
networks, which are usually viewed as being examples of instructionist simulations. 

One possibility was that this main result was merely due to the fact that the range of connection weights 
was being increased.  However, when the range of the sampling distribution of weights was increased without 
inserting a gap in the distribution (Figure 1(b)), the results were quite different.  The distributional gap – our 
main source of structure – was essential to the results of Simulation 1.  A third simulation held the range of the 
initial connection weights constant, and varied the size of the gap in the distribution (Figure 1(c)).  Although the 
pattern of results varied somewhat from one version of the parity problem to another, the results were again 
consistent with selectionist theory – fast learning was only observed in conditions that included structure (i.e., 
some size of gap) combined with a large number of hidden units. 

These preliminary results all point to a potential reconciliation between selectionist and instructionist 
theorizing.  However, they also raise a number of issues that require further study. 

First, the current results were all obtained with networks of value units that use a Gaussian activation 
function [9, 18, 20].  One question to ask is whether these results are peculiar to this architecture, or whether 
they can be obtained with other types of artificial neural networks as well.  Second, the current results were also 
all obtained using versions of the parity problem.  This problem was selected because of its notorious difficulty.  
However, it is important to determine whether similar results can be obtained for other difficult classification 
problems.  Third, the current results were obtained with a relatively crude manipulation of internal structure – 
coarse manipulations of the sampling distributions used to initialize connection weights.  Many other more 
sophisticated manipulations of initial structure need to be formulated and studied.  Fourth, one of the main 
advantages to the use of value unit networks is the ability to interpret their internal structure [9, 21-24].  This 
ability needs to be exploited in order to determine the precise mechanism by which learning is accelerated in 
Simulation 1.  Presumably, the learning rule is able to either accentuate just those hidden units that are well-
suited to solving the parity problem, or to prune away the behavior of those hidden units that are not.  Early 
studies of the value unit architecture revealed networks in which hidden units were essentially pruned, because 
value units can be easily manipulated to be turned off to all stimuli (e.g., by modifying a unit’s bias).  It is 
essential that the “selectionist networks” that have been described in this paper have their internal structure 
interpreted in order to discover whether this type of mechanism is at work in them as well.  We are in the process 
of investigating all of these different issues. 
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