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Abstract Spatial learning and navigation have frequently been
investigated using a reorientation task paradigm (Cheng,
Cognition, 23(2), 149-78, 1986). However, implementing this
task typically involves making tacit assumptions about the nature
of spatial information. This has important theoretical conse-
quences: Theories of reorientation typically focus on angles at
corners as geometric cues and ignore information present at
noncorner locations. We present a neural network model of
reorientation that challenges these assumptions and use thismodel
to generate predictions in a novel variant of the reorientation task.
We test these predictions against human behavior in a virtual
environment. Networks and humans alike exhibit reorien
tation behavior even when goal locations are not present at
corners. Our simulated and our experimental results suggest that
angles are processed in a manner more similar to features, acting
as a focal point for reorientation, and that the mechanisms
governing reorientation behavior may be inhibitory rath-
er than excitatory.
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Introduction

Any mobile agent, capable of autonomously navigating through
its world, must be able to find its bearing and orientation to do so.
Researchers have developed a number of paradigms to investi-
gate this ability, the foremost of which is the reorientation task
(Cheng, 1986). In a reorientation task, agents are placed inside a

controlled arena that contains a specific set of cues and are trained
to search a particular location for reinforcement. Following test-
ing, the arena is reconfigured, and the changes in agent search
patterns are recorded.

A typical reorientation task uses a quadrilateral arena, usu-
ally rectangular, with four locations of interest (one in each
corner). While some exceptions exist (Cheng, 1986;
Newcombe, Ratliff, Shallcross, & Twyman, 2010), the over-
whelmingmajority of reorientation experiments conform to this
structure (Cheng & Newcombe, 2005). The emphasis on cor-
ners has some desirable properties; for instance, in a rectangle,
corners that are diagonally opposite are geometrically identical.
Observe, in Fig. 1a, that Locations 1 and 3 have an identical
geometry (long wall on the left, short wall on the right, both
walls joined at a 90° angle). Because of this, if an agent were
choosing a location on the basis of geometry alone, it would
have the same likelihood of visiting Location 1 as it would of
visiting Location 3. This led to the discovery that rats processed
geometric cues even when they could be completely ignored
(Cheng, 1986; Gallistel, 1990). In a typical study (for instance,
Wall, Botly, Black, & Shettleworth, 2004), Location 1 in Fig. 1a
would be reinforced when visited, to indicate that it was the
“correct” location. Furthermore, a unique landmark—a
nongeometric identifier—would be placed at that location.
This landmark provides sufficient information for an animal
to learn the “correct” location; geometric information is not
required and is, in fact, less reliable, because the geometric
information at Location 1 is also present at the nonreinforced
Location 3. Nevertheless, if, after training, the rat is placed in a
new arena in which the “correct” landmark has been moved to
Location 2, its behavior will typically indicate that geometric
cues were encoded. That is, it will have a high likelihood of
visiting Location 2 in the new arena (indicating that
nongeometric cues were learned) but will also visit Locations
1 and 3 (indicating that geometric cues were also learned). Such
results led to the development of the geometric module theory
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(Cheng, 1986; Gallistel, 1990), which is based on the assump-
tion that geometric cues are processed independently of
nongeometric cues and that the processing of geometric cues
is mandatory.

The geometric module theory is an example of an insight
into navigation provided by the reorientation task. This fairly
straightforward task has been a fruitful source of information
about navigation and has been used to study a wide variety of
organisms, including ants, fish, rats, birds, and humans (review
in Cheng & Newcombe, 2005; Cheng, 2008). While this
informative task is straightforward to describe and provides
data that are easily analyzed, it is important to realize that it is
expensive to conduct. Particularly when using animal subjects,
an experiment requires considerable commitment of resources,
because subjects must be run individually and it takes a fair
amount of training for a subject to learn the “correct” location
before being placed in a novel arena. It would be convenient if
there was a less expensive medium in which to explore the
reorientation task, with the aim of discovering interesting
hypotheses that could then be tested with a traditional (and
more expensive) experiment.

Computer simulations are one less-expensive medium
that can be used to explore domains of interest.
Lewandowsky (1993) has pointed out that computer simu-
lations can provide several advantages for theory develop-
ment in cognitive science. These include formalizing a
theory in such a way that rigor is improved and providing
more precise tools for studying concepts of interest.
Additionally, implementing a working computer simulation
can be used to reveal tacit assumptions hidden within a
theory. Finally, a computer simulation can itself lead to
serendipitous findings, particularly when it is presented with
novel situations. It would seem that if one had a plausible
computer simulation for the reorientation task, it could be
used to explore new situations with ease and could possibly
generate unexpected predictions. These new simulation-
based predictions could then be tested with a traditional

experiment, particularly if a researcher felt that the predic-
tions were interesting enough to warrant the experiment’s
expense.1

Fortunately, a plausible computer simulation for
reorientation has been proposed (Dawson, Kelly, Spetch,
& Dupuis, 2010) in the form of a simple artificial neural
network called a perceptron (Rosenblatt, 1962). In its stan-
dard form, a perceptron consists of a single bank of input
units that numerically encode patterns of stimuli; these input
units are linked via weighted connections to an output unit,
which transforms this weighted net input signal into re-
sponse behavior. The strength of the connection weights is
then updated following a specified learning rule, designed to
minimize the difference between the output unit’s activity
and the desired response to that particular input pattern. A
perceptron trained with a standard learning algorithm has
been shown to generate most of the interesting regularities
found in reorientation task behavior (Dawson, Kelly, et al.,
2010). An operant perceptron model of reorientation, which
uses a more psychologically plausible learning algorithm (in
which the perceptron has a chance of not visiting a location,
based on the total associative strength at that location, and
connection weights are adjusted only when the perceptron
chooses to investigate a location), has also been proposed
and has shown some promising results (Dawson, Dupuis,
Spetch, & Kelly, 2009; Dupuis & Dawson, in press). The
purpose of the present article is to illustrate how an operant
perceptron can be used to explore reorientation by observing
the model’s behavior when novel reorientation paradigms are
simulated. We demonstrate that this kind of computer simu-
lation can generate interesting predictions that can then be
tested using more traditional experimental methodologies.

Part of the power of computer simulations is that, by
revealing tacit assumptions about the processes responsible
for phenomena of interest (Lewandowsky, 1993), they also
provide the means to challenge, or even negate, those assump-
tions. In the case of reorientation, while the geometric module
theory had a strong early impact for many years, it has recently
been questioned, with some researchers arguing for it to be
abandoned completely (Cheng, 2008; Twyman&Newcombe,
2010). If reorientation is accomplished without the use of a
geometric module, what mechanismsmight instead be respon-
sible? One alternative to the geometric module is an appeal to
the general principles of associationist learning (Miller &
Shettleworth, 2007). According to this view, there is no geo-
metric module, but both geometric and nongeometric infor-
mation are treated in the same manner as being valid cues.
Agents use standard learning procedures to associate the var-
ious available cues (both geometric and nongeometric) at a

Fig. 1 Possible configurations of targets in a rectangular arena. Many
tasks concern themselves solely with corners (a), but similar relation-
ships (i.e., long wall to the left of the target, short wall to the right of
the target) can occur in other locations, such as along walls (b). Such
arenas therefore need not be limited to four locations of interest (c)

1 Many of these merits are shared with robotic models of animal
behavior. We refer the interested reader to Webb (2000) and Dawson,
Dupuis, and Wilson (2010) for more information.

Learn Behav



location with the likelihood of being rewarded at that location.
A model employing this approach has been shown to be
capable of simulating many reorientation task regularities
without an appeal to the geometric module (Miller, 2009;
Miller & Shettleworth, 2007, 2008). However, serious empir-
ical and theoretical problems with this model have been
identified (Dawson, Kelly, Spetch, & Dupuis, 2008; Dupuis
& Dawson, in press). The standard perceptron avoids these
problems and also models reorientation regularities (Dawson,
Kelly, et al., 2010). The operant perceptron captures the same
regularities as the standard perceptron but does so with a more
realistic conception of learning in the reorientation paradigm
(Dupuis & Dawson, in press). Despite their mathematical
differences, both the purely associationist and perceptron
models were developed in the spirit of challenging the as-
sumptions about the processes underlying reorientation and as
reactions against geometric modularity.

Exploring assumptions used to define the reorientation task

Because perceptrons are plausible computer simulations for
studying reorientation, they enable the exploration of other
challenges, concerning not just assumptions about
reorientation processes, but also assumptions about the
reorientation paradigm itself. For example, although the
prototypical reorientation paradigm (Cheng, 1986)
employed a grid spanning the entire arena for measurement,
it was noted earlier that a common feature of most modern
reorientation experiments is the emphasis on corners as the
only locations of interest. Might performance on the
reorientation task be affected if agents were trained to go
to locations that are not at corners? Are corner locations
special in some way?

According to associationist theories of reorientation, corner
locations should not be special. These theories, based on the
work of Rescorla and Wagner (1972), posit a view of learning
largely based on cue competition. Applied in to the
reorientation task, this suggests that a location is merely a
collection of cues that can be exploited as signals of potential
reinforcement. From this perspective, there should be no
fundamental behavioral difference between a location of in-
terest at a 90° corner and one along a 180° wall. In effect, a
location under consideration along a single wall “divides” the
wall into a left and a right segment, exactly as a corner does,
with only the angle of intersection distinguishing them. Under
this associative viewpoint, it would appear that locations of
interest need not be constrained to corners.

Another tacit assumption that guides experimental studies of
reorientation concerns the number of target locations. The vast
majority of reorientation studies have used quadrilateral
arenas—typically, rectangles or squares (review in Cheng &
Newcombe, 2005; Cheng, 2008) and, less commonly, in kites
(Dawson, Kelly, et al., 2010; Pearce, Good, Jones, &

McGregor, 2004), or parallelograms (Lubyk & Spetch, 2012;
Tommasi & Polli, 2004). In these studies, the corners of these
arenas have been used as target locations (even if noncorner
information is part of the study; e.g., Ratliff & Newcombe,
2008), and therefore, these experiments have studied
reorientation using four different locations. Furthermore,
nonkite quadrilateral arenas make available only two different
instances of geometric cues (long wall on the left and short wall
on the right of a corner, short wall on the left and long wall on
the right of a corner). Only a handful of studies have used
arenas that are not quadrilaterals (i.e., Newcombe et al., 2010;
Sturz&Bodily, 2011) and have, therefore, made available more
than four potential target locations (again assuming that loca-
tions of interest are always positioned at arena corners). To our
knowledge, no experimental studies of reorientation have ex-
plicitly compared situations in which the number of target
locations has been systematically varied.

However, it is important to study the effect of varying the
number of target locations, because some theories predict
that this variable should affect learning in the reorientation
task. For example, Miller and Shettleworth’s (2007, 2008)
associative model scales the rate of learning by a measure of
the probability of an agent visiting a particular location in its
learning equations. This measure is expressed as the net
attractiveness of the location as a proportion of the total
net attractiveness of every location. This proportion will
obviously be affected by the number of locations that are
summed in its denominator. All else being equal, this will
predict (at least initially) one half the normal rate of learning
for tasks with eight locations, relative to tasks with four
locations.2 That is, the Miller–Shettleworth model predicts
that learning the reorientation task will slow down as the
number of possible locations of interest increases. Do other
models, such as the perceptron, also make this prediction?

Furthermore, as more locations are added to a standard
reorientation arena (Fig. 1c), a greater variety of geometric
cues must be processed. For instance, there are four different
geometric configurations that can be distinguished in Fig. 1c
(as opposed to two in Fig. 1a and b), which again would be
expected to slow reorientation learning in a theory like Miller
and Shettleworth’s (2007, 2008) associativemodel. Does vary-
ing the number of target locations, and the number of possible
geometric configurations, affect human learning in the
reorientation paradigm, and does it do so in a fashion predicted
by computer simulations? The present article represents an
attempt to begin the exploration of such questions.

The purpose of the present work is to investigate the two
main issues raised above. First, we attempt to evaluate the
role that the nature of a location—at a corner or at a

2 Due to other mathematical flaws with the Miller and Shettleworth
(2007, 2008) model, detailed at length in Dupuis and Dawson (in
press), we will not dwell further on this model here.
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wall—has on reorientation behavior. Second, we investigate
the impact that changing the number of locations of interest
has on reorientation behavior. These distinctions are
depicted in Fig. 1. Figure 1a illustrates the typical position
of possible target locations in a standard reorientation task
that uses a rectangular arena. Figure 1b provides an analo-
gous arena, but one in which the locations of interest are not
found at corners. Figure 1c shows how one can combine the
first two arenas into a third that has eight locations of
interest, instead of the typical four.

This article proceeds as follows. It begins by using
an operant perceptron (Dupuis & Dawson, in press) to
simulate the reorientation task in the various arenas
illustrated in Fig. 1. These simulations are used to make
predictions about the effects of type of location and of
number of locations on reorientation behavior. The re-
sults of these simulations provide two key predictions:
(1) Corner locations are not inherently special, and (2)
doubling the number of target locations has a negligible
effect on the speed at which the model learns to
reorient. Underpinning these predictions is evidence that
the mechanism at work may be inhibitory rather than
excitatory, which has important theoretical implications.
Next, we report the results of testing these predictions,
using human subjects in a virtual world. Finally, we
explore the similarities and differences between the as-
sociationist model and the human data. We argue that
the operant perceptron is a useful source of predictions
that can be supported by experimental data. As a result,
the operant perceptron appears to provide a medium in which
reorientation can be plausibly explored for the purpose of
seeking surprising and interesting results that can later become
the focus of traditional experimentation.

Simulation

From the perspective of theories of reorientation that appeal
to a geometric module (Gallistel, 1990), angle information
present at a corner is typically viewed as a global, geometric
property. However, from an associationist perspective, a
“corner” could be perceived as a visually salient “focal
point” that serves as a reference, with the angle simply being
a (local) feature of that location. The intersection between
walls provides a distinct boundary, from which the length of
a wall can be measured. For instance, in Fig. 1b, Location 1
sits at the junction of a short wall on its left and a long wall
on its right, with an intersection angle of 180°.

With this in mind, we devised a method of representing
any location along the edge of an arena that treats angle
information as a feature. This representation permitted us to
present locations to perceptrons even when these locations
were not at a corner in a reorientation arena.

The perceptron

Perceptron reorientation

As was noted earlier, a perceptron (Rosenblatt, 1962) is a
simple connectionist network in which a set of input units
are directly connected to an output unit via weighted con-
nections. The input units represent stimuli; their activation
causes signals to be sent through the weighted connections
to produce a response in the perceptron’s output unit.
Feedback can be provided to the network about its response
so that it can modify its connection weights. This permits
the perceptron to learn to generate a desired response to each
stimulus in a set of training patterns.

To simulate the reorientation task, each location of interest
in an arena is represented as a stimulus in the set of training
patterns. For each of these patterns, input unit activity is used to
represent which cues (geometric and nongeometric) are present
at a particular location. If a location is deemed to be “correct,”
the perceptron is reinforced when that location’s cues are
presented. If a location is not deemed to be “correct,” the
perceptron is not reinforced when that location’s cues are
presented. In other words, the perceptron is trained to produce
an activity of 1 to sets of cues corresponding to “correct”
locations and an activity of 0 to sets of cues corresponding to
“incorrect” locations.

In order to train the perceptron to learn to reorient in a
particular arena, onemustmake design decisions about how to
represent the available cues and about the learning rule that is
used to modify the network’s connection weights. The details
of these design decisions are provided below.

Defining the task: Stimuli

Each location identified in Fig. 1 can be defined as a collection
of properties, which are presented to the perceptron as a
pattern of unary-coded inputs. That is, each of the perceptron’s
input units encodes the presence or absence of a specific cue.
Each of these units is turned on (activated with a value of 1)
when the property it encodes is present and is turned off
(activated with a value of 0) when that property is absent. In
the present simulation, each location of interest is defined by
three types of cues: the length of the walls on either side of the
location, the angle between the walls where they join, and the
kind of local landmark that can be present at the location.
Seventeen different input units were used to represent the
possible values of these cues, as is summarized in Table 1.

The angle units (1–2) identify the angle of intersection at
the location. These units have one value for locations at
corners (90° angle) and another value for locations along
walls (180° angle). The feature units (3–11) represent the
collection of nongeometric properties present at a given
location. For parsimony with the experiments described
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later in the article, these units are named after colors; as
such, these units can be thought of as representing the color
of an object at the location.

The length configuration units (12–17) represent the
specific set of wall length properties present at a loca-
tion. For example, one unit is turned on for a location
at the intersection of a wall of length three with a wall
of length six, while another might be turned on if the
location lies between walls of length two and one. This
is an extension of Miller and Shettleworth’s (2007,
2008) representation for specific geometries that allows
for a number of possible configurations—up to six in
the current simulation. This is required when more than
four locations of interest are used (Fig. 1c).

When put together, this encoding can represent any pos-
sible location of interest as a string of 0 s and 1 s reflecting
the absence or presence of the corresponding cue at that
location. For instance, if Location 1 in Fig. 1b (180°, two-
length wall to the left, four-length wall to the right)
contained a “blue” feature, the location would be presented
to the perceptron as “10000100000000100.”

This particular set of design decisions defines this
encoding as a purely local code: Each pattern contains
only information present at the location it represents and
no information from any other location. Similarly, this
encoding contains no global representation of the arena,
either explicitly (i.e., a principal axis, Cheng & Gallistel,
2005; or relative dimensions, Huttenlocher, 2003) or im-
plicitly (as in Miller & Shettleworth’s [2007, 2008] mod-
el summing across all locations), save for the number of
patterns presented. Indeed, the perceptron is unable to
distinguish to which arena a duplicated pattern belongs;
the above example location code would also be seen
when Location 1 in Fig. 1c was presented, for instance,
since this location is geometrically and featurally identi-
cal to Location 1 in Fig. 1b. The only information
available to the perceptron at any given time is found
in the cues present at the location under consideration; in
order to detect additional unrepresented features in this
encoding, the perceptron would require hidden units
(Dawson, 2004; Rummelhart, Hinton, & Williams,
1986) or a similar architectural adjustment.

Defining the task: Response

This simulation includes a single output unit that uses the
logistic activation function (Dawson, 2008) to convert the
total weighted signal coming from the input units into a
response that can range between 0 and 1. For locations that
are reinforced, the perceptron is trained to turn on (output
activity=1); for locations that are not reinforced, the
perceptron is trained to turn off (output activity=0).
Because, during learning, perceptron activity falls in the

continuous range between 0 and 1, at any moment in time,
the perceptron’s output can be interpreted as its estimation
of the conditional probability of reinforcement at a location,
given the cues at that location (Dawson et al., 2009; Dupuis
& Dawson, in press).

Training method

A perceptron’s response to particular patterns of stimuli
is not perfect; each generated response differs from a
desired response by some error amount. This error is
then used by a learning rule to adjust the perceptron’s
connection weights such that subsequent presentations
of that pattern of stimuli produce a smaller error.
Here, we employ the gradient-descent learning rule
(Dawson, 2004, 2008), which has desirable properties
when working a logistic perceptron response.

This output response provides a critical distinction
between neural network models and traditional associa-
tive models in the style of Rescorla and Wagner (1972).
The perceptron’s output activity allows it to convert
associative strength of assorted cues into a model of
behavior. This stage is absent from traditional associa-
tive models, which describe only the indirectly observ-
able associative strength. Not only does this difference
allow perceptrons to produce different predictions from
formally equivalent associative models (Dawson, 2008),
but also it allows us to adjust the model’s learning to
reflect different patterns of behavior.

In a standard perceptron model, the connection weights
would be updated after presenting any location to the net-
work; that is, there would be no model of choice behavior
during learning, much like the definition of classical condi-
tioning. In the present model, we use network output as a
measure of behavior to adjust the perceptron’s learning from
classical conditioning to operant conditioning, where it is
allowed to “choose” whether or not to investigate a partic-
ular location, and this investigation (rather than rote presen-
tation) governs its learning. Instead of updating connection
weights after every pattern of cues is presented, the
perceptron’s output response to that pattern is used as the
conditional probability of updating weights on this presen-
tation, given the cues presented. With each presentation, a
random number between 0 and 1 is generated and compared
with the output response; if the random number exceeds the
output response, the connection weights are not updated,
and the next pattern is presented. In effect, the
perceptron will choose whether or not to visit a location
with a probability based on how attractive the cues at
that location are, and it will learn only from locations it
chooses to visit. This algorithm is detailed at length in
Dupuis and Dawson (in press) and in a more abbrevi-
ated form in Dawson et al. (2009).
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Simulation specification

Training The present simulation includes two experimental
conditions: one with four locations of interest, and one with
eight locations of interest. Each location is present at either a
wall or a corner and contains a unique feature cue (i.e., a colored
object). Since there can be up to eight possible locations within
one condition, this demands eight unique feature cues. Within
each condition, networks are trained to investigate just one
location; this location is reinforced, while all others are not
reinforced. The reinforced location could be present at a wall
or a corner, producing a 2 (four-vs.-eight) × 2 (corner-vs.-wall)
design.

All networks were initialized with all biases and connection
weights equal to zero and were trained with a learning rate of
0.1. Five networks in each condition were trained to conver-
gence. For counterbalancing, two possible reinforcement loca-
tions were used in each simulation; for example, in the four-
location, corner-goal task (Fig. 1a), one group of networks is
reinforced at Location 1, while another is reinforced at Location
2. No appreciable difference was found between these groups
within a particular task, so their results are reported together
here. (That is, each value is averaged from 10 networks.)

Testing Testing the perceptron involves presenting patterns of
cues corresponding to transformed arenas and measuring the
perceptron’s output response to these novel patterns. Due to
the operant nature of its training algorithm, the perceptron’s
output response is both its estimation of the conditional prob-
ability of reward at the location given the cues at that location
and its likelihood of choosing to visit that location.

There are two types of transformed arenas common to
reorientation studies: affine transformations and “featureless”
transformations. Affine transformations place feature cues and
geometry cues in conflict with each other: a chosen location
could be consistent with the geometry present during training
or the features present during training. For instance, in Fig. 1a,
a subject might find reinforcement at Location 1, along with a
unique feature. When placed in an arena with an affine trans-
formation, that unique feature might now be present at
Location 2. Location 2 is consistent with training in terms of
features, while Locations 1 and 3 are consistent with training
in terms of geometry. Meanwhile, a featureless transformation
replaces all unique feature cues with indistinguishable ones,
forcing the model to base its decisions solely on encoded
geometry. In the present simulation, we perform a featureless
transform by simply turning off all feature units that were
present during training and activating a novel “white” feature
unit in their place.

With four locations, we can also test for generalization
across angle cues by observing a corner-trained network’s
response to a wall-locations-only arena (that is, a network
trained in Fig. 1a but tested in Fig. 1b) and vice versa. In this
scenario, each location now appears with novel angle and
length configuration cues, as opposed to an affine transforma-
tion, which has novel length configurations but consistent
angles. Since these two conditions do not share exact wall
lengths, no choice can be consistent with wall length geometry
from training.

With eighth locations, one can also do a partial transforma-
tion. While affine-transformed arenas have consistent angle in-
formation (targets that were present at corners are present at

Table 1 Encoding of a location’s properties and the agent’s response using an operant perceptron

Unit Codes For Encoding Example Values Example Encoding

Inputs 1–2 Angle at target Unary coding, 2 units 90° 1 0

180° 0 1

Inputs 3–11 Color of target Unary coding, 9 units Red 1 0 0 0 0 0 0 0 0

Green 0 1 0 0 0 0 0 0 0

Yellow 0 0 1 0 0 0 0 0 0

Blue 0 0 0 1 0 0 0 0 0

Orange 0 0 0 0 1 0 0 0 0

Black 0 0 0 0 0 1 0 0 0

Brown 0 0 0 0 0 0 1 0 0

Purple 0 0 0 0 0 0 0 1 0

White 0 0 0 0 0 0 0 0 1

Inputs 12–17 Configuration of wall
lengths at target

Unary coding, 6 units Left 3, Right 6 1 0 0 0 0 0

Left 6, Right 3 0 1 0 0 0 0

Left 2, Right 1 0 0 1 0 0 0

Left 2, Right 4 0 0 0 1 0 0

Left 4, Right 2 0 0 0 0 1 0

Left 1, Right 2 0 0 0 0 0 1
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corners during testing), a partial transform places them in con-
flict. Both transformations have novel wall length geometries, as
compared with the training condition.

Following training, each network was presented with probe
trials in three transformed arenas. For four locations, these
were affine, generalized, and featureless arenas. For eight
locations, these were affine, partial, and featureless arenas.
Each network’s output responses were recorded for each of
these locations; these responses were averaged across the five
networks present at each condition.

In the reorientation task literature, it is common to report
responses in terms of the frequency with which each location is
chosen. However, the perceptron responds to each location
individually, producing the probability of choosing to act at
that specific location; these probabilities need not sum to 1
across all locations within an arena. In order to convert the
former into the latter, we divided the response to a specific
location by the sum of responses to all locations within a given
arena; this method has previously been used to successfully
predict several key reorientation behavior regularities (Dawson,
Kelly, et al., 2010).

Results

Across all conditions, networks converged after an average of
4,810 presentations of the training set (a single presentation of
each pattern [location] in the training set in a random order is
called a sweep), with the fastest training occurring after 4,614
sweeps of training and the slowest training requiring 4,973
sweeps. Due to the perceptron’s specified learning rate parameter
of 0.1, training times of this magnitude are not uncommon for
problems of this size; the more pertinent observation is that the
range of training times is quite narrow and is not significantly
different across all training conditions, F(3, 36) = 1.95, p = .14.

Network responses

The network model’s responses to each location in each
transformed arena, expressed both as response activity and as
choice frequencies, are reported in detail in the tables presented
in the Appendix. Network activity refers to the activity in the
network’s output unit given the cues presented at a particular
location; this is interpreted as the network’s estimate of the
conditional probability of reinforcement at a location given the
cues present at that location. These conditional probabilities
are converted into network frequency through normalization
within each condition (Dawson, Kelly, et al., 2010). The tables
also include a summary of human responses in similar condi-
tions in experiments that were inspired by the simulation re-
sults. The human responses in the table are covered in more
detail when the human experiments are discussed, below.

The first major prediction generated by the model is that
there does not appear to be a significant difference in
reorientation behavior between networks trained with locations
in corners and networks trained with locations along walls. In
conditions with four locations of interest and eight locations of
interest, whether reinforced at a corner or at a wall, the
perceptron converged after a similar number of sweeps of
training. Furthermore, in all cases, the same broad pattern of
behavior holds: The perceptron responds most strongly to
locations containing the (unique) feature cue present during
training, but that cue did not prevent the encoding of either
geometric cue. That is, even within the featureless arena, the
perceptron still estimates that locations with the same wall
length configuration and/or angle amplitude as the training
location have a greater likelihood of reward than do locations
missing those cues.

Additionally, the perceptron produces characteristic rota-
tional error behavior common to reorientation tasks (Cheng,

Fig. 2 Example perceptron response frequencies in affine-transformed
arenas. The white boxes indicate where features (and reinforcement) were
found during training; the black boxes indicate their locations after an
affine transformation. Perceptrons were reinforced in corners (a and c) or
walls (b and d), and with four (a and b) or eight (c and d) total locations

from which to choose. Response frequencies are normalized from
perceptron activity in each arena to allow for comparison with extant
animal reorientation data, including human experiments reported later in
this article. Note the characteristic rotational error in all four conditions.
Refer to the Appendix for complete response data in all conditions
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1986); that is, where features and geometry conflict in the same
arena, the perceptron responds to the feature more frequently
than to any other single location, but taken as a whole, loca-
tions with correct geometry are chosen with higher frequency.
This pattern appears in both the four-location and eight-
location tasks, as illustrated for the affine transformation in
Fig. 2 (for more detail on the other conditions, please refer to
the Appendix). Furthermore, it occurs even if the angle infor-
mation changes between conditions; for instance, the general-
ized arenas in the location task still produce this pattern, even
though the exact configuration of geometries present in this
condition are novel.

Connection weights

To understand why these networks behave in this manner, we
turn next to their connection weights. Since 10 networks com-
pleted each training condition, their connection weights were
averaged to produce a summary of how a typical network
solved that particular problem. This summary is presented in
Table 2.

An examination of this table reveals that, within the four-
location task, the bias and reinforced angle units assume negative
values, while nonreinforced angle units assume a value of 0. This
informs us that, before considering wall length configuration or

feature information, the network initially tends to turn off (output
activity and, thus, probability of investigating a location
approaching 0) at any given location. In the eight-location task,
however, this is slightly different: While the bias remains nega-
tive, the reinforced angle assumes a 0 weight, while the
nonreinforced angles assume a strong negative weight. Despite
this difference, this pattern of weights, in the absence of other
cues, produces identical behavior to the location network.

It is only after the network considers other cues that it begins
to overcome this negative association and develop a moderate
probability of investigating a given location. Within the four-
location task, the wall length configuration corresponding to the
reinforced location assumes a positive value with magnitude
slightly larger than the magnitude of the bias and the angle at
that location. A similar result occurs in the eight-location task,
where the correct wall length configuration and the bias effec-
tively cancel out and the correct angle has a weight of 0 (the
only situation where a cue present during training assumes a
0 weight). In both of these cases, the net input is close to 0; the
output unit’s logistic function translates this into a .5 probability
of acting, given those cues. In other words, for both the four-
location and eight-location tasks, if the networks encounter a
location with the correct geometry but lacking any feature, they
are as likely as not to choose to investigate that location. The
overall choice frequency behavior this produces will vary
depending on the number of locations (see the tables in the
Appendix); however, the underlying mechanism is identical. It
is interesting to note that, ignoring features, the “correct” wall
length configuration is reinforced on 50 % of its presentations
(the reinforced location and its nonreinforced rotational equiv-
alent), while the “incorrect” configurations present in any con-
dition are reinforced 0 % of the time, and the perceptrons’
responses converge to match these probabilities. The operant
perceptron has already been established to match probabilities
in classical choice-behavior tasks (Dawson et al., 2009); for it to
exhibit this behavior in a reorientation context reinforces Miller
and Shettleworth’s (2007) conceptualization of reorientation as
an operant task.

The feature cue connection weights tell an unsurprising
story in both the four-location and eight-location tasks. The
feature that was reinforced during training assumes a very
strong positive weight, while the feature rotationally opposite
the reinforced location (i.e., the other location with identical
geometric cues) assumes an equally strong negative weight.
The positive magnitude of the weight given to the correct
feature far exceeds the negative value of the bias plus any
incorrect geometric cue; that is, the network has a high prob-
ability of acting when presented with the correct cue, even if
both angle and wall length configuration cues are incorrect.
Meanwhile, all other features take on a moderate negative
weight. In the context of the geometric cues discussed above,
this informs us that the network is inherently hesitant of
investigating any location but that the presence of a correct

Table 2 Operant perceptron connection weights for each simulation

Problem and Type

Four Eight

Unit Type Corner Wall Corner Wall

Bias −0.41 −0.40 −1.14 −1.14

Angle 90 −0.41* 0.00 0.00* −1.14

180 0.00 −0.40* −1.14 0.00*

Color Red −0.66 −2.30 −0.57 −0.28

Green 3.19* −0.67 3.30* −0.29

Yellow −2.29 −0.65 −2.18 −0.28

Blue −0.66 3.21* −0.55 −0.29

Orange 0.00 0.00 −0.29 −0.56

Black 0.00 0.00 −0.28 −0.56

Brown 0.00 0.00 −0.29 −2.18

Purple 0.00 0.00 −0.28 3.30*

White 0.00 0.00 0.00 0.00

Configuration 3 / 6 −1.31 0.00 0.00 0.00

6 / 3 0.91* 0.00 0.00 0.00

2 / 1 0.00 −1.32 −0.57 −1.12

2 / 4 0.00 0.91* −0.57 1.12*

4 / 2 0.00 0.00 1.12* −0.57

1 / 2 0.00 0.00 −1.12 −0.57

*Corresponds to reinforced location
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feature is sufficient to overcome this hesitancy. Furthermore,
the feature present at the rotational equivalent of the reinforced
location during training assumes a negative strength sufficient
to overcome correct geometric cues—in effect, becoming a
reliable indicator of no reinforcement.

Discussion

The operant perceptron’s behavior on these simulations allows
us to generate novel empirical predictions. To begin, the net-
work used the same encoding for all conditions (four locations
or eight locations and wall reinforcement or corner reinforce-
ment) and was able to converge in all of these conditions
without difficulty with the same amount of training.
Therefore, the operant perceptron predicts that similar mecha-
nisms are at work regardless of the global shape of the arena
and that changing the number of locations of interest will have
a negligible effect on the difficulty of the task. These pre-
dictions are broadly compatible with previous empirical work
on multiple-location reorientation (Newcombe et al., 2010) but
are incompatible with theories that include an implicit repre-
sentation of the global environment (Miller & Shettleworth,
2007, 2008).

Furthermore, the operant perceptron does not predict any real
difference between tasks where the locations of interest are found
within corners and tasks where such locations are not found at
corners. In both cases, networks were able to learn the task,
encoding sufficient geometric cues to reorient and producing
comparable behavior when presented with transformed arenas.
This behavior persisted even if the cue types were completely
novel, suggesting some degree of generalization—although the
network predicts that themechanism behind this generalization is
inhibitory.

We can elaborate on this inhibitory mechanism by exam-
ining the connection weights in Table 2. Specifically, the
networks learned that particular wall length configurations
signaled that a location was not reinforced and learned that a
particular color’s rotational opposite was a reliable indicator
of no reinforcement. When the networks were presented
with the transformed arenas, they did not respond to the
novel geometry at all; they had not learned that such con-
figurations signaled no reinforcement. Instead, the network
responds at chance values to each location, except for the
two locations containing the “correct” feature and its rota-
tional opposite. Rather than developing an explanation of
what the agent may be searching for in these cases, a study
of connection weights informs us that we might instead be
focusing on what the agent is avoiding. This tendency to
emphasize excitation at the expense of inhibition when
explaining learning is a tacit assumption present in many
different theories of learning (Rescorla, 1967); the operant
perceptron model reinforces this point and reminds us of the
need to check such assumptions.

Experiments

The operant perceptron has generated some interesting pre-
dictions on novel permutations of the reorientation task.
Specifically, the operant perceptron makes two broad
claims: first, that there is no appreciable difference in
reorientation behavior among groups trained with locations
in corners or along walls, and second, that there is no
appreciable change in difficulty when the number of salient
locations changes. Do these predictions hold under labora-
tory conditions with humans? To test these predictions, we
conducted a series of basic reorientation experiments using
human subjects.

Our experiments are organized into three studies. Study 1
involves two groups of subjects trained on a four-location
reorientation task; one group is trained on corner locations,
and another trained on wall locations. The locations in these
tasks correspond to those shown in Fig. 1a and b.

Study 2 is analogous to Study 1, except that the training
arenas have eight locations of interest, as in Fig. 1c.

Immediately after completing Study 1 or Study 2, each
participant also completed the task described in the other
study; Study 1 participants completed the four-location task
and then immediately progressed through the eight-location
task exactly as described in Study 2, and vice versa. This
allows a direct comparison of the difficulty of reorientation
in arenas with four locations and eight locations. Furthermore,
this manipulation can test for order effects: Did subjects learn
either task faster, and did the first task facilitate learning the
second? These comparisons are the focus of Study 3.

Study 1: Four locations

Method

Subjects Subjects were 36 University of Alberta undergrad-
uates (30 female), who received course credit for participa-
tion. Recruitment criteria required subjects to have normal
color vision.

Apparatus The environment was constructed using the
fAARS-Lite platform (Dupuis, 2012; Gutiérrez, 2012;
Lubyk, Dupuis, Gutiérrez, & Spetch, 2012), which simulates
first-person 3-D movement in a virtual world. This virtual
world contained a number of rectangular arenas (17.2×
8.6 m), consisting of matte-gray walls and floors with black,
visually obvious edges. The walls were high enough to extend
beyond the default field of vision in all possible subject
locations and orientations.

Subjects arrived in an arena in its center, facing a random
direction (one of the eight cardinal or ordinal directions,
chosen at random on each arrival). Subjects could move their
perspective through these arenas with the arrow keys.
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Stimuli Attention was called to locations of interest through
brightly colored cylinders (1.5-m radius, same height as sur-
rounding walls) placed against the walls of the arena. These
locations were placed in two possible configurations, with the
locations of interest being set at corners or along walls. These
configurations correspond to Fig. 1a and b. During training,
these cylinders had one of four colored textures placed over a
white background: green checkerboard, red diagonal stripes
(upper-left to lower-right), yellow diamonds, or blue horizontal
bars, listed in the order in which they appeared when one
looked clockwise from the center. Figure 3 presents examples
of these stimuli.

During testing, the positioning of these locations shifted
into one of three possible configurations: affine, generalizing,
or featureless. In the affine condition, each location had been
shifted one “slot” clockwise; in Fig. 1a, the green location had
been present at Location 1 during training and would be at
Location 2 in an affine-transformed arena. In the generalizing
condition, the targets were shifted to a novel geometry—that of
the other group’s training condition. That is, a subject trained in
Fig. 1a would experience Fig. 1b as its generalizing condition.
Finally, the featureless transform removed all distinguishing
information from the cylinders; in place of their brightly col-
ored patterns, subjects simply saw blank, white pillars.

General procedures Participants were pseudorandomly divid-
ed into four groups based on two possible categories
(counterbalancing for gender). One of these divisions was based
on target location: Half the subjects would be trained with
locations along walls, and half the subjects would be trained
with locations at corners. Similarly, subjects were split into two
reinforcement groups before the experiment began: those who
would receive reinforcement at a location with a longwall on its
left (group A) and those who would receive reinforcement at a
location with a long wall on its right (group B). The division
between groupA and group B also counterbalances for distance
to first location (where applicable); for instance, in the wall
group (see Fig. 1b), half the subjects would be reinforced at

Location 1, which is close to the start location, and half would
be reinforced at Location 4, which is further away.

Upon arrival, subjects were instructed on how to move
around in the virtual world and were given time in a “wel-
come” room (a curved hallway with arrows pointing to a door
at its end) to practice movement before the experiment began.
Instructions were given to find a “correct location” inside each
new room they saw; these instructions deliberately avoided
the words “corner” and “wall.” Subjects were told that they
made a choice by walking into a location, at which time they
would see a display informing them whether their choice was
correct or incorrect. Occasionally, they were told, the display
would say “no feedback” regardless of the accuracy of their
choice. To encourage a consistent strategy over time, subjects
were told that they would be awarded points for correct
choices (even if the display said “no feedback”) and that they
should maximize their score.

Training Training consisted of blocks of 10 presentations of the
training arena. Each presentation allowed the subject any amount
of time to move freely about the enclosure but ended when they
moved into one of the target locations, receiving feedback as
described above (lasting for 3 s) before appearing in the center of
the training enclosure again. Training continued until the partic-
ipantmade eight “correct” choices in a single block (if, at the end
of a block, they had failed to make eight “correct” choices, they
restarted the block instead), at which point they progressed into a
nonreinforced training phase. During this phase, subjects had a
50 % chance of seeing a “no feedback”message after making a
choice. After making eight correct choices in a single block
during this phase (those scoring less instead restarted the
nonreinforced training block), testing began.

Testing Subjects received five test trials in each of the three
transformation conditions (affine, generalized, and featureless).
The test trials were presented in random order. Subjects were
aware that their choices would always receive a “no-feedback”
response during this phase.

Fig. 3 Example stimuli from
Study 1, from the perspective of
a subject standing in the center
of a rectangular arena with
visually salient locations of
interest placed at the corners (a)
or the walls (b). Compare with
Fig. 1. These locations could
have many possible colors and
patterns (c), including matte
white, although some colors
appear only in Study 2
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Following testing, subjects completed a posttesting reten-
tion test—10 no-feedback trials in their original training
enclosure. Subjects must have made seven correct choices
during this test to be included in analysis. Following this
test, subjects were not immediately debriefed; instead, they
proceeded to Study 3.

Results and discussion

Five subjects failed the posttesting retention test, resulting in
31 subjects (26 female) included in analysis. Early analysis
indicated that the data do not conform to normal distributions.
Therefore, subjects’ choice data were analyzed using random-
ization tests, employing bootstrapping methods to obtain con-
fidence intervals on Cohen’s d′ measure of effect size
(Edgington, 1995; Efron & Tibshirani, 1994).

This analysis showed no difference in number of training
blocks between the genders (males, M = 2.0, SD = 0.71;
females, M = 1.88, SD = 1.34; d′ = 0.1, 95 % CI [−0.56,1.32],
p = .86) or between different reinforcement groups (group A,
M = 1.6, SD = 0.63; group B, M = 2.2, SD = 1.6; d′ = −0.48,
95 % CI [−1.03,0.24], p = .19). Similarly, subjects did not
exhibit any significant differences in the amount of blocks re-
quired to learn the task if they were reinforced at walls or at
corners (walls, M = 2.25, SD = 1.61; corners, M = 1.53,
SD = 0.52; d′ = 0.60, 95 % CI [−0.02, 1.11], p = .08).

Within the affine test arena, there were no significant differ-
ences between groups in terms of the proportion of choices made
that were geometrically consistent (wall, M = 0.22, SD = 0.29;
corner,M = 0.09, SD = 0.14; d′ = 0.58, 95%CI [−0.09,1.15], p =
.11) or featurally consistent (wall, M = 0.74, SD = 0.33; corner,
M = 0.89, SD = 0.18; d′ = −0.58, 95 % CI [−1.18,0.03], p = .11)
with training. There were also no significant differences between
groups in terms of featurally consistent choices within the gen-
eralized arena (wall, M = 0.91, SD = 0.16; corner, M =
0.87, SD = 0.25; d′ = 0.17, 95 % CI [−0.53, 0.76], p =
.63). Finally, when subjects were tested in featureless arenas,
both groups made similar amounts of geometrically consistent
choices (wall, M = 0.58, SD = 0.35; corner, M = 0.57, SD =
0.34; d′ = 0.03, 95 % CI [−0.59, 0.77], p = .96).

Since neither corner-reinforced nor wall-reinforced subjects
showed any differences in choice behavior, they were pooled
together to test whether their geometric or feature choices were
significantly different from chance. Within the affine
arena, subjects’ choices followed the feature at a rate
significantly higher than chance (95 % CI [0.73, 0.90],
p < .05), and they made choices consistent with training
geometry significantly less often than chance (95 % CI
[0.08, 0.24], p < .05). Feature-consistent choices were
made in the generalized arenas more often than chance
(95 % CI [0.82, 0.95], p < .05). Within the featureless
arena, however, subjects’ choices did not significantly
differ from chance (95 % CI [0.46, 0.68], p > .05).

Taken as a whole, these results lead us to two conclusions.
First, “corner” locations do not appear to be special in a
reorientation context; subjects trained to visit wall locations
produced behavior statistically indistinguishable from the more
classic corner-visiting group. Second, that behavior suggests
that subjects rely on features far more than on geometry in this
particular reorientation paradigm, to the point where they al-
most fail to encode geometry altogether. This result is consistent
with other reorientation research that has shown that, in some
conditions, feature cues can overshadow geometric cues (e.g.,
Bodily, Eastman, & Sturz, 2011; Horne & Pearce, 2009; Pearce
et al., 2004), but such results are not at all universal.

Study 2: Eight locations

Method

Subjects Subjects were 35 University of Alberta undergraduates
(22 female), who received course credit for participation. As in
Study 1, participants were required to have normal color vision.

Apparatus The apparatus was identical to that employed in
Study 1, except in regard to stimuli.

Stimuli The stimuli had the same general nature as in Study 1;
only the possible color patterns were different. Four of the
patterns were the same stimuli present in Study 1. The
remaining four were brown vertical stripes, purple spots, black
diagonal stripes (upper-right to lower-left), and orange hexa-
gons. These stimuli are depicted in Fig. 3 and were placed in
the configuration depicted in Fig. 1c.

As in Study 1, there were three transformed arenas as well.
Transformation consisted of shuffling which color was present at
a particular “slot.” An affine transformation was created by
shifting the colors two “slots” clockwise relative to training,
which placed targets at novel wall configurations, but with the
same angle (90° or 180°) relative to training. A separate partial
transformation was created by shifting the colors one “slot”
clockwise; in this condition, both the wall configuration and
angle were different, as compared with training. Also as in
Study 1, a featureless condition was included where all locations
had identical pure-white colors in place of their original patterns.

General procedures The procedures followed were identi-
cal in all ways to those in Study 1, including the posttesting
retention test and progression to Study 3 upon completion.

Results and discussion

Five subjects failed the posttesting retention test, resulting in
30 subjects (19 female) included in the analysis. No evidence
of a gender effect (males, M = 2.0, SD = 0.45; females, M =
1.95, SD = 0.78; d′ = 0.08, 95%CI [−0.59, 0.94], p = .85) or of
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an effect of reinforcement grouping (group A, M = 2.1, SD =
0.83; group B,M = 1.8, SD = 0.42; d′ = 0.51, 95 % CI [−0.27,
1.21], p = .28) was found among the number of blocks these
subjects required to complete training. Similarly, no signifi-
cant difference was found in the number of blocks needed for
subjects to learn that their reinforcement was at a corner or a
wall (walls, M = 2.06, SD = 0.44; corners, M = 1.85, SD =
0.86; d′ = 0.30, 95 % CI [0.33, 1.28], p = .45).

In terms of choice consistency with particular cues, subjects
exhibited patterns similar to those in Study 1 in the affine and
featureless conditions, when adjusted to consider eight possible
target locations.Within the affine arena, subjects in both thewall-
target and corner-target conditions made similar proportions of
choices consistent with geometry (wall, M = 0.26, SD = 0.43;
corner,M = 0.33, SD = 0.41; d′ = −0.17, 95%CI [−0.89,0.45],
p = .60) and consistent with features (wall, M = 0.74, SD =
0.43; corner, M = 0.61, SD = 0.45; d′ = 0.31, 95 % CI
[−0.36,1.19], p = .376). Similarly, the featureless arena
saw subjects produce similar proportions of choices consistent
with training geometry (wall, M = 0.49, SD = 0.38;
corner, M = 0.54, SD = 0.45; d′ = −0.12, 95 % CI
[−0.88, 0.55], p = .71). The partial condition, where both
wall configuration and angle cues varied from training, also
produced similar proportions of choices consistent with
training geometry (wall, M = 0.30, SD = 0.42; corner, M =
0.31, SD = 0.40; d′ = −0.03, 95 % CI [−0.68,0.67], p = .90)
or with features (wall, M = 0.7, SD = 0.42; corner, M =
0.65, SD = 0.42; d′ = 0.12, 95 % CI [−0.56,0.87], p = .725).

In every case, subjects from both groups produced indis-
tinguishable results and were therefore pooled to test whether
their choices varied from chance. Within the affine arena,
subjects made choices consistent with the feature significantly
more often than chance (95 % CI [0.54,0.81], p < .05) but did
not make choices consistent with the original wall length
configurations more often than chance (95 % CI [0.16,0.43],
p > .05). Within the partial arena, subjects also followed the
original wall length configuration at chance rates (95 % CI
[0.17,0.45], p > .05) and followed feature cues significantly
more often than chance (95%CI [0.54,0.80], p < .05). Finally,
unlike in Study 1, subjects responded to the original wall
length configurations in the featureless arenas significantly
more often than chance (95 % CI [0.39, 0.65], p < .05).

In general, Study 2 supports Study 1’s findings that walls are
not significantly different from corners in terms of reorientation,
even when the number of locations is increased. Features
remain the best predictor of subject behavior and clearly dom-
inate such behavior when they are presented in conflict with
geometry, regardless of whether that geometry is completely
inconsistent with training (the affine condition) or partially
inconsistent with training (the partial condition). However,
unlike in Study 1, subjects’ behavior in the featureless arena
clearly indicates that geometry was encoded during training.
This is consistent with other literature that has shown that

humans are capable of completing reorientation tasks withmore
than four locations of interest (Newcombe et al., 2010).

This geometric overshadowing is the only noteworthy
difference between Study 1’s four-location task and Study
2’s eight-location task. While this type of overshadowing
has been observed during reorientation in some circumstances
(Bodily et al., 2011; Pearce et al., 2004), this is usually not the
case (e.g., Wall et al., 2004). It is quite possible that another
version of the four-location reorientation task in which
overshadowing does not occur may find no difference be-
tween four-location and eight-location reorientation, should
it be repurposed for the latter. Testing this claim would require
another experiment, beyond the scope of the present work.

Study 3: Direct comparison

Method

Subjects Subjects were participants from both Study 1 and
Study 2, as described above. This included subjects who
failed their original study’s posttesting retention test.

General procedures After completing the posttesting reten-
tion test for their original study, subjects found themselves
placed back in the “welcome” chamber and were instructed
that this marked the halfway point of the experiment. The
protocol followed from here is identical to that described in
Study 1, except for the stimulus set from whichever study the
subject had not already seen. Following completion of this
second experiment, subjects were debriefed.

Results and discussion

For discussions of the “first task,” subjects who passed their
posttesting retention tests as described in Study 1 and Study
2 were included in analysis. For the “second task,” a sepa-
rate posttesting retention test was performed (independently
of the subjects’ test result in their original study), and sub-
jects who performed poorer than 70 % on this trial were
excluded from analysis. Of the Study 1 subjects, 2 failed this
test, leaving 34 (28 female), while 3 of the Study 2 subjects
failed, leaving 34 (20 female) for analysis.

A large, and significant, order effect was observed (initial
study,M = 1.94, SD = 0.98; second study,M = 1.36, SD = 0.60;
d′ = 0.7, 95 % CI [0.41, 1.05], p = .001), regardless of which
task was completed first. For the first task, there was no signif-
icant difference in training blocks between the four-location task
and the eight-location task (four-location, M = 1.90, SD =1.25;
eight-location,M = 1.97, SD = 0.67; d′ = −0.06, 95%CI [−0.77,
0.37], p = .80). There was also no evidence of any significant
differences in time taken to learn the second task (four-location,
M = 1.28, SD = 0.46; eight-location, M = 1.44, SD = 0.70; d′ =
−0.27, 95 % CI [−0.68, 0.18], p = .27).
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Two general conclusions can be drawn from these results.
First, we do not find any evidence that changing the number of
locations makes a task easier or harder to learn, both for naïve
subjects and for subjects who have been trained in a different
task. This conclusion is consistent with the operant perceptron’s
predictions but inconsistent with models that adjust for the total
number of locations of interest (such as Miller & Shettleworth,
2007, 2008). Second, this result, combined with the order
effect, allows us to conclude that subjects learned the second
task faster than the first task, regardless of the number of
locations present in either task. This suggests that something
facilitated the second task. Since this is a difference in the mean
number of training blocks, as opposed to a difference in actual
time taken to complete those training blocks, it cannot be an
increase in familiarity with the virtual world. Those familiar
with the virtual world would be more proficient at positioning
their virtual avatar where they wanted, but this would translate
into a faster time per training block, not fewer total blocks
required to learn the task.

One possibility is that, like the perceptron model discussed
earlier, human subjects may be using a similar system to learn
both tasks—a system in which the total number of locations is
irrelevant. The perceptron accomplishes this by using an
encoding that relies purely on local cues, where each location
is considered independently of other locations during training.
Alternative models based on matching current visual stimuli to
previously learned visual stimuli (e.g., Cheung, Stürzl, Zeil, &
Cheng, 2008;Wystrach, Cheng, Sosa, & Beugnon, 2011) have a
similar property, while the associative models of Miller and
Shettleworth (2007, 2008) do not, by virtue of their global
probability terms.

Model evaluation

With both simulation results and experimental evidence in
analogous tasks at hand, we return now to the operant

perceptron and evaluate where the patterns of behavior agree
and where they disagree. The operant perceptron made two
broad classes of prediction: that subjects learn four-location
reorientation and eight-location reorientation with equivalent
amounts of training, and within each task, no appreciable
difference exists between wall locations and corner locations
in terms of reorientation behavior.

To see whether our experimental data agreed with the
perceptron’s claim of equivalent training time, we turned to
a Bayesian analysis of results to generate likelihoods (and a
corresponding semantic interpretation) for the null hypothesis,
rather than leaving the results to a simple significance test
(Gallistel, 2009). Within Study 1’s four-location conditions,
the odds in favor of a similar training time for walls and for
corners are 2.88:1 (modest); within Study 2’s eight-location
conditions, these odds were 3.48:1 (substantial) in favor of no
difference. For Study 3, for the first task, the hypothesis that
the amount of time taken to learn to orient in four-location
arenas and in eight-location arenas was the same had odds of
1.50:1 (weak); for the second task, the odds in favor of an
equal amount of training time were 4.20:1 (substantial). The
lower odds are not unexpected, given the relatively small
number of subjects in these experiments. Importantly, in every
case mentioned here, the odds are in favor of a null hypothesis
of no difference in training time; an interesting and possibly
counterintuitive prediction that arose from the computer sim-
ulation was supported by the experimental studies that used
human subjects.

As for the second major prediction, of no significant be-
havioral differences between wall and corner locations, we
turn to the pattern of perceptron response frequencies reported
in the Appendix (here, these are the conditional probabilities
of responding to a location given its cues, normalized across
all locations within an arena). These tables also report the
response frequencies for human subjects from Study 1 and
Study 2. Are the networks’ response frequencies appreciably
different from the humans’, or are they a plausible model?

To evaluate this, for each experimental condition, a 95 %
confidence interval was bootstrapped onto the mean of the
human subjects’ responses to each type of cue (Efron &
Tibshirani, 1994). These confidence intervals were used above
to compare the response rates with chance; here, they are used to
compare the response rate with the mean network response
frequency to the same cue type (such frequencies are the nor-
malized response rate). Since no difference was found in human
subjects between wall groups and corner groups, the networks’
corresponding location response frequencies were averaged as
well. These confidence intervals and their comparisons are given
in Table 3. In addition, Fig. 4 depicts the summarized human
response frequencies for affine-transformed arenas from Study 1
and Study 2 (for information on the other conditions, refer to the
Appendix); this can be qualitatively compared with Fig. 2, which
reports responses to the same conditions in the perceptron.

Table 3 Comparing human and network response frequencies with
specific cue types

Response Rates

Geometric Feature

Task Transform Human
(95 % CI)

Network Human
(95 % CI)

Network

Four Affine [0.08,0.24] 0.49 [0.73, 0.90] 0.50

Generalized N/A N/A [0.82,0.95] 0.57

Featureless [0.46, 0.68] 0.83 N/A N/A

Eight Affine [0.16, 0.43] 0.44 [0.54, 0.81] 0.45

Partial [0.17, 0.45] 0.51 [0.54, 0.80] 0.36

Featureless [0.39, 0.65] 0.71 N/A N/A
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In all cases with four locations, the network model con-
sistently predicted too many choices consistent with wall
length geometry and too few choices consistent with fea-
tures. This is not surprising, since humans consistently
chose geometric-consistent locations in this task at a rate
indistinguishable from chance, indicating that they did not
encode geometric cues, while a review of the connection
weights in Table 2 indicates that the networks did encode
such cues. In the eight-location task, the networks
performed much closer to human behavior in general,
although again the networks tend to respond more fre-
quently to geometry and less frequently to features than
do humans. Qualitatively, this is supported by compar-
ing Figs. 2 and 4: Except for humans trained in the
four-location corner condition, rotational error is present
in all locations to a similar degree, although the humans
followed the feature to a greater extent.

These discrepancies in response frequencies suggest a
need for exploring alternative design decisions in the
perceptron. In particular, one open question concerns how
changing the encoding of cue patterns might affect
perceptron responses, as well as relationships between the
networks and the humans that are based upon response
frequency measures. Alternatively, the brightly colored fea-
tures present during the experiment were highly visually
salient, as compared with the matte-gray walls, and it is
possible that the perceptron model (which assigned equal
salience to all cue types) did not capture this difference.
Exploring different learning rate parameters for each cue
type, or conducting an experiment with less-salient features,
may produce less of a discrepancy.

General discussion

The present article explored reorientation in novel vari-
ations on the standard reorientation task, informed by a
simple artificial neural network. Network simulations

and experimental data allowed us to examine how be-
havior changes—or rather, does not change—when the
locations of interest are placed at locations other than
the corners of a quadrilateral arena. Furthermore, we
examined this in the context of changing the number
of salient targets from four to eight and found that the
difficulty in learning the task does not actually increase
and, furthermore, that skills learned in one task gener-
alize to the other in both directions. These results were
consistent within both simulation and experiment and
suggest that the behavior governing reorientation in-
volves processing the cues available at locations taken
in isolation, regardless of the global structure of the
environment. In other words, learning reorientation does
not require comparing the current location with any
other possible location, contrary to the proposal of
Miller and Shettleworth’s (2007, 2008) model.

These results—both simulated and experimental—suggest
an interesting refinement to the hypothesis that angles are
processed in a manner similar to features (Sturz, Forloines,
& Bodily, 2012). Under this refinement, the location of inter-
est serves as a visually salient focal point—a reference from
which wall length and angle cues are determined. In a typical
reorientation task, the corners of an arena create that focal
point (observe, for instance, how clear the boundaries are at
the corners in Fig. 3b), but our results suggest that other
visually salient goals (here, pillars, but also possibly bowls
of food, boxes with toys, and so forth) can create the same
effect, even if they are not placed at corners. The angle the
walls form at the location of interest therefore becomes a
feature of that location, in much the same manner as tradition-
al feature cues, such as color. This allows associative models
to capture associative strength at locations other than
corners—a property demanded of these models by recent
empirical work (Horne, León, & Pearce, 2013).

Furthermore, the negative weights present on certain cues
and biases in the model suggest that inhibition is key to this
process; that is, agents not only learn to approach cues that were

Fig. 4 Example human
response frequencies in affine-
transformed arenas. The figures
are presented in the same
manner as the perceptron data
in Fig. 2. Refer to the Appendix
for complete response data in
all conditions
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reinforced during training, but also learn to avoid cues that were
not reinforced during training. Classical reorientation results,
such as rotational errors, may not emerge through a process
based on relative attractiveness (e.g., Miller & Shettleworth,
2008) but may, rather, emerge due to the interplay between
excitation and inhibition when presented with a transformed
arena. In particular, the negative biases in the model suggest
that the model is inherently hesitant about investigating loca-
tions unless certain cues are observed. When presented with a
dramatically transformed arena (i.e., the four-location general-
ized condition, where networks trained in corners are tested at
walls, and vice versa), responses resembling rotational error
emerge due to the absence of such inhibitory cues, rather than
the presence of excitatory ones. This suggests that investigating
the role of inhibition may play a critical role in the development
of our theoretical understanding of spatial learning.

Additionally, theories of viewpoint-matching (Cheung et
al., 2008) propose that reorientation is largely a matter of
learning broad visual stimuli when reinforced, then seeking
to minimize the difference between one’s current visual
input and this learned image. This theory could also be
capable of reorienting in arenas without corner-based loca-
tions. Interestingly, both this theory and the operant
perceptron model learning as error-correcting on the basis
of a pattern of subject behavior, although they encode the
available stimuli in dramatically different manners. It would
be interesting to see how their predictions on choice fre-
quencies differ, if at all. Evaluations and comparisons of
earlier associative and viewpoint-matching theories exist in
the context of ant navigation (Wystrach et al., 2011), which
suggest that associative models’ inherent segregation of
feature and geometry cues is problematic. Although the
encoding presented to the operant perceptron does code
features separate from “geometry,” it also suggests that the
two are processed in the same manner (as the presence or
absence of particular cue indicators).

The choice to use configuration unit encoding (i.e., a
different unit turns on for each possible wall-length configu-
ration) choice was made for consistency with existing litera-
ture (Dupuis & Dawson, in press; Horne & Pearce, 2010;
Miller & Shettleworth, 2007, 2008). If the simulation diverges
from live-agent data, then this theoretical choice may not be
appropriate. Indeed, a divergence appears in two aspects: The
simulation encoded geometry in the four-location task, while
human subjects did not, and the networks produced slightly
different choice frequencies (Table 3). However, in spite of
this, the model still correctly predicted several interesting re-
sults, such as the lack of a difference between corner-trained
and wall-trained subjects and the similar difficulty of the four-
location and eight-location tasks. This suggests that the model
needs adjustment, but that adjustment need not be extreme.
This adjustment could take the form of parametric adjustment
(i.e., salience changes, discussed above) or a change in how

arena walls are encoded (i.e., thermometer coding; Dawson,
Kelly, et al., 2010); these changes may have important theo-
retical implications, if any prove more fruitful than configura-
tion encoding.

These developments provide examples of experimental
results informing future modeling decisions, which is a
common practice in cognitive science. However, the present
work, in contrast, demonstrated that modeling can quite
easily inform experiment as well. A new experimental result
or theoretical construct can revise an existing model, which
in turn can be used to generate empirical claims in novel
environments quickly and cheaply. If any of those predic-
tions are of interest, future experimentation can be used to
test these new hypotheses.

This methodological style—creating simple and plausible
models that behave and then generating hypotheses and
experiments on the basis of this behavior—is an example
of the synthetic approach to cognitive science (Dawson,
2004; Dawson, Dupuis, & Wilson, 2010). The synthetic
approach can prove fruitful in breaking future deadlock or
opening up novel research paradigms. For example, to the
best of our knowledge, the present work describes the first
attempt at systematically varying the nature and number of
locations during reorientation. The decision to investigate
this comparison was motivated entirely by the structure of
the neural network model. Additionally, although the inter-
pretation of angle as a feature cue is contested in the liter-
ature (Hupbach & Nadel, 2005; Lee & Spelke, 2011) and
the traditional response would be to design an experiment to
fit data to see whether such an interpretation is valid, here,
the synthetic approach allows that problem to be
circumvented to a point. We posit a model that processes
angles as features and then see what it can and cannot do.
Here, that model behaved in a way consistent with our
human subjects, with their largest differences being due to
parametric selection rather than a structural change. Our
neural network model suggests that processing angles as
features may be entirely consistent with associative theories
of reorientation.

This neural network model is a ripe avenue for future
research. The operant perceptron successfully handled
reorientation with assorted numbers of target locations, po-
sitioned at arbitrary points along the edge of an arena, using
the encoding described above. This encoding can easily be
extended, including extra input units to represent angles
other than 90° or 180° or to represent other sets of wall
length configurations than those used here. Putting these
properties together allows this architecture to handle any
polygonal arena with edge-defined locations of interest,
including kites (Dawson, Kelly, et al., 2010; Pearce et al.,
2004), hexagons (Sturz & Bodily, 2011), and octagons
(Newcombe et al., 2010). While we could extend the oper-
ant perceptron to see whether it fits the data from some of
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the novel tasks (i.e., regular octagons; Newcombe et al.,
2010) in a manner similar to a more standard perceptron
(Dawson, Kelly, et al., 2010), the synthetic approach would
be to generate totally new predictions inspired by our find-
ings. In this case, we might try nonuniform octagons (an
arena type not yet investigated), or we might note other
successes of the operant perceptron altogether, such as
superconditioning (Dupuis & Dawson, in press) or proba-
bility matching (Dawson et al., 2009), and branch out be-
yond reorientation into completely new paradigms.

Lewandowsky (1993) observed that computer modeling
had its benefits, if done with care. The present work illustrates
all of these core ideas. A desire to increase mathematical rigor
in the Miller and Shettleworth (2007, 2008) model led to the
development of new tools—both the operant perceptron

(Dupuis & Dawson, in press) used in simulation and the
fAARS-Lite platform (Dupuis, 2012; Gutiérrez, 2012;
Lubyk et al., 2012) used in data collection. These tools facil-
itated finding and testing the tacit assumption in reorientation
literature that corners have some inherently special property.
Finally, the simulation results indicating that there should be
no difference in effort needed to learn reorientation in arenas
with more locations fit the description for serendipitous find-
ings in novel environments, a point emphasized by the same
result appearing among human subjects. It would appear that,
even after 20 years, Lewandowsky’s observations and advice
for cognitive modelers still remains effective.

Author Note This work is based on part of a master’s thesis defended in
September 2012 for the Department of Psychology, University of Alberta.

Appendix

Table 4 Average responses of operant perceptrons and human subjects to the four-location simulation

Task Type Transform Loc Color Angle Wall Configuration Network Human

Left Right Activity Frequency Frequency

Four Corner Affine 1 Blue 90* 6* 3* 0.36 0.24 0.06

2 Green* 90* 3 6 0.75 0.50 0.89

3 Red 90* 6* 3* 0.36 0.24 0.03

4 Yellow 90* 3 6 0.01 0.01 0.02

Generalized 1 Blue 180 2 4 0.26 0.17 0.04

2 Green* 180 2 1 0.94 0.62 0.87

3 Red 180 2 4 0.26 0.17 0.04

4 Yellow 180 2 1 0.06 0.04 0.04

Featureless 1 White 90* 6* 3* 0.52 0.42 0.26

2 White 90* 3 6 0.11 0.08 0.19

3 White 90* 6* 3* 0.52 0.42 0.30

4 White 90* 3 6 0.11 0.08 0.25

Wall Affine 1 Yellow 180* 2* 4* 0.37 0.25 0.16

2 Blue* 180* 2 1 0.75 0.50 0.68

3 Green 180* 2* 4* 0.36 0.24 0.11

4 Red 180* 2 1 0.01 0.01 0.05

Generalized 1 Green 90 6 3 0.26 0.22 0.02

2 Red 90 3 6 0.06 0.05 0.05

3 Yellow 90 6 3 0.26 0.22 0.03

4 Blue* 90 3 6 0.60 0.51 0.49

Featureless 1 White 180* 2* 4* 0.53 0.42 0.26

2 White 180* 2 1 0.11 0.08 0.22

3 White 180* 2* 4* 0.53 0.42 0.35

4 White 180* 2 1 0.11 0.08 0.29

* Cue type reinforced during training
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Table 5 Average responses of operant perceptrons and human subjects to the eight-location simulation

Task Type Transform Loc. Color Angle Wall Configuration Network Human

Left Right Activity Frequency Frequency

Eight Corner Affine 1 Black 180 2 4 0.04 0.03 0.01

2 Blue 90* 4* 2* 0.36 0.22 0.16

3 Purple 180 2 1 0.04 0.03 0.02

4 Green* 90* 1 2 0.74 0.45 0.58

5 Orange 180 2 4 0.04 0.03 0.00

6 Red 90* 4* 2* 0.36 0.22 0.18

7 Brown 180 2 1 0.04 0.03 0.04

8 Yellow 90* 1 2 0.01 0.01 0.01

Partial 1 Blue 180 2 4 0.03 0.02 0.01

2 Purple 90* 4* 2* 0.42 0.25 0.19

3 Green* 180 2 1 0.61 0.36 0.65

4 Orange 90* 1 2 0.07 0.04 0.00

5 Red 180 2 4 0.03 0.02 0.00

6 Brown 90* 4* 2* 0.42 0.25 0.11

7 Yellow 180 2 1 0.01 0.00 0.03

8 Black 90* 1 2 0.07 0.04 0.01

Featureless 1 White 180 2 4 0.05 0.04 0.00

2 White 90* 4* 2* 0.49 0.35 0.26

3 White 180 2 1 0.05 0.04 0.06

4 White 90* 1 2 0.09 0.07 0.15

5 White 180 2 4 0.05 0.04 0.01

6 White 90* 4* 2* 0.49 0.35 0.26

7 White 180 2 1 0.05 0.04 0.09

8 White 90* 1 2 0.09 0.07 0.17

Wall Affine 1 Black 180* 2* 4* 0.36 0.22 0.11

2 Blue 90 4 2 0.04 0.03 0.00

3 Purple* 180* 2 1 0.74 0.45 0.76

4 Green 90 1 2 0.04 0.03 0.00

5 Orange 180* 2* 4* 0.36 0.22 0.13

6 Red 90 4 2 0.04 0.03 0.00

7 Brown 180* 2 1 0.01 0.01 0.00

8 Yellow 90 1 2 0.04 0.03 0.00

Partial 1 Blue 180* 2* 4* 0.42 0.25 0.18

2 Purple* 90 4 2 0.61 0.36 0.71

3 Green 180* 2 1 0.07 0.04 0.00

4 Orange 90 1 2 0.03 0.02 0.00

5 Red 180* 2* 4* 0.43 0.25 0.11

6 Brown 90 4 2 0.01 0.00 0.00

7 Yellow 180* 2 1 0.07 0.04 0.00

8 Black 90 1 2 0.03 0.02 0.00

Featureless 1 White 180* 2* 4* 0.50 0.35 0.29

2 White 90 4 2 0.05 0.04 0.15

3 White 180* 2 1 0.09 0.07 0.13

4 White 90 1 2 0.05 0.04 0.00

5 White 180* 2* 4* 0.50 0.35 0.18

6 White 90 4 2 0.05 0.04 0.14

7 White 180* 2 1 0.09 0.07 0.07

8 White 90 1 2 0.05 0.04 0.03

* Cue type reinforced during training
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