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Preface
In 2008, Comparative Cognition & Behavior Reviews 

was kind enough to publish a monograph that explored 
the relationship between simple artificial neural networks 
called perceptrons and models of associative learning 
(Dawson, 2008). That work attempted to use perceptrons 
as a medium in which associative learning could be ex-
amined from the perspective of cognitive science. To do 
so, it presented a number of formal analyses as well as the 
results of a number of computer simulations of associative 
learning. It made the interesting discovery that two sys-
tems (i.e., perceptrons and the Rescorla-Wagner model) 
could be formally equivalent and at the same time produce 
different behavioral results. This “perceptron paradox” 
was dealt with by arguing that the equivalence between 
the two systems was at what cognitive scientists call the 
computational level of analysis, but differences between 
formally equivalent systems could still exist when their 
formal theories were brought to life at a different lev-
el, the algorithmic level of analysis.

One consequence of that monograph was my involve-
ment in a research project with Marcia Spetch, Debbie 
Kelly, and my student Brian Dupuis that attempted to use 
perceptrons to model the behavior of biological agents in 
the reorientation task (Dawson, Kelly, Spetch, & Dupuis, 
2008, 2010; Dupuis & Dawson, 2013a, 2013b). During 
this work, I (too slowly) realized that what the perceptrons 
were really doing was learning about the probability of 
reward associated with signals carried by cues. This led 
to some early explorations of the behavior of perceptrons 
in simple contingency experiments (Dawson & Dupuis, 
2012; Dawson, Dupuis, Spetch, & Kelly, 2009). Even-
tually I started to explore the behavior of perceptrons 
when they learned about uncertain environments—envi-
ronments in which an input stimulus does not signal an 
outcome with certainty but only signals the outcome with 
a certain degree of probability. The current monograph 
describes the results of this exploration.

The current monograph is a sequel to Dawson (2008). 
It presents computational and algorithmic treatments of 
how perceptrons adapt to uncertainty. It reports formal 
analyses that relate perceptron structures to Bayesian 
probability and logistic regression. It describes the results 
of experiments that investigate what perceptrons learn 
when there is not a one-to-one relationship between 
stimuli and responses. It also details the results of a study 
that explores human probability learning in a variety of 
conditions and relates human performance to that of per-
ceptrons. All of these results suggest that both perceptrons 

and people behave as if they are naive Bayesians, at least 
in the basic kind of task studied here.

The current monograph also serves as a case study 
in synthetic psychology, an approach that involves build-
ing simple systems and then studying their behavior in a 
variety of interesting environments. I have long viewed 
artificial neural networks as a medium in which this 
synthetic approach can be pursued (Dawson, 2004). The 
various approaches described in the chapters that follow 
are attempts to demonstrate the utility of the synthetic 
approach for the study of probability learning.

Finally, the current monograph relates a specific 
topic (how associative systems adapt to uncertainty) to a 
variety of other literature related in one way or another 
to the evolution of cognitivism in psychology. These in-
clude cybernetics, information theory, probability theory, 
systems theory, statistical inference, decision theory, and 
the cognitive psychology of category learning. Some of 
the core ideas in these theories appear repeatedly as one 
studies the cognitive science of associative learning. 
I hope that the current monograph illustrates the rich 
interrelationships between the psychology of associa-
tive learning and these other fields.
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Chapter 1: Uncertainty and Adaptation
Chapter 1 introduces the main topics of this mono-

graph and the basic components that are used to explore 
these topics. Our relationship with the world is uncertain: 
We can never predict the future with perfect accuracy. We 
will see that this is due to three sources of uncertainty: 
epistemic, somatic, and ontic. However, we thrive in this 
uncertain environment, which suggests that we somehow 
can adapt to it. How do we adapt to an uncertain world? 
This chapter describes a probabilistic discrimination task, 
called the card-choice task, which focuses this question by 
exploring a smaller, but interesting, component of prob-
ability learning. This task is straightforward but can be 
related to diverse topics, including experiments on animal 
reorientation and studies of multiarmed bandit strategies. 
The card-choice task is also closely related to an old and 
well-established literature on probability learning. One of 
the core findings in this psychological literature is that hu-
mans exhibit probability matching: The number of times 
an action is performed is correlated with the probability 
that the action is rewarded. We hypothesize that proba-
bility matching is the result of associative learning of the 
sort described by a simple artificial neural network, the 
perceptron. We describe the basic properties of this type of 
network and train it on a probability discrimination task. 
The results of this study indicate that perceptrons are, at 
face value, plausible models of probability learning. A 
more detailed examination of probability estimation by 
perceptrons is required and is provided in later chapters.

1.1 Sources of Uncertainty
1.1.1 The End of Time’s Arrow

The scientific revolution that began in the 16th cen-
tury developed the metaphor of the clockwork universe 
(Shapin, 1996). According to this metaphor, the universe 
is a perfect machine, a clock wound by God; the laws of 
physics govern the movements of its gears. The seeds of 
this metaphor were planted in astronomy’s attempts to 
improve its predictions about the future locations of heav-
enly bodies. Johannes Kepler revolutionized astronomy 
and its predictive power with his insight that the orbits 
of the planets are elliptical, not circular. Kepler’s three 
laws of planetary motion may be the greatest scientif-
ic contribution ever (Ekeland, 1988).

The idea of the clockwork universe was firmly 
established by the mathematical treatment of Kepler’s 
theory by another giant of the scientific revolution, Sir 
Isaac Newton. Newton’s theory of gravity, formalized in 
the calculus that he invented, could be used to derive Ke-

pler’s laws. Newton’s mathematical treatment of gravity 
provided the foundation of celestial mechanics, which 
attracted the attention of the greatest mathematical minds; 
the successes of celestial mechanics became the envy of 
all of the other sciences (Ekeland, 1988).

One intriguing property of celestial mechanics is that 
it eliminates the unidirectional arrow of time. That is, dif-
ferential equations themselves pay no heed to the direction 
of time. If one knows the current positions and velocities of 
celestial bodies of interest, then one can use the differential 
equations of celestial mechanics to predict their positions 
at any desired time in the future or in the past. “[The human 
mind’s] discoveries in mechanics and geometry, added to 
that of universal gravity, have enabled it to comprehend in 
the same analytical expressions the past and future states 
of the system of the world” (Laplace, 1796/1952, p. 4).

Celestial mechanics’ ability to predict both the in-
finite future and the infinite past demonstrates the certainty 
provided by the clockwork universe. Given the current 
states of its gears, and understanding the differential 
equations that govern their turning, the clockwork model 
offered complete, deterministic, and certain predictions.

1.1.2 Epistemic Uncertainty
It is important to note that the clockwork universe 

offers predictive certainty only in principle. In practice, 
there are limits to its predictive power. For instance, 
consider Newton’s derivation of Kepler’s elliptical orbits. 
This derivation requires considering the gravitational 
forces between only two celestial bodies (e.g., the sun 
and the Earth). However, the result is in fact only a highly 
accurate approximation of reality, because other celestial 
bodies—the Earth’s moon, the other planets, their moons, 
and so on—also contribute forces that influence the 
positions of the sun and the Earth. Perfect and complete 
prediction requires considering the effects of these other 
bodies on the particular orbits of interest.

Unfortunately, the clockwork model of the universe 
is compromised as soon as one uses celestial mechanics to 
predict the positions of three bodies instead of two (e.g., 
the sun, the Earth and the Earth’s moon). By the end of the 
19th century, Heinrich Bruns and Henri Poincaré proved 
that this situation, known as the three-body problem, has 
no general mathematical solution. Making predictions 
involving more than three bodies is similarly intractable.

The difference between the in principle and the in 
practice predictive power of the clockwork universe 
illustrates the limits of human abilities to understand 
and predict the world (Laplace, 1796/1952). In 1796, 
French mathematician Pierre Simon, Marquis de 
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Laplace, considered the properties of an agent, now 
known as Laplace’s demon, capable of completely un-
derstanding and predicting the world:

Given for one instant an intelligence which could com-
prehend all the forces by which nature is animated and 
the respective situation of the beings who compose 
it – an intelligence sufficiently vast to submit these data 
to analysis – it would embrace in the same formula the 
movements of the greatest bodies of the universe and 
those of the lightest atom; for it, nothing would be un-
certain and the future, as the past, would be present to 
its eyes. (Laplace, 1796/1952, p. 4)

The predictive power of Laplace’s demon arises from 
its infinite knowledge as well as from its unlimited power 
to process this information. Limitations to knowledge or 
to analytic power must in turn reduce the ability to predict 
the future (or the past) from the present. Laplace recog-
nized that the human mind was subject to such limitations. 
As a result, the human mind is “feeble” in comparison to 
the demon’s vast intelligence, “from which it will always 
remain infinitely removed” (Laplace, 1796/1952, p. 4). 
The practical implication of this is that the human mind 
is not capable of making perfect predictions about the 
future using current information. Human predictions can 
lead to surprises (e.g., when they prove to be incorrect); at 
best they are only probabilistic. The inability to perfectly 
predict the future due to limited knowledge of the world is 
called epistemic uncertainty (Gigerenzer & Murray, 1987).

Epistemic uncertainty exists when perfect predictions 
cannot be made from the current situation because of the 
lack of knowledge. Such uncertainty might simply occur 
because an agent is ignorant about how to use current evi-
dence to make accurate predictions. In this case, acquiring 
knowledge about what evidence to use, or how to use it, 
can mediate or eliminate epistemic uncertainty. In other 
words, epistemic uncertainty can be reduced via learning.

1.1.3 Somatic Uncertainty
However, although epistemic uncertainty can be 

reduced, another kind of uncertainty is more difficult 
to counteract. For example, limitations in an agent’s 
perceptual mechanisms may prevent it from sensing the 
appropriate information to be used to make predictions. 
Similarly, an agent’s brain mechanisms may impose lim-
itations that prevent the proper processing of information. 
Although epistemic uncertainty occurs when there is 
simply limited knowledge of the world, this second type 
of uncertainty occurs because limits in knowledge are due 
to constraints inherent in the bodily structure of the agent. 
Let us call this somatic uncertainty.

Somatic uncertainty has played an important role in 
the study of visual perception. It has long been known that 
the relationship between the distal visual world and our 
interpretation of it is ambiguous. This ambiguity is due 
to somatic limitations of perceptual mechanisms (Marr, 
1982). For instance, the visual world (called the distal 
stimulus) can be considered to be a three-dimensional 
array of light sources and surfaces that reflect light. Light 
from this array stimulates retinal receptors in the eye, 
producing a pattern of activity called the proximal stim-
ulus. However, when the distal stimulus produces the 
proximal stimulus, information is necessarily lost because 
of the somatic properties of the retina.

There are two reasons for this loss of information. 
First, the proximal stimulus is only two-dimensional, 
meaning that a whole dimension of the distal stimulus 
is lost when it is projected as a proximal stimulus. This 
is because the retina itself is two-dimensional. Second, 
certain properties of receptors (such as their limited field 
of view) also produce information loss. For example, 
some components of the movement of an edge will not be 
detected when motion detectors have small fields of view, 
leading to what is known as the aperture problem (Hildreth, 
1983). Both of these reasons cause the proximal stimulus 
to underdetermine its distal cause: In principle, a single 
proximal stimulus is consistent with an infinite number of 
different distal stimuli (Marr, 1982). The proximal stimu-
lus does not uniquely specify the distal array that caused it.

The somatic uncertainty of visual perception leads 
to theories about how the missing information can be 
replaced. These theories range from using unconscious 
inference (Gregory, 1970, 1978; Helmholtz & Southall, 
1856/1962; Rock, 1983) to applying wired-in natural con-
straints (Dawson, 1991; Grimson, 1981; Hildreth, 1983; 
Marr, 1982; Richards, 1988; Ullman, 1979). These various 
theories are all motivated by the problem that visual expe-
rience is subject to somatic uncertainty.

Somatic uncertainty is also central to Egon 
Brunswik’s probabilistic functionalism (Brunswik, 1943, 
1952, 1955). This is illustrated in Brunswik’s lens model, a 
version of which is provided in Figure 1-1. The lens model 
describes a relatively stable connection between a class 
of events in the world and a corresponding achievement, 
which might be an action on the world or a judgment about 
it. The connection between these two is provided by the 
functional arc, the dashed line in the figure.

In the lens model, the stability of the functional 
arc must be achieved by passing the effects of the world 
through the agent, who evaluates these filtered effects in 
order to render a judgment. The agent is the lens that maps 
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properties of the world onto judgments or actions. This 
mapping is mediated through a set of internal cues that 
represent perceived properties of the world. Important to 
note, the association between the world and the cues it 
produces is not perfect; Brunswik viewed the relationship 
between the world and a cue as being a correlation. This is 
consistent with the problem of visual underdetermination 
as just discussed. In addition, cues may be provided or 
modified by additional stray causes. A similarly imperfect 
or correlational mapping exists between the cues that are 
represented within the agent and the judgment or action that 
is made using these cues. Formalizations of the lens model 
use regression equations to describe the relationships be-
tween the cues and the world, and between the cues and 
the judgment (Hursch, Hammond, & Hursch, 1964; Tuck-
er, 1964). Because neither of these relationships is perfect 
(i.e., because both of these relationships are correlational), 
“gross organismic coming-to-terms with the environment 
can thus never become foolproof” (Brunswik, 1952, p. 23).

The lens model is of interest for two reasons. First, 
it offers a context in which the differing influences of 
somatic and epistemic uncertainty can be considered. For 
instance, the problem of underdetermination for visual 
perception suggests that in the lens model the uncertain re-
lationship between the world and the cues reflects somatic 
uncertainty. That is, our perceptual mechanisms may lead 
to a degree of uncertainty about which cues are present 
in the environment. If such uncertainty is somatic, then 
it cannot be reduced by an organism.

In contrast, the uncertain relationship between 
the cues and the judgment made by the agent reflects 
epistemic uncertainty. In this situation, if the agent’s 
cues do not lead to a certain judgment, then this is likely 
because the agent does not properly understand how to 
use the cues to inform the judgment.

The second reason for interest in the lens model 
is related to this point about epistemic uncertainty. The 
purpose of the lens model is to illustrate a stable relation-
ship between the world and an agent’s judgments about 
it. This relationship is mediated by the lens of the agent, 
but it can also be changed. This is why Brunswik includes 
feedback in the lens model: As the agent experiences 
instances of an event class in the world, the agent can 
learn to improve its judgment of this class. Presumably, 
this can be accomplished only by reducing epistemic 
uncertainty—that is, by altering the mapping from 
cues to judgment. This is because somatic uncertainty 
(reflected in the mapping from the world to the cues) is 
related to limitations imposed by the agent’s body and is 
therefore much more difficult to change.

As we proceed through this monograph, we will 
return to the lens model. One purpose of this monograph 
is to provide an account of mechanisms that might 
reduce epistemic uncertainty in a fashion that is consis-
tent with the role of feedback in Figure 1-1. We use the 
perceptron as a model of how epistemic uncertainty can 
be reduced via associative learning.

Important to note, although perceptron learning can 
reduce epistemic uncertainty, perceptrons are still subject 
to somatic uncertainty. In particular, because perceptrons 
are simple—because they do not include hidden units—
they are limited in terms of the kind of relationships that 
they can detect (Minsky & Papert, 1969). In later chapters, 
we show that in learning probabilistic relationships, this 
limitation manifests itself in the inability to detect prob-
ability of reward that is signaled by interactions between 
cues. This means that perceptrons cannot learn probabil-
ities of reward perfectly in all situations. As the percep-
tron’s simple structure is the source of this limitation, it 
cannot be overcome, and it reflects somatic uncertainty. 
We will see that with training, the perceptron does its best 
in these circumstances (by adjusting network parameters 
to reduce its epistemic uncertainty), but the somatic 
uncertainty cannot be eliminated. Of greater interest is 
that we will see that human participants exhibit a similar 
pattern of behavior and are much poorer learners of re-
ward probability when it is signaled by cure interactions. 
This suggests that the somatic uncertainty of the percep-

Figure 1-1. Brunswik’s lens model of the mapping between the world 
and actions upon it. This figure is a variation of Brunswik (1952) Figure 1.
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tron, due to its simple structure, can provide a plausible 
model of human probability learning.

1.1.4 Ontic Uncertainty
The clockwork universe reflects a deterministic 

view of nature. The successes of Newtonian physics 
strengthened the assumption of determinism. Even the 
advent of quantum physics, which includes stochastic 
concepts, did not diminish determinism. This is because 
the wave function of quantum mechanics is deter-
ministic in nature (Prigogine, 1997).

As we saw earlier, one property of the deterministic 
equations in physics is that they eliminate time’s arrow. 
That is, these equations are reversible: One can use them 
to predict the state of the future or to predict the state 
of the past. To physics, the universe is time-symmetric; 
there is no distinction between past, present, and future 
(Prigogine, 1997). However, the time-symmetric view 
of physics seems problematic, because our experience 
indicates that worldly events cannot be reversed. “Yet 
everywhere—in chemistry, geology, cosmology, biology, 
and the human sciences—past and future play different 
roles” (Prigogine, 1997, p. 2). This leads to what Prigogine 
called the time paradox: If physics takes the world to be 
time-symmetric, then how can the arrow of time observed 
in all of the other sciences emerge from physics?

Prigogine’s (1997) solution to the time paradox is to 
extend physics by including using probabilities as the basic 
objects of physics instead of trajectories or wave functions. 
This produces physical theories that are time-asymmetric. 
This also leads to a physics of nonequilibrium processes 
that describes self-organizing systems. These systems 
violate traditional physical ideas because their ability to 
self-organize reflects negative entropy, or a violation of 
the second law of thermodynamics. This second law states 
that the entropy of a system can never decrease; over time, 
a system must become less organized.

Ideas similar to Prigogine’s have also developed 
in other fields of science. For example, beginning in 
the 1920s, Ludwig von Bertalanffy began his reaction 
against mechanistic and deterministic views in biology. 
Bertalanffy argued that biological systems were not closed 
systems of the sort that were governed by the second 
law of thermodynamics. Instead, Bertalanffy argued that 
biological systems were open; because of this openness, 
they could achieve a state of dynamic equilibrium that is 
a characteristic of self-organization (Bertalanffy, 1933, 
1952). Bertalanffy argued that biology should discover 
the laws of biological organization; physicist Erwin 
Schrödinger’s (1945) publication What Is Life? popular-

ized this type of position. Later, Bertalanffy extended his 
view by arguing that similar principles of organization can 
be discovered across diverse scientific disciplines. This 
resulted in Bertalanffy pioneering what is now known as 
systems theory (Bertalanffy, 1968a). In 1954 Bertalanffy 
and three other Fellows at Stanford University’s Center 
for Advanced Study in the Behavioral Sciences (econo-
mist Kenneth Boulding, mathematician Anatol Rapoport, 
and neurophysiologist Ralph Gerard) famously laid the 
foundations for a society devoted to the promotion of 
general systems theory (Hammond, 2003).

The seeds of Bertalanffy’s original general system 
theory have grown into a forest of advances in multiple 
disciplines, including biology, ecology, neuroscience, 
psychology, and economics (Arthur, 2015; Bertalanffy, 
1968b; Holland, 1992, 1995, 2012; Kauffman, 1995; 
Meadows & Wright, 2008; Ramage & Shipp, 2009). Many 
of these advances have been due to the use of new kinds 
of computer simulations, including genetic algorithms 
(Mitchell, 1996), artificial life (Langton, 1995), and cellu-
lar automata (Farmer, Toffoli, & Wolfram, 1984; Toffoli & 
Margolus, 1987). The common thread uniting these meth-
ods involves local, nonlinear interactions between neigh-
boring elements; these interactions propagate through the 
system over time. These systems are compelling because 
complex—and difficult to predict—global regularities 
emerge from these local interactions (Holland, 1998).

The regularities that emerge in such systems are 
difficult to predict analytically; they are instead typically 
studied by building working models (Ashby, 1960). One 
reason that these systems are very difficult to predict is 
because they are frequently instances of what are known 
as chaotic or complex systems (Devaney, 1989; Gleick, 
1987; Waldrop, 1992). In a chaotic system, very tiny 
differences in initial starting states can lead to dramatic 
qualitative differences in system behavior over time. 
As well, a dynamic chaotic system may not settle into 
a distinct stable state but instead will move through a 
regular, though unpredictable, sequence of states called 
a strange attractor. The complexity of the behavior of 
these systems often leads to their being described using 
fractal mathematics (Mandelbrot, 1983).

Chaotic systems are of interest because they are 
intrinsically impossible to predict. This impossibility is 
not due to epistemic or somatic uncertainty, which are 
properties of an agent. Instead, this impossibility is a 
fundamental property of the system being predicted itself. 
A world that by its very nature is impossible to predict 
exhibits ontic uncertainty (Gigerenzer & Murray, 1987). 
Note that the difference between ontic uncertainty and the 
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other two forms of uncertainty (epistemic and somatic) 
that we have considered is that ontic uncertainty is a prop-
erty of the world, not of the agent. Epistemic uncertainty 
reflects an agent’s lack of knowledge of how to use cues, 
which can be reduced via learning. Somatic uncertainty 
reflects an agent’s physical inability to detect cues that 
could be used to predict the world and cannot be overcome 
with learning. However, an agent with perfect knowledge 
(zero epistemic uncertainty) and gifted with the ability 
to perfectly perceive any cue (zero somatic uncertainty) 
would still be unable to predict the world if the world itself 
is intrinsically uncertain (nonzero ontic uncertainty).

There is a growing sense in systems theory that 
natural systems exhibit ontic uncertainty. However, ontic 
uncertainty can also be true in very mundane situations. 
Consider fair games of chance such as the Monty Hall 
problem, where one must choose which of three identi-
cal doors hides a prize, or a game of poker in which one 
can see only the backs of the cards held by opponents. 
The fairness of these games depends on the fact that, in 
principle, the available evidence does not permit the 
player to know which door hides the prize or whether 
his opponent holds the ace of spades.

1.1.5 Summary and Implications
The clockwork universe envisioned by the natural 

philosophers was completely deterministic and perfectly 
predictable. Humans, and other biological agents, do not 
exist in such an ideal universe. Limits to our knowledge 
about the world produce epistemic uncertainty. Struc-
tural constraints imposed by our sensory and neural 
systems restrict the kind of information that we can sense  
or process, causing somatic uncertainty. The grow-
ing belief that the world is intrinsically dynamic, 
nonlinear, chaotic, and unpredictable means that 
we constantly face ontic uncertainty.

This implies that biological agents exist in an uncer-
tain, unpredictable world. Given our current knowledge 
of the world, we can never predict what will happen next 
with complete certainty. Nevertheless, we are able to 
survive or thrive; we can cope with this uncertainty. This 
suggests that we are at least able to make predictions that 
have a high probability of being correct, even though 
their accuracy can never be certain. How do we adapt to 
the probabilistic nature of our world?

One approach to explaining how biological agents 
deal with the world’s uncertainty involves developing new 
formalisms about unpredictability. Mathematical prob-
ability theory, pioneered during the 18th century, is the 
prototypical example of this approach. It has a long history 

of development not only within mathematics itself but also 
in the context of a diversity of disciplines (David, 1962; 
Gigerenzer, 1989; Hacking, 2006). Probability theory also 
forms the basis for related formalisms that are intended in 
one way or another to cope with the world’s uncertainty. 
These include game theory (Neumann & Morgenstern, 
1944), decision theory (Bock & Jones, 1968; Chernoff 
& Moses, 1959; Eells, 1982; Luce, 1959), information 
theory (Cherry, 1957; Shannon & Weaver, 1949), statis-
tical inference (Cox, 1961; Pólya, 1954; Savage, 1962), 
signal detection theory (Green & Swets, 1974), and cyber-
netics (Ashby, 1956; Wiener, 1948, 1950). Probabilistic 
techniques can be used as tools to aid decision-making 
in uncertain conditions (Heyck, 2012). After such tools 
have been developed and established, they often evolve 
into psychological theories concerning decisions under 
uncertainty (Gigerenzer & Murray, 1987).

Another approach to explaining how humans cope 
with uncertainty is to develop psychological theories of 
information processing by using experimental findings. 
Cognitive psychology has developed a number of theories 
in this fashion, including bounded rationality (Simon, 
1982; Simon, Egidi, & Marris, 1995), heuristics and biases 
(Tversky & Kahneman, 1974), fast and frugal heuristics 
(Gigerenzer, 2000, 2010), and Bayesian rationality (Oaks-
ford & Chater, 1998, 2007). Clearly, accounts of how to 
deal with uncertainty have a very long history; exploit 
diverse methodologies that include formal proofs, com-
puter simulations, and psychological experiments; take 
a variety of theoretical forms; and appear in a multitude  
of disciplines.

The goal of this monograph is consistent with this 
state of affairs. It provides the perspective of a particu-
lar field, connectionist cognitive science, on judgments 
under uncertainty. Because this perspective is rooted in 
cognitive science, which is itself highly interdisciplinary 
(Dawson, 1998, 2013), it too will make contributions 
that include formal analyses, computer simulations, and 
psychological experiments. However, it attempts to use 
these various approaches to shed insight into judgments 
under uncertainty by focusing on a specific (though im-
portant) task and by modeling this task with a very simple 
system (an artificial neural network called a perceptron) 
the properties of which can be directly translated into 
formal notions of probability. In addition, perceptron 
learning can be formally related to psychological theories 
of associative learning (Dawson, 2008). It is hoped that 
this approach—the detailed study of a basic mechanism 
that is capable of coping with the probabilistic nature of 
its environment—will provide a concrete example that can 
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be used as a foundation for exploring the large and varied 
literature related to this topic and for relating this literature 
to basic characteristics of associative learning.

Chapter 1 introduces the basic components of this 
investigation. First, it describes the task of interest: using 
signals or cues as information to make a choice, where 
this choice will lead to a reward, but only with a certain 
probability. Second, it explores the aspects of this task 
that can be improved with experience. In some sense, 
this investigates the kinds of changes that feedback might 
make in the lens model of Figure 1-1. Third, it describes 
the basic properties of a simple neural network, the per-
ceptron. Simulation results show that this network is well 
suited to adapt itself in such a way that its performance on 
the task of interest can improve. After establishing these 
basic elements in Chapter 1, we will be in a position to 
consider a more detailed account that relates the properties 
of this task and of this artificial mechanism to probability 
discrimination and associative learning.

1.2 Seeking Rewards in an Uncertain World
This section of Chapter 1 introduces the first main el-

ement in our exploration of adapting to uncertainty: a basic 
task. We require a task that is straightforward so that it can 
be easily used to train a simple artificial neural network and 
so that it can be used to collect observations from human 
participants. However, in spite of its simplicity, it must be 
broad enough in scope to be able to provide insight into a 
variety of topics. Furthermore, this task should be relevant 
to everyday problems that arise in an uncertain world.

We develop an account of this task as follows: 
First, we provide a real-world example of a problem 
that illustrates its core properties. Second, we provide a 
general description of what these properties are. Third, 
we present several examples of different kinds of para-
digms that have been explored in a variety of domains 
and argue that each is a variation of the task that is a 
basic element of the current monograph.

1.2.1 Choosing Cherries
Consider a commonplace activity: buying a flat of 

cherries. The goal is to purchase some cherries that are 
rewarding because of their sweet taste. However, in most 
cases we cannot directly test their sweetness by tasting 
them. Instead, we have to consider a variety of other cues 
or signals and use this evidence to inform our choice of a 
particular flat of cherries from various possibilities. Many 
cues could predict cherry sweetness.

For instance, confronted with a store’s display of 
many flats of cherries, the various flats could be compared 

in terms of differences in cherry sizes, or differences in 
cherry colors. It might be expected that a flat containing 
large deep red cherries will be more rewarding than a flat 
containing smaller lighter-colored cherries. Similarly, it 
may be likely that a flat with cherries that are bruised, 
misshapen, or apparently spoiled in any other way 
will be less rewarding than a flat that does not possess  
these characteristics.

Other evidence might come into play as well. A 
store might have cherries labeled in terms of their place 
of origin. Perhaps cherries from British Columbia will 
be sweeter than cherries from Chile, or from Mexico, 
or from California. Perhaps this depends on the time of 
year that the shopping occurs. Chilean cherries might 
be the most rewarding if I am shopping in Edmonton in 
January. However, if I am shopping in the summer, then 
I might expect Canadian cherries to be sweeter. In short, 
the time of year can also provide information relevant to 
choosing cherries. The location being shopped might itself 
be a source of evidence. Perhaps cherries purchased at a 
fruit stand or at a farmers’ market will be sweeter than 
cherries purchased at a Superstore, Walmart, or Costco. 
In addition, the price of cherries possibly indicates their 
sweetness. It is possible that a vendor recognizes that 
sweeter cherries are more valuable, and therefore offers 
them at a higher price. The vendor might also provide 
information about when the cherries were picked, or the 
flats might be labeled with a “best before” date.

Clearly, many kinds of evidence might inform a 
choice of cherries. Assume that some or all of this evi-
dence is used to select a particular flat to purchase. This 
choice results from the evidence-based prediction that the 
cherries in this flat will be sweet. The actual taste of the 
chosen cherries then provides a test of this prediction. The 
results of this test can motivate changes in how evidence 
is used to predict sweetness. If the cherries are as sweet as 
predicted, then perhaps no changes will be made at all. If 
the prediction is less accurate, then there may be a stronger 
motivation to alter how evidence is used to choose cherries. 
It is plausible to assume that larger errors in predictions 
could lead to larger changes in the use of evidence.

Pleasant surprises may also cause changes the use 
of evidence. For instance, perhaps circumstances force a 
purchaser to choose one of the few remaining flats with 
cherries that are more yellow than red. This atypical color 
might predict that the cherries will be sour. A pleasant 
surprise—that these different cherries are also sweet, be-
cause they are a different species—could alter how color 
is used as evidence of cherry quality.
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This commonplace task of choosing cherries has 
some key attributes. First, varieties of cues are used to 
inform an action: choosing one flat of cherries from the 
many available. This choice is made under the assumption 
that the cues predict that the selected cherries will be sweet. 
This prediction is not certain; it is tested later by tasting 
the selected fruit. The results of this test can then motivate 
changes in how the different cues are used to select cherries.

This commonplace task also raises a number of 
interesting questions. How and when is the use of evi-
dence modified? If more than one source of evidence has 
been used, how is it decided which sources need to be 
reevaluated, and by how much? How are cues converted 
into a particular choice in the first place? A central goal 
of this monograph is to explore associative processes 
that provide answers to such questions.

1.2.2 A Generic Task
The previous section provided a concrete example of 

the kind of task that is of particular interest in the current 
monograph. Let us now provide a generic description of 
this task before reviewing some notable versions of it that 
have been reported in the literature.

In the generic task, the world consists of a finite set 
of different objects. Each object is characterized by a finite 
set of characteristics, which we call cues. So, some object 
x (represented as Ox) can be characterized as a set of cues, 
where each cue takes on some value: Ox = (Cue1, Cue2, …, 
Cuen). The task itself is to choose one of the objects with 
the goal of being rewarded. It is assumed that each object, 
after being selected, will have a certain probability of pro-
viding a reward. It is also assumed that each cue provides 
a signal that carries information about the probability of 
reward. For instance, each cue could independently signal 
reward probability, and the actual probability of reward is 
the result of combining these signals. It is also possible 
that some cues interact, so multiple cues must be consid-
ered together to determine the likelihood of reward.

In general, it is assumed that the task proceeds as 
follows: An agent considers an object from the set of those 
that are available. Knowledge about this object—the sig-
nals provided by the object’s cues—is then used to predict 
reward probability. This predicted probability is then used 
to decide whether to choose the object. When selected, the 
object provides a reward (or not) with a particular proba-
bility. This offers a test of the prediction.

It is also assumed that when the task begins, an agent 
may have no knowledge about reward probability. That is, 
the agent may have no idea about which objects are more 
likely and which objects are less likely to provide rewards. 

Furthermore, the agent may have no knowledge about how 
cues are related to an object’s probability of reward. The 
task is structured so that an agent can explore the envi-
ronment (i.e., the set of objects) over time, first choosing 
one object, then another, and observing the rewards that 
may or may not be provided. It is assumed that the agent 
will acquire knowledge about the environment by means 
of this exploration. For instance, over time the agent 
will learn something about how the various cues signal 
reward probability and take advantage of this knowledge 
to increase the likelihood of being rewarded. As a result, 
this generic paradigm is an example of what is known as 
probabilistic discrimination task (Estes, Burke, Atkinson, 
& Frankmann, 1957). In a probabilistic discrimination 
task, participants explore an environment to learn its 
probability structure by translating different stimuli (or the 
cues that define them) into probabilities of reward.

It is assumed that, from the perspective of the agent, 
the purpose of the task is to seek reward. That is, receiving 
a reward is better for an agent than not receiving a reward. 
However, beyond this, no further assumptions are made. 
For instance, we are not concerned with characterizing an 
ideal agent that seeks the maximum possible number of 
rewards. We are instead concerned with a more modest 
goal, exploring the choice behavior of an agent that adapts 
to this uncertain environment, and whose learning permits 
the agent to receive more rewards later in the task than was 
the case earlier in the task. The nature of this learning is of 
primary interest: If an agent’s behavior changes over time 
(i.e., if they receive rewards more frequently over time), 
then what sort of learning or adaptation is responsible?

This generic characterization of the task of interest 
indicates that it is related to the lens model that is presented 
in Figure 1-1. The common point of contact between the 
task and the lens model is the set of cues that are detected 
by the agent and the probabilistic relationship between 
these cues and the judgment or action that they support. 
Our characterization of the task places less emphasis on 
the probabilistic relationship between the focal point in 
the world and the detected cues that is made explicit in 
the lens model. As we explore how agents learn in the 
task, we place more emphasis on mechanisms that provide 
feedback than is typically found in treatments of the lens 
model. This is because a description of the nature of this 
feedback amounts to an account of how learning proceeds.

1.2.3 Example: The Card-Choice Task
The previous section provided an account of a 

generic situation in which agents explore objects in an 
environment, are rewarded (or not) when particular ob-
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jects are chosen, and use these rewards to learn about how 
environmental cues (e.g., the patterns of cues that identify 
objects) signal reward probability. Let us now turn to pro-
viding some concrete examples of this generic situation.

The first example is a particular paradigm, called 
the card-choice task, which is central to the current 
monograph. For instance, detailed results about human 
performance on this task are provided in Chapter 7. In the 
card-choice task, participants see a set of eight different 
playing cards on a computer screen. Each card consists 
of three symbols (diamond, club, heart) and each symbol 
has one of two colors (green, blue). Each card is uniquely 
identified by its symbols. The eight possible cards that can 
be constructed in this fashion are illustrated in Figure 1-2, 
which also indicates a mapping between card symbols and 
cue names, as well as a numeric vector that indicates the 
state of each cue for each stimulus.

In the card-choice task, participants are told that dif-
ferent cards may be more or less likely to provide a reward 
and that the symbols on each card might provide some 
information about what this likelihood might be. They are 
also told that because reward is probabilistic, a card that 
generates a reward when it is chosen at one point may not 

give a reward when it is chosen again. Participants are 
instructed that the environment needs repeated exploration 
so that they can learn about the different reward probabili-
ties. While they are informed that the symbols that identify 
the card can provide hints about reward probability, they 
are also informed that a card’s location does not. To re-
inforce this instruction, after a participant makes 16 card 
choices, the cards are randomly shuffled. After shuffling, 
the cards are in different positions, but each card will still 
give a reward with the same probability as it did before. 
Participants are given the goal of obtaining as high a score 
as they can. They are also told that as they explore the en-
vironment by choosing cards, they should be able to learn 
which cards reward more and which cards reward less, and 
they can use what they learn to achieve a higher score.

A participant’s task in this environment is quite sim-
ple: The participant simply uses the computer’s mouse to 
choose a card. When a card is chosen, it will either give a 
reward or not. If a reward is not given, then nothing hap-
pens. If the participant is rewarded, then he or she hears a 
tone and the score on the screen increases. The computer 
program that conducts the experiment records the card se-
lected, whether it provided a reward, and the card’s location 
for each of the participant’s choices. The experiment pro-
ceeds by the participant successively making card choices. 
After 320 choices, the participant is finished with this task. 

The independent variable in this task involves ma-
nipulating how the various cues are used to determine 
the probability that a reward will be given when a card is 
selected. For example, in an independent probability con-
dition, when a cue is present (e.g., when its color is green 
as in Figure 1-2) this is a signal of a particular probability 
of reward. Each of the three cues can independently signal 
a different reward probability. The actual probability of 
reward associated with a card can be computed by com-
bining the signaled rewards of each cue using the additive 
probability rule (Rozanov, 1977). Thus, a particular card 
will never generate a reward every time it is presented but 
will only do so probabilistically, where this probability is 
signaled by the pattern of symbols on the card. This makes 
this task an example of a probabilistic discrimination task 
(Estes et al., 1957). Other rules that map cue states onto 
reward probabilities can be easily created.

This simple environment has several different advan-
tages. First, despite its simplicity it can be used to collect a 
rich source of information about choice behavior. Second, 
by altering the rules that are used to map cue patterns to 
reward probabilities, it can easily be used to explore con-
ditions that make choice behavior easy or difficult. For in-
stance, how are participants affected when the probability 
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Figure 1-2. The stimulus properties for the card-choice task. Each stimu-
lus is a “playing card” defined by three symbols that can be filled with one 
of two colors. One color indicates that the cue is in one state (e.g., pres-
ent), and the other color indicates that the cue is in a different state (e.g., 
absent). The labels in the figure map card symbols to cue names. The 
vectors at the bottom of each card provide a numerical representation 
of cue states; this representation assumes that blue signals 0 and that 
green signals 1. In the card-choice task, participants see only a tableau 
of the eight cards; the labels are not presented.

Cue A

Cue B

Cue C

Cue A

Cue B

Cue C

(0,0,0) (1,0,0) (0,1,0) (1,1,0)

(0,0,1) (1,0,1) (0,1,1) (1,1,1)
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of reward depends on combining the states of more than one 
cue? Third, the dynamics of choice behavior are complete-
ly under a participant’s control: They decide which card to 
choose next and move through the task at their own speed. 
Fourth, examining the decisions that participants make by 
simply asking them to make choices is ecologically valid, 
in the sense that this represents everyday behavior. Some 
studies have instead explored decisions under uncertainty 
by asking participants to generate numbers that represent 
probabilities that participants use (Gigerenzer & Hoffrage, 
1995; Kahneman & Tversky, 1972, 1973). This approach 
neglects the possibility that participants make choices 
under uncertainty that are guided by probabilities but that 
these probabilities are determined by unconscious mecha-
nisms. In our view, our task for participants is more natural 
and is appropriate for the study of choices that are guided 
by probabilities that may be unconsciously computed.

Note that the card-choice task is a probabilistic 
discrimination task (Estes et al., 1957) analogous to the 
generic examples described earlier. For instance, consider 
the relationship between it and the cherry choice example 
from Section 1.2.1. In the card-choice task, each card 
is analogous to a different flat of cherries. The symbols 
on each card are analogous to the different properties of 
each flat of cherries that are used to predict sweetness. 
When participants choose a particular card and note the 
resulting reward, this is analogous to choosing a particular 
flat of cherries and then testing the prediction that these 
cherries (because of their properties) are sweet. The ad-
vantage of the card-choice task for studying probabilistic 
discrimination is that it limits the number of cues that are 
involved in learning and limits the states of these cues to 
two. However, the analogy between the card-choice task 
and the earlier generic description shows that the logical 
structures of these tasks are all equivalent.

Important to note, other tasks also have this struc-
ture. These tasks have received considerable discussion 
in the literature. The next two sections briefly describe 
two such tasks that have appeared in two very different 
research domains. Each of these tasks can be considered 
as a probabilistic discrimination task. The purpose of 
describing these other tasks is to indicate that models of 
how agents learn probabilities in the card-choice task are 
relevant to a wide range of research topics.

1.2.4 Example: The Reorientation Task
Our first example of a paradigm that is strongly 

related to those introduced earlier in this monograph is 
the reorientation task (K. Cheng, 1986). The reorientation 
task is used by experimental psychologists to study animal 

and human navigation. In a typical reorientation task, an 
agent is placed inside a rectangular arena. Covers or small 
barriers are located at different places in the arena; one 
hides a food reward, and the others do not. An agent’s task 
is to discover the location of the reward in the arena. By 
repeatedly placing an agent in the arena, it learns to use 
available cues to identify the reward’s location. These 
cues—the evidence supporting the agent’s choice—can 
include the shape of the arena, colors of arena walls, or the 
appearance of landmarks at various locations in the arena. 
The task can be quite flexibly used to explore the extent 
to which agents navigate using different kinds of evidence 
(K. Cheng, 2005; K. Cheng & Newcombe, 2005) and has 
been used to study reorientation in an enormous range of 
animals, including insects (Wystrach & Beugnon, 2009), 
fish (Sovrano, Bisazza, & Vallortigara, 2007), birds (Gray, 
Bloomfield, Ferrey, Spetch, & Sturdy, 2005), and humans 
(Twyman, Friedman, & Spetch, 2007).

Although the reorientation task is firmly linked to the 
animal navigation literature, it is clearly an example of a 
probabilistic discrimination task like those just introduced. 
First, animals make a choice in the task (by selecting a 
location) that is either rewarded or not. Second, the choice 
is determined by the information provided by the cues that 
are available in the arena. Third, the relationship between 
cues and rewards can be probabilistic.

This last point is illustrated in Figure 1-3. This figure 
provides an example of a reorientation task arena. In this 
arena, the only cues available are its shape. This is because 
all the walls are indistinguishable in their appearance, and 
no identifying landmarks are present at any of the loca-
tions. An agent can only identify the location of the reward 
(labeled Correct in the figure) using wall properties (e.g., 
length). From the animal’s perspective, the only evidence 
that indicates the correct location is a short wall on its 
left and a long wall on its right. The problem is that this 
evidence is not perfect. This is because the same evidence 
is provided at the incorrect location labeled Rotational, a 
location that is never rewarded. Even with perfect process-
ing of the evidence, the agent will at best pick the correct 
location, and be rewarded, on only 50% of its choices. In 
other words, this evidence (called geometric evidence) 
provides only a probable identification of correct location. 
Any agent that is using such evidence is making a choice 
under uncertainty consistent with the earlier characteriza-
tion of a probabilistic discrimination task.

One reason that the reorientation task is introduced 
at this point is to illustrate its relationship to probabilistic 
discrimination in general, which indicates that what we 
learn about models of the card-choice task later in this 
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monograph can have implications that are more general. 
A second reason, developed in more detail later in this 
chapter, is that a very simple kind of artificial neural 
network called a perceptron has been shown to model 
performance in the reorientation task (Dawson, Kelly, et 
al., 2010). This suggests that this simple type of network is 
a plausible model of probabilistic discrimination. For this 
reason, the early chapters of this monograph explore the 
relationship between this type of model and probabilistic 
discrimination. Later (Chapter 7), evidence is presented 
that perceptrons are appropriate models of human proba-
bility learning in the card-choice task.

1.2.5 Example: The Multiarmed Bandit
The reorientation task is an instance of a probabilistic 

discrimination task that has arisen in experimental psychol-
ogy in an area that is not typically portrayed as concerned 
with probability learning. The probabilistic discrimination 
task also arises in another literature that is concerned with 
formal and computer models of statistical learning. This 
is because the probabilistic discrimination task is also 
analogous to the classic multiarmed bandit problem (Auer, 
Cesa-Bianchi, & Fischer, 2002; Gittins, 1979, 1989).

In the classic form of multiarmed bandit problem, an 
agent is in a room with a slot machine that has several 
arms that can be pulled, each of which rewards with a dif-
ferent probability. An equivalent version of this problem 
is to assume the presence of many “one-armed bandit” 
slot machines. When the arm of one of these machines is 
pulled, it pays a reward of either 1 or 0 units; each machine 

has a different (and usually fixed) probability of paying 
off, which is not initially known by the agent. The agent 
can explore this environment by choosing to pull the arm 
of one machine or another. Over time, the agent makes a 
number of these choices. Researchers who are interested 
in this problem attempt to discover strategies that an agent 
can use to maximize the total payoff over the game’s 
duration (Kaelbling, Littman, & Moore, 1996). These 
strategies seek an optimal combination of exploration and 
exploitation: An agent must explore different machines to 
determine their various payoff probabilities but must also 
exploit the results of this exploration to maximize reward. 
A “greedy strategy” pulls only the arm of the machine 
with the highest expected payoff probability. However, as 
the duration of the game increases, an alternative strategy 
would be to explore other machines as well, in case early 
probability estimates were inaccurate.

Theories of multiarmed bandits usually view each 
machine as a unique whole. However, it has been argued 
that each bandit can easily be viewed as feature collec-
tions, with the machine’s probability of reward being 
determined by this feature set and not upon the (whole) 
machine itself (Dawson et al., 2009). The utility of a 
feature for predicting reward can depend on the payoff 
of several machines because a feature may be shared by 
more than one bandit. When bandits are associated with 
sets of cues, the multiarmed bandit problem becomes 
formally equivalent to the card-choice task. To be more 
precise, each card in the card-choice task is analogous to a 
bandit that pays out with a set probability; this probability 
is signaled by the pattern of cues that differentiate this 
bandit from the others in the room.

Linking the multiarmed bandit problem to a proba-
bilistic discrimination task is important in three respects. 
First, it makes it evident that an account of probabilistic 
discrimination must pay attention to key issues related 
to bandits, such as acknowledging the importance of 
exploration and exploitation in choice behavior. Second, 
the common framework provided by the probabilistic 
discrimination task provides a medium that shows the 
relationship between very different literatures, such as 
research on multiarmed bandit algorithms and research on 
animal navigation. Third, as was the case for the reori-
entation task, it has been shown that perceptrons can be 
used to model aspects of the multiarmed bandit problem 
(Dawson et al., 2009). This provides more evidence for 
exploring the properties of these simple networks when 
they adapt to uncertain environments.

Figure 1-3. An overhead view of a reorientation task arena. The four 
possible locations are indicated by the circles; the filled-in gray circle 
indicates the only location that hides a food reward. The shape of the 
arena provides the only cues that can be used to identify the correct 
location. This evidence is probabilistic, though, because the same shape 
information is present at the locations labeled Correct and Rotational, but 
only one of these two locations is rewarded. In other words, this shape 
information only signals a probability of reward of 0.50.
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1.2.6 Summary and Implications
The card-choice task is an example of a generic dis-

crimination task (Estes et al., 1957). In such a task, various 
cues provide information about an item (e.g., an indication 
of whether it will lead to a reward), but this information 
is uncertain. This task was introduced as an example para-
digm for exploring how agents learn to adapt to uncertain 
environments. We will see that one reason for introducing 
this task is that it can easily be defined in a way that can be 
presented to a simple artificial neural network.

Although this probabilistic discrimination task is 
quite basic, variations of it can easily be found in the liter-
ature. Sections 1.2.4 and 1.2.5 demonstrated, for example, 
that the reorientation task and the multiarmed bandit are 
strongly related to the card-choice task. This suggests that 
the card-choice task might provide further understanding 
that is applicable in a variety of fields.

As a probabilistic discrimination task, the card-choice 
task is also related to a broader literature on probability 
learning. This literature, and its implications for the aims 
of the current monograph, is introduced next in Section 1.3.

1.3 Probability Learning
The previous section introduced the card-choice task 

for studying choice behavior under conditions in which re-
ward is uncertain. We now turn briefly to consider the rela-
tionship between such a task and an area that has received 
considerable interest in psychology since the 1950s: the 
study of probability learning. We briefly review some of 
the core findings in the probability learning literature and 
use them to make basic predictions about the sorts of results 
that we should expect from human participants when they 
perform the card-choice task. We also use the probability 
learning literature to raise some additional issues that we 
will need to consider when examining human data.

1.3.1 Early Research
The study of probability learning began in the 1930s 

(Brunswik, 1939; Humphreys, 1939), but it was in the 
1950s that research on this topic exploded (Estes, 1964). 
In his review, Estes cited 80 studies that were published 
beginning in the early 1950s, all of which examined prob-
ability learning in human participants.

The typical paradigm used to study probability 
learning was first described by Humphreys in 1939. In this 
paradigm, an individual participates in a series of trials. 
On each trial, the participant chooses a response from 
a set of alternatives provided by the experimenter. This 
choice is the participant’s prediction of what will happen 
next. For instance, a typical choice involves predicting 

whether a light will turn on. After the participant makes 
this choice, the experimenter indicates whether the choice 
or prediction was correct. In a typical noncontingent 
version of this paradigm, each response has a fixed prob-
ability of being reinforced. This probability is completely 
independent of the participant’s present or past choices. 
In a different, contingent version of this paradigm, the 
probability of reinforcement is determined from the 
participant’s response (Detambel, 1955; Neimark, 1956). 
That is, if the participant makes one response, then one 
probability of reward is used, but if the participant makes a 
different response, then a different probability of reward is 
used. In most studies that used variations of Humphreys’s 
original task, participants could make one of two possible 
choices. On occasion, studies were conducted in which 
the number of possible choices was greater than two 
(R. A. Gardner, 1957; Neimark, 1956).

The early probability research reviewed by Estes 
(1964) produced three general findings. First, it appeared 
probability learning was also affected by variables which 
affected other forms of human learning. As a result, re-
searchers were encouraged to model probability learning 
with simple learning models such as the pattern model 
(Estes, 1957b) or statistical sampling theory (Estes, 1950). 
For instance, the pattern model is a linear model that pre-
dicts the probability of a response on the next trial from 
the current response probability using the equation Pn+1 
= (1 – θ) • Pn + θ. In this equation, P is the probability of 
the response, its subscript indicates the trial, and θ is a 
learning constant with a value between 0 and 1.

Second, one of the main regularities revealed by 
probability learning experiments is probability matching. 
When probability matching is observed, the probability 
that the participant makes a particular response closely 
corresponds to the probability that the response is re-
warded (Estes, 1957a). This phenomenon demonstrated 
“a degree of replicability quite unusual for quantitative 
findings in the area of human learning” (Estes, 1964, p. 
94). Probability matching has been observed in a variety 
of organisms, including insects (Fischer, Couvillon, & 
Bitterman, 1993; Keasar, Rashkovich, Cohen, & Shmida, 
2002; Longo, 1964; Niv, Joel, Meilijson, & Ruppin, 2002), 
fish (Behrend & Bitterman, 1961), turtles (Kirk & Bitter-
man, 1965), pigeons (Graf, Bullock, & Bitterman, 1964), 
and humans (Estes & Straughan, 1954). Important to note, 
probability matching is typically seen when the data from 
a group of participants are combined and is an asymptotic 
effect that is reached after participants have experienced a 
number of probability learning trials.
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Third, probability learning experiments raised 
interesting questions that required further study. For 
instance, it was typical to observe many individual differ-
ences between participants in their response behavior. In 
addition, although statistical learning models performed 
well when predicting performance on basic probability 
learning tasks, they were challenged when confronted 
with data from more complex paradigms, such as those 
that used contingent reinforcement. To Estes (1964), 
such challenges indicate “the probability learning situa-
tion may be too complex to be handled in all desirable 
detail by any manageable model” (p. 116).

Two of the complications facing learning theorists’ 
ability to account for probability learning deserve to 
be singled out. This is because of their relevance to the 
cognitive revolution’s impact on this literature and to their 
relation to mathematical information theory.

First, many of the individual differences in prob-
ability learning behavior suggested that higher level 
cognitive strategies might be influencing participants’ 
performance. For example, certain studies indicated that 
some participants exhibited a “gambler’s fallacy” in that 
they were more likely to predict an event the longer that 
it had not occurred or been reinforced (Jarvik, 1951). As 
another example, after a long series of trials, participants 
often tend to “overshoot” by choosing a higher-reward re-
sponse more frequently than its reward probability would 
predict (Jarvik, 1951), or will suddenly depart from their 
well-established probability matching behavior. In both 
of these cases, participants may be recognizing that their 
success rate has stabilized and therefore change response 
strategy because they recognize that their performance 
is not improving. That higher-level cognition might be 
involved in probability learning led some researchers to 
explore this phenomenon in situations in which general 
rules (instead of probability distributions) needed to be 
determined (Goodnow & Postman, 1955) or to identify 
various strategies that participants might be employ-
ing (Gluck, Shohamy, & Myers, 2002).

Second, at the root of learning theorists’ accounts of 
probability learning is the basic assumption that a reward 
satisfies a drive or motive. However, some studies of 
probability learning suggested that the function of reward 
was not to satisfy a need. Instead, when a reward occurred, 
it simply served as a signal that conveyed information 
(Bitterman, 1956; Hillix & Marx, 1960). The view of 
rewards as signals or sources of information heralded the 
rise of cognitive approaches to probability learning, not to 
mention cognitive theories of learning that assumed that 
learning was not so much a function of reward, but was 

instead driven by surprises that occurred when predic-
tions failed (Rescorla & Wagner, 1972).

1.3.2 Cognition and Probability Learning
Estes’s (1964) review of probability learning 

described reliable phenomena, successful models from 
learning theory, and a variety of issues for inspiring 
new research. About a decade later, however, the cog-
nitive revolution had taken a firm hold of experimental 
psychology and had dramatically altered the study 
of probability learning. This had three implications 
that are of interest to this monograph.

First, research on how humans adapt to an uncer-
tain environment moved away from the learning theory 
approach described by Estes (1964) to a cognitive ap-
proach that was concerned with how humans reason when 
faced with uncertainty (Tversky & Kahneman, 1974). 
In particular, this cognitive research used probability 
theory to define optimal performance (Gigerenzer, 1989; 
Gigerenzer & Murray, 1987) and then demonstrated that 
when humans are faced with uncertainty they often make 
judgments that are not optimal (Kahneman & Tversky, 
1972, 1973; Lindley, Tversky, & Brown, 1979; Tversky 
& Kahneman, 1983). In general, the cognitive position 
was that limits in processing ability required humans 
to base their judgments on heuristics instead of prob-
ability theory and that these heuristics included biases 
that produced suboptimal performance.

Second, some researchers attempted to modify 
traditional accounts of probability learning to make this 
research relevant to cognitive psychology. Mathematical 
models of probability learning focus on behavior or 
performance instead of underlying mechanisms (Estes, 
1964). For instance, in the pattern model that was brief-
ly introduced in Section 1.3.1, the only variable is the 
probability of responding (Pn+1 or Pn). The pattern model’s 
equation uses a learning rate but does not appeal to specif-
ic mechanisms of learning or of representing information 
that is required for an agent to match probabilities. Estes 
proposed a cognitive theory of probability matching that 
addressed this issue by exploring how different forms of 
memory investigated by cognitive psychologists might be 
used to store the information required to compute response 
or reward probabilities (Estes, 1976).

Third, the cognitive revolution arose beginning in 
the late 1950s by exploring the new ideas that emerged 
from the invention of the digital computer. In particular, 
when cognitive psychologists viewed humans as informa-
tion processors, they viewed information processing in a 
very particular way: as the rule-governed manipulation 
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of symbols (Dawson, 2013; Pylyshyn, 1984). However, 
by the mid-1980s a different perspective on information 
processing—parallel distributed processing—challenged 
the established symbolic perspective (Hinton & Anderson, 
1981; McClelland & Rumelhart, 1986; Rumelhart & 
McClelland, 1986). With the arrival of this new view of 
information processing, some researchers explored the 
possibility of using artificial neural networks to explore 
probability learning (Gluck & Bower, 1988). For instance, 
Gluck and Bower used a simple network that made coun-
terintuitive predictions about choices in a probabilistic 
categorization task. Of interest is that Estes, a key figure 
in the probability learning literature, felt that artificial 
neural networks of the sort explored by Gluck and Bow-
er were too simple to provide an adequate account of 
probability learning (Estes, 1991). 

1.3.3 Implications
The three observations that ended Section 1.3.2 are 

of interest because they foreshadow some of the themes 
of the current monograph. Its main goal is to use artificial 
neural networks to explore probability learning. One 
purpose of these networks is to serve as a possible mech-
anism for probability learning, which was a concern of 
Estes (1976). The networks that we begin this exploration 
with are quite simple, but we show that they can provide a 
great deal of insight into probability learning, in contrast 
to the position of Estes (1991). However, the networks 
themselves as traditionally conceived will not suffice to 
explain the strategic aspects of probability learning (e.g., 
the trade-off between exploration and exploitation).

To set the stage for the more detailed exploration 
of how artificial neural networks can contribute to the 
literature on adapting to uncertainty, the remaining sec-
tions of Chapter 1 develop the elements that we explore 
in technical detail in later chapters. First, we briefly 
establish that the card-choice task reveals that human 
participants adapt to uncertainty and that this adaptation 
reveals probability matching. These results are to be 
expected if the card-choice task measures some of the 
basic processes related to probability learning as this 
section and the previous one have implied.

Later, we introduce the basic properties of the simple 
network that will be used to launch our investigation, the 
modern perceptron. We then quickly demonstrate that 
modern perceptrons can generate some of the key proper-
ties of probability learning, such as estimating probabili-
ties using the available cues. Later chapters elaborate these 
elements, providing computational analyses and computer 
simulations that indicate that the modern perceptron is a 

far more interesting medium for the study of probability 
learning than might have been realized by Estes (1991).

1.4 An Example of Probability Matching
The previous section suggests that the card-choice 

task is related to the broader psychological literature on 
probability matching. Given this putative relationship, 
we can generate some basic hypotheses about human per-
formance on the card-choice task. First, our participants 
should learn something about the environment that they 
are exploring by choosing cards, and as a result of this 
learning they should be more likely to receive rewards 
later in their exploration than was the case when they 
started the task. Second, the reason for this improvement 
performance should be because participants learn the 
probability structure of the task (i.e., the probability of 
reward associated with each card or signaled by each cue), 
and then use this information to choose cards that have a 
higher probability of reward more frequently than cards 
that have a lower probability of reward. In short, they 
should match their frequencies of choosing cards to the 
frequencies of rewards associated with these cards.

The current section provides some pilot data 
collected from 17 participants (all of whom were in-
troductory psychology students) in one version of the 
card-choice task that was introduced earlier. It uses these 
data to show that the card-choice task provides evidence 
that supports both of these hypotheses.

1.4.1 Reward Conditions
In any particular instance of the card-choice task, 

the cues on a card signal its reward probability. In the 
instance of the task that we now consider, a card’s reward 
probability was determined by the presence of one of 
the cues, and the logical AND of the other two cues. In 
this instance of the card-choice task, if the diamond was 
green, then this was a signal of a reward probability of 
0.48. If the diamond was blue, then this signaled a reward 
probability of 0. In addition, if both the club and the heart 
were green, then this also signaled a reward probability 
of 0.48. If this state was not true (i.e., if both cues were 
blue, or if the two cues were of different colors), then this 
signaled a reward probability of 0.

The two sources of information about reward proba-
bility were assumed to be independent of each other. In other 
words, if both of the cue types on a card signaled a reward, 
then there was an even higher probability of reward. The 
actual reward probability for each card was computed with 
the additive rule for independent probabilities (Rozanov, 
1977). For this particular version of the card-choice task, 
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this means that the reward probability for any card is equal 
to that card’s probability associated with its diamond plus 
its probability associated with its club and heart minus the 
product of these two probabilities. The ideal probability 
of reward computed using this equation for each card is 
presented in the second column of Table 1-1.

Table 1-1. The probability of reward associated with each stimulus  
in the example.

Stimulus Card Ideal Actual
~D~C~H 0.00 0.000

~D~CH 0.00 0.000

~DC~H 0.00 0.000

~DCH 0.48 0.462

D~C~H 0.48 0.482

D~CH 0.48 0.478

DC~H 0.48 0.493

DCH 0.7296 0.720

Note. D = diamond; C = club; H = heart; ~ = a symbol is not 
present (i.e., has the color blue instead of green, so DC~H is 
the card with a green diamond, a green club, and a blue heart).

In the actual running of the experiment, when a 
participant chooses one of the eight stimulus cards, they 
are either rewarded or not. The computer program decides 
whether to give a reward as follows: First, it generates 
a random number between 0 and 1. Second, it compares 
this number to the ideal probability associated with the 
chosen card. If the random number is equal to or less than 
the ideal probability, then a reward is given. Otherwise, 
no reward is given. This method generates actual reward 
probabilities that are very similar to, but not identical 
to, the ideal probabilities. The third column of Table 1-1 
provides the actual probability of reward for each stimulus 
by summing the number of times each card was rewarded, 
and dividing by the number of times each was selected, for 
each of the 17 participants who made 320 different card 
choices when they participated in the study.

1.4.2 Participants Improve Reward Seeking
The card-choice task provides an uncertain environ-

ment that participants can explore with the goal of seeking 
rewards. We expect that participants will learn about the 
environment as they explore it. If participants learn about 
the reward probabilities associated with the stimulus cards, 
then they can use this knowledge to increase their chances 
of being rewarded with each choice that they make. One 

simple test of this hypothesis is to compare the number of 
rewards that participants receive early in the study to the 
number of rewards that they receive toward the end.

In this pilot study, when we examine the total number 
of rewards that each of the 17 participants received from 
their first 64 card choices (the first 20% of the study), 
we discover an average of 19.71 rewards. In contrast, 
when we compute the total number of rewards that each 
participant received for their last 64 card choices, the av-
erage is 32.94 rewards. In other words, participants learn 
enough by exploring the environment to receive about 
13 more rewards from their final 64 choices than they 
received from their first 64 choices. A paired t test reveals 
that this difference between the number of early and the 
number of late rewards is statistically significant, t(16) = 
−8.6483, p = 1.989e-07. Clearly, participants are learning 
the probability structure of the environment and are using 
this knowledge to obtain more rewards.

1.4.3 Learning Probabilities
What does it mean to say that participants are 

learning the probability structure of the environment? 
One definition is that as the study proceeds, partici-
pants are more likely to choose cards that have a higher 
reward probability and are less likely to choose cards 
that have a lower reward probability.

We can quantify this definition by using the prob-
abilities associated with each card that were provided 
in Table 1-1. By hypothesis, let us make a prediction 
from the probability learning literature and say that an 
ideal participant will always match probabilities. In 
other words, let us say that the number of times an ideal 
participant will choose one of the eight cards is equal to 
that card’s actual probability of reward multiplied by the 
number of choices available to a participant. Let us then 
use these probabilities to compute the number of choices 
of each card, assuming the ideal participant has only 16 
choices available. We do this by multiplying each value in 
the third column of Table 1-1 by 16.

We are now in a position to compare the choices 
made by an actual participant to these ideal predictions. 
For each successive set of 16 choices made by a partici-
pant in the pilot study, we can compute the sum of squared 
differences (SSD) between the number of choices of 
each card that were actually made and the ideal number 
of choices. The smaller this measure, the more simi-
lar the participant is to the ideal.

Figure 1-4 presents the SSD computed for each set of 
16 card choices in the study, averaging this measure across 
the 17 participants. Each dot represents a pairing of SSD 
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with a set of 16 choices. The regression line fit to these dots 
is statistically significant (slope = −0.09442, intercept = 
200.0325, R2 = 0.618), F(1, 18) = 29.17, p < .001. It shows 
that as the study proceeds, on average participant choices 
better reflect the probability structure of the environment. 
The more they learn about this structure, the more likely 
they are to choose cards with a higher probability of deliv-
ering a reward. This accounts for why they receive signifi-
cantly more rewards later in the study than they do earlier.

1.4.4 Evidence of Probability Matching
Is there any evidence of probability matching in 

our pilot study? To answer this question, we determined 
the number of times each of the eight stimulus cards was 
selected in the study, summing over all of the 320 card 
choices made by each of the 17 participants. We also de-
termined the number of times each of the cards provided a 
reward, again summing over all of the choices made by all 
of the participants. Both of these sets of frequency data are 
provided in the histograms presented in Figure 1-5.

If probability matching is occurring, then there should 
be a strong relationship between the two graphs in Figure 
1-5. An inspection of the two indicates their similarity of 
shape: The smallest numbers of choices are made of the 
three cards that never provide a reward, a moderate number 
of choices are made of the four cards that provide an in-
termediate reward, and the highest numbers of choices are 
made of the one card with the highest probability of reward.

If one correlates the eight frequencies of choice 
from the histogram on the left with the eight frequencies 
of reward from the histogram on the right, the resulting 
correlation coefficient equals 0.999. This indicates a strik-
ing quantitative relationship between choice and reward. 
One reason that this coefficient is so high is because slight 
variation in probability of reward (e.g., the four moderate 
reward bars on the right) are matched by similar variations 
in number of choices in the corresponding bars on the left.

In short, our pilot study provides clear evidence of 
probability matching: The number of choices of each card 
made by the participants is strongly related to the number 
of times the card is actually rewarded.

That human participants exhibit probability matching 
in the card-choice task is not to be taken as a particularly 
surprising or novel demonstration. There is, of course, a 
long history of experimental results that show that human 
participants, not to mention many other types of organisms, 
will probability match in a variety of different situations 

Figure 1-4. Change in the sum of squared deviation between responses 
of an ideal participant and those of the actual participants. A smaller 
number indicates that participant choices are becoming more similar to 
those predicted by the probability structure of the task.
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(Estes, 1964). For the time being, the results presented in 
this section are merely another example to add to this liter-
ature. Later we see that variations of this task—created by 
altering the rules used to convert cue patterns into probabil-
ity of reward—will provide novel results by demonstrating 
that under some rules, human participants are much poorer 
probability matchers than is the case for other rules.

Of greater interest than the results of Figure 1-5 
are the nature of models that can be used to predict such 
results, which we later show can be used to predict situ-
ations in which humans are poorer probability matchers. 
In particular, we relate human performance on variations 
of the card-choice task to the performance of a particular 
type of model trained on an analogous task. Let us now 
consider the kind of model that we explore in an attempt 
to understand making choices under uncertainty.

1.5 The Modern Perceptron
Up to this point, we have been focusing on the 

uncertainty stated in Chapter 1’s title. We have discussed 
sources of uncertainty, provided a concrete example of 
how such uncertainty is built into a probabilistic discrim-
ination task, and reviewed some of the key findings of the 
psychological literature on probability learning, including 
the phenomenon of probability matching. We have also 
presented some evidence showing that agents can adapt to 
uncertainty. For instance, Section 1.4 provided results from 
an example card-choice study. These results indicated that 
as participants explored this uncertain environment, they 
learned which cards were more likely to provide rewards 
and they used this knowledge to receive more rewards.

We now turn to focusing on the other part of 
Chapter 1’s title: adaptation. We have reviewed evidence 
that shows that agents adapt to uncertain environments. 
However, how is adaptation, like probability matching, 
achieved? The early chapters in this monograph explore 
one kind of model of adaptation. This model is a simple 
artificial neural network called a perceptron. Section 1.5 
introduces this model and describes a modern variant 
that is of special interest to the current work. Section 1.6 
briefly provides some evidence of why this simple model 
is of interest. Chapters 2 and 3 expand on these ideas in 
more detail by relating the properties of perceptrons to 
different ideas from probability theory.

1.5.1 The History of the Perceptron
As noted in Section 1.3.2, the cognitive revolution 

that began in the late 1950s exploited the metaphor that 
thinking is information processing and took information 
processing to be the rule-governed manipulation of sym-

bols (Dawson, 2013; H. Gardner, 1984). This metaphor 
led cognitivists to explore the nature of human cognition’s 
symbols and the types of rules that were used to manipu-
late them. These two topics define what is known as the 
cognitive architecture (J. R. Anderson, 1983; Pylyshyn, 
1984; VanLehn, 1991). An architecture that is defined in 
terms of symbols and rules is called a classical architec-
ture of cognition (Dawson, 1998, 2013).

Alternatives to the classical architecture have also 
been proposed and are of increasing importance in cog-
nitive science. One that rose to prominence in the 1980s 
is parallel distributed processing, an architecture adopted 
by connectionist cognitive science (Bechtel & Abra-
hamsen, 2002; Hinton & Anderson, 1981; McClelland 
& Rumelhart, 1986; Rumelhart & McClelland, 1986). 
According to connectionist cognitive scientists, human 
information processing is not analogous to the operations 
of a digital computer. Instead, this information processing 
is much more brain-like. Parallel distributed processing 
involved numbers of simple processing units (analogous 
to neurons) that send signals to one another via weighted 
connections (analogous to synapses). These systems of 
interconnected processors are called artificial neural 
networks. The weights of an artificial neural network are 
determined via learning; a network is trained on a set of 
example training patterns, and its connection weights are 
adjusted to reduce the size of its errors. The connectionist 
revolution took hold with the discovery of a learning rule 
called backpropagation of error that permitted the training 
of networks with several layers of processing units (Amari, 
1967; J. A. Anderson, 1995; Rumelhart, Hinton, & Wil-
liams, 1986; Werbos, 1994). Such networks are capable of 
learning to perform a number of tasks that are of interest to  
cognitive scientists.

Important to note, artificial neural networks flourished 
long before the cognitive revolution (and the connection-
ist response to it) occurred. They were first proposed as 
mathematical entities by pioneering cyberneticists Warren 
McCulloch and Allen Pitts (1943). McCulloch and Pitts 
were interested in translating the all-or-none responses 
of biological neurons into logical operations. From their 
perspective, when a neuron generates an action potential, 
this is functionally equivalent to asserting that a logical 
condition is true. Similarly, when the same neuron does 
not generate an action potential, this is functionally equiv-
alent to asserting that the same logical condition is false. 
McCulloch and Pitts formalized these notions with what is 
now known as the McCulloch-Pitts neuron. This artificial 
neuron receives signals from external sources; these signals 
are multiplied by connection weights. The neuron sums 
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the weighted signals and compares them to the neuron’s 
threshold. If the total signal exceeds the threshold, then the 
McCulloch-Pitts neuron outputs a value of 1. Otherwise, 
it outputs a value of 0. McCulloch and Pitts used this for-
malism to build McCulloch-Pitts neurons that performed 
14 of the 16 possible basic logical operations in Boolean 
algebra. They also proved that a network constructed by 
linking different neurons together so that the output of one 
McCulloch-Pitts neuron serves as an input to another was 
capable of emulating a universal Turing machine.

The mathematical formalism developed by McCull-
och and Pitts (1943) demonstrated the potential logical 
power of artificial neural networks. However, their research 
goal was not to bring such a system into being. Indeed, 
one of the limitations of McCulloch-Pitts neurons was 
that they could not be trained. To construct an interesting 
network of McCulloch-Pitts neurons, one would have to 
set all of its connection weights and thresholds by hand.

This situation was changed by research that aimed 
to build machines that could learn (Rosenblatt, 1958, 
1962; Widrow & Hoff, 1960). One of the most famous 
and historically important of these inventions was Frank 
Rosenblatt’s (1962) perceptron. In general, a perceptron 
is strongly related to a McCulloch-Pitts neuron: It consists 
of one or more input units that are connected to one or 
more output units. The input units respond to an external 
stimulus and then send the output units a signal about 
the stimulus through weighted connections. The output 
units process the incoming signal (by comparing it to a 
threshold) and generate a binary response. As a result, 
the output units represent the perceptron’s response to the 
stimulus that was presented to it. Figure 1-6 provides a 
concrete example of a perceptron and provides a general 
sense of how it learns from experience.

The perceptron in Figure 1-6 consists of a set of five 
input units, each of which represents the value of a cue 
provided by the environment. In this example, each of the 
five input units is connected to a single output unit (la-
beled output unit j) by a weighted connection. The weight 
associated with input unit 1 is labeled w1. The input units 
send their activities (a1, a2, etc.) through these connec-
tions. The activities are scaled by the connection weights 
and are added together to form the total signal or net input 
for output unit j (netj). Then an activation function is used 
to convert the net input into the output unit’s activity (aj). 
This activity is the response of the output unit to the signals 
from the input units. Learning proceeds by comparing the 
perceptron’s actual response (aj) to a desired response (Tj) 
that is provided by the environment. It is represented by T 
because it is a signal that is used to “teach” the perceptron. 

In classical conditioning, for instance, a response would 
be rewarded by setting Tj to 1; the absence of reward is 
achieved by setting Tj to 0 (Dawson, 2008). The output 
unit’s error is simply the difference between the desired 
and actual responses (Tj – aj). The learning rule uses this 
error as feedback to modify the weights; the goal of this 
modification is to decrease the output unit’s error.

Figure 1-7 presents an alternative rendering of the 
perceptron by fitting it into Brunswik’s (1952) lens model 
of probabilistic functionalism. This has been accomplished 
by replacing part of Figure 1-1 with a version of Figure 
1-6 and is used to establish the relationship between the 
network-based accounts of probability learning that this 
monograph explores and more general accounts of adapt-
ing to uncertainty like Brunswik’s (1952) probabilistic 
functionalism. Figure 1-7 shows that we, like Brunswik, 
assume that the world is a source of information or cues 
that are offered by the environment. The arrows that show 
this relationship are dashed; this reflects that we are less 
interested than Brunswik was in defining the probabilistic 
nature of cue detection, although this type of uncertainty 
could easily be included in the perceptron. The dashed ar-
rows from the output unit that depict the functional arc and 
feedback indicate that we are also interested in stabilizing 
the relationship between the world and the agent’s response 
to it. However, the additional solid arrows from the output 
unit indicate that the perceptron offers a much more specif-
ic notion of using feedback to establish the functional arc. 
In particular, the error signal generated for the output unit 
is used as feedback to change the perceptron’s weights so 
that it can adapt to the uncertain relationship between cues  
and reward.

Note that although the role of perceptron learning 
in Figure 1-7 is to stabilize the functional arc, this is 
accomplished by using a particular type of feedback 

Figure 1-6. The basic components of a perceptron.
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to modify the relationships between the input units and 
the output unit response. This reflects the fact that the 
way that agents adapt to uncertain worlds is to alter 
their epistemic uncertainty, which is instantiated in the 
weights of the perceptron in Figure 1-7.

Rosenblatt’s (1958) innovation was his invention of 
a procedure that could be used to train a perceptron from 
experience. In general, this procedure involves presenting 
the perceptron a series of training patterns. Each of these 
patterns defines how the perceptron’s inputs are to be ac-
tivated and defines the desired response to pattern. These 
patterns are presented one at a time to the perceptron. If 
the perceptron’s responses are correct, then its weights are 
unchanged. However, if the perceptron produces an error, 
then this error is used to modify the weights. Rosenblatt 
(1962) demonstrated that these weight modifications al-
ways reduce error and used this to establish his famous 
perceptron convergence theorem. This theorem established 
that if a perceptron could represent a solution to a problem 
(its simplicity is such that this cannot be said for all prob-
lems; Minsky & Papert, 1969), then Rosenblatt’s learning 
rule was guaranteed to find this solution. A solution is 
found when the perceptron generates the correct response 
to each pattern in the training set. The next section pro-
vides a more precise account of how a perceptron responds 
to a stimulus and of how it learns from this response.

1.5.2 Perceptron Responses
A perceptron can be described in purely mathematical 

terms. In this formalism, all of the signals that are being 
sent from the input units to an output unit are numbers; each 

signal is an input unit activity multiplied by a connection 
weight. As a result, the net effect of these signals can be 
determined by adding all of these numbers up into a single 
sum called the net input. Let the activity of input unit i be 
represented as ai, and let the weight of the connection from 
input unit i to output unit j be represented as wij. Mathe-
matically, the net input for output unit j (netj) is determined 
Equation 1-1, which assumes that there are n different 
input units and which takes the sum over the i input units:

(1-1)

Once an output unit has computed its net input, it then 
converts the net input into an internal level of activation, 
which is a number that represents the output unit’s response 
to the signal received from the inputs. This is accomplished 
with an activation function, which has the general form aj 
= f(netj). In most artificial neural networks, the activation 
function is a nonlinear transformation of the net input. 
For both the McCulloch-Pitts neuron and Rosenblatt’s 
(1958) perceptron, the activation function is the Heaviside 
function that is presented as Equation 1-2. The Heaviside 
function compares the net input to a threshold value rep-
resented as θ. If the net input is greater than the threshold, 
then the function returns a value of 1. Otherwise, it returns 
a value of 0. The Heaviside function is used because it 
defines the all-or-none response property of neurons.

(1-2)

1.5.3 Perceptron Training
Section 1.5.2 provided a formal description of how 

the perceptron in Figure 1-6 responds to a pattern of cues 
that activate its input units. We now turn to a mathematical 
account of how feedback is used to modify the perceptron’s 
weights based on the response that it generates to a stimulus.

Rosenblatt’s (1958, 1962) method for training a 
perceptron by providing it feedback about its mistakes 
is a learning rule called the delta rule. According to this 
rule, the observed response of a perceptron to a stimulus 
is compared to the desired response. The output unit’s 
error is the difference between this desired response and 
its actual response, which is simply Tj – aj. The logic of 
the delta rule is that the size of this error is used to modify 
the connection weights. If the error is large, then there 
will be a large change in the weights. If the error is zero, 
then there will be no change at all.

Equation 1-3 defines the change in a particular 
weight, represented as Δwij, according to the delta rule. 

Figure 1-7. The basic components of a perceptron, placed in the context 
of Brunswik’s lens model from Figure 1-1. See text for details.
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Note that this weight change is equal to the product of 
three values: a fractional learning rate η, the activity 
of the input unit at one end of the connection ai, and 
the error at the other end of the connection Tj – aj. The 
weight is changed by adding this computed weight change 
to the existing value of the weight.

(1-3)

With Equations 1-1, 1-2, and 1-3 in hand, we are in 
position to describe a general training procedure for the 
perceptron of Figure 1-6 (Dawson, 2005, 2008). Assume 
that we have a finite set of training patterns; each pattern 
provides the activation values for the n different input 
units, as well as the desired response for output unit j. Also, 
assume that the perceptron starts with all of its weights ini-
tialized to some small, randomly selected values. We select 
one of these patterns at random and use it to activate the 
inputs. This causes the output unit to compute its net input 
(Equation 1-1) and then to convert this into activity using 
Equation 1-2. Next, the output unit’s activity is compared 
to the desired output in order to compute error, and then 
each of the perceptron’s connection weights is updated by 
computing the respective weight change (Equation 1-3) 
and adding this change to the existing value of the weight. 
This procedure is then repeated for the next selected 
pattern. This continues until the perceptron generates the 
correct response for each pattern in the training set.

1.5.4 The Modern Perceptron
The Heaviside function (Equation 1-2) is but one of 

many activation functions to be found in the processors 
of artificial neural networks (Duch & Jankowski, 1999). 
In modern networks, it is quite common to see the Heavi-
side equation replaced with a continuous function that 
approximates the Heaviside’s key features. One popular 
example is the sigmoid-shaped logistic function that is 
illustrated in Figure 1-8. Note that this function asymp-
totes to extreme values that can be described as “off” or 
“on.” However, intermediate values of net input produce 
intermediate activities. Instead of a threshold that marks 
the boundary between being on or off, this function has a 
bias θ. When the net input equals this bias, the activation 
function produces activity equal to 0.5

The logistic function that produces sigmoid-shaped 
graph depicted in Figure 1-8 is provided by Equation 
1-4. The logistic function was popularized in the neural 
network literature in the mid-1980s (Rumelhart et al., 
1986). It is of particular interest in the current monograph 
because there is a long history using the logistic to model 
probabilistic mappings (Berkson, 1955; D. R. Cox, 1958a, 

1958b; West, 1979). One can, in fact, use this relationship 
to translate network responses into probability theory 
(Dawson & Dupuis, 2012; Jordan, 1995; McClelland, 
1998). We adopt this approach in Chapters 2 and 3 to 
translate perceptrons into versions of Bayes’s theorem.

(1-4)

We call a perceptron that uses a continuous activa-
tion function like the logistic equation a modern percep-
tron (Dawson, 2008). It can learn from a training set in 
a fashion that is very similar to that described in Section 
1.5.3. However, with continuous activation functions one 
can modify the delta rule (Equation 1-3) by multiplying 
error by the first derivative of the activation function in 
an attempt to make learning more efficient (e.g., Dawson, 
2004). Indeed, another reason for the popularity of the 
logistic equation is the simplicity of its first derivative, 
which is provided as f ’(netj) in Equation 1-5:

(1-5)

One can use the derivative from Equation 1-5 to con-
vert the delta rule (Equation 1-3) into a different learning 
rule, the gradient descent rule for the modern perceptron 
(Dawson, 2008). This is accomplished by multiplying the 

Figure 1-8. The logistic activation function is a continuous approximation 
of the Heaviside equation. In this example, when net input equals the 
bias (θ) of 0, then the function returns activity of 0.5.
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error term in Equation 1-3 by the first derivative of the logis-
tic. The gradient descent rule is provided in Equation 1-6:

(1-6)

To complete our formal account of learning, one final 
detail needs to be included. The logistic equation includes 
the bias θ. The value of the bias can also be modified as the 
perceptron learns the training set. This is accomplished by 
treating the bias as if was the weight of a connection that 
was always receiving a signal of one. The desired change 
in the bias (Δθj) is then computed using a version of 
Equation 1-6 that replaces ai with the value 1, as is shown 
in Equation 1-7. This change in bias is then added to the 
existing value of the bias. Equation 1-7 is used to update 
the bias using the gradient descent rule of Equation 1-6.

(1-7)

1.5.5 Summary
Section 1.5 introduced the properties of a perceptron, 

related these properties to Brunswik’s (1952) probabilis-
tic functionalism and provided a formal account of the 
gradient descent learning rule for the modern perceptron. 
What is the relationship between training a modern per-
ceptron and various topics in probability learning? The 
next section of Chapter 1 provides an empirical answer 
to this question by demonstrating that the modern per-
ceptron learns to estimate probabilities when trained on 
a probabilistic discrimination task.

1.6 Modern Perceptrons  
and Probability Estimation 

1.6.1 Certain and Uncertain Training
Earlier in this chapter it was pointed out that the 

history of artificial neural networks begins with research 
that aimed to provide a mathematical account of neuro-
nal function (McCulloch & Pitts, 1943). The foundation 
of this research was the assumption that neurons could 
be described as asserting the truth or falsehood of 
logical operations. From this perspective, a neuronal 
response is digital, representing “on” or “off,” “true” or  
“false.” Similarly, this means that when a Rosenblatt 
(1962) perceptron was trained, the evaluation of its re-
sponse could also only be digital: “right” or “wrong.”

A similar perspective guides the training of most 
modern artificial neural networks. In particular, those 
that are trained with modern supervised learning rules 
are taught until they perform perfectly. That is, networks 

are typically trained until they generate the correct 
response to each stimulus in a training set (Dawson, 
2004, 2005). This further implies that the training set is 
certain, in the sense that each of its patterns is associated 
with a unique and correct response. 

However, the certainty of a training set disappears 
when we attempt to train a network on a probabilistic 
discrimination problem like the card-choice task. This is 
because, in some cases, a particular stimulus is rewarded, 
but in others, the identical stimulus is not rewarded. The 
mapping from stimulus to desired response is no longer 
unique, meaning that the training set is uncertain. How 
does a modern perceptron behave when it is trained on 
such an uncertain training set? It can no longer respond 
perfectly to every training pattern, because a single pattern 
can be associated with completely different responses 
(reward or no reward) at different times. To explore 
perceptron learning when the training set is uncertain, 
let us describe an example task and report the results of 
training on modern perceptron on this task.

1.6.2 The Weather Prediction Task
The weather prediction task is a modern probabi-

listic discrimination problem. Although it can be used 
to explore different strategies that might be employed 
during probability learning (Gluck et al., 2002), it is more 
typically used to explore implicit learning in a variety 
of clinical populations. It was originally developed to 
study probability learning in amnesic patients (Knowl-
ton, Squire, & Gluck, 1994) and has been used to study 
other clinical populations, such as patients suffering from 
Huntington’s disease (Knowlton et al., 1996), bulimia ner-
vosa (Labouliere, Terranova, Steinglass, & Marsh, 2016), 
and schizophrenia (Keri et al., 2000).

The weather prediction task involves using dif-
ferent visual stimuli—cards—that can be used to depict 
combinations of different cues. When presented a card, 
the participant must decide whether the stimulus pre-
dicts rain. After making the prediction, the participant is 
provided feedback about whether he or she was correct. 
Each of the different cues is associated with a differ-
ent probability of forecasting rain.

To provide a concrete example, let us consider one 
version of this task (Knowlton et al., 1994). In this exam-
ple, four visual cues could be in a stimulus card. Each of 
the four cues is associated with a different likelihood of 
reward: Cue 1 signals a reward probability of 0.850, Cue 
2 a probability of 0.620, Cue 3 a probability of 0.380, and 
Cue 4 a probability of 0.150. Each stimulus card includes 
one or more of these cues, and each is rewarded with the 
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probability determined by combining the probabilities of 
reward signaled by its cues. The probability of reward for 
each card is presented in the last column of Table 1-2. 

Knowlton et al. wanted the overall likelihood of 
reward across all stimuli to be 0.50. For this reason, not 
all of the cards are presented an equal number of times. 
First, a stimulus that possesses none of the cues, or one 
that possesses all of the cues, is never presented. Sec-
ond, the remaining cards are presented with a different 
probability. The probability of each card being pre-
sented is also provided in Table 1-2. 

The study proceeds by presenting a stimulus card 
to a participant, asking the participant to predict wheth-
er the card indicated sunshine or rain, and providing 
feedback about prediction accuracy. The major finding 
was that both control participants and amnesic patients 
had similar learning in the early trials but that later the 
control participants surpassed the amnesic patients in 
performance (Knowlton et al., 1994).

1.6.3 Weather Prediction by Perceptron
How does a modern perceptron behave when pre-

sented a problem derived from the weather prediction task 
described in Table 1-2? To answer this question, we de-
signed a training set that was in close agreement with the 
properties of Table 1-2. The training set consisted of 1,001 
different stimuli, where each stimulus was a configuration 
of four possible cues. If a cue was present, then the input 
unit that represented it was activated with a value of 1. 
Otherwise, the input unit as assigned an activity of 0.

As was the case in Table 1-2, different numbers of 
each stimulus were included in the training set. The num-
ber of presentations of each stimulus is provided in the fifth 
column of Table 1-3. For instance, this table indicates that 
the stimulus that included only Cue 4 was included 140 
times in the training set. That is, the training set included 
140 instances of this particular stimulus. In contrast, the 
stimulus that included only Cue 3 and Cue 4 was presented 
only 87 times in this training set.

Table 1-2. The properties of an example weather prediction task from 
Knowlton et al. (1994). 

Cue 1 Cue 2 Cue 3 Cue4 P(Presented) P (Rewarded)
0 0 0 0 0.000 0.000

0 0 0 1 0.140 0.150

0 0 1 0 0.084 0.380

0 0 1 1 0.087 0.100

0 1 0 0 0.084 0.620

0 1 0 1 0.064 0.180

0 1 1 0 0.047 0.500

0 1 1 1 0.041 0.210

1 0 0 0 0.140 0.850

1 0 0 1 0.058 0.500

1 0 1 0 0.064 0.820

1 0 1 1 0.032 0.430

1 1 0 0 0.087 0.900

1 1 0 1 0.032 0.570

1 1 1 0 0.041 0.790

1 1 1 1 0.000 0.500

Note. Each row in the table represents a possible stimulus. The 
first four columns indicate whether a cue is absent (0) or present 
(1) in the stimulus. The fifth column indicates the probability 
that a participant will see the stimulus. Note that this column 
indicates that participants never see a stimulus in which all 
four cues are either absent or present. The final column pro-
vides the likelihood that a particular stimulus will be rewarded 
when it is presented (i.e., will be said to predict rain if the 
participant makes this prediction).

Table 1-3. The characteristics of a perceptron’s training set for the 
weather prediction task that was created from the information provided 
in Table 1-2.

Cue 1 Cue 2 Cue 3 Cue4 Number Number
0 0 0 0 0 0

0 0 0 1 140 21

0 0 1 0 84 32

0 0 1 1 87 9

0 1 0 0 84 52

0 1 0 1 64 12

0 1 1 0 47 24

0 1 1 1 41 9

1 0 0 0 140 119

1 0 0 1 58 29

1 0 1 0 64 52

1 0 1 1 32 14

1 1 0 0 87 78

1 1 0 1 32 18

Note. The training set consisted of 1,000 stimuli. Each row in 
the table represents a possible stimulus. The first four columns 
indicate whether a cue is absent (0) or present (1) in the stim-
ulus. The fifth column indicates the total number of instances 
of a particular stimulus to be found in the training set. The last 
column indicates the number of these patterns that were reward-
ed (i.e., were stimuli that the perceptron was trained to generate 
a  response of 1). If a pattern was not rewarded, then when it was 
presented the perceptron was trained to generate a response of 0.
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The uncertainty of reward associated with each 
stimulus was accomplished by rewarding some instances 
of a stimulus and by failing to reward the other instances. 
For example, the stimulus that included only Cue 4 was 
presented 140 times but was rewarded on only 21 of these 
occasions. Thus its probability of reward was 21/140 = 
0.15, which is identical to the probability of reward for 
this stimulus provided in Table 1-2. Similarly, the stimulus 
that included only Cues 3 and 4 was presented 87 times but 
was rewarded on only nine of these presentations. Thus its 
probability of reward was 9/87 = 0.1034, which is slightly 
higher than the value of 0.10 for this stimulus in Table 1-2.

The overall probability of reward for the training 
set was 0.5005, which is nearly identical to the desired 
value in the Knowlton et al. (1994) study. We accom-
plished this by rewarding 501 of the 1,001 stimuli in the 
training set. In other words, the reward structure of the 
training set that we created (Table 1-3) provides a close 
approximation of the reward probabilities associated 
with the various stimuli (Table 1-2).

With this training set in hand, we are in a position 
to use it to train a perceptron. This training, as well as 
all of the perceptron simulations reported later in this 
monograph, were conducted with the Rosenblatt program 
(Dawson, 2005). This program is available as freeware 
and can be downloaded from the following website:  
http://www.bcp.psych.ualberta.ca/~mike/Software/.

We proceeded to use the Rosenblatt program to train 
a perceptron on this training set as follows: First, the 
perceptron was a network with four input units (one to 
represent each of the four cues) and a single output unit 
that used the logistic activation function. Prior to training, 
the output unit’s bias was initialized to 0, and each connec-
tion weight was randomly set to a value between −0.1 and 
0.1. Second, the perceptron was trained with a learning 
rate (η) of 0.05, which is a standard value for this type of 
study (Dawson & Gupta, 2017). Training proceeded with 
the epoch-wise presentation of patterns. In a single epoch, 
each of the 1,001 patterns in the training set is presented 
once, but the order of presentation is randomized before 
the epoch begins. After each stimulus was presented, the 
weights and bias of the perceptron were modified using 
the gradient descent rule provided in Equations 1-6 and 
1-7. Third, this training proceeded for 2,500 epochs. At the 
end of this training, the perceptron’s response to each of 
the 14 types of stimuli was recorded.

Figure 1-9 provides the main result of this simulation 
study. Its y-axis plots the actual probability of reward of a 
stimulus card, where this probability is taken from Table 

1-2. Its x-axis plots the response of the perceptron to the 
card. Each of the dots on the graph presents the data from 
one of the 14 stimuli in the experiment. As can be seen 
from Figure 1-9, the perceptron has learned to predict re-
ward probabilities from cues because its output activity is 
nearly identical to the actual probability of reward for each 
stimulus. A regression equation that predicts the actual re-
ward probability from the perceptron’s response accounts 
for almost all of the variance in the data (R2 = 0.988) and 
is statistically significant, F(1, 13) = 1029.814, p < .0001.

1.6.4 Perceptrons Predict Probability
Figure 1-9 provides some example evidence that 

demonstrates why we are interested in using modern 
perceptrons to explore probability learning. When con-
fronted with an uncertain task, this type of perceptron 
learns the task’s probability structure. That is, after 
learning it can convert a pattern of cues into an accurate 
prediction of reward probability. This fundamental prop-
erty is required of a system that adapts to an uncertain 
environment via probability matching.

The results in Figure 1-9 provide additional evidence 
to be added to recent results that demonstrate probability 

Figure 1-9. The performance of a perceptron on the weather prediction 
task. For each dot in the graph, the x-coordinate is the perceptron’s 
response and the y-coordinate is the actual probability of reward.
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estimation by perceptrons (Dawson et al., 2009; Dawson & 
Gupta, 2017). Perceptrons have also been shown to model 
many of the standard effects that have been discovered us-
ing the reorientation task (Dawson, Kelly, et al., 2010). In 
short, modern perceptrons appear to offer a viable medium 
for increasing our understanding of probability learning.

Furthermore, that perceptrons can estimate prob-
abilities is of particular interest because these networks 
are very simple mechanisms. For example, the learning 
rules used to train perceptrons are formally identical to 
the Rescorla-Wagner model of animal learning (Dawson, 
2008; Gluck & Bower, 1988; Sutton & Barto, 1981). 
Furthermore, some researchers have argued that artificial 
neural networks like the perceptron provide a plausible 
account of the brain mechanisms for associative learning 
(Shanks, 1995). In other words, if we can establish that 
perceptrons are plausible models of probability learning, 
they can provide accounts that link this type of learning to 
established principles of associative learning.

This last point is important, because one of the prob-
lems faced by a theory of probability learning concerns 
proposing possible mechanisms. Estes (1976) attempted 
to address this issue by exploring links between proba-
bility learning and cognitive theory. Similar issues have 
developed in the broader context of recent theories in 
cognitive science. For example, many modern theories 
that have arisen in the cognitive science of human rea-
soning and rationality explicitly appeal to Bayesian prob-
ability theory (Binmore, 2009; Chater & Oaksford, 1999; 
Oaksford & Chater, 1991, 1998, 2001, 2007). However, 
these theories do not provide mechanisms for performing 
Bayesian calculations, which critics claim is a fundamen-
tal flaw of Bayesian cognitive science (Bowers & Davis, 
2012; Jones & Love, 2011). If simple mechanisms like 
perceptrons can respond with probabilities, then perhaps 
artificial neural networks can help solve this problem by 
serving as example Bayesian mechanisms.

Of course, the type of behavior illustrated in Fig-
ure 1-9 raises additional questions. How exactly does a 
modern perceptron generate probabilities, and how does it 
actually represent the kind of information that is required 
for probability estimation to occur? The final section of 
this chapter provides a brief review of the main points 
that it has covered, raises a set of interesting questions, 
and uses these questions to set the stage for the next few 
chapters that explore the relationship between percep-
trons and probability theory. However, before setting the 
stage for these issues, let us first briefly consider why 
this monograph focuses on the perceptron and does not 
explore other possible architectures.

1.7 Why Study Perceptrons?
1.7.1 Perceptron Advantages

This monograph introduces a key theme as its focus: 
adapting to an uncertain environment. It also presents a 
basic architecture used to study this theme: the perceptron. 
However, the perceptron is a very old and simple type of 
artificial neural network (Rosenblatt, 1958, 1962) and has 
fallen out of favor in cognitive science, replaced by more 
modern and sophisticated architectures. Why do we ex-
plore the perceptron in this project and not some of these 
more popular and powerful architectures?

The first reason for studying the perceptron is that 
our primary concern is to understand how basic and 
well-understood psychological theories of associative 
learning can account for probability learning. To do so, 
we must use an architecture that can be related to such 
theories. The perceptron is one such architecture. Re-
searchers have already established a formal relationship 
between learning rules for perceptrons and mathematical 
accounts of classical conditioning (Dawson, 2008; Gluck 
& Bower, 1988; Sutton & Barto, 1981). For example, 
Dawson demonstrated that one can literally translate the 
learning rule for a modern perceptron (Equation 1-6) into 
the equation for the Rescorla-Wagner model of associative 
learning (Rescorla & Wagner, 1972). This means that 
we can be confident that results that we obtain for the 
perceptron will be transferable to a particular psychologi-
cal account of associative learning.

The second reason for studying the perceptron, 
and not more powerful architectures, is that perceptrons 
have inherent limitations. However, these limitations 
can explain some problems faced by humans when 
they adapt to uncertain environments.

Cognitive scientists have long been aware that there 
are limits to what perceptrons can learn because of their 
simple structure. Perceptrons fell out of favor in the late 
1960s when it was established that they can solve only 
very basic categorization problems (Minsky & Papert, 
1969), as discussed in more detail in Section 4. Cognitive 
scientists have long argued that the ability to model the 
complexities of human cognition requires much greater 
computational power, such as that provided by a universal 
Turing machine (Bever, Fodor, & Garrett, 1968; Chomsky, 
1956, 1957). Perceptrons do not have such power; as a 
result, perceptrons became viewed as being inappropriate 
for cognitive modeling. In short, it is a standard belief 
that perceptrons are poor models of human cognition, 
because human cognitive abilities far exceed the lim-
ited power of these simple networks.
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However, this standard belief needs to become more 
nuanced, because tasks that appear to be quite complex 
can often be simulated by simple models. For example, 
perceptrons have been shown to be fruitful models in 
diverse areas that include classical conditioning (Dawson, 
2008), navigation (Dawson, Kelly, et al., 2010), and 
musical cognition (Dawson, 2018; Dawson & Zielinski, 
2018). In other words, for some tasks the ability exhibited 
by a biological agent may be such that it can be plausibly 
modeled by a network that has no hidden units.

This observation is central to the current monograph. 
To foreshadow results that are presented in later chapters, 
formal results developed in Chapters 3 and 4 demonstrate 
that perceptrons can be described as naïve Bayesian mech-
anisms. This means that when they predict the probability 
of reward from presented cues, these predictions are blind 
to interactions between cues. Simulation results presented 
in Chapters 5 and 6 demonstrate that because of this limita-
tion, perceptrons have difficulties estimating probabilities 
in variations of the card-choice task that involve interact-
ing cues. Important to note, experimental results obtained 
from studying human participants in the card-choice task 
reveal performance that is very similar to the perceptrons. 
That is, humans and perceptrons both perform poorest 
in the conditions that cause the most difficulty for naïve 
Bayesian mechanisms. Thus, in this particular instance the 
limitations of perceptrons may be quite useful in account-
ing for problems encountered by human participants.

The third reason for studying perceptrons is that it 
is very straightforward to examine these networks math-
ematically, or to study the behavior of these systems in 
simulation experiments. This means that perceptrons 
provide an ideal medium for establishing a rich under-
standing of how basic associative mechanisms can be 
used to adapt to uncertain environments. Earlier studies 
of modern perceptrons have demonstrated that their 
continuous responses can be interpreted as estimates 
of reward probability signaled by cues and have related 
this property to other accounts of contingency learning 
(Dawson & Dupuis, 2012; Dawson et al., 2009; Dawson 
& Gupta, 2017; Dawson et al., 2008; Dawson et al., 2010; 
Dupuis & Dawson, 2013a). This monograph uses these 
results as a starting point for exploring conditions under 
which perceptrons can—and cannot—correctly estimate 
probabilities signaled by cues. It then presents the results 
of experiments of experiments that demonstrate similar 
capabilities—and limitations—in human participants. 
This creates a situation in which it is appropriate to use 
our formal and empirical understanding of perceptrons to 
account for aspects of human probability learning.

1.7.2 Why Not Study Multilayered Networks?
The proof that perceptrons had limited capabili-

ties led to a dramatic decrease in using artificial neural 
networks as psychological models (Minsky & Papert, 
1969; Papert, 1988). The renaissance of artificial neural 
networks in cognitive science began only after researchers 
discovered learning algorithms for training multilayer per-
ceptrons (Rumelhart et al., 1986). These networks include 
at least one layer of intermediate processors, called hidden 
units, which transform the signals from input units before 
sending information on to the output units. Networks that 
include at least one layer of hidden units are far more pow-
erful than perceptrons. They have the potential to solve 
any pattern classification problem (Lippmann, 1989) or to 
be universal function approximators (Hartman, Keeler, & 
Kowalski, 1989; Hornik, Stinchcombe, & White, 1989). In 
short, multilayered networks offer the same computational 
power as a universal Turing machine (Siegelmann, 1999; 
Siegelmann & Sontag, 1991). The ability to train multi-
layer perceptrons, combined with their potential compu-
tational power, resulted in a connectionist resurgence in 
cognitive science because these new networks seemed 
powerful enough to be plausible models of cognition 
(Dawson, 1998, 2013; Medler, 1998).

The computational power of multilayer perceptrons 
is an “in principle” property. In practice, however, learn-
ing rules like backpropagation of error (Rumelhart et al., 
1986) have difficulty in training multilayer networks to 
perform extremely complex tasks. In recent years, this 
problem has been solved with the discovery of learning 
rules for deep belief networks (Bengio, 2009; Bengio, 
Courville, & Vincent, 2013; Hinton, 2007; Hinton, 
Osindero, & Teh, 2006; Larochelle, Mandel, Pascanu, & 
Bengio, 2012). These networks can include many different 
layers of hidden units. Deep learning has been the source 
of important new technologies in a variety of pattern 
recognition and data-mining domains; they too have the 
same computational power as a universal Turing machine 
(Sutskever & Hinton, 2008), but they offer the practical 
ability to harness such power. The many layers of hidden 
units in deep belief networks provide this power but also 
make the structure of these networks very complicated. 
This complexity currently limits their ability to contribute 
new theories to cognitive science because it makes their 
internal structure very difficult to understand (Dawson, 
2018; Erhan, Courville, & Bengio, 2010; Liu et al., 
2017; Montavon, Samek, & Muller, 2018).

Given the availability of modern architectures like 
multilayer perceptrons or deep belief networks, why do we 
not study them in the current monograph and instead focus 
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on their much less powerful ancestor, the perceptron? 
One reason is their aforementioned complexity: If the 
internal structure of multilayered networks is difficult to 
comprehend, then they are not well suited to increase our 
understanding of probability learning. A second reason is 
that, although the psychological plausibility of the learn-
ing rule for perceptrons has been established (Sutton & 
Barto, 1981), this is not the case for the learning rules used 
to train multilayer perceptrons or deep belief networks.

A third reason, and perhaps the most important, is the 
computational power of these multilayered networks. The 
capabilities of these networks are such that if we trained 
one of them on a version of the card-choice task that used 
interacting cues to signal reward probabilities, then we 
would expect that the network would generate optimal 
responses. That is, the hidden units in the network would 
detect and exploit the information conveyed by interacting 
cues. However, as we pointed out in Section 1.7.1 and as 
we detail in Chapter 7, human performance on this task is 
not optimal, and is particularly poor in conditions in which 
cues interact. Thus, multilayer networks are too powerful 
to account for this performance. Fortunately, perceptrons 
are not. Thus, these simpler networks might provide better 
models of human performance in the card-choice task.

Of course, this is not to say that multilayered 
networks do not have a role in the study of probability 
learning. For instance, imagine a situation in which human 
probability learning exceeds the capability of perceptrons. 
In this case, the perceptron would not be an appropriate 
model, and the next obvious step would be to study this 
more advanced learning with multilayer networks. How-
ever, we see in Chapter 7 that this is not the case in the 
rich, uncertain environment provided by the card-choice 
task. Thus, it is appropriate to model this task with simpler 
networks, because performance in the card-choice task is 
such that the use of multilayer networks can be postponed.
1.7.3 What Is the Relationship to Bayesian Networks?

In Section 1.7.1, it was noted that one reason the 
current monograph focuses on perceptrons is that some 
of our previous research indicates that the outputs of 
these simple networks can be interpreted as representing 
conditional probabilities. That is, a perceptron’s response 
represents its estimate of the probability of being rewarded 
given the set of cues that it is being presented. One of our 
current goals is to understand the kind of probability that 
the perceptron is computing and to understand how this 
probability is computed. Formal results to be presented in 
Chapters 3 and 4 indicate that the probability computed 
is defined by the naïve Bayesian equation (Equation 4-4 

in Chapter 4). As a result, we later describe perceptrons 
as being naïve Bayesian mechanisms.

Given that perceptrons are networks, and that they 
can be described as Bayesian, what is their relationship 
to the large literature on Bayesian networks? In general, 
there is little relationship between the two. Bayesian 
networks are graphical structures that represent the causal 
relationships between variables, including causal relation-
ships between chains of variables (Koski & Noble, 2009), 
and can also be used as statistical models of human causal 
reasoning (Glymour, 2001). In this graph, nodes represent 
variables, and connections between nodes (called edges) 
indicate a causal relationship from one variable to another. 
The structure of a Bayesian network can be used to infer 
a conditional probability of an event occurring given the 
presence of other events that are related (either directly 
or indirectly) to the event of interest. This inference is 
simplified by the absence of edges; such absences indicate 
that some predictors are independent of others. For a 
larger causal domain, determining the appropriate sets of 
edges between variables can be a challenge, and various 
techniques from statistical theory or machine learning 
can be used to solve this problem (Heckerman, Geiger, & 
Chickering, 1995; Koski & Noble, 2009). However, these 
techniques are quite different from the simple associative 
learning rule that was introduced in this chapter. In short, 
Bayesian networks are statistical models used to conduct 
probabilistic inference, using methods and assumptions that 
are quite different from those underlying the perceptron.

There is also a related literature on using Bayesian 
statistical techniques to train artificial neural networks that 
are much more strongly related to the networks explored 
in this monograph (MacKay, 1992, 1995). These systems 
are called Bayesian neural networks (Neal, 2012). The 
“Bayesian” in the name for these neural networks refers 
not to their behavior but rather to statistical techniques 
that provide alternatives to traditional learning rules for 
identifying a set of parameters (e.g., network weights) for 
solving a particular problem. Bayesian neural networks are 
not typically used as psychological models; for instance, 
Neal (2012) presented Bayesian methods for training mul-
tilayer networks to be used in engineering applications. 
In contrast, the perceptrons explored in the current mono-
graph are much simpler, and they are of particular interest 
because of the known relationship between their learning 
rule and psychological models of associative learning.

1.7.4 Relationship to Reinforcement Learning
Section 1.7.3 argued that both Bayesian networks 

and Bayesian neural networks are not examined in the 
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current monograph because the techniques for creating 
or adapting these systems are derived from statistics 
and not from psychological theory. Another approach 
in the literature, reinforcement learning, is much more 
strongly inspired by psychological considerations 
(Kaelbling et al., 1996; Sutton & Barto, 1998). How do 
the simple networks explored in later chapters relate to 
the reinforcement learning literature?

Reinforcement learning is concerned with modeling 
how an agent’s actions on an environment can maximize 
cumulative reward. Typically, this involves balancing 
exploitation of current knowledge (choosing actions that 
are already known to accumulate reward) and exploration 
(choosing new actions to learn the degree to which they 
are rewarded). A reinforcement learning system includes a 
policy that maps perceived states of the environment onto 
actions that can be taken. It also includes a reward function 
that maps environmental states, or these states combined 
with actions, onto a number that reflects desirability or 
reward. It also includes a value function that specifies 
rewards to the agent in the long term; the reward function 
only specifies immediate returns. Finally, a reinforcement 
learning system includes a model of the environment that 
is used to predict the next environmental state and the 
next reward. Depending upon the sophistication of these 
various components, reinforcement learning systems span 
“the spectrum from low-level, trial-and-error learning to 
high-level, deliberative planning” (Sutton & Barto, 1998, 
p. 9). Neural networks can play a role in a reinforcement 
learning system, although this is not a necessary character-
istic. For example, a multilayer perceptron could be used 
to provide a policy function or a value function.

Reinforcement learning is typically presented as 
an alternative to the supervised learning techniques that 
are used to train typical multilayer networks, including 
the perceptron. This is because reinforcement learning 
does not match each environmental state with a detailed 
representation of ideal responses. Instead, reinforcement 
learners receive only a single signal: the degree to which 
their action on the environment is rewarded.

As the perceptrons studied in the current monograph 
use a single output unit, and the training of this unit involves 
signaling whether the network receives a reward, they can 
be viewed as very simple reinforcement learning systems. 
In Chapter 6, which presents operant learning rules for 
perceptrons, the relationship between the current work and 
reinforcement learning becomes slightly stronger. This is 
because the operant learning rules involve perceptrons 
deciding upon a basic action: choosing to learn about a 
particular presented pattern of cues, where this decision is 

made using the network’s estimation of the probability of 
reward signaled by these cues. However, the relationship 
between perceptron learning in the current monograph and 
reinforcement learning is weak. To the extent that we are 
comfortable in viewing our perceptrons as reinforcement 
learners, we are really investigating the kind of adaptation 
that is possible in an extremely simple reinforcement 
learning systems. If we felt that more sophisticated mod-
els than perceptrons were required to explore probability 
learning, then reinforcement learning, such as multilayer 
networks briefly discussed in Section 1.7.2, would offer a 
plausible and more powerful alternative.

1.7.5 Why Not Use Rescorla–Wagner?
Why does the current monograph not use the Rescor-

la–Wagner rule if its goal is to explore the relationship 
between associative learning and adapting to uncertain 
environments? The primary answer to this question is that 
to model probability learning, we need to generate re-
sponses (e.g., estimates of the probability of reward) from 
the associative strengths that are updated by learning. Sur-
prisingly, the Rescorla–Wagner model does not describe 
how to convert associative strengths into responses; it is 
not a model of behavior (R. R. Miller, 2006). Rescorla 
and Wagner (1972) were quite explicit about this aspect 
of their model: “Independent assumptions will neces-
sarily have to be made about the mapping of associative 
strengths into responding in any particular situation” 
(p. 75). Rescorla and Wagner resisted the temptation 
to make any such assumptions because of their belief 
that these assumptions would be related to a number of 
different “performance variables” that would vary from 
one experimental situation to another.

In contrast, although the training of perceptrons can 
be formally related to the Rescorla–Wagner rule, the acti-
vation function of the perceptron also provides an explicit 
account of how associative strengths or connection weights 
are converted into behavior. This means that the perceptron 
offers certain advantages over using the Rescorla–Wagner 
rule itself. The behavioral differences between perceptron 
learning and the Rescorla–Wagner rule have been exam-
ined in detail (in particular, see Dawson, 2008, Chapter 8).

1.8 Summary and Implications
1.8.1 Summary

Chapter 1 has introduced both the main topics of 
this monograph and the basic components used to explore 
these topics. It began by noting that our relationship with 
the world is confronted with epistemic, somatic, and ontic 
uncertainty. As a result, we can never predict the future 
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with complete accuracy. However, we thrive in this un-
certain environment, which suggests that we somehow 
can adapt to it. The core issue explored in this work 
is how agents adapt to uncertainty.

This is a very large topic, so one purpose of the chap-
ter was to introduce a task that focused on a smaller, but 
still interesting, component: probabilistic discrimination. 
In probabilistic discrimination, cues or signals from the 
environment provide information about future events, but 
this information is not perfectly accurate. The chapter 
introduced an example task that is important throughout 
the monograph to illustrate this type of environment. In 
this card-choice task, agents explore an environment that 
contains different playing cards. When a card is chosen, it 
provides a reward with a set probability, and the symbols on 
the card serve as signals about the likelihood of a reward. 
This task is straightforward but can be related to diverse 
topics, including experiments on animal reorientation and 
studies of multiarmed bandit strategies.

The card-choice task is also closely related to an old 
and well-established literature on probability learning. One 
of the core findings in this psychological literature is that 
humans exhibit probability matching: The number of times 
an action is performed is correlated with the probability 
that the action will be rewarded. We linked performance 
in an example card-choice task to this phenomenon. We 
discovered that as participants explore the different cards, 
they are more likely to receive rewards; one reason for this 
is that their card choices exhibit probability matching.

What causes probability matching? We saw that old-
er theories of probability matching provide descriptions of 
behavior but failed to explain this behavior by proposing 
putative mechanisms. To solve this problem, we hypoth-
esized that probability matching related to associative 
learning of the sort described by a simple artificial neural 
network, the perceptron. We described the basic properties 
of a modern perceptron that uses the logistic equation as 
its activation function and provided a gradient descent 
learning rule for its training. A simple simulation study that 
trained this type of network on the weather prediction task 
revealed a key property. At the end of training, the response 
of a perceptron was a highly accurate estimate of the reward 
probability associated with a particular pattern of cues.

1.8.2 Implications
Chapter 1 frames the study of adapting to uncer-

tainty quite specifically as the study of how artificial 
neural networks learn probabilistic discrimination 
tasks. The material captured in this frame is broad 
enough to raise many interesting questions. Fortunately, 

framing the topic in this way provides many tools that 
permit us to answer these questions.

To begin, we have already seen that the modern per-
ceptron can learn the probabilities of reward signaled by 
cues in a particular probabilistic discrimination task; this 
is consistent with other results in the literature (Dawson et 
al., 2009; Dawson & Gupta, 2017). Given that the mod-
ern perceptron can be easily used to conduct simulation 
experiments, and can be analyzed mathematically, we are 
in a position to answer very specific technical questions 
about how this type of network adapts to uncertainty. In 
other words, we can use the methods of synthetic psychol-
ogy (Braitenberg, 1984; Dawson, 2004, 2013; Dawson, 
Dupuis, & Wilson, 2010) to study probability learning 
in perceptrons. What kinds of probability learning do 
perceptrons exhibit? What limitations do perceptrons have 
when they learn probabilities? One way to explore these 
questions is to train perceptrons on probability learning 
problems, such as variations of the card-choice task, and 
then to observe their strengths and weaknesses.

The weaknesses of perceptrons are of particular 
interest. There is a long history of perceptrons being aban-
doned or ignored because their simple structure places 
limits on what they can learn (Minsky & Papert, 1969; 
Papert, 1988). We see in Chapter 2 that these limitations 
are typically described logically in terms of a property 
called linear separability. However, this sort of limitation 
may not be the most appropriate to consider when we are 
concerned with perceptrons’ probabilistic behavior, and 
not their logical judgments (Dawson & Gupta, 2017). 
Furthermore, in some cases the limitations of perceptrons 
are appropriate, because similar limitations also govern 
the behavior of biological agents (Dawson, 2008; Daw-
son, Kelly, et al., 2010). Simulation studies are required 
to determine the limits of perceptrons, and experiments 
with human participants are required to relate perceptron 
responses to human probability learning.

A second limitation of the perceptron introduced 
in this chapter is more important. The simulation results 
show that perceptrons can estimate probabilities in some 
situations. However, the perceptron discussed in Sections 
1.5 and 1.6 cannot use this estimated probability to make 
a choice, because this action is not part of the percep-
tron’s repertoire. A different kind of network, such as the 
operant perceptron (Dawson et al., 2009), is required to 
convert probabilities into choices.

The next few chapters ignore this important limitation 
to use the modern perceptron to obtain a more rigorous 
understanding of probability learning. Chapter 2 begins 
this process by exploring the role of cues as signals that 
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provide information. This leads to a discussion of three 
interrelated topics: information theory, probability theory, 
and cybernetics. These topics are brought into focus with 
the modern perceptron. First, it is argued that the role of 
information is to reduce uncertainty, but in the context of 
the perceptron, this uncertainty must be of a particular 
type, called subjective probability. Second, it is argued 
that the learning rule that was described in Section 1.5 is a 
prototypical example of negative feedback. Together these 
points link probability learning in perceptrons to cybernet-
ics and Bayesian probability theory.

Chapter 3 uses computational analyses to explain 
exactly how modern perceptrons generate probabilities 
and details how the connection weights and bias of a 
network are related to probability theory. This is ac-
complished by demonstrating the Bayesian behavior of 
a very simple perceptron and then by proving that this 
behavior is a consequence of using the logistic activation 
function. This analysis shows how one can think of per-
ceptrons in terms of other concepts in probability theory: 
odds, odds ratios, and contingency.

Chapter 4 builds upon the results of Chapter 3 to 
explore perceptrons in more complex situations. It begins 
by translating the traditional logical limits of perceptrons 
into different kinds of limits that are more appropriate 
when the probabilistic responses of perceptrons are of 
interest. It proves that perceptrons that consider signals 
from multiple simultaneous cues are naïve Bayesian 
mechanisms and that a key factor that limits their abilities 
is the notion of conditional dependence in probability 
theory. It uses this limitation to inspire five variations of 
the card-choice task. Probability estimations in these dif-
ferent simulations clearly demonstrate that some versions 
of this task are more difficult for perceptrons than are 
others. Later we ask whether this pattern of results is also 
evident in human probability learning.

By the end of Chapter 4, we will have acquired a very 
sophisticated understanding of the probabilistic behavior 
of the modern perceptron. We will then be in a position to 
extend this model into a network that explores an environ-
ment by making choices and by comparing the performance 
of networks to the performance of human participants. 
However, these aims are introduced later in the mono-
graph. Let us start by exploring perceptrons in the context 
of information theory, probability theory, and cybernetics.
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Chapter 2: Information, Probability,  
and Negative Feedback

Chapter 1 introduced the theme of this monograph—
adapting to an uncertain world— as well as a basic system 
for exploring this theme, the modern perceptron. Chapter 
2 explores how perceptrons learn in more detail and relate 
this learning to three interrelated topics: mathematical 
information theory, physical versus subjective probability, 
and negative feedback. The core message of Chapter 2 
is that perceptrons generate subjective probabilities that 
predict physical probabilities of events in the world. 
Perceptrons then receive information—in the form of neg-
ative feedback—that is used to change network structure 
to improve the accuracy of these predictions. This process 
accounts for the probability estimating behavior of per-
ceptrons and is illustrated with an example simulation. 
However, this process also means that perceptrons alter 
their structure to achieve a dynamic equilibrium with the 
environment. When this is achieved, the perceptron is 
constantly altering its internal structure, but its overall 
behavior is unchanged—it matches probabilities. A second 
simulation is used to demonstrate that these processes are 
active; in this second example the perceptron’s environ-
ment suddenly changes—but it quickly alters its structure 
to achieve a different dynamic equilibrium.

2.1 From Association to Information
2.1.1 Association by Contiguity

Classical conditioning, as originally conceived 
(Pavlov, 1927), is a form of learning that is based on the 
associationist law of contiguity (Warren, 1921). According 
to the law of contiguity, when two ideas (e.g., A and B) 
occur together, the association between them is strength-
ened. As their association becomes stronger with repeated 
contiguity, the occurrence of A on its own will cause the 
occurrence of B. The law of contiguity was used by the 
associationists to account for the sequential production of 
thoughts. Its success in predicting the results of a variety 
of learning laid the foundation for psychological behav-
iorism, which dominated North American psychology in 
the first half of the 20th century.

However, as psychology’s study of learning be-
came more sophisticated in the second half of the 20th 
century, its findings begin to challenge the explanatory 
power of the law of contiguity. For instance, landmark 
studies discovered the phenomenon of blocking, which 
demonstrated that in certain conditions contiguity fails to 
produce learning (Kamin, 1968, 1969).

Blocking involves manipulating the contiguity of a 
conditioned stimulus (CS) with an unconditioned stimulus 
(UCS) that elicits a response. In classical conditioning, the 
repeated pairing of the CS and the UCS produces an asso-
ciation between the CS and the response so that presenting 
the CS elicits the response. To demonstrate blocking, 
two conditioned stimuli (CSA and CSB) are presented as a 
compound stimulus in a classical conditioning paradigm. 
A control group of animals is trained using the compound 
stimulus only; at the end of this training, both CSA and 
CSB elicit the response. In contrast, an experimental is 
first trained on CSA alone. After this training, it is then 
trained with the compound stimulus in the same manner 
as the control group. The central finding is that experi-
mental group shows less of a response to CSB than does 
the control group. The pretraining with CSA blocked later 
learning that could have occurred with CSB.

The blocking phenomenon presented problems for 
traditional theories of learning that relied on the law of 
contiguity. This is because in the second phase of training 
for the experimental group, CSA and CSB were contigu-
ous with the unconditioned stimulus that produced the 
response. Theories based on contiguity predicted that an 
association between CSB and the response should be cre-
ated. That this association was blocked by prior learning 
clearly indicated that something more than contiguity was 
involved in classical conditioning.

2.1.2 Cognitive Conditioning
Mathematical information theory was making an im-

pact on psychology at roughly the same time that learning 
theorists were confronting phenomena like blocking (At-
tneave, 1959; Berlyne, 1960; G. A. Miller & Frick, 1949; 
Quastler, 1955). Thus, it is no surprise that learning theo-
rists began to explore these ideas at this time. As we saw in 
Chapter 1, one issue that arose in the probability learning 
literature was whether the role of cues or rewards was to 
provide information to a learning agent (Bitterman, 1956; 
Hillix & Marx, 1960). This issue was beginning to be con-
sidered across all of learning theory at this time (Egger & 
Miller, 1962, 1963; Mowrer, 1960). For instance, Mowrer 
considered that the time was ripe for learning theory to in-
tegrate ideas from information theory and cybernetics. He 
raised the possibility that, with learning, the presence of a 
conditioned stimulus was a signal that produced “hope,” 
that is, hope that a reward would soon appear. Egger and 
Miller argued that learning occurred only if the conditioned 
stimulus provided new information that was not redundant 
with the information provided by other cues.
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The ideas that learning occurs when conditioned 
stimuli are not redundant, and that such learning makes 
conditioned stimuli signals of hope, are both tied up with 
the notion that cues produce expectations in the learner. 
Kamin believed that a similar idea explained blocking 
(Siegel & Allan, 1996). However, expectation did not 
have a strong influence on mathematical learning theory 
until the early 1970s (Rescorla & Wagner, 1972). The 
Rescorla–Wagner model of learning formalized the notion 
that learning requires surprise. That is, cues provide infor-
mation that establishes expectations in learning agents. If 
these expectations are confirmed, then no learning occurs. 
However, if these expectations are not confirmed—if the 
learner is surprised—then associations are updated.

To be more precise, Rescorla and Wagner (1972) 
proposed that the amount of change in an association at 
any given time was a function of the difference between 
the current associative strength—V(t)—and the maximum 
possible associative strength (l), scaled by two constants 
that reflected learning rate and stimulus salience (α, β). 
Informally, this difference reflected the predictive power 
of the CS. If this difference was large, then the predic-
tive power of the CS was poor, and the strength of the 
association needed to be modified. If this difference was 
small, then the predictive power of the CS was excellent, 
and little modification of the association was required. 
Formally, Rescorla and Wagner (1972) defined the change 
in associative strength that was required at any time t as

(2-1)

With the change in associative strength defined 
using Equation 2-1, Rescorla and Wagner defined 
an iterative equation for the change in associative 
strength changed over a sequence of trials:

(2-2)

Equations 2-1 and 2-2 describe a condition in which 
only a single CS can be present. Rescorla and Wagner 
(1972) extended these equations to easily deal with more 
complicated situations. For example, imagine that three 
conditioned stimuli, CSA, CSB, and CSC, are involved. 
The associative strength for each of these stimuli can be 
represented as VA, VB, and VC, respectively. The overall as-
sociative strength (ΣV) for this example is then defined as

(2-3)

After defining ΣV, Rescorla and Wagner (1972) used 
it to define the change in individual associative strengths 

that would occur at some time t during learning. This ex-
tends Equation 2-1. For instance, the change in associative 
strength for CSA at time t is defined as

(2-4)

Note that this equation is sensitive to the fact that 
each CS might have a different salience; αA is the salience 
for CSA alone. Similar equations are used to calculate 
the change in associative strengths for the other con-
ditioned stimuli that were present, with each equation 
using a different salience constant.

The Rescorla–Wagner model has been extremely in-
fluential (Miller, Barnet, & Grahame, 1995; Siegel & Allan, 
1996; Walkenbach & Haddad, 1980). One reason for this is 
that this model provided a formal framework that predicted 
phenomena like blocking. In the experimental condition in 
a blocking study, there is no new learning involving CSB 
because it does not provide any new information (or any 
surprises) beyond that which has already been provided 
by CSA. The model also made many other counterintuitive 
predictions that have been confirmed experimentally.

We have two other important reasons to be interested 
in the Rescorla–Wagner model in this monograph. The first 
is the tacit assumption upon which it is based: that cues set 
up expectations, and that the amount of learning that occurs 
is proportional to the degree that these expectations are not 
met. This tacit assumption suggests that there should be a 
link between Rescorla–Wagner learning and information 
theory. This is particularly relevant because mathematical 
information theory is defined in terms of uncertainty and 
probability, as is detailed shortly in this chapter.

The second reason for our interest in the Rescorla–
Wagner model is its strong relationship to learning rules 
used to train artificial neural networks. It has long been 
known that there is a formal relationship between these 
two types of learning rules when it is assumed that the 
artificial neural network employs a simple, linear acti-
vation function (Gluck & Bower, 1988; Sutton & Barto, 
1981). More recently, Dawson (2008) proved that the 
gradient descent learning rule for the modern perceptron 
(Equation 1-6) can be translated into the Rescorla–Wagner 
rule. In other words, the manner in which we train modern 
perceptrons is formally equivalent to a hugely influential 
mathematical model of animal learning.

This relationship between animal learning and per-
ceptron learning is important because Chapter 1 already 
demonstrated that perceptron responses are interpretable 
as probability estimates. Probabilities also provide the 
foundation for mathematical information theory, as we see 
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in Section 2.2. We will soon be in a position to use the 
perceptron to provide a link between information theory 
and animal learning, particular in the context of learning 
that involves expectations of reward in an uncertain world.

Furthermore, exploring learning that involves ex-
pectations of reward in an uncertain world will lead us 
directly into two additional topics. First, we see that the 
idea of probability is itself complex. As we develop an 
account of learning that affects probability judgments or 
expectations, we are forced to accept that we are dealing 
with a controversial topic known as subjective probability 
(Jeffrey, 2004; Kyburg & Smokler, 1964). Second, as we 
explore learning to make better predictions about uncertain 
events (i.e., learning to match probabilities), we are able 
to introduce an important notion from cybernetics called 
negative feedback (Ashby, 1956; Wiener, 1948, 1950). 
Cybernetics is a field closely linked to information theory 
and is interested in how information can be used to adapt 
or control actions on the world. Our goal is to use artificial 
neural networks as a lingua franca that will permit us to 
establish firm links between probability learning, animal 
learning, information theory, and cybernetics. In particu-
lar, these links are provided by an explicit understanding 
of the error-based learning represented at the bottom of 
Figure 1-6 in terms of negative feedback.

To begin, let us take as our working hypothesis that 
the cues we process during learning provide us information 
that establishes expectations about what is about to occur. 
To understand the import of this working hypothesis, we 
need to define what “information” is. Section 2.2 does 
this; Section 2.3 builds on this definition to describe how 
probability theory is linked to information theory.

2.2 Twenty Questions

2.2.1 Decreasing Uncertainty
We learn about our world by acquiring informa-

tion. What is information? In the most general sense, 
“a statement or observation is informative if it tells us 
something we did not already know” (Attneave, 1959, 
p. 1). Similar accounts are provided by others (Cher-
ry, 1957; Garner, 1975; MacKay, 2003).

The mathematical theory of information provides 
a more technical definition (Shannon & Weaver, 1949; 
Wiener, 1948). According to it, to acquire information is to 
reduce uncertainty. As the primary topic of this monograph 
is with how humans and other agents adapt to an uncertain 
world, let us begin by exploring some ideas about uncer-
tainty that arise in the context of information theory.

The parlor game of Twenty Questions can be used to 
illustrate some of these key ideas (e.g., Attneave, 1959). 
For instance, Attneave described a version of this game 
in which one player chooses a particular square on a 
chessboard and another player tries to identify this square 
by asking no more than 20 questions. These questions can 
be answered only with a “yes” or a “no.” In one particu-
lar instance of this game, Player 2 selects the square g5 
(see Figure 2-1) as the target to be identified by Player 1. 
The following conversation provides an example of how 
this particular game could proceed:

Player 1: “Is your square black?”

Player 2: “Yes.”

Player 1: “Does your square fall in any row from 1 through 4?”

Player 2: “No.”

Player 1: “Does your square have no more than one black 
square to its right in your square’s row?”

Player 2: “Yes.”

Player 1: “Does your square fall in rows 5 or 6?”

Player 2: “Yes.”

Player 1: “Does your square fall in columns e or f?”

Player 2: “No.”

Player 1: “Is your square g5?”

Player 2: “Yes.”

With that final answer, the game ends. Player 1 
has correctly identified Player 2’s square by asking 
only six questions, winning the game.

Player 1 was able to win this game because the an-
swer to each question provided information. In particular, 
before the game ends, Player 1 is uncertain about which 
square on the board is the target. The answer to each ques-
tion cut this uncertainty in half. That is, if before asking 
the question Player 1 believed that any one of x different 
squares was the target, then after hearing the answer she 
believed that the target now belonged to a set of only x/2 
possibilities. In other words, the answer decreased Player 
1’s uncertainty about the target’s location.

To illustrate this, let us consider the game’s con-
versation in more detail. At the beginning, there is equal 
likelihood that the target square could be any one of the 



38

PROBABILITY LEARNING BY PERCEPTRONS AND PEOPLE

Michael R.W. Dawson

64 locations on the chessboard. Player 1’s first question 
about the color of the square halves this uncertainty. If the 
answer is yes, then the target square must be among the 32 
squares that are black; if the answer is no, then the target 
square must be among the other 32 squares that are white. 
The remaining questions continue to halve the number 
of possible locations of the target square. The answer to 
the second question indicates that the target square must 
be one of the 16 black squares in the upper half of the 
chessboard. The answer to the third question means that 
the target square must be one of the eight black squares in 
the upper right quadrant of the board. The answer to the 
fourth question specifies that the target square is one of the 
four black squares in the lower half of this quadrant. The 
answer to the fifth question signals that the target square 
is one of the two black squares within columns g and h 
and within rows 5 and 6. The answer to the final question 
names the target square by selecting it from the final two 
candidates. If Player 2 answered no to this final question, 
Player 1 would know that the target square must be the 
other candidate, the black square at h6.

2.2.2 Bits of Information
Mathematical communication theory measures the 

amount of information in units of binary digits, which are 
typically called bits. One bit of information is the amount 
required to choose between two equally likely possibili-
ties. That is, a bit is the amount of information that halves 

our uncertainty. For instance, in tossing a fair coin, there 
are only two possibilities, heads or tails. When we observe 
that the tossed coin shows heads, we receive one bit of 
information, because we now know which of two possibil-
ities actually occurred. Similarly, the answer to each of the 
questions asked by Player 1 in the game above provides one 
bit of information. This is because each answer chooses 
between two equally likely sets of target square positions 
(black vs. white squares, black squares in the upper half of 
the board vs. black squares in the lower half, etc.).

Because of its digital nature, the conversation pro-
vided earlier can be represented as a string of binary digits, 
with each digit representing the answer to a question, and 
the order of the digits preserving the order of the questions: 
101011. This string of digits is literally the binary address 
of the target square on the chessboard. If the same set of 
questions is always asked, but the answers are different 
(because a different target square is selected), then the 
different string of digits will represent the binary address 
of the different target (Attneave, 1959). As there are six 
questions being asked, and each question leads to one of 
two responses, this means that there are 26 different binary 
addresses that are possible. The value 26 equals 64, which 
means that it is possible for a set of six binary questions to 
uniquely identify any possible target square on the board.

Alternatively, one could ask what the smallest num-
ber of questions is in order to eliminate the uncertainty 
about the target location. Information theorists answer 
this kind of question by taking the base 2 logarithm of 
the total number of possibilities, because this particular 
logarithm converts uncertainty into bits. For instance, in 
our version of the Twenty Questions game log2(64) = 6, 
which means that a minimum of six bits of information, 
or six answers to binary questions, are required to locate 
the target square. However, for this to be true, the answer 
to each question must be maximally informative—each 
answer must provide one bit of information. If this is not 
the case, then more questions are required, as we see next.

From the perspective of information theory, a key 
characteristic of our example game is that it is binary—there 
are only two possible answers to each question. Literally, 
this means that each answer can be represented with a bi-
nary digit: 0 for no and 1 for yes. This property of the game 
leads to measuring information in bits and explains why 
base 2 logarithms are used to convert uncertainty into bits.

Furthermore, the two possible states of a binary digit 
have other useful interpretations. They can be interpreted 
logically as “false” or “true,” as is typical in mathematical 
logic (Boole, 1854/2003). They can also be interpreted 
physically as the states of electric switches (i.e., open vs. 

Figure 2-1. A chessboard for playing Twenty Questions, with each row 
labeled by a number and each column labeled by a letter. In this example, 
the square g5 has been selected as the target.
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closed). Indeed, one of the most significant discoveries 
that led to rapid advances in communication and computer 
technology was Claude Shannon’s realization that the 
states of electric switches can be translated into the truth 
functions of Boole’s logic and that one could therefore use 
Boole’s logical operations to test, to design, and to simpli-
fy electric circuits (Shannon, 1938).

From the perspective of the current monograph, an-
other key characteristic of our example game is that the an-
swers given by Player 2 to each of Player 1’s questions are 
both reliable and valid. Reliable answers are those that are 
replicable. Player 2’s answers are reliable if she provides 
exactly the same answer to the same question if it is asked 
repeatedly. Her answers are valid if they are truthful—for 
instance, if she only answers yes to the first question when 
the target square really is black. Player 1 would have a 
much more difficult time playing the game if Player 2’s an-
swers lacked reliability and validity. For instance, imagine 
a situation in which Player 2 only answered yes to the first 
question 80% of the time when the target square was indeed 
black. In information theory, this situation would be dealt 
with by considering the effect of noise on a communication 
channel. The primary concern of the current monograph is 
to consider a complementary approach to this problem by 
exploring methods that people might adopt to deal with a 
world that is not completely reliable or valid.

As was hinted earlier, Player 1 could have asked a 
different set of digital questions that are not as efficient, in 
the sense that she would have to ask many more of these 
questions to identify the target square. For example, she 
could simply ask about each of the 64 squares in order: “Is 
your square a1?” “Is your square b1?” and so on, until the 
target square is reached. Sometimes this strategy would 
lead to the game being over quickly, whereas on other 
occasions it could take a full set of 64 questions to find 
the target. Assume that Player 2 chooses the location of 
the target square at random and that each square of the 
chessboard is therefore equally likely to be the target. 
Over a large number of games, we would expect that 
this second strategy for Player 1 requires asking on aver-
age 32 questions to find the target.

Both of the approaches to the game of Twenty 
Questions are binary, in the sense that there are only two 
possible answers to any question in either strategy. Why 
then is one strategy more efficient than another strategy? 
Although either approach uses questions that can be either 
true or false, this binary state does not mean that the an-
swers to either set of questions provide the same amount 
of information. The first approach to the game uses ques-
tions that provide more information than is provided by 

the answers to the questions used in the second approach. 
The mathematical theory of information provides a precise 
method for measuring the amount of information provided 
by each answer, as is discussed in the next section.

2.3 Measuring Information
2.3.1 Entropy and Probability

Events or observations that convey information do 
so by reducing uncertainty. It should therefore not be sur-
prising to find that a measure of uncertainty, probability, is 
central to defining the measurement of information. This 
section briefly reviews the standard equations for measur-
ing information. In later sections, we use these equations 
to raise the possibility that alternative definitions of infor-
mation might be more appropriate for theories concerned 
with how agents adapt to an uncertain world.

To begin, let us consider a simple example in which 
we wish to measure the amount of information conveyed 
by observing the result of a single toss of a fair coin. By 
definition, there is an equal chance of this coin showing 
either heads or tails. That is, P(H) = P(T) = 0.5, where 
P(H) represents the probability of observing heads and 
P(T) is the probability of observing tails. As there are 
only two possible events, and each is equally likely, 
there is one chance in two that the event will occur, so 
the probability of either is ½ = 0.5.

A slightly different way to consider the coin-tossing 
example is to map it into the digital scenario that we saw 
earlier in Twenty Questions. To do so, we must determine 
the number of bits—the number of answers to digital ques-
tions—that are required to generate a unique address or 
label for each of the possible alternatives that we face. Let 
m stand for the number of possible alternatives, and let H 
stand for the required number of bits. From this it follows 
that m = 2H. This expression can be manipulated to express 
H in terms of m, as is presented below in Equation 2-5. In 
Equation 2-5, H represents the amount of information in 
bits. So, in our coin toss example where m = 2, H = log22 
= 1. This shows that observing the result of a coin toss 
conveys exactly one bit of information:

(2-5)

Equation 2-5 can be applied to situations in which 
more than two possibilities are equally likely. For instance, 
consider rolling a die, where if the die is fair there are six 
equally likely possibilities. In this case, m = 6, so H = log26 
= 2.56496 bits. This indicates that rolling a die provides 
more information than does tossing a coin. The reason for 
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this is that rolling a die reduces our uncertainty from six 
possibilities to one, whereas tossing a coin reduces uncer-
tainty only from two possibilities to one. Rolling the die 
provides more information because there is a greater de-
crease in uncertainty that is captured by the equation for H.

Equation 2-5 can be used to provide some insight into 
the information theory structure of the game of Twenty 
Questions. First, consider the overall goal of that game, 
which is identifying one out of 64 possible locations on a 
chessboard. From this perspective, m = 64, so H = log264 = 
6. This shows again that six bits of information are required 
to find the target square, so it is not surprising to see that 
Player 1 could win the game by asking only six questions.

We could express the equation for the amount of 
information in an alternative form, taking advantage of the 
fact that H = log2m = −log2(1/m). The point of doing this is 
that when there are m equally likely alternatives, then the 
probability of any one of these alternatives being selected 
is 1/m. In other words, we can state that H in terms of p, 
where p is the probability of one of the events occurring. 
This is done in Equation 2-6, which provides an explicit 
link between amount of information and probability:

(2-6)

The equations that we have been discussing are 
based on the assumption that each of the possible events 
is equally likely to be observed. When this assumption is 
false, Equation 2-6 must be modified to become more gen-
eral. For example, let us consider the situation in which we 
toss a coin, but this coin is biased so that P(H) = 0.8 and 
P(T) = 0.2. In this situation, there are two possible events, 
but they occur with different likelihoods so that heads is 
more likely than tails. Information theory deals with this 
situation by using the probability of an event occurring to 
weight the amount of information that the event conveys. 
This leads to the following equation for the amount of 
information (Shannon & Weaver, 1949), which is called 
the Shannon–Weaver measure of entropy:

(2-7)

In Equation 2-7, there are i different alternatives, 
and pi provides the probability that each alternative oc-
curs. The equation computes the information associated 
with the alternative—log2(pi)—and then weights this by 
the probability that the alternative occurs (pi). Thus, the 
Shannon–Weaver equation does not provide a sum of 
the total information but instead provides the average 
amount of information transmitted when an alternative 
is selected. For example, consider the biased coin ex-

ample, where the probability of heads is 0.8. Using the 
Shannon–Weaver measure for this situation, H = −(0.8 
× log2(0.8) + 0.2 × log2(0.2)) = −(0.8 × −0.32193 + 0.2 
× −2.32193) = 0.72193. In other words, although a toss 
of a fair coin provides one bit of information, the toss of 
this biased coin provides less than three fourths of a bit. 
The reason for this discrepancy in information is the fact 
that there is less uncertainty for the biased coin, because 
heads are much more likely than tails.

We can use entropy as defined in Equation 2-7 to 
understand why the Twenty Questions strategy of asking 
about each of the 64 squares in turn is much less efficient 
than the strategy illustrated in the conversation that il-
lustrated the game at the start of this chapter. When we 
ask about each square in turn, the square can either be 
the target or not. Only one of the squares is the target, 
which means that the probability of selecting the target on 
a given question is 1/64 = 0.015625, and the probability 
of not selecting the target on a given question is 63/64 
= 0.984375. When these two probabilities are inserted 
into Equation 2-7, H is determined to be 0.11612. In other 
words, although the strategy illustrated in the conversation 
solved the problem quickly because each question gleaned 
one bit of information, the second strategy is much more 
inefficient because the answer to each question will on 
average provide slightly more than one tenth of a bit of 
information. As these questions acquire less information, 
it is not surprising that many more have to be asked 
in order to locate the target square.

2.3.2 Summary and Implications
In summary, when information is received it reduces 

uncertainty. The mathematical theory of information 
measures information in terms of entropy, using a simple 
equation based on the probabilities that events will occur. 
This equation was critical for important developments 
in communication technology in the 20th century, and 
this section has shown how it can provide insight to a 
simple example like Twenty Questions.

Information theory inspired research in a variety of 
difference disciplines. For instance, there was an explosion 
of interest in applying information theory to experimental 
psychology (Attneave, 1959). However, the influence of 
information theory on experimental psychology did not last 
long (Luce, 2003). One reason for this is that information 
theory had little to say about important issues (such as the 
meaning of a message) that were of particular interest to 
psychologists. Furthermore, information theory may have 
had little to say about these issues because there are many 
possible analyses of the term probability (Mellor, 2005), 
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and the particular analysis adopted by information theory 
prevents this theory from addressing specific psycholog-
ical issues. Section 2.4 explores alternative analyses of 
probability and their relation to information theory and 
some of its psychological applications.

2.4 Physical and Subjective Probability
The formal measure of information provided in 

Equation 2-7 is founded on the assumption that infor-
mation reduces uncertainty. This is why the probability 
that an event occurs plays a central role in the Shan-
non–Weaver definition of entropy. However, it is critical 
to realize that this formalization is based on assuming 
a particular definition of probability and that other defi-
nitions of probability also exist (Mellor, 2005). We see 
that changing our definition of probability leads to a very 
different approach to measuring information.

2.4.1 Physical Probability
One definition of probability is called physical 

probability, because it is based on observations of the 
world (Mellor, 2005). The physical probability of a partic-
ular event is simply the frequency of times it is observed 
occurring in the world divided by the total number of 
observations that are made. This is also often called the 
frequentist definition of probability and is primarily asso-
ciated with Sir Ronald Fisher’s (1922) pioneering work 
in statistics. The probabilities included in the Shannon–
Weaver equation for entropy are physical probabilities and 
are explicitly defined as being frequentist in nature (Ash-
by, 1956). Thus, according to mathematical information 
theory (Shannon & Weaver, 1949), the role of information 
is to reduce uncertainty, and the kind of uncertainty that is 
reduced concerns the possible states of the physical world. 
The Shannon–Weaver mode defines entropy exclusively in 
terms of these worldly possibilities; the measure of infor-
mation does not depend on any properties of the receiver.

Very shortly after its invention, formal information 
theory began to influence research in other disciplines. For 
example, psychology, the Shannon–Weaver equation first 
appeared in psychology in 1949 (G. A. Miller & Frick, 
1949), and within a decade there was an explosion of infor-
mation theoretic psychological research (Attneave, 1959; 
Quastler, 1955). Information theory continued to play a 
prominent role in psychological research into the 1970s 
(Berlyne, 1960, 1971; Garner, 1975; Leibovic, 1969). 
However, information theory’s influence on psychology 
has remarkably diminished since that time (Luce, 2003). 
Instead, modern cognitive psychology emphasizes “the 

concept of ‘information-processing models’ in which in-
formation theory per se plays no role” (Luce, 2003, p. 185).

Why has information theory essentially disappeared 
from psychological research? One important reason is that 
the Shannon–Weaver equation is based on physical prob-
ability and measures information independently of any 
characteristics of the agent who receives this information. 
That is, entropy depends exclusively on the uncertainty 
of events in the world. It is not influenced by the needs, 
desires, beliefs, or interests of the agents who learn about 
this world by receiving this information. In contrast, 
psychologists are concerned with the content, meaning, 
or semantics of messages (Cherry, 1957; Dretske, 1981; 
MacKay, 1969). These notions are not captured by the 
Shannon–Weaver equation, which measures information’s 
quantity but not its quality. Furthermore, because formal 
information theory relies upon physical probability, it 
ignores the states of agents-as-receivers. Presumably, such 
states (e.g., an agent’s beliefs, desires, or goals) are critical 
in determining that the content of one received message is 
more important than is the content of another.

Shannon’s classical information measure is not 
appropriate to describe behavioral processes of biologi-
cal systems, the reason being that this measure is based 
solely upon objective properties and cannot, therefore, 
represent a system’s individual knowledge or beliefs 
nor can it discriminate between events which are of 
great importance and others which are irrelevant for an 
individual system (Pfaffelhuber, 1972).

This gulf between what information theory delivers 
and what psychologists would like it to deliver has led 
to a variety of proposals for alternative formalizations of 
information theory (Baldi, 2002; Baldi & Itti, 2010; Belis 
& Guiasu, 1968; Itti & Baldi, 2009; Pfaffelhuber, 1972; 
Weiss, 1967). One property shared by these approaches is 
that they exploit a different definition of probability.

2.4.2 Subjective Probability
Subjective probability, which is sometimes called 

credence or personal probability, is a notion of probabil-
ity that is quite distinct from physical probability (Eagle, 
2011; Good, 1983; Jeffrey, 2004; Kyburg & Smokler, 
1964; Mellor, 2005). Subjective probability is a likelihood 
assigned by an agent to an event or to a proposition; it is 
the probability that the agent believes is associated with 
an event. In short, subjective probability is predicted 
probability. Because it is founded on an agent’s beliefs or 
expectations, an event’s subjective probability can differ 
from its physical probability. Consider a biased coin. The 
physical probability of it producing heads might be 0.8. 
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However, at first glance I might not realize that it is biased 
and therefore assign 0.5 as the subjective probability of 
heads. Subjective probabilities are typically encountered 
in an alternative to frequentist statistics called Bayes-
ian statistics (Savage, 1954, 1962). 

There is nothing to prevent a variation of the Shan-
non–Weaver entropy equation to be formulated using 
subjective probabilities (Pfaffelhuber, 1972). For instance, 
Equation 2-8 was suggested by Pfaffelhuber as a measure of 
subjective entropy (Hs), where pi is the physical probability 
of event i, and qi is its subjective probability of occurrence:

(2-8)

One reason for measuring information using subjec-
tive probabilities is that this approach recognizes that bi-
ological agents may have different sources of uncertainty 
to consider. One is the physical probabilities of events or 
signals in the world that is dealt with by the Shannon–
Weaver equation. Another is the set of possible responses 
that an agent could make to a received signal (Berlyne, 
1960, 1971; Garner, 1975; MacKay, 1969, 2003). When a 
particular response to a signal is evoked, this too reduces 
uncertainty, but in this case the uncertainty pertains to 
the agent’s states or behavior. The amount of information 
conveyed by a response could be measured by an equa-
tion that uses subjective probability.

This point is important because it can be directly 
linked to a theoretical perspective that was introduced 
in Chapter 1. Recall that probabilistic functionalism 
(Brunswik, 1952, 1955), as depicted earlier in Figures 
1-1 and 1-7, recognized a variety of probabilistic rela-
tionships that linked the world to an agent’s response to 
it. Some of these relationships were between the world 
and perceived cues. Other relationships were between 
the perceived cues and the agent’s response. In Chapter 
1, we raised the possibility that the former relationships 
reflected ontic uncertainty, whereas the latter reflected 
epistemic uncertainty. These different types of uncertainty 
can be linked to different definitions of probability. In 
particular, ontic uncertainty should be strongly related to 
physical probability, but epistemc uncertainty is easier 
to relate to subjective probability.

One reason for relating epistemic uncertainty to 
subjective probability is that from the perspective of 
psychology subjective probabilities should change be-
cause of an agent’s experience with the world. Consider 
the biased coin again. On my first encounter with it, my 
subjective probability of heads could be 0.5, based on my 
prior experience with typical (fair) coins. However, as I 

watch it being tossed, and observe heads appearing far 
more frequently than I expect (given my starting subjec-
tive probability), I might revise my subjective probability. 
One reason that subjective probability is associated with 
Bayesian statistics is because Bayes’s theorem, which 
we discuss in more detail later in this monograph, can 
be used to update subjective probability on the basis of 
new evidence (Edwards, Lindman, & Savage, 1963; 
McGrayne, 2011; Molina, 1931). In short, although 
physical probabilities are constant properties of events 
in the world, subjective probabilities are not and can be 
modified by learning (Pfaffelhuber, 1972).

Chapter 1 also provided a discussion of probabili-
ties that change with experience, such as when human 
participants learn to match probabilities or when percep-
trons learn to estimate probabilities. Clearly probability 
judgments in both of these examples change as a result of 
experience, which indicates that these judgments cannot 
be physical probabilities. This is the reason that when 
the perceptron was linked to Brunswik’s (1952, 1955) 
probabilistic functionalism (Figure 1-7), changes in con-
nection weights could alter only epistemic uncertainty 
(i.e., the probabilistic links between cues and action). As 
far as probability probability theory is concerned, percep-
trons modify subjective probability.

Another example of updating subjective probabilities 
via learning is provided by a recent mathematical theory 
of surprise (Baldi, 2002; Baldi & Itti, 2010; Itti & Baldi, 
2009). This theory assumes that an agent has a set of mod-
els about the world and assigns a subjective probability to 
each, where this probability indicates the agent’s credence 
in each model. As a result, the agent has a distribution of 
subjective probabilities. For example, in the coin-tossing 
example, a person might have various models about a coin 
like P(H) = 0.1, P(H) = 0.2, and so on. Each of these mod-
els is then assigned a subjective probability; for instance, 
someone who has never experienced a biased coin might 
assign a very high subjective probability (e.g., 0.95) to the 
model P(H) = 0.5 and assign very low subjective proba-
bilities to all of the other models. Bayes rule can then be 
used to update the distribution of subjective probabilities 
as new evidence is observed. For instance, after watching 
a number of tosses of the biased coin, this updating would 
increase the subjective probability assigned to the model 
P(H) = 0.8 and would decrease the subjective probabili-
ty assigned to the model P(H) = 0.5.

The model just described updates subjective proba-
bility on the basis of surprise, where surprise is defined in 
terms of a mismatch between one’s predictions about what 
should happen in the world and one’s observations of what 
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actually happens. With respect to the biased coin, one is 
surprised by seeing so many heads appear as it is tossed; 
it is this surprise that motivates the updating of subjective 
probabilities. After an appropriate amount of updating, less 
surprise occurs because one’s expectations about the world 
have been modified by experience. Important to note, this 
notion of surprise leads to a different view of information, 
one that depends upon an agent’s states. Recall that it is 
common to describe information as something that we re-
ceive when we learn something that we did not previously 
know (Attneave, 1959; Garner, 1975; MacKay, 1969). As 
far as Shannon’s theory of information is concerned, what 
we did not know only concerns the states of the world. In 
contrast, Baldi’s theory of surprise is concerned with our 
lack of knowledge that results in the poor fit between our 
model of the world and its actual properties.

This is exactly the view of learning that provides 
the foundation for the Rescorla–Wagner model that was 
introduced in Section 2.1. Given the formal connection 
between modern perceptron and the Rescorla–Wagner 
model (Dawson, 2008), this also indicates that the gradient 
descent rule (Equation 1-6) is a method for updating sub-
jective probability. Later in this monograph we relate the 
properties of this learning rule, and of the simple networks 
it can train, to the concepts of probability and information 
that have already been introduced. Let us begin by first de-
scribing the properties of a perceptron trained on a simple 
problem and by then relating this learning to basic notions 
of probability, information theory, and feedback.

2.5 Information, Learning, and Feedback
2.5.1 Teleological Behavior

In the early 20th century, biology was in the midst 
of a debate between mechanists and vitalists (Bertalanffy, 
1933, 1952). Mechanists believed that organisms were 
in essence complex machines that could be explained by 
appealing to physical principles. In contrasts, vitalists 
believed that living organisms possessed some vital force 
that was separate from physical principles. One kind of 
evidence to which vitalists appealed involved entelechy 
or teleology: the development or behavior of organisms 
seemed guided or destined to achieve some purpose.

At first glance, perceptron learning seems teleolog-
ical. Consider the development of probability estima-
tion. This proceeds as if the goal of the perceptron is to 
match its responses to the actual probabilities of events 
in the world. From the perspective of vitalism, one 
could say that the purpose of the perceptron is to adapt 
to its environment. We shortly see that there is no need 

to appeal to vitalism to explain probability matching, 
but let us first describe some perceptron behavior that 
could be viewed as being teleological.

Consider a simple demonstration in which a modern 
perceptron learns about the results of tossing two different 
coins. One of these coins is fair, with a probability of pro-
ducing heads after being tossed, P(H), of 0.5. The other is 
biased, with P(H) = 0.75. Examples of tosses of these two 
coins can be presented to a perceptron that has two input 
units. These units indicate to the perceptron which coin 
is being tossed. If the fair coin is being tossed, then Input 
Unit 1 is activated with a value of 1. If the biased coin is 
being tossed, then Input Unit 2 is activated with a value 
of 1. If the result of a coin toss is heads, then the desired 
activity of the perceptron is 1; otherwise, it is 0. Note that 
these input values simply distinguish one coin from the 
other. There is no explicit signal to the perceptron that one 
coin is fair and that the other is not.

The perceptron learns the P(H) of each coin by find-
ing out about the results of a number of tosses of each coin. 
A training set that repeats tosses of each coin, but that also 
indicates that tosses of the same coin can lead to different 
results, can be used to model the probabilistic behavior of 
the two coins. Such a training set is provided in Table 2-1. 
This training set consists of eight different stimuli. The 
first four stimuli represent tosses of the first coin, and the 
second four represent tosses of the second coin. The P(H) 
of the fair coin is represented in the training set by having 
two of these stimuli associated with a desired activity (Tp) 
of 1, and the other two with a desired activity of 0. That 
is, if the result of a coin toss is heads, then Tp = 1. The 
second four stimuli in the training set represent tosses of 
the second, biased coin. The P(H) of the biased coin is 
represented in the training set by having Tp equal to 1 for 
three of its tosses, and equal to 0 for the fourth toss.

A modern perceptron with two input units and one 
output unit was trained on the stimuli represented in Table 
2-1. The output unit used a logistic activation function 
(Equation 1-4 and Figure 1-7). The two connection weights 
from the input units to the output unit were initialized to 
random values in the range between −0.1 and 0.1; the 
output unit’s bias was initialized to 0. The weights and 
bias were trained using the gradient descent learning rule 
(Equations 1-6 and 1-7) with a learning rate of 0.1. Training 
was conducted with the Rosenblatt program that is avail-
able as freeware (Dawson, 2005). During a single epoch 
of training, each of the eight stimuli from Table 2-1 was 
presented to the perceptron, but their order was random-
ized. The perceptron’s bias and weights were updated after 
every stimulus presentation. The network was trained for 
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300 epochs, and its properties were recorded as it learned 
to examine how its behavior changed during this training.

Figure 2-2 illustrates the perceptron’s responses (i.e., 
its output activity) to each of the coins as it learned about 
their behavior. Early in training it generates activity of 
about 0.5 to each, which is expected given an initial bias 
of 0 and two near-zero weights (see Figure 1-7 and assume 
a near zero net input and bias). As training proceeds, its 
response to each coin begins to increase, and then activity 
to the fair coin decreases while activity to the biased coin 
continues to rise. After about 150 epochs of training, the 
perceptron generates correct probability estimates: Its 
activity to the biased coin has stabilized at 0.75, and its 
activity to the fair coin has stabilized at 0.5. Its responses 
do not change from these levels with additional training.

Figure 2-2 illustrates that accurate probability 
estimation takes a certain amount of training to develop, 
meaning that the network’s probability estimates are 
poorer during earlier epochs of training, and improve with 
more training. Figure 2-3 provides a summary of this im-
provement in performance of the network’s responses as 
training proceeds. This is done by plotting the network’s 
sum of squared error (SSE) as a function of training epoch. 
The SSE plotted in Figure 2-3 is computed by taking the 
squared difference between the network’s response to each 
coin and the coin’s actual P(H) and adding them together. 
This measures the network’s total error in responding, 
assuming that the network is learning to correctly estimate 
probabilities. Note that this error starts at a higher value, 
because early in training the perceptron does not know 
much about the behavior of the two coins. As training 

proceeds, there is an exponential decrease in SSE, which 
asymptotes to zero after about 150 epochs of learning. 
We saw in Figure 2-2 that after 150 epochs, perceptron 
responses stabilize at the actual probabilities of the two 
coins and do not change with additional training. This 
produces an SSE that stabilizes at zero.

Together, Figures 2-2 and 2-3 illustrate that the per-
ceptron learns about the behaviors of the two coins as it 
is repeatedly presented the results of their being tossed. 
Although the perceptron begins with no knowledge about 
each coin, it quickly learns to match each of their probabil-
ities. This learning is interesting in three respects.

First, both figures indicate that perceptron responses 
change over time and that there is more learning ac-
complished early in training than later in training. This 
latter point is reflected, for instance, in the exponentially 
decreasing shape of the Figure 2-3 graph. This is inter-
esting because throughout training, the P(H) of each coin 
is held constant. That is, the physical probability of each 
coin revealing heads never changes. What changes instead 
are the perceptron’s probability estimates—its subjective 

Figure 2-2. Response of the perceptron to the two different coins over 
300 epochs of training. The filled circles are responses to the biased coin, 
and the unfilled circles are responses to the fair coin.
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Table 2-1. A training set that presents the results of tossing two different coins.

Pattern a1 a2 TP

1 1 0 1

2 1 0 1

3 1 0 0

4 1 0 0

5 0 1 1

6 0 1 1

7 0 1 1

8 0 1 0

Note. The tossing of the fair coin is represented by the activity of 
input unit 1(a1); the tossing of the biased coin is represented by 
the activity of input unit 2 (a2). If the coin produces heads, then 
the desired perceptron response (Tp) is 1. Each input pattern is 
repeated four times to make the training set probabilistic: The 
probability of heads for the fair coin is 0.5 (two heads in four 
tosses) but is 0.75 for the biased coin (three heads in four tosses).
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probabilities. Furthermore, recall the discussion in Sec-
tion 2.2 that information tells us something that we do 
not already know. Clearly, Figures 2-2 and 2-3 indicate 
that the perceptron must be receiving more informa-
tion earlier in training than later.

Second, although both Figures 2-2 and 2-3 evaluate 
perceptron performance by comparing its responses to 
physical probabilities, it is important to realize that these 
physical probabilities are never explicitly provided in 
the training set. As it learns, the perceptron is trained to 
generate either a 1 or a 0 (see the final column in Table 
2-1). In terms of what the perceptron is actually trained to 
do, its error never reaches zero because it never generates 
a 1 when presented a coin. Instead, it produces a fractional 
response that eventually matches the physical probability 
of heads associated with each coin. This is the best that 
the perceptron can do given the nature of the training set. 
However, observers of the perceptron with knowledge of 
the probability structure of its environment can see that its 
behavior is optimal in the sense of probability estimation. 
It is from this perspective that an outside observer can eval-
uate perceptron performance as is done in the two figures.

Third, in the early 20th century the learning illustrat-
ed in the two figures might be interpreted as teleological 
evidence. That is, when confronted with an uncertain envi-
ronment, the perceptron reorganizes itself to adapt to it as 
best as possible. However, we now proceed to argue that 
this sort of vitalistic perspective is unnecessary. Perceptron 
learning can easily be linked to mechanistic properties that 
are core ideas in information theory and cybernetics.

2.5.2 Negative Feedback and Learning
In the latter half of the 19th century, researchers 

became interested in explaining how biological organ-
isms maintain their integrity in the face of varying and 
uncertain environmental influences. Pioneering French 
physiologist Claude Bernard proposed that a key function 
of biological systems was to maintain a constant internal 
environment (milieu intérieur; Foster, 1899). In the early 
20th century, American physiologist Walter B. Cannon 
(1932) elaborated Bernard’s ideas with experiments that 
revealed mechanisms for maintain what Cannon named 
homeostasis. Around the same time, theoretical biologist 
Ludwig von Bertalanffy (1933, 1952) proposed a related 
idea, the notion of the organism as an open system. Al-
though the closed systems of physics are doomed by the 
second law of thermodynamics to become less organized 
as their entropy increases, an open system can take in new 
resources to be used to maintain internal organization. A 
variation on this idea was popularized in a very influential 
work, called What Is life?, by the Nobel Prize–winning 
Austrian physicist Erwin Schrödinger (1945).

Schrödinger’s (1945) essay was influential because 
its core ideas were strongly related to modern develop-
ments in information theory and cybernetics. Although 
the closed systems of physics necessarily become more 
disordered or exhibit positive entropy, Schrödinger 
noted that biological systems resist this trend because 
they are continually drawing negative entropy from their 
environment. That is, although the process of being alive 
produces disorder or positive entropy, these consequences 
can be reversed by absorbing negative entropy or order 
from the environment. Important to notey, Schrödinger 
defined negative entropy as follows:

(2-9)

In Equation 2-9, k is the Boltzman constant (3.2983 
× 10−24) and D is some measure of molecular disorder. 
Note that there is a strong relationship between Schröding-
er’s definition of negative entropy from physics (Equation 
2-9) and the Shannon–Weaver mathematical measure 

Figure 2-3. Sum of squared error of the perceptron’s responses to the 
two coins as a function of epochs of training.
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of information (see Equations 2-6 and 2-7). Thus, when 
Schrödinger described a system as consuming negative 
entropy from the environment, he was in essence saying 
that a system is obtaining information from the environ-
ment. “Thus the device by which an organism maintains 
itself stationary at a fairly high level of orderliness (= 
fairly low level of entropy) really consists in continually 
sucking orderliness from its environment” (Schrödinger, 
1945, p. 73). To suck orderliness from its environment 
is to receive environmental signals that permit an organ-
ism to adjust its internal states to achieve a desired goal 
(e.g., a stable or organized state). This idea arises from 
the strong link between mathematical information the-
ory and the field of cybernetics that arose in the middle 
of the 20th century (Wiener, 1948).

Wiener (1948) used the term cybernetics to name “the 
entire field of control and communication theory, whether 
in the animal and the machine” (p. 19). Cybernetics was 
particularly interested in understanding the relationship 
between an agent’s actions and the world. This is because 
changes in the world caused by these actions could in turn 
determine the nature of future actions. This circular rela-
tionship between agent and environment is called feedback.

Cybernetics could rigorously study feedback re-
lationships because it defined machines or agents very 
abstractly as devices that simply receive signals and then 
generate signals in response (Ashby, 1956). This func-
tional approach, which focused on information processing 
and ignored physical composition, permitted cybernetic 
theories to be applied to both biological agents and me-
chanical devices. As far as cybernetics was concerned, 
feedback was a relationship between signals: The environ-
ment sent a signal to a device, which elicited a response. 
This response could in turn influence the nature of future 
signals received from the environment.

Cyberneticists were particularly interested in using 
feedback to explain teleological or goal-directed behavior. 
In this context, the response generated by a machine has 
a desired goal in terms of the environment. The signal 
returned by the environment provides information inform-
ing the agent about the difference between the desired and 
the actual state of affairs in the world—called negative 
feedback. The agent uses negative feedback to alter its 
signal in such a way to make a smaller difference between 
the desired and actual state of affairs. In other words, 
iterations of negative feedback enable or guide a system to 
achieve an intended environmental goal.

Cybernetics’ very general definition of machine leads 
to a blurred distinction between agents and environments. 
For instance, consider Ross Ashby’s (1960) homeostat, 

which was a device consisting of four identical electrical 
devices that could receive signals from an external user 
but that also sent and received signals among one another. 
The signals between components of the homeostat were 
sent through weighted connections; negative feedback 
was used to alter these weights. One could describe 
the homeostat as a four-unit device that interacted with 
the environment. However, from another perspective 
the environment for one component of the homeostat 
includes the device’s other three components. From this 
perspective, the homeostat was a device that used nega-
tive feedback to adjust its internal structure to return to 
a stable state after encountering external or internal dis-
turbances and thus demonstrated how negative feedback 
could be used to explain homeostasis.

Critically, the homeostat’s use of negative feedback 
to alter its internal structure to achieve a goal (internal 
stability) is mirrored by perceptron learning. The gradient 
descent rule used to modify the perceptron’s connection 
weights (Equations 1-6 and 1-7) provides another example 
of using negative feedback to alter a system’s internal 
structure. The negative feedback is the error signal in 
the learning rule: Tj  – aj. The weight changes defined by 
gradient descent learning are designed to reduce this error 
the next time this particular stimulus is encountered by the 
network. In short, gradient descent learning is an example 
of learning via negative feedback. Thus, Figure 2-2 illus-
trates how, as learning trials proceed, negative feedback 
guides the perceptron’s responses to match the physical 
probabilities associated with each of the coins being tossed.

From the perspective of cybernetics, negative feed-
back is information that is received by an adaptive system. 
Negative feedback is a signal that indicates the difference 
between actual and desired states, and this signal will 
become smaller as a system adapts to improve its perfor-
mance. Because negative feedback is information, it is mea-
surable; this measure should become smaller as learning 
proceeds. What kind of measure reflects this expectation?

According to mathematical information theory, the 
amount of information provided when a coin toss reveals 
heads is –1log2pH, where pH is the physical probability 
of heads. As this measure uses physical probability, it 
is unchanging. We have seen that perceptrons generate 
subjective probabilities. Thus if we measure the amount 
of information in the context of this subjective proba-
bility (Pfaffelhuber, 1972), the appropriate equation is 
−1log2ai, where ai is the perceptron’s response to coin i. 
This second equation can be considered a measure of the 
information that the perceptron already has, in the sense 
that the perceptron’s response is based upon its current 
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state. So, the amount of information that is received 
from a coin toss can be measured as the absolute value 
of difference between the information provided by the 
environment and the information that has already been 
required, as given in Equation 2-10:

(2-10)

Figure 2-4 provides a graph of the values of Equation 
2-10 determined for each of the two coins in the simulation 
at different points in training. It can be seen that the coin 
tosses provide the greatest amount of information early 
in training, because the perceptron has little information 
about coin behavior. However, the initial state of the per-
ceptron is such that its predictions about the fair coin are 
much more accurate than its predictions about the biased 
coin. This is why Figure 2-4 indicates that the perceptron is 
receiving more information about the biased coin than it is 
about the fair coin. As training proceeds, the perceptron’s 
responses to the coins become more and more accurate, 
and the amount of information being received from a toss 
of either coin drops off exponentially, mirroring the shape 
of the error curve provided by Figure 2-3.

2.5.3 Imperfect Learning
Figures 2-2, 2-3, and 2-4 suggest that the perceptron 

is near perfect in its learning about the probability structure 
of the two-coin environment. After an appropriate amount 
of training, its responses—its subjective probabilities—
match the physical probabilities of each coin producing 
heads, its SSE has reached zero, and additional coin tosses 
are providing the perceptron no new information.

Although this interpretation of the graphs is correct 
from the perspective of an external observer with knowl-
edge of the environment’s physical probabilities, it is in-
correct from the perspective of the perceptron itself. This 
is because the perceptron is not being trained to generate 
probabilities. Recall that the training set provided in Table 
2-1 indicates that for the perceptron to be correct, it would 
have to generate a response of 1 or 0 to any stimulus. 
However, Figure 2-2 shows that the perceptron never does 
this—its responses always fall in the range between 0.50 
and 0.75. In other words, from the perceptron’s perspective 
it is always making a mistake, and is always learning, even 
though from the outside looking in its behavior is optimal.

This suggests that the graphs provided in the three 
figures do not reflect perfect learning but instead indicate 
that the perceptron has achieved what systems theorists 
call a dynamic equilibrium. In such a state, the internal 
components of a system are always changing, but the 
system’s integrity or behavior appears to be constant. The 

dynamic equilibrium of the perceptron is one in which its 
responses reflect the physical probabilities of its environ-
ment (Dawson & Dupuis, 2012). As learning proceeds, the 
perceptron has reached a state much like homeostasis: By 
constantly monitoring its environment (i.e., by learning), 
it has achieved a state that produces stable behavior. By 
continually receiving information about the errors it pro-
duces, it modifies its structure to keep these errors to a 
minimum. This is how the perceptron sucks orderliness 
from its environment (Schrödinger, 1945). In the next 
section, we explore how the perceptron responds when 
its environment is suddenly altered.

The (eventually) stable responses of the perceptron 
raise a second interesting issue. The perceptron is never 
explicitly trained to generate probabilities, but its respons-
es can clearly be interpreted as conditional probabilities 
(Figure 2-2). Where do these probabilities come from? 
Table 2-2 provides the internal structure of the perceptron 
(its two connection weights and its bias) at different points 
in its training. These values represent the perceptron’s 
“knowledge”—for lack of a better term—about its world, 
and how this “knowledge” changes over time.

We can see from Figure 2-2 that this internal structure 
can be transformed into highly accurate predictions about 
physical probability. Nevertheless, it is not clear at first 
glance what the relationship is between network structure 
and probabilities. Chapters 3 and 4 provide an account of 
how perceptron structure explicitly represents probability 
and relate this structure to Bayesian probability models.

2.6 Adapting to Surprise

2.6.1 Learning from Surprises
This chapter began by asking what information is. 

The broad answer to this question is that after we receive 

Table 2-2. The structure of the perceptron after different epochs of training.

Epoch w1 w2 θ
1 0.01115 0.006243 0.025024

50 0.515976 − 0.330293

150 0.700994 − 0.365044

200 0.721087 − 0.366859

250 0.730617 − 0.372237

300 0.734072 − 0.372459

Note. The first column identifies the epoch of training; w1 and 
w2 are the weights from the inputs representing the biased 
and the fair coin respectively, and θ is the bias in the output 
unit’s logistic activation function.
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information, we know something that we did not know 
before (Attneave, 1959; Cherry, 1957; Garner, 1975; 
MacKay, 1969). The mathematical theory of informa-
tion expresses this as reducing uncertainty and defines 
uncertainty in terms of physical probabilities of events 
in the world. Contrasting to this notion of information 
is the companion concept of learning. That is, when we 
acquire information that reduces our uncertainty about 
the world, there is a tacit assumption that this information 
is stored within us. To know something that we did not 
know before is to learn something new.

The perceptron, and its training, provides a concrete 
example of such learning, but this learning alters subjective 
probability, not physical probability. The perceptron is not 
merely a passive receiver of information. Instead, when 
it receives a stimulus, it generates a prediction. Learning 
proceeds by comparing this prediction to the desired value 
(e.g., Equation 1-6). The perceptron learns about the accu-
racy of its prediction and does not learn about the uncer-
tainty of stimuli. In other words, the perceptron combines 
information defined in terms of physical uncertainty with 
an additional uncertainty, the uncertainty of the response 
the perceptron generates to its inputs (MacKay, 1969).

The information acquired by the perceptron causes 
it to change responses, as is evident from Figure 2-2. 
Keeping this in mind, let us again consider what it means 
when information is obtained. “Fundamentally it implies 
that in some circumstance or other my expectations will be 
different. I am now conditionally ready to react different-
ly” (MacKay, 1969, p. 60). When information is acquired, 
predictions or expectations are altered. Conversely, if pre-
dictions or expectations are such that they are continually 
supported by environmental results, then they will not be 
changed, because no information is obtained (see Figure 
2-4). This is the central idea shared by perceptron learning 
rules such as Equation 1-6 (Dawson, 2008), the Rescorla–
Wagner model of associative learning (Rescorla & Wag-
ner, 1972), and the cybernetic notion of negative feedback 
(Ashby, 1956). All of these theories are grounded in the 
idea that changes occur only when predictions about the 
world are not confirmed. Learning is driven by mistakes.

2.6.2 Disrupting Dynamic Equilibrium
Section 2.4.3 argued that the shapes of the curves 

in Figures 2-2, 2-3, and 2-4 illustrated a dynamic equi-
librium. In such an equilibrium, the components of a 
system change, but the system’s overall behavior does 
not. In the case of the two-coin perceptron simulation, 
the structure of its weights and bias had reached a point 
where they were constantly being changed by a learn-

ing rule, because the perceptron was never generating 
completely correct responses. However, these changes 
were minimal because the network’s predictions were as 
good as possible. As a result, perceptron responses stabi-
lized to match physical probabilities.

What is important about the dynamic equilibrium of 
a perceptron is that because it is always learning (even 
though its responses have stabilized), it is always ready 
to adapt to changes in the environment. One source of 
environmental uncertainty is the stochastic properties as-
sociated with its elements, such as the probability of each 
coin revealing heads. Another source of environmental un-
certainty involves changes in these stochastic properties. 
For instance, imagine that the probability of “heads” for 
each of the coins suddenly changed at some point during 
training. In this case, the fact that the perceptron is always 
in a state in which it learns from surprises permits the 
network to change its structure to adapt to these environ-
mental changes (Dawson et al., 2009a).

To illustrate this idea, let us consider a second two-
coin simulation. In this simulation, the procedure for train-

Figure 2-4. The information provided to the network by each coin when 
a coin toss produces “heads.” The information is measured in bits and is 
determined by Equation 2-10. The filled circles represent the biased coin, 
and the unfilled circles represent the fair coin.
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ing the perceptron is identical to that described in Section 
2.4.1. For the first 150 epochs, the perceptron learns about 
the training set whose properties were provided in Table 
2-1. However, for the next 150 epochs the training set is 
different: The fair coin suddenly becomes biased, and the 
biased coin suddenly becomes fair. This is accomplished 
by changing one of the fair coin’s Tp values from 0 to 1 
and by changing one of the biased coin’s Tp values from 1 
to 0. With this change, P(H) for the (originally) fair coin 
becomes 0.75 and becomes 0.5 for the (originally) biased 
coin. The responses of the perceptron to each coin during 
300 epochs of training are provided in Figure 2-5.

The first half of Figure 2-5 is identical to the first half 
of Figure 2-2: The 150 epochs of training results in the 
perceptron responses matching the physical probability of 
“heads” associated with each coin. In Figure 2-2, these re-
sponses were maintained as training proceeded. However, 
in Figure 2-5 the physical probabilities are switched after 
Epoch 150. As a result, the expectations that that perceptron 
has learned are no longer accurate. Its poorer predictions 
provide more negative feedback, and the perceptron’s 
structure changes to adapt to the new environment. Proba-
bility matching to the new physical probabilities has been 
achieved after a further 150 epochs of training.

This chapter has shown that perceptron learning is 
driven by the amount of negative feedback (e.g., Equation 
1-6). As perceptron responses become more accurate 
during the first 150 epochs of training, negative feedback 
decreases. However, when the physical probabilities of the 
two coins are swapped after 150 epochs of training, the 
network’s predictions immediately become less accurate, 
because these predictions no longer match the properties 
of the altered environment. The sudden rise in negative 
feedback midway through training is presented in Figure 
2-6, which provides the sum of squared error for the 
perceptron as a function of training epochs. The first half 
of Figure 2-6 is essentially identical to 2-3 and shows an 
exponential decrease in error as learning proceeds. When 
the physical probabilities are switched at Epoch 150, there 
is a massive increase in network error. At this point, net-
work SSE is higher than it was when training began. This 
is because at the start of training, the network’s response to 
the fair coin was already accurate, and most of the network 
error was related to its failed predictions about the biased 
coin. However, the first 150 epochs of training drove the 
perceptron’s responses to both coins equally far (about 
0.25) from the switched physical probabilities, producing 
even greater error. After the switch, the learning processes 
exponentially decrease the SSE again and it approaches 0 
after a further 150 epochs of training.

Figure 2-4 was used to show that as network re-
sponses improve, the amount of information received 
by the network decreases. That is, the network receives 
less information because its predictions about the envi-
ronment become more accurate. For this demonstration, 
the information received by the network was taken as the 
difference between the amount of information defined in 
terms of physical probability and the amount of informa-
tion defined in terms of subjective probability (Equation 
2-10). This latter notion of information reflected a measure 
of what the perceptron already “knows.”

Figure 2-7 graphs the same measure for the two coins 
for the simulation in which physical probability changes 
midway through training. Not surprising, the first half of 
this graph is essentially the same as Figure 2-4. The two 
graphs change when the physical probabilities are changed 
after Epoch 150. At this point in training, the perceptron 
suddenly receives an increase in negative feedback be-
cause its predictions are less accurate. As a result, there 
is an abrupt increase in the information provided by each 

Figure 2-5. Responses of the perceptron to the two different coins over 
300 epochs of training. In this simulation, the probability of revealing 
“heads” switches between the two coins after 150 epochs of training. The 
filled circles are responses to the (initially) biased coin, and the unfilled 
circles are responses to the (initially) fair coin.
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coin revealing “heads.” Of interest, there is a difference 
between the information provided by each coin, as indicat-
ed by the separation of the two lines around the midpoint 
of the graph. This difference is because the (originally) 
fair coin provides less information because its P(H) is 
higher (and therefore less informative) than is the case for 
the (originally) biased coin. As learning proceeds, there 
is an exponential decrease in the information provided by 
the coin tosses, and this value is near zero by Epoch 300.

To summarize our observations about the second two-
coin simulation, we have seen that the perceptron’s learn-
ing process permits its responses (predictions, subjective 
probabilities) to correctly estimate the physical probabili-
ties of the coins after about 150 epochs of training. We saw 
earlier (e.g., Figure 2-2) that if these physical probabilities 
remain unchanged, then the perceptron stabilizes into a 
dynamic equilibrium. However, in the second simulation 
this equilibrium is disrupted by changing the physical 
probabilities of the coins. This disrupts the perceptron’s 
dynamic equilibrium. The perceptron’s ongoing learning 
mechanisms quickly adapt it to the altered environment 

and attain a new dynamic equilibrium that correctly esti-
mates the new physical probabilities.

What changes permit the perceptron to adapt to the 
environmental changes? Table 2-3 provides the values of 
the perceptron’s weights and bias after different amounts 
of training. It can be seen that the first three rows of Table 
2-3 have very similar values to the first three rows of Table 
2-2, indicating a similar pattern of weight changes. 

This is expected, because both perceptrons adapted 
to the same environment for the first 150 epochs of train-
ing. The two tables diverge after Epoch 150. Noticeable 
changes in the perceptron’s structure are already evident in 
Table 2-3 by Epoch 160. These changes continue to Epoch 
300. Notice that the final row in Table 2-3 indicates that the 
perceptron has a bias similar to the one that it had at Epoch 
150 but that the values of its two weights have roughly 
been swapped at Epoch 300 in comparison with Epoch 150. 

Given that the physical probabilities were them-
selves swapped, it is perhaps not surprising that the 
perceptron has used this method to deal with the new 
environment. Of course, for the time being we do not 

Figure 2-6. Sum of squared error of the perceptron’s responses to the 
two coins as a function of epochs of training. The sudden rise in SSE that 
occurs after 150 epochs is the result of switching the physical probabili-
ties of the two coins.
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Figure 2-7. The information provided to the network by each coin when 
a coin toss produces “heads.” The information is measured in bits using 
Equation 2-10. The filled circles represent the (initially) biased coin, and 
the unfilled circles represent the (initially) fair coin.
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have an obvious account of how the network structure 
from Table 2-3 is converted into probabilities; this point 
was also made about Table 2-2. By the end of Chapter 4, 
we will have a detailed understanding of how to relate 
perceptron structure to probability.

2.7 Summary and Implications
2.7.1 Summary

Chapter 1 introduced the perceptron, along with 
learning rules that permit this kind of network to adapt 
to uncertain environments. It also demonstrated that 
perceptrons could learn to estimate the probabilities 
of the environment. The purpose of Chapter 2 was to 
relate the topics of Chapter 1 to concepts rooted in the 
20th-century study of control and communication: 
measures of information, physical versus subjective 
probability, and negative feedback.

Chapter 2 explored the very general definition that 
to receive information is to reduce uncertainty about the 
world. This idea was examined by reviewing how math-
ematical information theory used physical probability 
to measure information in bits. However, the fact that 
perceptron responses can be interpreted as probabilities 
(Section 1.6), combined with the fact that these responses 
are altered by learning, indicates that perceptron responses 
are subjective probabilities, not physical probabilities. In 
other words, perceptrons make predictions about physical 
probabilities, these predictions are subjective probabilities, 
and the role of learning is to improve these predictions.

Learning was then related to cybernetics by pointing 
out that the perceptron learning rule was an obvious ex-
ample of negative feedback. To be precise, the error term 
in Equations 1-6 and 1-7 provides negative feedback—the 

discrepancy between the environment and perceptron 
predictions. The purpose of learning is to reduce this 
discrepancy, which is equivalent to reducing negative 
feedback. This was illustrated with a simple simulation in 
which a perceptron learned about the behavior of two coins 
being tossed, one fair and the other biased. It was shown 
that the responses of the perceptron changed over time 
and stabilized when probability matching was achieved. 
That is, the perception stabilized when the perceptron’s 
subjective probabilities were equal to the physical proba-
bility of “heads” for each of the coins. This behavior was 
considered in terms of the actual responses (Figure 2-2), 
exponentially decreasing errors (Figure 2-3), and decreas-
ing amounts of received information (Figure 2-4).

It was then pointed out that the behavior of the per-
ceptron in the two-coin simulation did not reflect perfect 
learning but instead achieving a dynamic equilibrium. In 
this equilibrium, the network is constantly learning because 
its responses are never completely correct. This constant 
learning makes small changes to perceptron structure, and 
the result of these changes is to stabilize its responses. 
This was illustrated in a second simulation in which the 
probability of heads for each coin was suddenly swapped 
midway through training. This led to a sudden increase in 
negative entropy to which the perceptron quickly adapted 
by adopting a new internal structure (Figures 2-5, 2-6, and 
2-7). Thus, one way to view the perceptron is as a system 
that is constantly monitoring negative feedback as it copes 
with an uncertain environment. It maintains a structure 
that minimized negative feedback by keeping its predicted 
probabilities close to actual probabilities and is capable of 
adapting its structure when physical probabilities change.

One consequence of viewing the perceptron in 
this way is that it recognizes that perceptrons alter their 
weights only when negative entropy is encountered. For 
example, imagine a perceptron that is being trained on the 
two-coin task but that has had its initial weights set so that 
the perceptron’s initial responses are much more accurate. 
This means that the perceptron will learn little, because 
its initial predictions will not generate much negative en-
tropy. However, learning mechanisms are still active, and 
if the situation changes in such a way that the perceptron 
no longer makes accurate predictions, then it will quickly 
adapt to reduce the newly detected negative entropy.

2.7.2 Implications
The simple simulations described in this chapter have 

been used to consider perceptron learning in the context 
of information theory and cybernetics. The results that we 
have reported are consistent with other results in the liter-

Table 2-3. The structure of the perceptron after different epochs  
of training. 

Epoch w1 w2 θ
1 0.110867164 0.041364814 0.021338718

50 0.573078 -0.15574 0.286448

150 0.748277 -0.29972 0.317662

160 0.568454 -0.08533 0.352235

200 0.047384 0.387848 0.304338

250 -0.19696 0.627531 0.299676

300 -0.27572 0.720228 0.313614

Note. The first column identifies the epoch of training; w1 and 
w2 are the weights from the inputs representing the (initially) 
biased and the (initially) fair coin respectively, and θ is the bias 
in the output unit’s logistic activation function.
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ature. Previous research has shown that perceptrons learn 
to estimate probabilities when receiving four different and 
mutually exclusive signals and quickly learn to modify 
these predictions when reward contingencies change mid-
way through training (Dawson et al., 2009). Perceptrons 
also learn to estimate probabilities when multiple cues that 
signal different probabilities of reward are presented at the 
same time (Dawson & Gupta, 2017), a capability that is 
explored in more detail in Chapter 4.

We have seen that the link between perceptron learn-
ing, information theory, and cybernetics is the notion that 
perceptrons generate predictions about the environment 
(subjective probabilities) and then use negative feedback 
to improve these predictions. One way to interpret a per-
ceptron’s response is as its prediction of the likelihood that 
it will be rewarded given a particular stimulus (Dawson 
& Dupuis, 2012; Dawson et al., 2009; Dawson & Gupta, 
2017). That cognitive systems are driven by generating 
predictions or expectations is an idea of growing popu-
larity in cognitive science (Clark, 2016; Hohwy, 2013). 
To some, this idea is very new. For example, Hohwy 
(2013) claimed “a new theory is taking hold in neurosci-
ence” (p. 1), where this theory is the view that the brain 
is a mechanism that is constantly minimizing prediction 
errors. Although it is good news that neuroscientists and 
cognitive scientists have increasing interest in this theory, 
one of the implications of Chapter 2 is that this idea is far 
from new, having been established in cybernetics in the 
middle of the 20th century (Ashby, 1956, 1960; Wiener, 
1948, 1950) and having been exploited by psychological 
learning theory not long after (Rescorla & Wagner, 1972).

Cognitive science’s growing interest in the impor-
tance of minimizing errors of prediction has important 
implications for the study of this phenomenon. These im-
plications are used to structure the approach taken over the 
next few chapters. Cognitive science proceeds by examin-
ing cognitive phenomena at distinct levels of analysis, with 
each level being associated with different core questions 
(Dawson, 1998, 2013). At the computational level of anal-
ysis, formal methods are employed to answer the question, 
What information processing problem is a system solving? 
At the algorithmic level of analysis, empirical methods are 
used to answer the question, What procedures are being 
used to solve this information processing problem? At the 
implementational level of analysis, the techniques of neu-
roscience explore answers to the question, How are these 
procedures physically realized by the brain?

Much of Chapter 2 concerned discussions at the al-
gorithmic level of analysis, because this chapter has been 
primarily concerned with observing the behavior of per-

ceptrons when confronted with uncertain environments. 
In particular, the two-coin simulations provide empirical 
results concerning how perceptron responses change over 
time and how the perceptron responds to changes in its 
environment. These algorithmic investigations are import-
ant because they suggest that perceptrons learn to estimate 
physical probabilities, and do so using negative feedback.

However, the simulations raise other questions that 
need to be explored at the computational level of analysis. 
Although our observations of two different perceptrons 
in this chapter are consistent with probability estimation, 
it is important to establish at a more abstract or formal 
level that “probability estimation” is the information-pro-
cessing problem that is being solved. In particular, a 
formal proof that perceptrons generate probabilities 
would permit us to establish this as a general property 
of this type of network, one that could be claimed of any 
perceptron that learned about an uncertain environment. 
In addition, a computational-level analysis of probability 
matching in perceptrons should provide the means for 
explaining how network structure (Tables 2-2 and 2-3) is 
converted into probability estimates.

In addition, it is important to remember that the 
perceptron is an extremely simple artificial neural network 
because it does not use intermediate processors called hid-
den units. It has long been known that this places import-
ant limits on the kinds of information processing problems 
that perceptrons can solve (Minsky & Papert, 1969). A 
computational analysis of how perceptrons solve proba-
bilistic information problems should not only explain how 
network structure is translated into probabilities but also 
show how this structure is limited. That is, a computational 
analysis should show what kinds of probabilities cannot be 
computed by perceptrons because of their simple structure.

The next two chapters shift the focus of this mono-
graph from the algorithmic level to the computational lev-
el. They provide a detailed formal analysis of perceptron 
structure to show how it is converted into a particular kind 
of probability and then prove the existence of particular 
limitations on the kinds of probabilities that a perceptron 
can generate. Chapter 3 begins this computational analysis 
by taking seriously the notion developed in Chapter 2 that 
perceptrons generate subjective probabilities. Such proba-
bilities are typically linked to Bayesian notions concerning 
probability (Savage, 1954, 1962). Chapter 3 introduces 
Bayes’s theorem and then explores the formal relationship 
between it and the behavior of the modern perceptron. It 
does so for a very simple situation, one for which proba-
bility judgments are made by processing a single cue. It 
concludes that perceptrons are Bayesian systems.
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Chapter 4 builds on the proof developed in Chap-
ter 3 and explores the Bayesian behavior of perceptrons 
confronted with environments that are more complicated. 
In particular, Chapter 4 studies the probabilities generated 
by perceptrons when they are confronted with more than 
a single cue. It proves that the perceptron will generate 
accurate probabilities if the cues are independent of one 
another. However, if there are interactions between cues, 
then probability estimates will not be accurate. This is 
because the simple structure of a perceptron means that it 
is a naïve Bayesian mechanism; the proof of this claim is 
the major contribution of Chapter 4.
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Chapter 3: Bayes’s Theorem, Perceptrons,  
and Odds Ratios

This chapter provides the first steps of a computa-
tional analysis of how perceptrons adapt to uncertain en-
vironments. It does so by considering an extremely simple 
uncertain environment, one in which there is a single cue 
that can be present or absent, and a single reward that can be 
given or not. The chapter first describes this environment 
in the context of contingency theory, which is a particular 
perspective on associative learning in animals. It introduc-
es two key notions that are central to contingency theory: 
the 2 × 2 contingency table, and a measure of contingency 
or association called ΔP. It then uses the 2 × 2 contingency 
table to introduce Bayes’s theorem for solving inverse 
probability problems. An example inverse probability 
problem is used to construct a training set for a perceptron, 
and after training, it is shown that the perceptron’s respons-
es are equal to the values predicted by Bayes’s theorem. 
Bayes’s theorem, based on the 2 × 2 contingency table, is 
then translated into the logistic activation theorem, prov-
ing that the modern perceptron is a Bayesian mechanism. 
This proof also reveals that a perceptron’s structure—its 
weight or bias—represents the natural logarithm of a 
basic element of probability theory called an odds ratio. 
The chapter ends by returning to contingency theory and 
proposing that odds ratios, which have been ignored by 
contingency theorists in psychology, have advantages over 
other popular measures of contingency like ΔP.

3.1 From Algorithm to Computation
Probability learning, as presented in the context of 

human experiments and computer simulations in Chapters 
1 and 2, has been described using behavioral examples. At 
the end of Chapter 2, it was pointed out that such evidence 
is acquired at cognitive science’s algorithmic level of anal-
ysis. Algorithmic analyses typically proceed by observing 
the behaviors of agents in either natural or experimental 
settings (Dawson, 1998, 2013). These observations are 
then used to support inferences about the information 
processing that underlies the behavior.

Such algorithmic-level analyses are critical for 
advancing cognitive science. However, cognitive sci-
ence cannot rely upon them exclusively. This is because 
algorithmic analyses only capture a subset of cognitive 
regularities; to capture other regularities one must move 
away from the algorithmic level (Pylyshyn, 1984).

For instance, consider searching for the limits of some 
type of information processing. To do so at the algorithmic 
level would require observing behavior in a wide variety 

of experimental or natural settings, all the while looking 
for situations that cause difficulties (e.g., situations in 
which agents make particular errors). Such a search can be 
costly and inefficient, particularly if a researcher does not 
have specific ideas about what processing is being carried 
out by an agent or about the limitations of such processing.

Computational-level analyses can be used to inform 
and to formulate algorithmic investigations of limitations. 
A computational-level analysis answers the question, 
What information-processing problem is being solved? 
(Marr, 1982; Richards, 1988). It does so by performing 
formal analyses to determine the function that maps the 
stimuli that an agent receives into the responses that the 
agent generates. That is, at the computational level a 
cognitive scientist views an agent in exactly the same way 
that cyberneticists (Ashby, 1956, 1960) viewed a machine: 
abstractly, as a device that computes an input–output 
function. A computational-level analysis uses a formal 
language, like mathematics or logic, to prove that an 
agent can be described as computing a particular function. 
That computational analyses are expressed as formal 
proofs provides a generality and permanence that is not 
possible with empirical methods: “The power of this type 
of analysis resides in the fact that the discovery of valid, 
sufficiently universal constraints leads to conclusions … 
that have the same permanence as conclusions in other 
branches of science” (Marr, 1982, p. 331).

The result of a computational analysis is important 
because it can be used to guide investigations at other 
levels of analysis. For example, imagine that a computa-
tional analysis has proven that an agent is computing some 
input–output function f() and that it is not computing some 
other function h(). This proof rigorously specifies the 
input–output mapping used to describe the agent’s behav-
ior. Thus, it indicates not only what the agent is capable 
of performing but also what the agent is not capable of 
performing. Such a specification can be used to guide the 
algorithmic search for an agent’s limitations.

For example, by the end of Chapter 4 we will have 
established that a perceptron that receives signals from 
multiple cues computes a naïve Bayesian probability 
function. This means that the perceptron will generate cor-
rect probability estimates when there are no interactions 
between the cues. However, as interactions between cues 
become larger and larger, there will be greater errors in the 
perceptron’s responses. This result permits us to focus our 
experimental studies of human participants by pointing 
to particular limitations of performance (Chapter 7). In 
particular, we can determine whether human participants 
are also naïve Bayesians by examining whether human 
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probability matching is also hindered by interactions 
among cues. In short, a limitation established at the 
computational level can be used to motivate empirical 
investigations at the algorithmic level.

The result of a computational analysis is also import-
ant because it can provide a rich understanding of how a 
system’s properties are (formally) involved in mediating 
an input–output mapping. For instance, simulation results 
provided in earlier chapters indicate that it is plausible 
to interpret a perceptron’s response as an estimate of the 
likelihood of receiving award given a particular set of 
signals. However, our cursory examination of perceptron 
structure (weights and bias; see Tables 2-2 and 2-3) did 
not clearly indicate how it was capable of converting 
inputs into probabilities. The computational analysis that 
is presented in this chapter, and continued in the next 
chapter, rectifies this situation. It will explicitly define 
the kind of probability that a perceptron is generating 
and clearly indicate the relationship between perceptron 
structure and the computing probability.

The purpose of Chapter 3 is to lay the foundation 
for a computational analysis of probability estimation in 
perceptrons. The chapter begins by introducing a general 
definition of a very simple uncertain environment that is 
a variation of a probability discrimination task. This envi-
ronment involves a single cue or signal, and a reward that 
occurs with a particular frequency when the cue is present 
and with a different frequency when the cue is absent. The 
structure of this environment can be represented as a set of 
frequencies organized in a simple 2×2 contingency table.

The chapter then proceeds to use this 2×2 contin-
gency table to define a particular model of probabilistic 
inference, Bayes’s theorem. Bayes’s theorem is used to 
define an inverse probability problem, which is the proba-
bility that a particular hypothesis is true given that certain 
evidence has been observed. This theorem is important 
in statistical inference and strongly tied to the notion of 
subjective probability introduced in Chapter 2.

Chapter 3 then briefly continues with an algorith-
mic-level examination of a very simple perceptron, one 
in which a single input unit is connected to a single output 
unit. A 2×2 contingency table is used to define a training 
set for this perceptron. At the end of training, it is shown 
that the response generated by the perceptron when the 
single cue is present is identical to the probability comput-
ed by applying Bayes’s theorem to the contingency table.

The heart of Chapter 3 follows and is concerned 
with a computational-level analysis of a perceptron faced 
with a single, uncertain cue. This computational analysis 
proceeds by using the elements of the contingency table 

to convert Bayes’s theorem into an equation that has the 
same form as the logistic activation function used by the 
perceptron (Equation 1-4). In short, we prove that we can 
translate Bayes’s theorem into a perceptron’s structure. 
This shows that this simple perceptron is a device that 
computes Bayes’s theorem. Furthermore, the details of this 
proof provide a rigorous account of how the structure of a 
perceptron computes Bayesian probability. It is proven that 
the weight and bias of this simple perceptron are defined in 
terms of basic probability elements known as odds ratios.

The computational analysis in Chapter 3 is based on 
a simple problem (involving one uncertain cue) because 
this leads to a tractable mathematical analysis of a very 
simple network (involving a single input unit). After 
establishing this approach, we will be in a position in 
Chapter 4 to extend it to situations that are more complex. 
This in turn permits us to understand mathematically 
the limitations imposed by using perceptrons to adapt 
to these more complex environments.

3.2 Contingency and Uncertainty
In Chapter 2, a particular psychological theory of asso-

ciative learning, the Rescorla–Wagner model of Pavlovian 
conditioning (Rescorla & Wagner, 1972), was introduced 
as an example of learning via negative feedback. In this 
model, when a learning agent is presented a stimulus, it 
makes a prediction about its consequences. It learns when 
this prediction is not accurate and updates the association 
between stimulus and response in such a way that its error 
will be reduced the next time the stimulus is encountered. 
Important to note, there is a formal relationship between 
the Rescorla–Wagner model and the training of perceptrons 
(Dawson, 2008; Gluck & Bower, 1988; Sutton & Barto, 
1981). This formal relationship provides one example of 
how an important model of animal learning can be recast 
into a learning rule for an artificial neural network.

The purpose of this section is to introduce another such 
relationship, by relating a different view of animal learning 
called contingency theory to the modern perceptron.

Classical conditioning (Pavlov, 1927) is an experi-
mental paradigm that provides the evidence underlying a 
particular view of learning by humans and other biological 
agents. In classical conditioning, the presentation of an 
unconditioned stimulus (US) causes the learner to make 
an unconditioned response (UR). Another stimulus, the 
conditioned stimulus (CS) does not cause this response. 
However, by pairing presentations of the CS with the US, 
an association between the CS and the response is learned. 
After a period of such classical conditioning, the CS also 
causes the response, which is now labeled the conditioned 
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response (CR). Classical conditioning is an example of 
exploiting one of the basic laws of association psychology, 
the law of contiguity (Warren, 1921), where the contiguity 
involves the temporal pairing of the US, CS, and the UR. 

The preceding description provides what Rescorla 
(1967) called the “American” view of Pavlovian condi-
tioning. This view focuses exclusively on the frequency 
of pairings of the US (or, more generally, reinforcement) 
and the CS. This, in turn, leads to a theory that relies 
completely on excitatory mechanisms—that is, the ability 
of the CS to signal an imminent US.

An alternative approach to formalizing associative 
learning is called contingency theory (Rescorla, 1967, 
1968). The “American” view of associative learning 
examines only the frequency of pairings between the CS 
and the US. In contrast, contingency theory looks not only 
at this pairing but also at the frequency with which the 
CS and the US are not paired. That is, learning is related 
to two conditional probabilities: the probability of the 
US given the CS—P(US|CS)—and the probability of the 
US in the absence of the CS: P(US|~CS). In contingen-
cy theory, learning occurs only if there is a difference 
between these two conditional probabilities. Note that 
defining learning in terms of this difference permits in-
hibitory processes to be important: If P(US|~CS) is higher 
than P(US|CS), then an agent can learn that the CS is a 
signal that the US is not forthcoming.

Studies of contingency theory require experimental 
paradigms that differ from those used to study classical 
conditioning. One such paradigm was pioneered in the 
1960s (Jenkins & Ward, 1965). Jenkins and Ward pre-
sented their participants with problems in which each of 
two responses (pressing Button 1 or pressing Button 2) 
was paired with one of two possible outcomes (score or 
no score). After 60 trials of this type of learning, partici-
pants used a 100-point scale to rate the degree of control 
they believed that their responses had on the outcome. 
This rating measures beliefs about contingency, where 
contingency is an assessment of the strength of the rela-
tionship between a stimulus and a response.

For this methodology to inform contingency theory, 
the contingency between response and outcome must 
be manipulated. Jenkins and Ward (1965) did so by 
considering their design in the context of a simple 2×2 
contingency table like the one provided in Table 3-1. 
This table provides the frequencies with which different 
stimulus-response pairings occur. For example, the value 
a in Table 3-1 is the number of times that a participant 
scored when that person pressed Button 1, and the value 

b is the number of times that a participant did not score 
when that person pressed the same button.

Table 3-1. A generic 2×2 contingency table Jenkins and Ward’s (1965) study.

Score ~Score
Press Button 1 a b

Press Button 2 c d

Note. Each row is associated with one of a subject’s possible 
actions. Each column is associated with an outcome, indicating 
whether the action leads to a score. Each of the four letters in the 
contingency table stands for a frequency. For instance, a indi-
cates the number of times that pressing Button 1 leads to a score

By manipulating the values of four frequencies in 
Table 3-1, one can vary the strength of the relationship, 
or the contingency, between action and outcome. Jenkins 
and Ward quantified this contingency as the difference 
between the conditional probability of scoring when 
Button 1 is pressed—P(Score|Press Button 1)—and the 
conditional probability of not scoring when Button 1 is 
pressed: P(~Score|Press Button 1). This difference be-
tween conditional probabilities is known as ΔP, and it can 
be computed from the four frequencies in Table 3-1 using 
Equation 3-1. Jenkins and Ward manipulated the Table 3-1 
cell frequencies to create different learning situations in 
which ΔP assumed values of 0, 0.3, 0.6, or 0.8. Of interest, 
one of the main findings of this study was that ΔP was not 
strongly related to subjects’ judgments of control!

(3-1)

Perhaps because of this negative experimental result, 
contingency theory was dormant for a while. This changed 
with a seminal study in the late 1970s (Alloy & Abramson, 
1979). Alloy and Abramson employed a version of 
the Jenkins and Ward paradigm to study contingency 
judgments of students who were either depressed or not. 
Their main result was that depressed participants made 
contingency judgments that were highly consistent with 
the objective contingencies produced by manipulating the 
cell frequencies of Table 3-1. This study was followed by a 
long history of studies exploring human sensitivity to con-
tingencies in the world (Shanks, 2007). One consequence 
of research into human contingency learning has been a 
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debate about whether such learning is best explained in 
terms of associative mechanisms or in terms of cognitive 
inference. Another interesting property of this research is 
that it almost exclusively operationalizes contingency in 
terms of differences between conditional probabilities, 
such as ΔP (Allan, 1980; Allan & Jenkins, 1980, 1983; 
P. W. Cheng, 1997; P. W. Cheng & Holyoak, 1995; P. W. 
Cheng & Novick, 1990, 1992; Jenkins & Ward, 1965; 
Ward & Jenkins, 1965; Wasserman, Dorner, & Kao, 1990).

Contingency theory is particularly relevant to the 
main theme of this monograph, which concerns how 
agents can adapt to an uncertain world. One reason for 
this is evident from a close examination of Table 3-1. 
If the values of, for instance, a and b are both greater 
than zero, then this table represents an uncertain world. 
This is because if both of these frequencies are greater 
than zero, then pressing Button 1 does not reliably lead 
to the same response—in some instances this action is 
rewarded with a score, but in other instances this same 
action is not rewarded. In other words, experiments like 
those by Jenkins and Ward (1965) that manipulate contin-
gency by varying the Table 3-1 frequencies can be seen 
as experiments that study learning about uncertainty. In 
fact, Table 3-1 provides the probability structure of an 
extremely simple probability discrimination task of the 
sort that was introduced in Chapter 1.

Contingency theory is also strongly related to anoth-
er core topic of this monograph, the modern perceptron. 
In earlier chapters, we already interpreted perceptron re-
sponses as being conditional probabilities (i.e., estimates 
of the probability of reward given the presence of partic-
ular cues). Is perceptron behavior related to contingency? 
It has been proven that when perceptron learning reaches 
a dynamic equilibrium of the sort illustrated in Figure 2-2, 
the difference between the perceptron’s response when a 
cue is present and its response when a cue is absent equals 
ΔP (Dawson & Dupuis, 2012). In other words, compar-
ing perceptron behavior in the presence and absence of 
cues provides a measure of contingency.

The current chapter exploits the notion of contin-
gency in yet another fashion in order to relate perceptrons 
to probability theory. It uses the conditional probabilities 
from Table 3-1—the probabilities used to compute ΔP—as 
a bridge between topics that have already been introduced 
(perceptrons, probability) and a related topic, Bayesian 
inference. Bayesian inference involves computing condi-
tional probabilities, in particular the probability that some 
hypothesis is true given that some evidence is also true. In 
this chapter, we introduce Bayes’s theorem of conditional 
probabilities for the particularly simple situation that can 

be represented with a 2×2 contingency table like the one 
provided in Table 3-1. We then explore the ability of a 
modern perceptron to learn about contingencies that can 
be represented in this fashion. In other words, we explore 
teaching perceptrons in a fashion that is analogous to 
the Jenkins and Ward (1965) paradigm. To preview the 
main point of this chapter, we discover that the modern 
perceptron learns to make judgments of conditional prob-
abilities that are equivalent to those predicted by Bayes’s 
rule. This means that modern perceptrons can literally be 
understood as Bayesian mechanisms. Furthermore, we can 
use the frequencies in Table 3-1 to define the weight and 
bias of a modern perceptron that mimics the conditional 
probabilities defined by that table.

This result leads to another reason that contingency 
theory is related to the current chapter. As just noted, hu-
man studies of contingency learning focus on the ΔP met-
ric. However, other important metrics are more common 
when one moves outside of this particular literature and 
considers the general statistical analysis of contingency 
tables (Christensen, 1997; Hosmer & Lemeshow, 2000; 
Ku & Kullback, 1974; Lindley, 1964; Rudas, 1998). One 
of these metrics is the natural logarithm of a probability 
measure called the odds ratio. This chapter shows that this 
measure defines the weight of a modern perceptron that 
learns to perform Bayesian inference on a 2×2 contin-
gency table. This, combined with the known relationship 
between perceptrons and associative learning in general 
(Dawson, 2008), raises the possibility that perceptrons can 
inform contingency theory. In particular, the interpretation 
of perceptrons that learn to make contingency judgments 
suggests that the natural logarithm of the odds ratio 
is an interesting alternative to ΔP.

3.3 Bayes’s Theorem and Cognitive Science
Consider the following scenario: You are given an 

urn of marbles, and you are told that 25% of them are white 
and the remaining 75% are black. You are then asked the 
following question: If five times in a row you randomly 
draw a marble from this urn and then put it back in, what 
is the probability that you will produce the following se-
quence of marbles: white, white, white, black, and black?

This question is known as an a posteriori proba-
bility problem. Its solution requires using knowledge 
about a population to make an inference about a sample 
taken from that population. In the example problem, we 
know that in this population the probability of drawing 
a white marble—P(W)–is one out of four and that the 
probability of drawing a black marble—P(B)—is three 
out of four. With this knowledge, combined with our 



58

PROBABILITY LEARNING BY PERCEPTRONS AND PEOPLE

Michael R.W. Dawson

knowing that these probabilities do not change (because 
the marbles is replaced after being drawn) and our know-
ing that each draw is independent of the others, we can 
answer this question by multiplying the probabilities of 
each individual event occurring. That is, P(WWWBB) = 
P(W)•P(W)•P(W)•P(B)•P(B) = (¼)3•(¾)2 ≈ 0.00879.

The solution of a posteriori probability problems 
is at the heart of the frequentist approach to statistics 
(Neyman, 1937). According to this approach, conducting 
an experiment is akin to taking a single sample from a 
population of such experiments. A statistic is computed for 
this sample (e.g., a t test, an F test) and is then compared 
to a known population distribution of this statistic (e.g., a 
t distribution, an F distribution). If the value of the sample 
statistic is sufficiently unlikely to be drawn by chance 
from the population distribution (often a probability of .05 
or smaller), then the researcher concludes that the result 
of the experiment is highly likely due to an independent 
variable and therefore reveals a statistically significant 
effect. This is an example of an a posteriori application of 
probability because an inference about the sample is made 
by comparing it to a known population.

Now consider a different version of the probability 
problem. You are told that marbles are being independent-
ly drawn from an urn and that after being drawn, a mar-
ble is returned the urn. You are then informed that with 
five such draws, the result was the following sequence 
of marbles: white, white, white, black, and black. You 
are then asked a different kind of probability question: 
Given this result, what is the probability that the urn 
from which the marbles were drawn consisted of 25% 
white marbles and 75% black marbles?

This second question is an example of what is known 
as an a priori probability problem or an inverse proba-
bility problem: Given the existence of some evidence E, 
what is the likelihood that this evidence resulted from 
hypothetical cause H (Molina, 1931)? This is an inverse 
probability problem because the direction of inference is 
opposite from that of the earlier a posteriori probability 
problem. In this second case, the task is to use knowledge 
of particular evidence to make an inference about the 
properties of an unknown population.

Informally, inverse probability problems are solved 
by hypothesizing a number of populations that could 
produce the evidence. For example, we might approach 
the marble problem by hypothesizing one urn that contains 
100% white marbles, a second urn that contains 99% white 
marbles and 1% black marbles, a third urn that contains 
98% white marbles and 2% black marbles, and so on. We 
assign each of these possible populations a subjective 

probability, where this probability is our initial estimate 
of how likely it is that it is producing the evidence. We 
then use the evidence to update our probabilities; with 
each new piece of evidence, some of these probability 
estimates will increase, whereas others will decrease. 
For instance, as soon as we draw the first white marble, 
the probability associated with the hypothetical urn con-
taining 100% black marbles is reduced to zero. Bayesian 
inference provides mathematical procedures that can be 
used to update these probabilities based on evidence, with 
the goal of assigning the highest probability to the most 
likely hypothetical population. These procedures provide 
the basis for Bayesian statistics (Cornfield, 1962, 1967, 
1969; Edwards et al., 1963; Jeffreys, 1939; McGee, 1971; 
Savage, 1954, 1962, 1972). Although Bayesian statistics 
were controversial through most of the 20th century, 
they are now widely established (Kruschke, 2011; Lunn, 
Jackson, Best, Thomas, & Spiegelhalter, 2012; Wood-
ward, 2012) and have even achieved mainstream popular-
ity (McGrayne, 2011; Silver, 2012). 

In this chapter, our interest is in establishing a formal 
relationship between Bayesian inference and the modern 
perceptron. To do so, we start with the simplest situation, 
where instead of considering a large number of hypothet-
ical causes, we consider only one, which can be of two 
states only, true or not (H or ~H). In this simplest case, the 
evidence from which we make our inference can also be 
of only two states, true or not (E or ~E). In this simplest 
scenario, Bayesian inference applies an equation with 
roots that can be traced back to the 18th century (Bayes, 
1763) and is now known as Bayes’s theorem:

In Equation 3-2, P(H|E), called the posterior proba-
bility, is the conditional probability of interest, the prob-
ability that H is true given that E is true. The conditional 
probability P(E|H), called the likelihood, is the probability 
that E is true if one assumes that H is true. The probability 
term P(H), called the prior, is the probability that H is 
true. The sum of products in the denominator normaliz-
es the expression to ensure that the computed value for 
P(H|E) remains in the range from 0 to 1.

(3-2)

A 2×2 contingency table, of the type that was 
introduced in Section 3.2, expresses the data required to 
perform Bayesian inference using Equation 3-2. Table 3-2 
illustrates the general form of this contingency table. Its 
two rows correspond to the two possible states of the evi-
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dence, and its two columns correspond to the two possible 
states of the hypothesis. The four letters inside the table 
represent frequencies of co-occurrence.

Table 3-2. A generic 2×2 contingency table for applying Bayes’

H ~H
E a b

~E c d

Note. E indicates that some evidence is true, whereas ~E indi-
cates that the evidence is not true. Similarly, H indicates that 
the hypothesis is true, whereas ~H indicates that the hypothesis 
is false. Each of the four letters in the contingency table stands 
for a frequency. For instance, a indicates the number of obser-
vations for which both the evidence and the hypothesis are true.

The four cell frequencies in Table 3-2 provide all 
of the information required to define the probabilities 
required by Equation 3-2. To be specific, P(E|H) is a/
(a + c), P(H) is (a + c)/(a + b + c + d), P(E|~H) is b/
(b + d), and P(~H) is (b + d)/(a + b + c +d). To perform 
Bayesian inference for this single hypothesis case, we use 
the contingency table to compute these probabilities and 
then insert the values of the probabilities into Equation 3-2 
to determine the inverse probability.

Consider an example in which Bayes’s theorem is 
used to measure the relationship between mammograms 
and breast cancer (McGrayne, 2011). In this example, the 
evidence is whether a mammogram is positive for breast 
cancer (E) or not (~E). The hypothetical cause related to 
this evidence is whether a patient has breast cancer (H) or 
not (~H). In this example of 1,000 hypothetical patients, 
there are eight patients who have positive mammograms 
and have breast cancer. There are 95 patients who have 
positive mammograms but do not have cancer. There are 
two patients who have negative mammograms but do have 
cancer. Finally, there are 895 patients who have negative 
mammograms and do not have cancer. Table 3-3 presents 
this information in a 2×2 contingency table.

Table 3-3. A contingency table for the mammogram/ breast cancer 
example of Bayes’

H ~H
E 8 95

~E 2 895

Of concern in the example problem from McGrayne 
(2011) is the following question: If a patient’s mammo-
gram is positive, then what is the probability that she has 
cancer? The answer to this question comes from using 
Bayes’s theorem to determine the conditional probability 
P(H|E). The four cell frequencies in Table 3-3 are all that 
are needed to accomplish this. Using the four probability 
equations that were given in the discussion of Table 3-2, 
we can determine that P(E|H) equals 0.8, P(H) equals 0.01, 
P(E|~H) equals 0.9595959595, and P(~H) equals 0.99. 
When these four probabilities are inserted into Equation 
3-2, P(H|E) is computed to equal approximately 0.0777. 
In other words, given the Table 3-3 data, Bayes’s rule 
indicates that a positive mammogram means that there is 
less than an 8% chance of having breast cancer.

One can also modify Equation 3-2 to compute a 
different posterior probability, P(H|~E). Equation 3-3 
presents the required modification. When Table 3 is 
used to compute the components of Equation 3-3, we 
find that P(H|~E) equals approximately 0.0026, which 
is the probability that a patient has breast cancer even 
though her mammogram did not detect it.

(3-3)

Equations 3-2 and 3-3, and generalizations of them, 
provide the foundations of Bayesian statistics (Edwards 
et al., 1963; Savage, 1954, 1962). Traditional statistics, 
founded upon the frequentist notion of physical proba-
bility, focus upon comparing a property of a sample to a 
known population distribution of this property to test the 
statistical significance of a null hypothesis. In essence, 
it uses a probability value—p value—associated with 
this statistical comparison to determine whether some 
effect is either present or not. There is a growing concern 
about the limits of this approach because it is recognized 
that p values do not measure the size of an effect or the 
importance of a result; alone a p value is not a good 
measure of the evidence supporting a model or hypothesis 
(Wasserstein & Lazar, 2016). Accompanying such unease 
is a growing movement toward New Statistics—adopting 
statistical methods that focus on improving estimates of 
effect sizes and reducing our uncertainty about these esti-
mates (Cumming, 2013, 2014). Not surprising, Bayesian 
statistics may serve as the foundational formalism for the 
New Statistics (Kruschke & Liddell, 2017), particularly as 
introductory texts and computer algorithms for perform-
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ing such analyses are now widely available (Albert, 2009; 
Kruschke, 2011; Lunn et al., 2012).

Important to note, Bayesian methods do not merely 
provide mathematical procedures for statistical inference. 
They are enormously flexible. Bayesian methods have 
long been used to develop optimal procedures for search-
ing for difficult targets, such as sunken vessels (Stone, 
1975). Bayesian models also have a long history in the 
pattern recognition literature (Duda & Hart, 1973; Duda, 
Hart, & Stork, 2001). Although Savage’s (1954) classic 
text is titled The Foundations of Statistics, it has been de-
scribed in far broader terms as presenting Savage’s theory 
of Bayesian decision making (Binmore, 2009).

As many interpret Bayes’s rule as describing a type 
of decision making or reasoning, it is not surprising that 
many cognitive scientists are exploring the possibility that 
human cognition is essentially Bayesian in nature. Bayes-
ian probability theory is argued to provide a more appro-
priate formalism for describing cognition than does the 
truth-functional logic that was used to establish cognitive 
science in the 20th century. “Cognition should be under-
stood in terms of probability theory, the calculus of uncer-
tain reasoning, rather than in terms of logic, the calculus of 
certain reasoning” (Oaksford & Chater, 2007, p. 7). This 
position is particularly evident in the cognitive science of 
human reasoning and rationality, which explicitly appeals 
to Bayesian probability (Binmore, 2009; Chater & Oaks-
ford, 1999; Glymour, 2001; Lee & Wagenmakers, 2013; 
Oaksford & Chater, 1991, 1998, 2001, 2007). However, 
Bayesian cognitive science is not limited to this domain. 
For example, Bayesian accounts of neural systems are 
also appearing (Doya, 2007; Nessler, Pfeiffer, Buesing, & 
Maass, 2013; Rao, Olshausen, & Lewicki, 2002), not to 
mention similar accounts of musical cognition (Temperley, 
2004) or of attention and perception (Itti & Baldi, 2009).

What is the relationship between Bayes’s rule and 
Bayesian cognitive science? At the most general level, it 
would be expected that an agent who employed Bayesian 
cognition would generate responses that are consistent 
with Bayes’s theorem. That is, an agent who employed 
subjective probabilities, and who updated these proba-
bilities in accordance with Equation 3-2 or some variant, 
could be described as “being Bayesian.” In Bayesian 
cognitive science, Bayes’s theorem should provide a 
normative account of the behavioral relationship between 
states of evidence and hypothetical causes.

In cognitive science, when formal equations or proofs 
are used to specify the input/output function mediated by 
an information processor, it is said that this processor is be-
ing described at the computational level of analysis (Marr, 

1982). By formally describing input/output regularities, 
a computational analysis identifies the information-pro-
cessing problem being solved by the system. Explorations 
of Bayesian theories of human reasoning (Oaksford & 
Chater, 2007, 2009; Oaksford, Chater, & Larkin, 2000) 
have been deliberately performed at this computational 
level. Oaksford and Chater (e.g., 2007) pointed out that a 
computational theory of reasoning provides an account of 
a system’s competence or of its ideal behavior. Bayesian 
probability is their choice for a computational account 
of human reasoning and rationality.

Important to note, cognitive science realizes that 
computational analyses are necessary, but not sufficient, 
to serve as explanations. Other levels of analysis must also 
be explored (Dawson, 1998, 2013). For instance, at the 
algorithmic level, researchers determine what informa-
tion-processing methods or procedures are used to perform 
particular computations. Similarly, at the architectural and 
implementational levels, cognitive scientists explore how 
these information-processing procedures are brought to 
life in a particular physical device like the brain.

The need for these additional levels of investigation 
has led to an important criticism of Bayesian cognitive 
science: its alleged failure to ground computational theory 
in particular algorithms or mechanisms (Bowers & Davis, 
2012; Jones & Love, 2011). Indeed, critics argue that 
Bayesian computation is incompatible with psychologi-
cally plausible procedures for carrying them out, such as 
artificial neural networks (Jones & Love, 2011).

The Bayesian approach suggests that learning 
involves working backward from sense data to compute 
posterior probabilities over latent variables in the environ-
ment, and then determining optimal action with respect to 
those probabilities. This can be contrasted with the more 
purely feed-forward nature of most extant models, which 
learn mappings from stimuli to behavior and use feedback 
from the environment to directly alter the internal parame-
ters that determine those mappings (Jones & Love, 2011).

Furthermore, although there is a growing literature 
concerning the Bayesian nature of neural mechanisms 
(Doya, 2007; Rao et al., 2002), skeptics point out that this 
evidence is behavioral and not biological (Bowers & Davis, 
2012). “If neuroscience is to provide any evidence for the 
theoretical Bayesian perspective, the key question is what 
non-behavioral evidence exists that neurons compute in this 
way? The answer is none” (Bowers & Davis, 2012, p. 404).

In spite of such criticisms, Bayesian cognitive sci-
entists like Oaksford and Chater (e.g., 2007) are still re-
luctant to explore their theory of reasoning at less abstract 
levels of Marr’s (1982) tri-level hypothesis. They believe 
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that Bayesian algorithms or mechanisms will at best only 
approximate their computational theory.

We suspect that, in general, the probabilistic problems 
faced by the cognitive system are simply too complex to 
be solved directly, by probabilistic calculation. Instead, 
we suspect that the cognitive system has developed 
relatively computationally ‘cheap’ methods for reaching 
solutions that are “good enough” probabilistic solutions to 
be acceptable. (Oaksford & Chater, 2007, p. 15)

In the next section, however, we explore the pos-
sibility that Oaksford and Chater’s concern about com-
putationally cheap methods for Bayesian computations 
is premature. We first establish that a simple modern 
perceptron, trained with a gradient descent learning rule, 
is quite capable of computing Bayes’s theorem for one hy-
pothesis (i.e., Equation 3-2) to a high degree of accuracy. 
We then turn to establishing a formal relationship between 
the structure of a trained modern perceptron and Equa-
tion 3-2. The main point to be delivered is this: Modern 
perceptrons are Bayesian mechanisms.

3.4 A Bayesian Mechanism
Earlier in this chapter, we illustrated how to use 

Bayes’s rule to compute posterior probabilities for data 
represented by a 2×2 contingency table. We now con-
sider a related question: What is the simplest artificial 
neural network that can learn to generate these same 
probabilities? Modern perceptrons can learn to estimate 
probabilities (Dawson et al., 2009); earlier chapters 
presented additional examples of this ability. Formal 
analyses of the modern perceptron show that its output 
can literally be interpreted as a conditional probability: 
the probability of reinforcement given the presence of a 
particular stimulus (Dawson & Dupuis, 2012).

Bayes’s rule is a conditional probability rule: It gen-
erates the probability that a particular hypothesis is true 
given the condition that some data are true (Equation 3-2). 
Given that a modern perceptron generates conditional 
probabilities, is such a device capable of generating the pos-
terior probabilities defined by Bayes’s rule? To answer this 
question, consider a training set based on the hypothetical 
mammogram/breast cancer example provided in Table 3-3.

The training set consists of 1,000 patterns, where 
each pattern in the training set represents the results of 
a single patient’s mammogram paired with her cancer 
diagnosis. When E is true, it is encoded with a stimulus 
value of 1; ~E is encoded with a stimulus value of 0. When 
H is true, the perceptron is trained to produce a response 
of 1; when it is not true (~H), the perceptron is trained 

to produce a response of 0. The 1,000 different patterns 
in the training set reflect the frequencies of the 2×2 con-
tingency table for this problem (Table 3-3). That is, eight 
patterns pair a stimulus of 1 with a response of 1, 95 pair 
a stimulus of 1 with a response of 0, two patterns pair a 
stimulus of 0 with a response of 1, and 895 patterns pair a 
stimulus of 0 with a response of 0.

This training set requires the simplest modern 
perceptron imaginable: one input unit to represent mam-
mogram evidence, and one output unit to represent cancer 
diagnosis. Prior to training the single connection weight 
in the network has its weight (w1) randomly assigned a 
value from the range between −0.1 and 0.1. The bias θ is 
initialized to a value of 0. The network is trained to map 
each stimulus to the desired response using the gradient 
descent learning rule (Dawson, 2004, 2005). A learning 
rate of 0.1 is employed. The order of pattern presentation 
is randomized every epoch, where a single epoch consists 
of presenting each of the 1,000 training patterns once. 
The network is trained for a set number of epochs; this 
training is sufficient to produce sufficiently small and un-
changing sum of squared error. This approach to stopping 
training recognizes that this perceptron will never gen-
erate the correct response to each pattern in the training 
set, because when the same stimulus is presented to the 
network (e.g., 1), it can lead to opposite responses (0 or 
1) depending on the training pattern.

Consider the behavior of one example perceptron, 
trained for 5,000 epochs on this problem. At the end of this 
training, its squared output error, summed over the 1,000 
training patterns, is 9.374. This network’s single weight w1 
is 3.466, and its bias θ (of its logistic activation function) 
is −5.948. When this perceptron’s input unit is activated 
with a value of 1, the logistic activity of its output unit is 
0.0771. This activity provides the network’s judgment of 
P(H|E) and is nearly identical to the value computed from 
Equation 3-2 that was reported earlier in this chapter. This 
conditional probability deviates from Bayes’s rule only at 
the fourth decimal point. Similarly, when the perceptron’s 
input unit is activated with a value of 0, it generates an activ-
ity of 0.0026. This activity reflects the network’s judgment 
of P(H|~E) and is nearly identical to the value for this con-
ditional probability when computed using Equation 3-3.

In sum, our empirical investigations of a sim-
ple version of an inverse probability problem clearly 
indicate that a modern perceptron produces an input/
output mapping that is consistent with Bayes’s theorem 
(Equations 3-2 and 3-3). Let us now turn to a formal 
examination of the relationship between Bayes’s rule and 
the structure of such a perceptron.
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3.5 Inside a Bayesian Mechanism
What is the formal relationship between the structure 

of Bayes’s equation and a perceptron with behavior that 
is consistent with this equation? To answer this question 
about a modern perceptron, we must explore the relation-
ship between Bayes’s theorem and the logistic activation 
function. To do so we take advantage of the well-established 
relationship between the logistic equation and probability 
theory (C. M. Bishop, 1995, 2006; Hastie, Tibshirani, & 
Friedman, 2009; McClelland, 1998). We use this relation-
ship to translate Bayes’s theorem into a form that resem-
bles the logistic equation. We then use this resemblance to 
define the values of the perceptron’s weight and bias. In the 
following we prove that the perceptron’s weight and bias 
can be expressed using frequencies taken from the 2×2 
contingency table that was used to define the training set. 
Furthermore, these expressions relate perceptron structure 
to new elements of probability theory: odds ratios.

Our first step is to convert Bayes’s rule (Equation 
3-2) into a format that is structurally similar to the logistic 
function. This is accomplished (Jordan, 1995) by dividing 
both the numerator and denominator of Equation 3-2 by 
P(E|H) ∙ P(H), as shown in Equation 3-4:

(3-4)

The next step is to replace the probabilities in 
Equation 3-4 with the appropriate ratios of contingency 
table frequencies, where these frequencies are represented 
by the four letters provided in Table 3-2. Equation 3-5 
illustrates that P(H|E) can be expressed in a very simple 
equation that includes the ratio between b and a.

(3-5)

Now we exploit our empirical results obtained from 
training the perceptron on the problem represented by 
the 2×2 contingency table. We demonstrated that, after 
training, when the network’s input unit is turned “on,” the 
network generates activity that is an excellent approxima-
tion of the value of P(H|E) delivered Bayes’s rule. From 
this observation, let us express P(H|E) in terms of the 
network’s logistic activation function. This is done by rec-
ognizing that when the signal a1 is 1, the net input to the 
logistic is w1. Equation 3-6 expresses P(H|E) in terms of 
this logistic and then equates this to the simple expression 
for P(H|E) derived above in Equation 3-5.

(3-6)

Equation 3-6 reveals a direct relationship between 
perceptron components and elements of the contingency 
table, as is made explicit in Equation 3-7:

(3-7)

By taking the natural logarithm of both sides of 
Equation 3-6 and by multiplying both sides by −1, we can 
express the two parameters of the network trained on the 
Bayesian problem in terms of two of the frequencies taken 
from the contingency table (Equation 3-8).

(3-8)

Equation 3-8 expresses a relation between two com-
ponents of the perceptron to two elements from the con-
tingency table. Our next task is to find a single expression 
for each of the perceptron components. We begin this task 
by using the approach illustrated in Equations 3-4 through 
3-7 to express θ by itself in terms of contingency table 
frequencies. When the input unit to the trained perceptron 
is equal to 0, perceptron activity can be interpreted as 
being P(H|~E). However, in this second situation, the net 
input being passed into the logistic function is equal to 0 
because the there is no signal being sent from the input 
through w1. Thus, the only contributor to logistic activity 
is θ. Therefore, to solve for θ we manipulate Equation 3-3 
in the same way that we manipulated Equation 3-2.

We first express the Bayesian equation for P(H|~E) 
(given earlier as Equation 3-3) in a structural form that can 
be related to the logistic equation. This is done by dividing 
both the numerator and the denominator of Equation 3-3 
by P(~E|H) ∙ P(H), as shown in Equation 3-9:
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(3-9)

Second, we replace the probability terms in 
Equation 3-9 with contingency table frequencies taken 
from Table 3-2. Equation 3-10 shows that P(H|~E) 
can be expressed in a very simple equation that 
includes the ratio between d and c.

(3-10)

Next, we recognize that when the perceptron is gen-
erating P(H|~E) its input unit has zero activity. This means 
that the only term in the exponent that is part of the logistic 
equation is θ. Equation 3-11 expresses P(H|~E) in terms of 
this version of the logistic and equates it to Equation 3-10.

(3-11)

We again take advantage of the structur-
al similarities of the two expressions in Equa-
tion 3-11 to state an obvious equality:

(3-12)

Finally, we can take the natural logarithm of 
both sides of Equation 3-11 and multiply both sides 
by −1 to express θ in terms of contingency table fre-
quencies, as shown in Equation 3-13:

(3-13)

Equations 3-9 through 3-13 provide an expression 
for θ alone. This expression (Equation 3-13) can be 
substituted into Equation 3-8 to solve for w1, because 
the θ used to compute P(H|E) is the same θ that is used 
to compute P(H|~E). That is, the one network, that has 
only one value of θ, can compute both conditional prob-
abilities by turning its input unit on or off. Equation 3-14 
shows the result of solving for w1:

(3-14)

For the cancer example introduced earlier, if one 
places the four frequencies from the contingency table into 
Equation 3-14, then the resulting value for the network’s 
connection weight is approximately 3.629. Similarly, plac-
ing the appropriate frequencies into Equation 3-13, the re-
sulting value for the network’s θ is approximately −6.104. 
The observed values for the trained network described 
earlier are solid approximations of these ideal values.

There are several interesting implications of the 
derivations provided in this section. The first is the most 
important: We have demonstrated a formal equivalence 
between Bayes’s theorem (Equation 3-2) and the compo-
nents of the modern perceptron. The modern perceptron 
can learn to generate Bayesian posterior probabilities for 
cases involving a single hypothesis and a single source of 
evidence. The ideal values for the weight and bias of this 
perceptron were determined by using contingency table 
frequencies as a means of translating between Bayes’s rule 
and the logistic activation function. Clearly, the modern 
perceptron is a Bayesian mechanism.

Second, there is an important theoretical implication 
that arises from the Equation 3-14 expression for the per-
ceptron’s weight. This weight is equal to the natural loga-
rithm of a particular ratio of contingency table frequencies, 
ad/bc. This expression, called the odds ratio, is one of the 
most important measures of association for a contingency 
table (Agresti, 2002; Y. M. M. Bishop, Fienberg, & Hol-
land, 1975; Rudas, 1998). Discovering it inside the network 
has some important implications for psychological inves-
tigations of how humans and animals learn contingencies. 
The next section introduces the notion of odds and odds 
ratios and then considers the relationship between these 
measures and psychological contingency theory.

Given the relationship between the connection weight 
and the odds ratio, we expect that the network’s bias θ 
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should relate to odds as well. Equation 3-13 indicated that 
θ is related to the ratio c/d. This simple ratio is literally the 
odds of H relative to ~H but only for those cases involving 
~E (Rudas, 1998). That θ reflects such odds parallels the 
odds ratio interpretation of w nicely because θ is the sole 
source of output activity when the input unit is off.

We saw earlier that there is a general belief that 
algorithmic or implementational accounts can at best only 
approximate Bayesian computations (Bowers & Davis, 
2012; Jones & Love, 2011; Oaksford & Chater, 2007). 
From the perspective of perceptrons, this makes perfect 
sense: Bayes’s theorem (Equation 3-2) requires multiply-
ing various probabilities together, and multiplication is not 
a primitive operation for a perceptron (e.g., net inputs are 
sums, not products, of signals). Our formal analysis reveals 
that the modern perceptron has discovered an elegant solu-
tion to circumvent this limitation: Because of its logistic 
activation function, it works in the world of logarithms, 
which translates multiplication and division into addition 
and subtraction, operations permitted in typical network 
architectures. Then perceptron then lets the activation 
function compute the antilogarithm of the network’s cal-
culations, by passing these logarithmic calculations into 
the exponent of e in its logistic activation function.

3.6 Odds, Odds Ratios, and Contingency
At the time of the National Hockey League’s all-star 

game in 2016, the odds against the Montreal Canadiens 
winning the Stanley Cup were set at 50:1. What do these 
odds mean? In gambling, “odds against” typically express 
the ratio of wagers made by two parties when placing a bet. 
Having 50:1 odds mean that the bookmaker would place a 
bet that is 50 times the value of the bet made by the gam-
bler. In this case, if the gambler bets $1 and the Canadiens 
win the cup, the gambler would profit by $50. Otherwise, 
the gambler would lose their $1 to the bookmaker.

In a fair bet, the gambling odds also reflect the prob-
ability of the event being wagered on. This means that 
one can translate betting odds into probabilities, and vice 
versa. Equation 3-15 provides the expression to calculate 
the probability of an event x occurring from the odds 
against x, represented as O(x). For the hockey example, 
if one substitutes the fraction 50/1 for O(x) then Equation 
3-15 indicates that P(x)—the probability of winning the 
cup—is approximately .0196. It is because this probability 
is so small that the bookmaker is willing to wager such a 
large amount against the gambler’s much smaller bet.

(3-15)

Like Bayesian probabilities, betting odds are 
constantly updated as circumstances change. Consider 
another hockey example. In 2015, the Montreal Canadiens 
started their season with a nine-game winning streak, and 
their odds of winning the championship had climbed as 
high as 15:2. However, their world-class goaltender Carey 
Price was injured in a December game against the New 
York Rangers. By February, their odds of winning the cup 
fell to 28:1, reflecting the impact of this event on book-
markers’ views of Montreal’s future.

Quantitatively speaking, what was the perceived 
effect of Price’s injury on Montreal’s fate? One approach 
for measuring this effect is to compute the odds ratio 
(Rudas, 1998). The odds ratio is literally a ratio between 
the odds in one situation and the odds in another situation. 
For example, to calculate the odds ratio in the context of 
Carey Price’s health, one divides the fraction 15/2 (the 
odds against Montreal winning the cup with Price healthy) 
by the fraction 28/1 (the odds against Montreal winning 
the cup with Price injured). The resulting odds ratio is 
approximately 0.268. This indicates that Price’s status had 
a huge effect on bookmakers’ view of the team. This is 
because the further that the odds ratio departs from a value 
of 1, the greater is the effect of the event being considered. 
If the presence or absence of an event has no effect, then 
the odds ratio calculated for it will be close to or equal to 1.

This discussion indicates that the odds ratio measures 
the effect of some situation being true in contrast to the 
situation in which it is false. From this perspective, it is 
not surprising to discover that the odds ratio is found at 
the heart of various procedures that predict the likelihood 
of an event occurring from a set of predictors, each of 
which may be either present or absent.

One such procedure is logistic regression (Chris-
tensen, 1997; Cramer, 2003; Hosmer & Lemeshow, 2000). 
Logistic regression predicts an outcome by summing 
the signals associated with a set of predictors, where 
each signal indicates whether some predictor is present. 
These signals are each weighted by coefficients, summed 
together, and then transformed into a probability using the 
logistic equation. Each coefficient indicates the effect on 
the outcome of each predictor, assuming that the effects of 
the other predictors are held constant. Important to note, in 
logistic regression each coefficient is equal to the natural 
logarithm of the odds ratio associated with a predictor.

If the coefficients in logistic regression are equal to 
natural logarithms of odds ratios, then it is not surprising 
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that the connection weight in the modern perceptron that 
we are exploring in this chapter is also equal to a natu-
ral logarithm of the odds ratio. This is because the end 
result of fitting logistic regression to data is functionally 
equivalent to the end result of training a modern percep-
tron on the same data (Schumacher, Rossner, & Vach, 
1996). In a recent study, where four predictor cues were 
combined to determine the probability of reward, it was 
found that the weights and bias of a modern perceptrons 
trained on this data were almost identical to the coeffi-
cients and constant of logistic regression equations fit to 
the same data (Dawson & Gupta, 2017).

To end this chapter, let us return to contingency 
theory that was introduced in Section 3.2. What might 
discovering the odds ratio in the perceptron’s structure 
mean for psychological contingency theory?

A key issue in the literature on learning contingen-
cies is the debate about what the appropriate metric of 
contingency or association might be (Allan, 1980; Allan 
& Jenkins, 1980, 1983). Allan and Jenkins developed five 
contingency measures for a 2×2 contingency table like 
Table 2 and argued that the one that provides the best 
account of human data is the difference in conditional 
probabilities is defined as ΔP (Equation 3-1), which we 
saw earlier is equal to P(H|E) - P(H|~E).

There is one important metric that Allan and Jen-
kins do not consider—the odds ratio. This is surprising 
because we have seen that the odds ratio is the preferred 
measure of association for statisticians when they analyze 
contingency tables. Discovering the odds ratio in the 
connection weight of the modern perceptron—whose be-
havior can deliver ΔP (Dawson & Dupuis, 2012)—points 
to a new metric of contingency worthy of consider-
ation in the psychological literature.

What is the relationship between ΔP and the natural 
logarithm of the odds ratio? Let us start to answer this 
question empirically. Wasserman et al. (1990) reported 
the results of contingency experiments that involve using 
25 different 2×2 contingency tables. Using these tables, 
they discovered that ΔP was highly correlated with human 
contingency ratings. We took their 25 contingency tables, 
which had values of ΔP that ranged from 0.60 to −6.0, and 
computed the natural logarithm of the odds ratio for each 
one. For this sample of contingency data, the correlation 
between ΔP and ln(ad/bc) was essentially perfect (r = 
.999). Given this relationship between the two metrics, it 
is no surprise that the natural logarithm of the odds ratio 
generated equally high correlations with the human judg-
ments of contingency that Wasserman et al. report (r = .94 
for one reported study, r = .93 for another).

To explore this sort of relationship further, a larger 
set of contingency tables can be created. This was done 
by taking seven possible values for a cell frequency in a 
2×2 contingency table: 5, 15, 25, 35, 45, 55, and 65. We 
used assigned the values to a, b, c, and d in Table 2, using 
all possible combinations, to create a set of 2,401 (i.e., 
7×7×7×7) contingency tables. For this large set of tables 
ΔP ranged from about 0.857 to −0.857. The correlation 
between ΔP and the ln(odds ratio) for this set of tables was 
again very large, being equal to 0.992.

Figure 3-1 provides the scatter plot of each of the ΔP 
and ln(odds ratio) pairs for this set of 2,401 contingency 
tables. This graph, which is a tight propeller-shaped cloud, 
clearly illustrates the strong correlation between the two 
variables. It also indicates that one cannot write a function 
that translates ΔP into the ln(odds ratio). This is because 
a single value of ΔP maps onto more than one value of 
ln(odds ratio), and vice versa. This property spreads the 
scatter plot into its propeller shape, instead of a function 
that can be graphed with a continuous line.

Figure 3-1 shows that there is a very strong relation-
ship between ΔP and the ln(odds ratio). Given this relation-
ship, are there any reasons for replacing the former with 
the latter in psychological studies of human contingency 
judgments? There are at least three reasons for replacing 
ΔP with a metric based on the odds ratio.

First, ΔP (Equation 3-1), as we saw in our earlier dis-
cussion of Bayes’s theorem, is only a computational-level 
description of behavior. For instance, an agent whose 
contingency judgments are consistent with ΔP can be 
described as being sensitive to this statistic. However, this 
sensitivity does not require the agent to represent mentally 

Figure 3-1. A scatterplot of the relationship between ΔP and the ln(odds 
ratio) for 2,401 different 2X2 contingency tables created to generate a 
range of ΔP values. See text for details.
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a table like Table 3-1, nor does it require the agent to know 
Equation 3-1 to make these consistent judgments. We are 
in a position to say this because the perceptron is a device 
that behaves as if it computes ΔP (Dawson & Dupuis, 
2012) but does not represent or calculate Equation 3-1, 
nor does it represent a contingency table. Instead, it uses 
a psychologically plausible learning rule (Dawson, 2008) 
to update the association between an input signal and an 
output response. Computationally speaking, this associa-
tive mechanism is functionally equivalent to representing 
contingency as ΔP. However, in terms of algorithmic or 
implementational properties, ΔP is not present in it. If we 
consider the perceptron as a plausible mechanism for rep-
resenting contingency, then we need to consider describing 
contingency in terms of properties that are directly repre-
sented in this mechanism, that is, in terms of the odds ratio.

Second, there are important technical limitations on 
the definition of ΔP. In particular, ΔP cannot be computed 
if both a and b, or if both c and d, equal 0. This is because 
this produces an undefined fraction because its numerator 
is divided by 0. Of course, the proof that relates perceptron 
properties to Bayes’s theorem also requires that contingen-
cy table frequencies (in particular b and c are greater than 
zero). If this is not the case, then fractions in Equations 
3-13 and 3-14 are undefined. Important to note, this is a 
limitation of the proof and not of the capabilities of the 
modern perceptron. For example, we can build training 
sets from the cancer example (Table 3-3) that set two of 
the four frequencies to 0. This is done by training the 
perceptron on a subset of problems—only those patterns 
that belong to one row of Table 3-3, or only those patterns 
that belong to one column of Table 3-3. Perceptrons learn 
to estimate the probabilities of these subsets, even though 
none of them permits ΔP to be defined. Again, the algo-
rithmic properties of the associative mechanism trump the 
computational definition of Equation 3-1.

Third, ΔP is defined for a 2×2 contingency table only. 
Clearly if we are interested in understanding human con-
tingency judgments, then we must consider situations that 
can only be captured by higher dimensional versions of 
Tables 3-1 or 3-2. These more complex situations involve 
inferring the probability of a hypothesis using multiple 
sources of evidence. As these situations cannot be defined 
in a 2×2 table, one cannot use Equation 3-1 to calculate 
ΔP for them. A more complex notion of differences be-
tween conditional probabilities is required. One example 
is logistic regression (Christensen, 1997; Cramer, 2003; 
Hosmer & Lemeshow, 2000), which employs odds ratios 
to quantify the effect of a predictor under the assumption 
that all other predictors are held constant. A second, and 

related, example is using a more flexible notion of con-
ditional probability to explore human reasoning under 
uncertainty (P. W. Cheng, 1997; P. W. Cheng & Holyoak, 
1995; P. W. Cheng & Novick, 1990, 1992).

A third example is the modern perceptron. The current 
chapter examined the relationship between the simplest 
perceptron—one that has only one input—and the simplest 
version of Bayes’s theorem. This analysis revealed a for-
mal relationship between this perceptron and Bayes’s rule 
when only one source of evidence is required. Of course, 
a modern perceptron is not limited to a single input unit. 
Given this, and given the established relationship between 
perceptrons and logistic regression (Dawson & Gupta, 
2017; Schumacher et al., 1996), we should establish formal 
relations between more complex perceptrons and alterna-
tive versions of Bayes’s rule. The next chapter establishes 
this fact and at the same time reveals some interesting 
limitations on modern perceptrons when faced with these 
more complex situations. In later chapters, we are particu-
larly interested in determining whether human adaptation 
to uncertain environments is subject to similar limitations.
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Chapter 4: Perceptrons Are Naïve Bayesians
Chapter 3 established the relationship between 

perceptron probability estimation and Bayes’s theorem 
when a single cue predicts the probability of reward. 
The current chapter extends these results to the situation 
in which more than one cue signals reward. It begins by 
considering the limitations of perceptrons in terms of a 
logical property, linear nonseparability. It then introduces 
an alternative notion of limitation that is related to inter-
actions between different cues. A series of simulations in 
which perceptrons are trained on Boolean operators whose 
truth is uncertain indicates that the notion of interaction 
is more relevant than is the notion of linear nonsepara-
bility. The chapter then presents a formal analysis of the 
probability estimation of perceptrons when two cues is 
presented, using techniques very similar to those described 
in Chapter 3. This analysis proves that when multiple 
cues are involved, the probability estimates generated by 
perceptrons are defined by the naïve Bayes equation. This 
is a version of Bayes’s theorem that assumes that there are 
no interactions between the signals provided by different 
cues and reveals a particular limitation of the ability of 
perceptrons to estimate probabilities.

4.1 The Limits of Perceptrons
4.1.1 Old Connectionism

In general, an artificial neural network implements 
a mapping from inputs to outputs. The perceptrons 
introduced in earlier chapters are particularly simple 
examples of artificial neural networks because they 
consist of only input and output units. Networks that are 
more complex have intermediate layers of processors, 
called hidden units, that detect complex interactions 
between input signals before passing information about 
these interactions on to output units.

Because of this simplicity, a perceptron is an example 
of what is called Old Connectionism (Medler, 1998). Old 
Connectionism developed two kinds of artificial neural 
networks. The first were very powerful networks because 
they contained many intermediate layers of processors 
(McCulloch & Pitts, 1943). However, the connection 
weights of these networks had to be defined by hand: 
These networks did not learn. The second were simple 
networks that could be trained; however, their simplicity 
placed constraints on what could be learned. Perceptrons 
(Rosenblatt, 1958, 1962) provide a prototypical example 
of this second type of Old Connectionism.

4.1.2 Linear Separability
A detailed formal analysis of the limits of percep-

trons (Minsky & Papert, 1969) is famous for leading to 
decreased interest in artificial neural networks during the 
cognitive revolution (Papert, 1988). Figure 4-1 illustrates 
a key limitation using the exclusive or (XOR) operation, 
which is examined in more detail later in this chapter. This 
logical operation is computed over two inputs, X and Y, 
which can each have values of either 0 or 1. XOR(X, Y) 
returns a value of 1 only when one of these inputs has a 
value of 1 and the other has a value of 0. If both inputs 
equal 0, or if both inputs equal 1, then XOR(X, Y) returns 
a value of 0. Figure 4-1 illustrates this set of desired 
responses by representing the four possible stimuli for 
XOR in a pattern space. In this pattern space, each input 
pattern is represented as a point at a particular location in 
space. This particular space is two-dimensional, because 
each dimension is used to represent the possible values 
of an input variable, and XOR is defined using two vari-
ables. The four dots represent the four possible patterns 
(i.e., X, Y pairs) that can be presented to the network. The 
x-axis provides the possible values of X, and the y-axis 
provides the possible values of Y. The color of each dot 
in Figure 4-1 indicates the desired response of the XOR 
operation to that particular stimulus. If a dot is black, 

Figure 4-1. The pattern space for XOR. Each dot in the space represents 
one of the four possible stimuli, which are X, Y pairs. If a dot is black, 
the correct response to the stimulus is 1; if a dot is black, the correct 
response is 0. The dashed lines indicate how the pattern space requires 
two “cuts” to separate all the “on” patterns from all the “off” patterns. See 
text for details.
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then the desired response to the stimulus is 1; if a dot is 
white, then the desired response is 0.

A pattern space illustrates how pattern recognition 
problems are to be solved. In general, to solve a problem 
a system must partition the pattern space into separate 
regions. Each region can contain only patterns that lead 
to the identical response. The two dashed lines in Figure 
4-1 illustrate this type of solution to XOR. They carve 
the pattern space into three distinct regions. The region 
in the middle of the figure contains only the two patterns 
that require a response of 1. Each of the other two regions 
contains a single pattern that requires a response of 0. In 
general, an artificial neural network can be described as a 
system that solves pattern recognition problems by discov-
ering the correct manner in which to carve a pattern space 
into the appropriate decision regions (Lippmann, 1989).

Figure 4-1 shows that XOR is a linearly nonsepara-
ble problem. This is because two cuts through the pattern 
space are required to separate all the “on” patterns from all 
the “off” patterns. That two cuts are required to partition 
this pattern space shows that XOR is not linearly separa-
ble. A problem is linearly separable only when a single 
straight cut through the pattern space separates all the “on” 
stimuli from all the “off” stimuli.

Figure 4-2 provides an example of a different pat-
tern space, one that is linearly separable. This pattern 

space is for another logical operation AND(X, Y), which 
is true only when both X and Y have values of 1, and 
which is false otherwise. For a perceptron to solve this 
problem, it must carve the pattern space in such a way that 
the pattern that requires a response of 1 is in a different 
region than any of the other three patterns that require 
a response of 0. A single straight cut, illustrated by the 
dashed line in Figure 4-2, accomplishes this, showing that 
AND is a linearly separable problem.

The standard critique of perceptrons is that they are 
limited to computing linearly separable mappings between 
stimuli and responses (Minsky & Papert, 1969). Thus a 
perceptron can learn to compute the linearly separable 
operator AND(X, Y) but cannot learn to compute the 
linearly nonseparable operator XOR(X, Y). The reason for 
this limitation is that the typical activation function in a 
perceptron’s output (i.e., either the threshold function or 
the logistic equation) can make a single straight cut only 
through a pattern space, and thus a perceptron’s output 
units are constrained to solve linearly separable problems.

The connectionist revolution in the 1980s began 
when researchers discovered new learning rules, such as 
backpropagation of error (Rumelhart et al., 1986). These 
new learning rules permitted networks with an interme-
diate layer of hidden units to be trained (see the earlier 
discussion in Section 1.7). Hidden units can learn to detect 
complex higher order features and thus enable networks 
to learn complex (and linearly nonseparable) input/output 
mappings. In recent years, researchers have discovered 
new learning rules that train extremely powerful systems 
called deep belief networks (Hinton, 2007; Hinton et al., 
2006; Mohamed, Dahl, & Hinton, 2012; Sarikaya, Hinton, 
& Deoras, 2014). These networks use many intermediate 
layers of hidden units; they have launched a modern reviv-
al of connectionist artificial intelligence research.

4.1.3 Beyond Linear Separability
This chapter explores the ability of perceptrons to 

estimate probabilities using more than one source of evi-
dence. We prove that in this situation, perceptrons are still 
Bayesian mechanisms but implement a version of Bayes’s 
theorem that imposes limits on probability estimation that 
are different than limitations related to linear separability. 
With this proof in hand, we are confronted with a particu-
lar issue: Is there a reason to view these limited Bayesian 
mechanisms as being of psychological interest, or should 
we instead explore more modern networks that include 
hidden units? To preview the answer to this question that 
is provided by the results of some psychological experi-
ments described in Chapter 7, there is reason to believe 

Figure 4-2. The pattern space for AND. Each dot in the space represents 
one of the four possible stimuli, which are X, Y pairs. If a dot is black, 
the correct response to the stimulus is 1; if a dot is black, the correct 
response is 0. The dashed line indicate how the pattern space requires 
only one straight “cut” to separate all the “on” patterns from all the “off” 
patterns. This proves that this is a linearly separable problem.
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that human probability matching faces similar limitations 
to those described formally in the current chapter.

Historically, the linear separability of problems is the 
only limitation of perceptrons that is considered. Neverthe-
less, in the context of the current monograph, the definition 
of linear separability requires assuming that the world is 
certain. That is, this definition assumes that each stimulus 
is associated with only one (the correct) response. That is, 
in Figures 4-1 and 4-2, each stimulus dot is mapped onto a 
single color. In addition, linear separability is itself used to 
make a definite or certain declaration—the assertion that a 
particular problem can or cannot be solved by a perceptron.

As soon as we recognize the uncertainty of the world, 
we discover that there are other characteristics for defining 
perceptron limitations. For example, in this chapter we 
show that the ability of perceptrons to estimate probabili-
ties is strongly affected by whether two cues interact. Fig-
ure 4-1 demonstrated that XOR is linearly nonseparable. 
However, from a different perspective XOR also demon-
strates a statistical interaction between the inputs X and Y. 
We see next that when perceptrons estimate probabilities 
using multiple cues, perceptrons are limited in the sense 
that they are blind to interactions between predictors.

Figure 4-3 illustrates the general sense of an inter-
action with which we are concerned. It also depicts re-
sponses to XOR(X, Y), but in a different fashion than was 
used in Figure 4-1. In this new figure, the x-axis of both 
graphs provides the values of X, and the y-axis of both 
graphs provides the response of the XOR operator. The 
graph on the left of Figure 4-3 illustrates the effect of X on 
the response when the value of Y is 0, whereas the graph 
on the right of Figure 4-3 illustrates the effect of X on the 
response when the value of Y is 1. The dashed line in each 
graph simply highlights the effect of changing the value X 

in each graph. In the graph on the left, changing the value 
of X from 0 to 1 increased the XOR response. This is re-
flected in the positive slope of the dashed line. In contrast, 
in the graph on the right, a change in the value of X from 
0 to 1 decreases the XOR response. This is reflected in the 
negative slope of the dashed line. The two different-sloped 
lines indicate the presence of an interaction, because the 
effect of X depends on (or interacts with) the value of Y.

This notion of interaction is important for two reasons. 
First, an interaction is distinct from linear nonseparability. 
For example, Figure 4-1 illustrates the point that XOR is 
linearly nonseparable, whereas Figure 4-3 shows that it 
also exhibits an interaction. However, one can also find an 
interaction in a linearly separable problem. This is illus-
trated in Figure 4-4, which is similar in structure to Figure 
4-3 but which illustrates the nature of the AND operation. 
Even though AND is a linearly separable operation (Figure 
4-2), Figure 4-4 still reveals an interaction. This is because 
the different slopes of the dashed line in each of the two 
graphs in Figure 4-4 indicates that the effect of X on the 
response depends on (or interacts with) the value of Y.

The notion of interaction becomes central when per-
ceptrons are trained on uncertain problems. For example, 
in Section 4.2 we study the performance of perceptrons on 
a variety of logical problems like XOR and AND that are 
defined probabilistically or contingently. This means that 
instead of being true for some stimuli all of the time, and 
false for some other stimuli all of the time, the perceptron 
learns that some stimuli are true only 70% of the time 
and that other stimuli are false only 70% of the time. The 
best that these perceptrons can do for these contingent 
problems is estimate probabilities. However, we see that 
perceptrons have difficulty doing this for some problems. 
Furthermore, these difficulties appear for both linearly 

Figure 4-3. The interaction between cues X and Y for the XOR problem. 
The graph on the left shows how changes in X affect the response when 
Y = 0, and the graph on the right shows how changes in X affect the 
response when Y = 1. The fact that the dashed lines in the two graphs 
have different slopes reveals an interaction, because the effect of X 
depends on the value of y.
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Figure 4-4. The interaction between cues X and Y for the AND problem. 
The graph on the left shows how changes in X affect the response when 
Y = 0, and the graph on the right shows how changes in X affect the 
response when Y = 1. The fact that the dashed lines in the two graphs 
have different slopes reveals the interaction, because the effect of X 
depends on the value of y.
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nonseparable and linearly separable problems. This is 
because linear separability is not the only limitation faced 
when perceptrons estimate probabilities using multiple 
cues. Perceptrons also have difficulties when a problem 
involves interactions between cues.

4.2 Learning Probable Boolean Operations
4.2.1 Boolean Algebra

Perceptrons are limited in what they can learn to 
do because they do not include hidden units. How might 
this limitation affect their ability to make probability 
judgments when more than one source of evidence is 
under consideration? Let us explore this issue empir-
ically by training perceptrons to make judgments that 
are based on two sources of evidence.

George Boole invented mathematical logic in the 
late 19th century (Boole, 1854/2003). Part of Boole’s 
formalism considered logical operations defined over 
two variables, where each of these two variables could be 
either true or false, and the result of the logical operation 
was also either true or false. Boole’s original logic was 
the basis of Claude Shannon’s modern insight that electric 
circuits could be described logically (Shannon, 1938).

Table 4-1 provides the 16 basic operations that 
define modern Boolean algebra. In this table, the two 
variables over which a logical operation is defined are X 
and Y. If one of these variables is false, it is represented 
with the value 0; if it is true, it is represented with the 
value 1. With this representation, there are four possible 
combinations of variables for any logical operation. The 
results of applying a particular operation to each of these 
four combinations are also provided in Table 4-1. For 
example, Contradiction(X, Y) returns a value of 0 (it is 
false) for each of the four possible combinations of the 
two input variables. Similarly AND(X, Y), returns a 1 (it 
is true) if both X and Y are true, and returns a 0 for each of 
the other three input combinations.

The 16 Boolean operators provided in Table 4-1 were 
central to the invention of the logical neuron (McCulloch 
& Pitts, 1943). McCulloch and Pitts designed logical 
neurons—each of which was a combination of two input 
weights and a single threshold—for 14 of these 16 Bool-
ean operators. Each of the McCulloch–Pitts neurons were 
digital, in the sense that it was assumed that each of their 
inputs could only have values of 0 and 1 and that a neuron 
would only output a value of 0 or 1. The only two oper-
ators that could not be computed by a McCulloch–Pitts 
neuron were XOR(X, Y) and its negation ~XOR(X, Y). Of 
all of the Boolean operators, these are the only two that are 

linearly nonseparable. As a McCulloch–Pitts neuron is a 
variant of a perceptron, and is therefore limited to solving 
linearly separable problems, it cannot represent a solution 
to linearly nonseparable problems like XOR or ~XOR.

Table 4-1. The 16 logical operations of modern Boolean algebra.

Operation X Y Result Operation X Y Result

Contradiction

0 0 0

AND(X, Y)

0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 1

AND(~X, ~Y

0 0 1

~XOR(x, y)

0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 1

AND(~X, Y)

0 0 0

Y

0 0 0
0 1 1 0 1 1
1 0 0 1 0 0
1 1 0 1 1 1

~X

0 0 1

X כ Y

0 0 1
0 1 1 0 1 1
1 0 0 1 0 0
1 1 0 1 1 1

AND(~X, Y)

0 0 0

X

0 0 0
0 1 0 0 1 0
1 0 1 1 0 1
1 1 0 1 1 1

~Y

0 0 1

Y כ X

0 0 1
0 1 0 0 1 0
1 0 1 1 0 1
1 1 0 1 1 1

XOR(X, Y)

0 0 0

OR(X, Y)

0 0 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 1

~AND(X, Y)

0 0 1

Tautology

0 0 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 1

Note. Each operation is described as a function of two variables, 
X and Y, which are “true” when their value is 1 and “false” 
when their value is 0. The result is the value of the operator 
given the values of X and Y, which is either 1 (true) or 0 (false). 
Each operator is defined using the same four X, Y pairs, but 
each operator differs from the others in terms of its results when 
considered across the four input patterns.

4.2.2 Learning an Uncertain Boolean Algebra
In this monograph, our interest is in the probabilistic 

properties of devices like perceptrons. How do the lim-
itations of perceptrons translate into a domain where the 
mapping from inputs to response is uncertain? To explore 
this question, we created probabilistic versions of each 
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Table 4-2. The responses of 16 perceptrons trained on probabilistic versions of the logical operations of modern Boolean algebra.

Operator X Y Probability of Reward Perceptron Operator X Y Probability of Reward Perceptron

Contradiction

0 0 0.30 0.30

AND(~X, ~Y

0 0 0.70 0.62

0 1 0.30 0.30 0 1 0.30 0.38

1 0 0.30 0.30 1 0 0.30 0.38

1 1 0.30 0.30 1 1 0.30 0.18

~X

0 0 0.70 0.70

AND(~X, Y)

0 0 0.30 0.38

0 1 0.70 0.70 0 1 0.70 0.63

1 0 0.30 0.30 1 0 0.30 0.18

1 1 0.30 0.30 1 1 0.30 0.38

~Y

0 0 0.70 0.70

AND(X, ~Y)

0 0 0.30 0.38

0 1 0.30 0.30 0 1 0.30 0.18

1 0 0.70 0.70 1 0 0.70 0.62

1 1 0.30 0.30 1 1 0.30 0.38

Y

0 0 0.30 0.30

XOR(X, Y)

0 0 0.30 0.50

0 1 0.70 0.70 0 1 0.70 0.50

1 0 0.30 0.30 1 0 0.70 0.50

1 1 0.70 0.70 1 1 0.30 0.50

X

0 0 0.30 0.30

~AND(X, Y)

0 0 0.70 0.82

0 1 0.30 0.30 0 1 0.70 0.63

1 0 0.70 0.70 1 0 0.70 0.62

1 1 0.70 0.70 1 1 0.30 0.38

Tautology

0 0 0.70 0.70

AND(X, Y)

0 0 0.30 0.18

0 1 0.70 0.70 0 1 0.30 0.38

1 0 0.70 0.70 1 0 0.30 0.38

1 1 0.70 0.70 1 1 0.70 0.63

~XOR(X, Y)

0 0 0.70 0.50

0 1 0.30 0.50

1 0 0.30 0.50

1 1 0.70 0.50

X כ Y

0 0 0.70 0.62

0 1 0.70 0.82

1 0 0.30 0.38

1 1 0.70 0.63

Y כ X

0 0 0.70 0.62

0 1 0.30 0.38

1 0 0.70 0.82

1 1 0.70 0.63

OR(X, Y)

0 0 0.30 0.38

0 1 0.70 0.63

1 0 0.70 0.62

1 1 0.70 0.82

Note. For each stimulus, the known probability of reward is provided alongside the response of the perceptron after 
1,000 epochs of training on the problem.
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of the Table 4-1 operators. In our training set, “true” was 
operationalized as “true with a probability of 0.70,” and 
“false” was operationalized as “false with a probability of 
0.70.” That is, a true stimulus is one that has a likelihood 
of reward of 0.70, whereas a false stimulus is one that 
has a likelihood of reward of 0.30.

We constructed training sets for each operator that 
consisted of 40 stimulus patterns instead of four patterns 
as follows: We duplicated each of the four different stimuli 
(i.e., each X, Y pair) 10 times. Then we mapped the inputs 
onto a desired response contingently. For instance, for a 
pair of inputs that were “70% true,” the perceptron was 
rewarded (provided a desired response of 1) for seven of 
these instances, whereas the other three of these instances 
were not rewarded (were paired with a desired output of 
0). Similarly, for a pair of inputs that were “70% false,” 
the perceptron was not rewarded for seven of these stimu-
lus pairs, whereas it was rewarded for the remaining three 
pairs. If a modern perceptron is able to respond correctly 
to such a contingent problem, then it should estimate the 
problem’s probabilities. That is, after training is complete 
it should generate a response of 0.70 to inputs that are true 
in Table 4-1, and it should generate a response of 0.30 to 
inputs that are false in Table 4-1.

We trained modern perceptrons on each of the 16 
training sets for contingent versions of the Boolean op-
erators using the gradient descent rule (Dawson, 2005). 
For each perceptron, the two connection weights were ran-
domly initialized to values from the range between −0.1 
and 0.1, whereas the perceptron’s bias was initially set 
to 0. The learning rate was 0.1, and each perceptron was 
trained for 1,000 epochs. With this amount of training, the 
perceptrons had achieved an equilibrium state of the type 
described in Chapter 2. Table 4-2 provides the response of 
a trained perceptron to each of the possible pairs of inputs 
for each of these contingent logical operations.

An examination of Table 4-2 indicates that there is 
a marked difference between the behavior of perceptrons 
faced with logical versions of the operators and the be-
havior of perceptrons trained on contingent versions of 
the same operators. Recall that McCulloch–Pitts neurons 
are capable of representing 14 of the 16 possible Boolean 
operators. Modern perceptrons can also learn to generate 
correct responses to the same 14 Boolean operators (Daw-
son, 2005). However, Table 4-2 reveals that perceptrons 
generate correct responses—that is, perceptrons estimate 
probabilities correctly—for only six of the 16 operators 
when they are defined probabilistically. The six operators 
that lead to correct performance are listed on the left side 
of Table 4-2. The remaining 10 operators on the right side 

of Table 4-2 present behavior in which perceptrons fail to 
correctly estimate the probabilities of the training sets. Al-
though the perceptrons do a reasonable job of estimating 
probabilities for these problems—the correlation between 
observed perceptron responses and expected responses is 
0.798—it is not perfect. In contrast, the correlation be-
tween perceptron responses and the expected probabilities 
for the six problems on the left of Table 4-2 is perfect.

Table 4-2 indicates that a factor different from 
linear separability is at play when perceptrons attempt 
to estimate the probabilities of contingent versions of 
the Boolean operators. This is because eight of the prob-
lematic operators on the left of Table 4-2 are, logically 
speaking, linearly separable. This is not to say that linear 
separability is not relevant. For instance, an examination 
of the right side of Table 2 indicates that the probability 
estimation performance of perceptrons for the two linearly 
nonseparable problems (XOR, ~XOR) is poorer than the 
performance for the remaining problems on that side of 
the table. Nevertheless, it is obvious that some factor other 
than linear separability is playing an important role.

What might this factor be? Consistent with the 
discussion from Section 4.1, all of the problems on the 
right side of Table 4-2 involve some sort of interaction 
between the two input signals. That is, correct probability 
estimation behavior requires that a perceptron be sensitive 
to an interaction between the X and Y signals. Remem-
ber that such an interaction can be present for a linearly 
separable problem like AND(X, Y), as we saw earlier 
in the discussion of Figure 4-4. In the next section, we 
conduct a formal analysis of modern perceptrons that are 
faced with evaluating hypotheses based on two sources 
of evidence. This analysis provides a precise explanation 
for why perceptrons fail to estimate probabilities for some 
probabilistic logical problems, even when logical versions 
of these problems are linearly separable.

4.3 Conditional Independence,  
Naïve Bayes, and Perceptrons

4.3.1 Measuring Conditional Dependence
To this point in this chapter, we have simply been 

noting that perceptrons are limited in the sense that they 
do not detect interactions between cues. Let us now be a 
bit more precise by defining the notion of the interaction 
between cues in the context of probability theory.

In probability theory, two events are said to be in-
dependent if the probability that one occurs is completely 
unaffected by the occurrence of the other. For instance, the 
successive tosses of a coin are independent because the 



73

Volume 15, 2022

PROBABILITY LEARNING  BY PERCEPTRONS AND PEOPLE

result of one toss has no effect whatsoever on the result 
of the next toss. Mathematically this can be expressed 
by the relation provided in Equation 4-1. This equation 
states that the probability of event X occurring given that 
event Y—that is, P(X|Y)—has occurred is simply equal to 
the probability of event X occurring. This is only true if the 
two events are independent—if Y has no effect on X.

(4-1)

Another consequence of the independence of the two 
events X and Y concerns determining the probability that 
both events occur together—that is, P(X ∩ Y). With two 
independent events, the probability of their co-occurrence 
is simply the probability of one event multiplied by the 
probability of the other as is defined in Equation 4-2:

(4-2)

Similar relations can be defined for conditional 
probabilities. For instance, consider two conditional prob-
abilities: one the probability that X occurs given that H has 
occurred (P(X|H) and the other the probability that Y occurs 
given that H has occurred (P(Y|H). What is the probability 
that both X and Y occur given that H has occurred (P(X ∩ 
Y|H))? If X|H and Y|H are conditionally independent of 
one another, then this probability is defined by a variation 
of Equation 4-2 that is provided as Equation 4-3:

(4-3)

To say that two events are independent—that they do 
not interact—is to assert that equations like the three just 
provided are true. If these equations are not true, then the 
two events are not independent. However, it is important 
to realize that when the two events are not independent, 
there are varying degrees of dependence that are possible. 
For instance, consider Equation 4-1. If this equation is 
not true, then X and Y are dependent, because P(X|Y) and 
P(X) have different values. However, the degree of this 
dependence will be reflected in the size of the difference. 
For instance, if the difference between P(X|Y) and P(X) is 
small, then we might say that X and Y are slightly depen-
dent. However, if as the difference between P(X|Y) and 
P(X) becomes larger and larger, then we recognize that 
the dependence between X and Y is larger and larger. It 
will be convenient to quantify this notion of “degree of 
dependence,” particularly because we see that as an in-
crease in this quantity decreases the ability of perceptrons 
to estimate probabilities decreases.

Let us introduce a measure of conditional indepen-
dence that can be applied to the probabilistic Boolean 
operators that were introduced in Section 4.2.2. Each of 
these operators involves two signals (X and Y) that can 
either be present or absent. Each combination of these 
signals is presented several times. For instance, in Sec-
tion 4.2.2 each combination of signals was duplicated 10 
times. For some of these presentations, the combination 
was rewarded, but for the others it was not. The structure 
of this task can be represented by a 2×2×2 contingency 
table like the one presented in Table 4-3. This table 
represents the number of times that each combination 
of signals was rewarded, as well as the number of times 
that each combination was not rewarded.

Table 4-3. General form of a 2×2×2 contingency table for two signals (X, 
Y) that can lead to a reward (R). 

R ~R
Y ~Y Sum Y ~Y Sum

X a b a+b X e f e+f
~X c d c+d ~X g h g+h

Sum a+c b+d a+b+c+d Sum e+g f+h e+f+g+h

Note. Each lowercase letter in a cell stands for a frequency. For 
instance, a is the number of times that there is a reward when X 
and Y are both true, whereas e is the number of times that there 
is no reward when X and Y are both true.

The information that is provided in a contingency 
table such as Table 4-3 can be used to measure the degree 
of dependence between the signals X and Y by computing 
log likelihood ratios (Woolf, 1957). Let O be the observed 
frequency of a result (i.e., one of the frequency values in 
Table 4-3), and let E be the expected frequency of this 
result under the assumption that signals are independent. 
For example, in Table 4-3, a is the observed number 
of times that there is a reward when X and Y are both 
present. The expected value for this cell is the sum of its 
row in the table (a+b) times the sum of its column of the 
table (a+c) divided by the total number of frequencies 
in the table (a+b+c+d). That is, for this cell E = (a+b)
(a+c)/(a+b+c+d). For the situation in which there is 
no reward when X and Y are both present, a different 
cell in the contingency table is considered. In this case, 
O = e and E = (e+f)(e+g)/(e+f+g+h).

The log-likelihood ratio is for a particular cell is E • 
(ln(O) – ln(E)). Eight likelihood ratios can be calculated 
for Table 4-3. If these eight values are summed together, 
and this sum is multiplied by 2, the result is the called 
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the criterion G (Woolf, 1957). That is, G = 2•ΣO(ln(O) – 
ln(E)). When X and Y are completely independent, G will 
have a value of zero. As X and Y become more and more 
dependent, the value of G increases.

To show this, let us demonstrate how to calculate G 
for three of the different probabilistic Boolean operators 
from Section 4.2.2. To begin, Table 4-4 provides the 
contingency table for probabilistic operator X. In Table 
4-2, it was shown that a perceptron could learn to estimate 
perfectly the probabilities of reward for this problem 
because X and Y are independent in this problem. When 
G is calculated from Table 4-4, its value is 0, confirming 
the independence of the two signals.

Table 4-4. The contingency table for the probabilistic Boolean operator 
X.

R ~R
Y ~Y Sum Y ~Y Sum

X 7 7 14 X 3 3 6
~X 3 3 6 ~X 7 7 14

Sum 10 10 20 Sum 10 10 20

Next, Table 4-5 provides the contingency table for 
probabilistic operator AND(X,Y). In Table 4-2, it was 
shown that a perceptron could not learn to estimate per-
fectly the probabilities of reward for this problem. This 
is because X and Y are not independent in this problem. 
When G is calculated from Table 4-5, its value is 1.61. The 
fact that this value is greater than 0 indicates that there is 
dependence between the two signals.

Table 4-5. The contingency table for the probabilistic Boolean operator 
AND(X,Y).

R ~R
Y ~Y Sum Y ~Y Sum

X 3 3 14 X 7 7 14
~X 3 7 6 ~X 7 3 20

Sum 6 10 20 Sum 14 10 24

Finally, Table 4-6 provides the contingency table 
for probabilistic operator XOR(X,Y). In Table 4-2, it was 
shown that a perceptron could not learn to estimate the 
probabilities of reward for this problem because X and Y 
are not independent in this problem. When G is calculated 
from Table 4-6, its value is 6.58. This value is greater than 
0, which indicates that there is dependence between the 

two signals. In addition, G is larger for Table 4-6 than it 
is for Table 4-5, which indicates that there is more depen-
dence between X and Y for XOR than is the case for AND. 
This in turn explains why perceptron probability estimates 
are more accurate for AND than for XOR in Table 4-2.

Table 4-6. The contingency table for the probabilistic Boolean operator 
XOR(X,Y).

R ~R
Y ~Y Sum Y ~Y Sum

X 3 3 14 X 7 7 14
~X 3 7 6 ~X 7 3 20

Sum 6 10 20 Sum 14 10 24

4.3.2 Naïve Bayes
The previous section defined the notion of the in-

dependence between two variables from the perspective 
of probability theory (e.g., Equation 4-3). Let us now 
consider a version of Bayes’s theorem that assumes that 
two variables are independent in this sense.

Bayes’s theorem can be extended to deal with prob-
lems that cannot be represented in a 2×2 contingency table. 
That is, Bayes’s rule can assess posterior probability in the 
context of more than one source of evidence. For example, 
consider the situation in which two sources of evidence 
(X and Y) can both be either true or false. Bayes’s rule 
for computing the posterior probability of a hypothetical 
cause H when both X and Y are true is given as Equation 
4-4, which is an extension of Equation 3-2 because it em-
ploys two sources of evidence instead of just one.

(4-4)

Because Equation 4-4 is concerned with two sources 
of evidence, it is not applied to a situation that is simple 
enough to be represented with a 2×2 contingency table 
of the sort that was investigated in Chapter 2. Instead, 
Equation 4-4 applies to data that can be represented using 
a 2×2×2 contingency table. The general form of this type 
of contingency table is illustrated in Table 4-7. In essence, 
Table 4-7 is a nested set of two 2×2 contingency tables. 
The first provides the frequencies of co-occurrences of the 
states of X and Y that map onto H; the second provides 
the frequencies of co-occurrences of the states of X and 
Y that map onto ~H. One can derive all of the probabil-
ities required for Equation 4-1 from the frequencies in 
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this table. For instance, P(X∩Y|H) equals a/(a+b+c+d), 
whereas P(X∩Y|~H) equals e/(e+f+g+h). Similarly, 
P(H) = (a+b+c+d) /(a+b+c+d+ e+f+g+h), while 
P(~H) = (e+f+g+h) /(a+b+c+d+ e+f+g+h).

Table 4-7. General form of a 2×2×2 contingency table for two sources of 
evidence (X, Y) and one hypothetical cause (H).  

H ~H
Y ~Y Y ~Y

X a b X e f
~X c d ~X g h

Note. Each lowercase letter in a cell stands for a fre-
quency. For instance, a is the number of times that H 
is true when X and Y are both true.

Important to note, more than one version of Bayes’s 
rule is available for situations in which multiple sources 
of evidence are considered. In the pattern recognition 
literature, extensions of Equation 4-4 become too compu-
tationally expensive as the number of features to consider 
climbs. As a result, Bayesian pattern recognition systems 
often use an equation called naïve Bayes (Duda & Hart, 
1973; Friedman, Geiger, & Goldszmidt, 1997). Naïve 
Bayes makes the overly strong assumption that different 
types of available evidence are conditionally independent. 
Informally, this is the assumption that there are no statis-
tical interactions between different sources of evidence. 
This assumption simplifies computing posterior prob-
abilities. In addition, when violations of the conditional 
independence assumption occur, the resulting (incorrect) 
probabilities still permit satisfactory pattern classification. 
Equation 4-5 provides the naïve Bayes equation for the 
case in which only two sources of evidence are considered.

(4-5)

Note that a comparison between Equation 4-5 and 
Equation 4-4 indicates how Bayes’s theorem changes 
when conditional independence is assumed. In particular, 
Equation 4-5 simplifies Equation 4-4 by using assumed 
independence—to be precise, Equation 4-3—to rewrite a 
conditional probability that ANDs two variables (e.g., P(X-
∩Y|H) into the produce of two simpler conditional proba-
bilities (P(X|H)•P(Y|H)). This translation of terms will be 
true only if X and Y are truly independent of each other.

4.3.3 Perceptrons and Naïve Bayes
Let us now show the formal equivalence between 

the structure of a perceptron and the naïve Bayes’s rule 
(Equation 4-5) for any of the Table 4-2 problems. In 
general, our proofs follow the same logic as the proof de-
veloped for the single variable problem earlier in Chapter 
3. However, because the Table 4-2 problems involve two 
binary inputs, the proofs are slightly more involved, for 
we must consider four input situations.

To begin, let us consider the general properties 
of a modern perceptron trained on any of the Table 4-2 
operators. This perceptron has two inputs that send signals 
to a single output unit. Let the weight of the connection 
between the input unit for X and the output unit be 
represented as wx, and let the weight of the connection 
between the input unit for Y and the output unit be wy. 
When an input variable is true, the input representing that 
variable sends a signal of 1; if the input variable is false, 
then its input sends a signal of 0. Thus, when provided 
an input pattern that indicates that both X and Y are true, 
the net input for the output unit is wx + wy. This net input 
is combined with the output unit’s bias θ and passed into 
the logistic function given in Equation 4-6 to generate 
the perceptron’s estimate of P(H|X∩Y).

(4-6)

We can now take a different equation for P(H|X∩Y), 
the naïve Bayes’s rule given before as Equation 4-2. 
By dividing both the numerator and the denominator 
of this equation by the numerator of Equation 4-5, we 
convert the naïve Bayes’s rule into a format that is 
structurally similar to the logistic function. Equation 4-7 
provides this version of the naïve Bayes’s equation, and 
replaces its probabilities with the appropriate ratios of 
cell frequencies taken from Table 4-7.

(4-7)
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Because we know that perceptrons generate 
conditional probabilities—consider the results on the 
right hand side of Table 4-2—we now equate Equations 
4-6 and 4-7, as shown in Equation 4-8:

(4-8)

From the structural similarities between the two expres-
sions, an obvious equality exists as shown in Equation 4-9:

(4-9)

By taking the natural logarithm of both sides of 
Equation 4-9 and then multiplying both sides by −1, we 
finally express the sum of three network structures (the 
two weights and the bias) in terms of contingency table 
frequencies that were derived from the naïve Bayes’s rule. 
This is presented as Equation 4-10:

(4-10)

We now repeat the procedure just detailed for 
the remaining three combinations of input variables. 
Equation 4-11 provides the relation between the logistic 
and the naïve Bayes versions of P(H|X∩~Y). Equation 
4-12 provides the expression of network structures in 
terms of contingency table frequencies after identifying 
the equivalence between the logistic and probabilistic 
versions of Equation 4-11, taking the natural loga-
rithms, and multiplying through by −1.

(4-11)

(4-12)

Similarly, Equation 4-13 provides the relation be-
tween the logistic and the naïve Bayes versions of P(H|~X-
∩Y), and Equation 4-14 expresses network structures in 
terms of contingency table frequencies after carrying out 
the sequence of steps just described.

(4-13)

(4-14)

Finally, Equation 4-15 provides the relation between 
the logistic and the naïve Bayes versions of P(H|~X∩~Y), 
and Equation 4-16 expresses the bias of the output unit in 
terms of contingency table frequencies after carrying out 
the sequence of steps just described.

(4-15)

(4-16) 
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Equation 4-16 provides an expression for θ alone. By 
subtracting it from Equation 4-12, we can now express wx 
on its own in terms of contingency table frequencies, as 
given in Equation 4-17. Equation 4-17 also simplifies this 
expression into a single natural logarithm:

(4-17)

We can also subtract the expression for θ (Equation 
4-16) from Equation 4-14 to express wy on its own in 
terms of contingency table frequencies. This is done 
in Equation 4-18, which also simplifies this expres-
sion into a single natural logarithm:

(4-18)

In our earlier analysis of the single input perceptron 
in Chapter 3, we discovered that its connection weights 
were a function of the odds ratio for a 2×2 contingency 
table (i.e., the ratio of the products of the two diagonals; 
Rudas, 1998). The final expressions in Equations 4-14 and 
4-15 also have the appearance of being odds ratios, for they 
are natural logarithms of the ratios of products. Further 
analysis indicates that each weight represents the associa-
tion between an input unit and the output unit in terms of 
an odds ratio. However, in this case, it is an odds ratio that 
ignores the potential effects of any other input variables.

Consider alternative presentations of Table 4-7, the 
generic 2×2×2 contingency table. One could create a 2×2 
table that related X to H by collapsing (i.e., summing) 
Table 4-7 over Y. We present the result as Table 4-8A. The 
odds ratio for Table 4-8A is the ratio of the products of its 
diagonals, ((a+b)∙(g+h))/((c+d)∙(e+f)). Note that the final 
expression of Equation 4-17 is the natural logarithm of 
this odds ratio. Similarly, one could create a 2×2 table that 
related Y to H by collapsing (i.e., summing) Table 4-7 over 
X. We present the result as Table 4-8B. The odds ratio for 
Table 4-8B is ((a+c)∙(f+h))/((b+d)∙(e+g)). Note that the 
final expression of Equation 4-18 is the natural logarithm 
of this odds ratio. In short, each connection weight is a 
function of the odds ratio that expresses the association 
between a single source of evidence and the output, col-
lapsing over the contribution of other available evidence.

Table 4-8. General form of collapsing 2×2×2 contingency table (Table 
2) across input variables. (A) The 2×2 contingency table relating X to 
H, collapsing over y. (B) The 2×2 contingency table relating Y to H, 
collapsing over X.

H ~H H ~H
X a+b e+f X a+c e+g

~X c+d g+h ~X b+d f+h

This analysis provides the formal definition of a 
Bayesian perceptron’s connection weights for problems 
involving more than two sources of evidence (i.e., 
involving more than two input units). Each connection 
weight is the natural logarithm of the odds ratio of the 2×2 
contingency table that relates one source of evidence to 
the output, collapsing over all other possible sources of 
evidence. Each of these effects can be described mathe-
matically as the natural logarithm of a particular odds 
ratio. This finding is important, because odds ratios also 
define the coefficients obtained when one uses logistic 
regression to predict the state of a hypothesis using multi-
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Table 4-10. The responses of 16 perceptrons trained on probabilistic versions of the logical operations of modern Boolean algebra. 

Predicate X Y Naïve Bayes Perceptron Predicate X Y Naïve Bayes Perceptron

Contradiction

0 0 0.30 0.30

AND(~X, ~Y)

0 0 0.60 0.62
0 1 0.30 0.30 0 1 0.39 0.38
1 0 0.30 0.30 1 0 0.39 0.38
1 1 0.30 0.30 1 1 0.22 0.18

~X

0 0 0.70 0.70

AND(~X, Y)

0 0 0.39 0.38
0 1 0.70 0.70 0 1 0.60 0.63
1 0 0.30 0.30 1 0 0.22 0.18
1 1 0.30 0.30 1 1 0.39 0.38

~Y

0 0 0.70 0.70

AND(X, ~Y)

0 0 0.39 0.38
0 1 0.30 0.30 0 1 0.22 0.18
1 0 0.70 0.70 1 0 0.60 0.62
1 1 0.30 0.30 1 1 0.39 0.38

Y

0 0 0.30 0.30

XOR(X, Y)

0 0 0.50 0.50
0 1 0.70 0.70 0 1 0.50 0.50
1 0 0.30 0.30 1 0 0.50 0.50
1 1 0.70 0.70 1 1 0.50 0.50

X

0 0 0.30 0.30

~AND(X, Y)

0 0 0.78 0.82
0 1 0.30 0.30 0 1 0.61 0.63
1 0 0.70 0.70 1 0 0.61 0.62
1 1 0.70 0.70 1 1 0.40 0.38

Tautology

0 0 0.70 0.70

AND(X, Y)

0 0 0.22 0.18
0 1 0.70 0.70 0 1 0.39 0.38
1 0 0.70 0.70 1 0 0.39 0.38
1 1 0.70 0.70 1 1 0.60 0.63

~XOR(X, Y)

0 0 0.50 0.50
0 1 0.50 0.50
1 0 0.50 0.50
1 1 0.50 0.50

X כ Y

0 0 0.61 0.62
0 1 0.78 0.82
1 0 0.40 0.38
1 1 0.61 0.63

Y כ X

0 0 0.61 0.62
0 1 0.40 0.38
1 0 0.78 0.82
1 1 0.61 0.63

OR(X, Y)

0 0 0.40 0.38
0 1 0.61 0.63
1 0 0.61 0.62
1 1 0.78 0.82

Note. For each stimulus, the probability of reward computed using the naïve Bayes equation is provided alongside the response of 
the perceptron after 1,000 epochs of training on the problem.
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ple sources of information. Previous work has shown that 
there exists formal equivalence between a perceptron that 
uses the logistic activation function and logistic regression 
(Schumacher et al., 1996). We see next that one can relate 
the structure (weights and bias) of a perceptron trained on 
an uncertain training set to the coefficients of a logistic 
regression performed on the same training set.

When we analyzed the structure of the one input 
unit perceptron in Chapter 3, we also found that its bias 
value θ was a function of the odds relating H to ~H, but 
only in cases for which there was no evidence (i.e., for 
~X). An analogous situation holds for the more complex 
perceptron. Table 4-9A presents the 1×2 contingency 
table that relates ~X to H, collapsing over y. It is simply 
the bottom row of Table 4-8A. For this table, the odds 
of H relative to ~H is the ratio of the two cells, (c+d)/
(g+h). Similarly, Table 4-9B presents the 1×2 contingency 
table that relates ~Y to H, collapsing over X. It is simply 
the bottom row of Table 4-8B. For this table, the odds 
of H relative to ~H is (b+d)/(f+h).

Table 4-9. (A) The 1×2 contingency table relating ~X to H, collapsing 
over y. (B) The 1×2 contingency table relating ~Y to H, collapsing over X.

H ~H H ~H
~X c+d g+h ~X b+d f+h

(A) (A)

A simple reworking of Equation 4-16 relates com-
ponents of the expression for θ to these two sets of odds. 
Equation 4-19 takes Equation 4-16 and reexpresses it after 
making its first two components positive instead of nega-
tive. The first component of Equation 4-19 is the natural 
logarithm of the odds computed from Table 4-9A. The 
second component of Equation 4-19 is the natural loga-
rithm of the odds computed from Table 4-9B. The final 
component of Equation 4-19 is also a natural logarithm of 
odds—in this case, the odds of H relative to ~H collapsing 
over all different states of evidence! Again, this definition 
of θ could be extended for perceptrons that generate prob-
abilities using more than two sources of evidence.

(4-19) 
 

4.3.4 Perceptron Responses and Naïve Bayes
The equations just presented have developed the rela-

tionship between the structure of perceptrons and the naïve 
Bayes equation (Equation 4-5). This development has been 
based on the assumption that perceptrons implement this 
form of Bayes’s theorem, as is made explicit in Equation 
4-5. Do we have evidence for making this assumption?

Such evidence is available to us by considering 
again the performance of the perceptrons trained on the 
contingent versions of the Boolean operators. Table 4-10 
provides this same performance but compares it to a 
different set of predictions. Although Table 4-2 compared 
perceptron performance to probabilities predicted from 
the full version of Bayes’s theorem (Equation 4-4), Table 
4-10 instead compares perceptron performance to the 
probabilities predicted from the naïve Bayes equation 
(Equation 4-5). An examination of Table 4-10 reveals that 
in each case, perceptron responses match the probability 
predicted by naïve Bayes. The correlation between the 
naïve Bayesian column and the perceptron column of 
Table 4-10 is 0.9975. This provides clear evidence that 
perceptrons are naïve Bayesian mechanisms. That is, they 
can predict probability of reward from multiple cues but 
do so assuming that there are no interactions between cues. 
This issue is discussed in more detail in the next section.

We can use Equation 4-3 to provide additional in-
sight into the behavior of the perceptrons that were trained 
on the probabilistic versions of the Boolean operators. 
We can determine the values of P(X|H), P(Y|H), and P(X-
∩Y|H) for each of these training sets. For instance, P(X|H) 
is equal to the number of times that X is presented and 
rewarded divided by the total number of times that any 
pattern in the training set is rewarded. Table 4-11 presents 
the values of these three probabilities for each of the 16 
training sets. Its fourth column also provides the value of 
the product of the second and third columns (i.e., P(X|H)• 
P(Y|H)). The penultimate column in Table 4-11 indicates 
whether Equation 4-3 is true for each training set. That 
is, if P(X|H) • P(Y|H) is equal to the value P(X∩Y|H) that 
was computed for the training set, then the value in this 
column is 1, and it indicates that X and Y are conditionally 
independent signals. If P(X|H) • P(Y|H) is not equal to 
the value P(X∩Y|H) that was computed for the training 
set, then the value in this column is 0, and it indicates 
that X and Y are not conditionally independent signals. 
The final column in Table 4-11 provides the value of G 
(Section 4.3.1) calculated for each probabilistic operator. 
Note that G is only equal to 0 for operators in which X 
and Y are conditionally independent.
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Table 4-11 reveals that the degree of conditional 
dependence (measured by G) predicts the degree of incor-
rectness in perceptron performance. For instance, consider 
the AND operator with G = 1.61. The sum of squared 
differences between the four desired responses and the 
four actual perceptron responses for this operator in Ta-
ble 4-2 was about 0.03, indicating that the perceptron’s 
performance, though not perfect, was still quite good. 
The smaller value for G for this operator, as well as the 
small squared difference between the values of P(X|H) • 
P(Y|H) and P(X∩Y|H) for this operator (0.002), indicates 
that although it is not conditionally independent the vi-
olation of this assumption is small. This means that the 
perceptron’s performance is reasonable. 

Table 4-11. The analysis of the conditional independence between X and 
Y for each of the probabilistic versions of training sets used to teach 
perceptrons about Boolean algebras

Predicate P(X|H) P(Y|H) P(X|H) P(X Independent G
Contradiction 0.500 0.500 0.250 0.250 1 0.00
AND(~X, ~Y) 0.375 0.375 0.141 0.188 0 1.61
AND(~X, Y) 0.625 0.375 0.234 0.188 0 1.61

~X 0.500 0.300 0.150 0.150 1 0.00
AND(X, ~Y) 0.375 0.625 0.234 0.188 0 1.61

~Y 0.300 0.500 0.150 0.150 1 0.00
XOR(X, Y) 0.500 0.500 0.250 0.150 0 6.58
~AND(X, Y) 0.417 0.417 0.174 0.125 0 1.61
AND(X, Y) 0.625 0.625 0.391 0.438 0 1.61

~XOR(X, Y) 0.583 0.417 0.243 0.292 0 6.58
Y 0.700 0.500 0.350 0.350 1 0.00
X 0.583 0.417 0.243 0.292 0 1.61
X 0.500 0.700 0.350 0.350 1 0.00
Y 0.417 0.583 0.243 0.292 0 1.61

OR(X, Y) 0.583 0.583 0.340 0.292 0 1.61
Tautology 0.500 0.500 0.250 0.250 1 0.00

In contrast, now consider the XOR operator. The sum 
of squared differences between the four desired responses 
and the four actual perceptron responses for this operator 
in Table 4-2 was 0.16. This is an order of magnitude larger 
than the perceptron’s error for AND, showing that the 
perceptron’s performance for XOR is much poorer. The 
squared difference between the values of P(X|H) • P(Y|H) 
and P(X∩Y|H) for this operator in Table 4-11 is 0.01, 
which is also an order of magnitude larger than was the 
case for AND. The value of G for this operator (6.58) is 
about 4 times larger than the value of G for AND. This 
indicates XOR involves a larger violation of the condi-
tional independence assumption—that there is a stronger 

interaction between X and Y for XOR—and this in turn 
produces poorer probability matching in the perceptron.

Indeed the amount of conditional dependence be-
tween X and Y in a probabilistic Boolean training set almost 
perfectly predicts the perceptron performance that was 
provided earlier in Table 4-2. For each of the 16 operators 
the sum of squared differences between the probability of 
reward and the perceptron response for each set of cues 
was calculated as a measure of perceptron accuracy. This 
measure was then correlated with the correlated with the 
G values provided in Table 4-11. This correlation equals 
0.998, indicating that G is almost a perfect predictor of 
perceptron accuracy. As G increases, the accuracy of per-
ceptron estimates of probability decreases.

One minor issue remains. The proofs in Chapter 3 
demonstrated that perceptrons instantiated Bayes’s the-
orem, whereas the proofs in the current chapter indicate 
that perceptrons implement the naïve Bayes rule. Are 
these two findings consistent? The answer to this question 
is straightforward: When only one source of evidence is 
available, standard Bayes and naïve Bayes are identical, 
because a single source of evidence cannot interact with 
itself. We therefore can arrive at the general conclusion 
that modern perceptrons are naïve Bayesians.

In the next chapter, we pursue the implications of this 
general conclusion in a series of computer simulations. It 
begins by briefly considering the notion of interaction in 
the context of conditional dependence. Chapter 5 then 
proceeds to report the results of a number of computer 
simulations that are motivated by the formal results 
that we have developed in Chapter 4.

4.4 Signals From Three or More Cues
The formal analysis developed in Section 4.3 assumes 

that the probability of reward is signaled by two cues. Im-
portant to note, essentially the same analysis could be de-
veloped for situations involving three or more cues. These 
extended proofs would begin by characterizing the reward 
contingencies with more complex contingency tables. For 
instance, if reward is being signaled by three cues, then 
the 2×2×2 contingency table provided as Table 4-7 would 
be replaced with a 2×2×2×2 contingency table that would 
take into account a third cue that could be present or not. 
Similarly, a proof concerning a four-cue environment 
would begin with a 2×2×2×2×2 contingency table. Once a 
more complex contingency table is defined, then the vari-
ables in its cells can be used to define the probabilities for 
a naïve Bayesian equation that uses more than two sources 
of evidence. With these probabilities in hand, they can be 
translated into the form of the logistic equation using a 
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procedure similar to that used in Section 4.3 or earlier in 
Section 3.4. The only difference is that more equations 
have to be developed to consider the predictions based on 
additional signals. The nature of the equations would be 
analogous to those described earlier in this chapter. That 
is, each connection weight would be defined by the natural 
logarithm of the odds ratio associated with a particular cue.

As this monograph proceeds, we are not concerned 
with providing equations that provide the odds ratios 
when more than three cues are involved. Given the for-
mal analyses provided in Section 4.3, these additional 
equations are not required, because they will not provide 
any new information beyond that which has already been 
demonstrated in the current chapter.

However, when later chapters explore the behavior 
of perceptrons that learn from more than two cues, we use 
a simple procedure to confirm that perceptron structure 
(weights and bias) conform to odds ratios as Section 4.3 
indicates. We take advantage of the fact that when logistic 
regression uses multiple cues to predict an outcome, the 
coefficients in the regression equation are equal to the 
natural logarithm of the odds ratio associated with each 
predictor (Christensen, 1997; Cramer, 2003; Hosmer & 
Lemeshow, 2000). This means that we can use logistic 
regression to predict the outcome (reward) using the same 
training sets used to train perceptrons. If the perceptron 
structure takes the expected form, then its weights and bias 
should be identical to the corresponding coefficients in a 
logistic regression equation (Dawson & Gupta, 2017). To 
preview a main result of Chapter 5, this relation between 
logistic regression coefficients and perceptron structure is 
shown to be true for five different simulations in which 
reward is signaled by three different cues.

4.5 Summary and Implications
4.5.1 Summary

Chapter 3 provided empirical evidence and formal 
proofs that when perceptrons learn the probability of reward 
signaled by a single cue, the probability that is generated is 
that defined by Bayes’s theorem. Chapter 4 has extended 
the Chapter 3 material to consider situations in which the 
probability of reward is signaled by two or more cues. The 
main result of Chapter 4 is that a perceptron that learns 
probabilities signaled by multiple cues is still a Bayesian 
mechanism, but one of a particular type that has specific 
limitations. In multiple cue situations, perceptrons compute 
the probability of reward in accordance with the naïve Bayes 
rule, which means that these probabilities are founded on 
the assumption that the different signals do not interact with 

one another. That is, these perceptrons assume that the pre-
dictions supplied by the various cues are independent of one 
another and are therefore blind to interactions between cues.

4.5.2 Implications
The formal analyses provided in Section 4.3 provide 

an important extension to those that were presented in 
Chapter 3. They confirm the general notion that perceptrons 
are Bayesian mechanisms. However, they also highlight 
important limitations of the ability of perceptrons to es-
timate probabilities because of their simple structure. In 
particular, if the probability of reward is signaled by the 
interaction between two or more cues, then a perceptron 
will be blind to this signal. Its probability estimates are 
limited, by the perceptron’s simple structure, to the naïve 
Bayesian assumption that the signals of reward from dif-
ferent cues are mutually independent.

If we are to consider perceptrons as potential mod-
els of human or animal probability matching, then the 
limitation revealed in the current chapter is crucial. This 
is because if perceptrons can model this behavior, then it 
must be the case that human or animal probability match-
ing is also impeded when signals from different predic-
tive cues interact with one another.

Chapter 5 returns to the algorithmic level to set the 
stage for exploring the relationship between perceptron 
probability estimation and corresponding behavior in other 
agents. It presents a series of simulations in which three 
different cues are used to signal the probability of reward. 
One reason for these simulations is that they are closely 
related to the structure of the card-choice task that was in-
troduced in Chapter 1. Thus, the simulations to be presented 
in Chapter 5 will position us to understand possible factors 
that might affect human performance on the card-choice 
task—assuming that perceptrons are relevant models of 
this performance. A second reason for these simulations is 
that they are structured in such a way to explore different 
ways to characterize the limitations that perceptrons face 
when estimating probability. In particular, the simulations 
contrast two notions of these limitations. One is a logical 
limitation (linear nonseparability) that is traditionally used 
to define what tasks can be learned by a perceptron, and 
what tasks cannot (Minsky & Papert, 1969). The other is 
a quantitative limitation (conditional dependence) that 
emerges from probability theory. We see in the next chapter 
that it is this second approach to perceptron limitations that 
is more useful for predicting situations in which perceptrons 
have difficulty estimating probability. Later we consider if 
it is also useful for making similar predictions for human 
performance in a probability discrimination task.
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Chapter 5: Estimating Reward  
Probability From Three Cues 

The purpose of this chapter is to explore empirically 
some formal predictions from Chapter 4. Those formal 
analyses indicated that perceptrons are naïve Bayesian 
mechanisms that are blind to interactions between cues 
that signal rewards. In terms of probability theory, these 
interactions introduce conditional dependence. Chapter 
5 reports the results of five simulation studies in which 
perceptrons are trained about environments that provide 
three different cues, where these cues are uncertain signals 
of reward. The first simulation studies the case in which 
all three cues are conditionally independent. The next 
two simulations introduce conditional dependence by 
using logical relations between two cues to introduce an 
interaction. One uses the linearly separable AND relation 
between the two cues, whereas the other uses the linearly 
nonseparable XOR relation between them. When either 
logical relation is true a high probability of reward is 
signaled, which introduces a higher degree of conditional 
dependence. These two simulations are then repeated 
but with a lower probability of reward signaled by the 
interaction. This reduces the conditional dependence of 
the two cues while maintaining their logical relationship. 
In general, the results of these five simulations confirm 
the formal prediction that perceptrons are naïve Bayesian 
mechanisms when faced with three uncertain cues. Per-
ceptrons are highly accurate probability matchers when 
conditional dependence is low and are less accurate when 
conditional dependence is high. The amount of condition-
al dependence in a training set is a far better predictor of 
perceptron probability estimation than is the logical nature 
of the interaction between cues. This leads to the conclu-
sion that when perceptrons are learning about uncertain 
environments, conditional dependence provides a much 

better account of their limitations than does the more 
traditional notion of linear nonseparability.

5.1 Probability Estimation  
From Three Independent Cues

5.1.1 Rationale for Simulations
The main conclusion drawn from the formal analyses 

provided in Chapter 4 is that perceptrons are blind to inter-
actions between cues. We know that they are blind to these 
interactions, because we have shown that when processing 
multiple signals, their probability estimates are equivalent 
to those generated by the naïve Bayes equation. This 
means that perceptrons compute the probability of reward 
that is signaled by multiple cues under the assumption that 
each cue is conditionally independent of the others.

Simulation studies are consistent with these formal 
analyses. Chapter 4 demonstrated that perceptrons could 
perfectly match probabilities using two sources of evi-
dence. However, this required the two sources of evidence 
to be conditionally independent. If there is conditional 
dependence between the two sources of evidence—if they 
interact—then perceptrons are not able to estimate proba-
bilities perfectly. The degree of error in their probability 
estimates indicates the degree to which the conditional 
independence assumption is violated. The greater the in-
teraction between the two sources of evidence, the poorer 
the perceptron’s probability estimation performance.

With these formal and empirical results in mind, we 
now proceed to a series of simulation studies in which 
perceptrons learn to probability match when three sources 
of evidence are concerned. These simulations provide an 
analog to the card-choice task introduced in Chapter 1, 
because in that task each card was identified by the binary 
states of three cues. In the simulations described in Chapter 
5, a variety of conditions are studied. In particular, we vary 
degrees of conditional dependence as well as the logical 

Table 5-1. The probability of reward for each of the eight possible cue states of a training set in which the effects of three cues are conditionally 
independent. See text for details. 

Input Probability Probability Expected Set 1 Set 2 Set 3 Set 4 Set 5
(0,0,0) P(R|~A~B~C) 0 0.00 0.00 0.00 0.00 0.00 0.00
(0,0,1) P(R|~A~BC) P(R|C) 0.40 0.4 0.35 0.375 0.4 0.45
(0,1,0) P(R|~AB~C) P(R|B) 0.20 0.15 0.175 0.225 0.275 0.15
(0,1,1) P(R|~ABC) P(R|B) + P(R|C) - ( P(R|B) * P(R|C)) 0.52 0.5 0.475 0.55 0.575 0.55
(1,0,0) P(R|A~B~C) P(R|A) 0.14 0.15 0.15 0.1 0.075 0.075
(1,0,1) P(R|A~BC) P(R|A) + P(R|C) - ( P(R|A) * P(R|C)) 0.484 0.475 0.45 0.45 0.55 0.475
(1,1,0) P(R|AB~C) P(R|A) + P(R|C) - ( P(R|A) * P(R|C)) 0.312 0.25 0.35 0.375 0.275 0.225

(1,1,1) P(R|ABC)
P(R|A) + P(R|B) + P(R|C) - ( P(R|A)* 

P(R|B)) - ( P(R|A)* P(R|C)) - ( P(R|B)* 
P(R|C)) + (P(R|A) * P(R|B) + P(R|C))

0.587 0.675 0.475 0.55 0.625 0.575
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structure of the rules used to decide whether the percep-
tron should be rewarded. Our analysis of perceptron per-
formance reveals that it is completely consistent with the 
conclusions that we have drawn from our detailed analysis 
of the two-predictor case. Later we compare these results 
to those of human participants in the card-choice task.

5.1.2 Network Architecture and Training Set
Let us begin by describing the results of training 

perceptrons on a task in which the three cues used to 
signal reward are conditionally independent. The reward 
signaled by the cues in this condition is uncertain in the 
same sense that we have been considering up to this point 
in the monograph: sometimes a signal (a pattern of cues) 
will lead to a reward, and other times the same signal 
will not lead to a reward. During training, a perceptron 
is presented a stimulus (some combination of three cues, 
each of which is either present or not), is rewarded or 
not (is trained to turn on or not), and then updates its 
bias and connection weights. This procedure is then re-
peated for the next stimulus until training is completed. 
With this procedure, one can consider the perceptron 
to be an example of an extremely simple reinforcement 
learning system (Sutton & Barto, 1998).

In this first simulation, each cue signals that there is 
a certain probability of being rewarded. The probability of 
being rewarded that is signaled by one cue is conditionally 
independent of the probability that is signaled by the other 
two cues. There are several purposes for conducting this 
simulation study. First, it provides empirical evidence that 
is consistent with the formal analyses from Chapter 4. 
Second, it replicates the findings of a similar study that 

examined probability estimation in perceptrons presented 
four independent cues (Dawson & Gupta, 2017). Third, 
this first simulation study serves as the control condition 
for several other studies that are reported later in this 
chapter. These studies explore the effect that introducing 
conditional dependence between cues has on probability 
estimation. Our understanding of those effects requires 
us to compare those results with those we are about to 
report. Fourth, the conditions being explored in this first 
simulation—in particular, the values of the probability of 
reward associated with each cue—are compared to those 
used in human experiments that are reported in Chapter 7. 
Thus, these simulations will collect data that permits us to 
compare probability estimation of networks to probability 
matching by humans under analogous conditions.

We trained modern perceptrons comprising a single 
output unit and three input units. The input units repre-
sented the presence or absence of three cues: Cue A, Cue 
B, and Cue C. For example, the input pattern (1, 0, 0) 
indicates the presence of Cue A and the absence of the 
other two cues. We used each of the eight possible cue 
configurations (given this binary coding) in a training set.

Each cue signals a different probability of reward. In 
this simulation, the presence of Cue A indicated a reward 
probability of 0.14, the presence of Cue B indicated a 
reward probability of 0.20, and the presence of Cue C indi-
cated a reward probability of 0.40. These reward probabil-
ities were selected to ensure that the overall likelihood of 
reward—the probability of reward across all of the training 
patterns—was approximately 0.33. This overall likelihood 
of reward was maintained for the other simulations that 

Table 5-2. The probability of reward (P(R)) and the mean responses of perceptrons to stimuli after being trained on the different conditionally indepen-
dent three-cue training sets.

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean P(R) Mean P(R) Mean P(R) Mean 
Response P(R) Mean

0,0,0 0 0 0 0.115 0 0.109 0 0.098 0 0.085

0,0,1 0.4 0.45 0.35 0.314 0.375 0.335 0.4 0.399 0.45 0.419

0,1,0 0.15 0.15 0.175 0.186 0.225 0.225 0.275 0.194 0.15 0.140

0,1,1 0.5 0.55 0.475 0.447 0.55 0.545 0.575 0.596 0.55 0.559

1,0,0 0.15 0.075 0.15 0.168 0.1 0.148 0.075 0.136 0.075 0.102

1,0,1 0.475 0.475 0.45 0.418 0.45 0.418 0.55 0.490 0.475 0.469

1,1,0 0.25 0.225 0.35 0.263 0.375 0.293 0.275 0.259 0.225 0.166

1,1,1 0.675 0.575 0.475 0.558 0.55 0.631 0.625 0.681 0.575 0.607

R2 0.973 R2 0.859 R2 0.900 R2 0.931 R2 0.963

Note. Each mean summarizes the performance of 20 perceptrons. The final row indicates the squared correlation (R2) between the 
eight perceptron responses and the eight probabilities of reward for each of the training sets.
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are reported later as well as for the different conditions in 
the human experiments that are described in Chapter 7. 

Using a methodology that paralleled a previous sim-
ulation study (Dawson & Gupta, 2017), we constructed 
five training sets. Each training set consisted of 320 input 
patterns; we replicated each of the eight possible cue con-
figurations 40 times in a training set. Each input pattern 
was either rewarded (desired output activity = 1) or not 
(desired output activity = 0). We determined the reward 
for each pattern using the following procedure: First, 
each input pattern in the training set signals a particular 
probability, as is shown in the first two columns of Table 
4-8. Under the assumption that each cue is conditionally 
independent of the others, and that there is no reward when 
no cues are present, the three assigned probabilities, that 
is, P(R|A) = 0.14, P(R|B) = 0.20, P(R|C) = 0.40, can be 
used to compute the probability of reward for each input 
pattern. This is done by the additional rules for probabili-
ties, which are applicable when conditional independence 
is true (Rozanov, 1977). The probability equations are pro-
vided in the third column of Table 5-1; the expected value 
for each equation is provided in Table 5-1, Column 4. With 
these expected probabilities in hand, for each training set, 
rewards were determined stochastically. This was done by 
taking an input pattern and computing the expected prob-
ability of reward for that pattern. Then a random number 
was selected. If this number was greater than the expected 
probability, then the pattern was not rewarded. Otherwise, 
it was rewarded. This procedure was repeated for each of 
the 320 patterns in a training set.

The stochastic procedure just described is not 
guaranteed to generate reward probabilities that are 
identical to the expected probabilities determined by the 
Table 5-1 equations. The final five columns in Table 5-1 
provide the actual probability of reward for each of the 
eight possible input patterns. Although these columns are 
not exact matches to the expected column, each is highly 

correlated with it, with each correlation being over 0.98. 
We used chi-square tests to compare the probability of 
reward for each type of pattern in a training set to the 
expected probability generated by the addition rule for 
multiple cues. None of the training sets differed sig-
nificantly from the expected values.

5.1.3 Perceptron Training
Following previous methodology (Dawson & Gupta, 

2017), we trained 20 different perceptrons on each of 
the five training sets using a gradient descent rule with a 
learning rate of 0.05, with connection weights randomly 
set in the range from −0.1 to 0.1 prior to training, and with 
the bias θ of the logistic activation function initialized to 
0. Training was accomplished with the gradient descent 
rule that was introduced in Chapter 1. During one epoch of 
training, we presented a network each of the 320 patterns; 
the learning rule modified connection weights and the 
bias after each pattern presentation. We randomized the 
order of input pattern presentations every epoch. Training 
proceeded for 2,500 epochs; we then recorded network 
responses to each of the eight possible input patterns, as 
well as the structure of the perceptron.

5.1.4 Perceptron Performance
An examination of the 20 perceptrons trained on the 

same training set revealed very high degrees of similarity 
between them, both in terms of their responses to each 
type of stimulus and in terms of their internal structure. 
Because of this similarity, Table 5-2 provides the mean 
response of the 20 perceptrons to each type of stimulus for 
each of the five training sets. Table 5-2 demonstrates that 
perceptron responses provide excellent estimates of the 
probability structure of the training sets. In Table 5-2, the 
actual probability of reward for each stimulus is provided 
for each training set; beside these actual probabilities are 
the average perceptron responses to each stimulus type. 
There is a strong correspondence between actual proba-

Table 5-3. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the five 
conditionally independent three-cue training sets.

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -2.680 -2.488 -2.296 -2.045 -2.381 -2.104 -2.466 -2.221 -2.637 -2.376

w 0.710 0.605 0.569 0.447 0.437 0.357 0.381 0.370 0.295 0.199

w 0.780 0.688 0.701 0.565 1.024 0.867 0.989 0.798 0.730 0.561

w 1.988 1.884 1.397 1.265 1.569 1.417 1.942 1.813 2.177 2.050

R2 1.000 R2 0.999 R2 1.000 R2 0.999 R2 0.998

Note. The final two rows indicate the squared correlation (R2) between perceptron structure and logistic regression coefficients.



85

Volume 15, 2022

PROBABILITY LEARNING  BY PERCEPTRONS AND PEOPLE

bilities and perceptron responses, indicating excellent 
probability estimation has been learned by the networks.

To assess the quality of probability estimation, we 
computed the squared correlation (R2) between the eight 
perceptron responses and the eight actual probabilities of 
reward. This measure is reported for each training set in 
the final row of Table 5-2. It supports the conclusion that 
the perceptrons are excellent probability matchers. The 
worst performance, for Training Set 2, produces an R2 of 
.859, indicating that perceptron responses capture almost 
86% of the variance in the expected probabilities. The best 
performance, for Training Set 1, produces an R2 of .986, 
indicating that perceptron responses capture almost 99% 
of the variance in the expected probabilities.

The perceptron performance provided in Table 5-2 
indicates that poorest probability estimation occurred 
when no cues were present. This overestimation of the 
actual probability, which is determined exclusively by the 
perceptron’s bias, was observed in each of the 100 percep-
trons and replicates previous results when perceptrons are 
trained on four independent cues (Dawson & Gupta, 2017).

5.1.5 Perceptron Structure
Previous work has shown that there exists formal 

equivalence between a perceptron that uses the logistic 
activation function and logistic regression (Schumacher et 
al., 1996). We saw this equivalence in our earlier formal 
analysis of the perceptron when we determined that the 
weights and bias of a multiple cue perceptron were the same 
type of odds ratios as are the coefficients in logistic regres-
sion (Equations 4-14, 4-15, and 4-16). Schumacher et al. 
also proved that, in principle, if we train such a perceptron 
using gradient descent, then its weights should be identi-
cal to the coefficients of a logistic regression of the same 
data. However, they also noted that, in practice, gradient 
descent training may not provide this result, particularly if 
it uses a constant learning rate. Furthermore, Schumacher 
et al.’s proof defined the error gradient over the sum of a 
network’s responses to all of the patterns in the training 
set (so-called batch training). Given that the perceptrons 
described in this chapter use a fixed learning rate and 
that they also learn via stochastic training which updates 
weights after every single pattern presentation, whether 
these perceptrons estimate probabilities by converging on 
the same solution as logistic regression is an open question.

To answer this question, we performed a logistic 
regression for each of the training sets, using the glm func-
tion in R. Each logistic regression fit a model derived from 
the 2×2×2 contingency table for each training set. We then 
used the SSE and R2 to assess the relationship between 

the four coefficients of the logistic regression and the four 
characteristics of network structure (i.e., the bias of the 
output unit and the connection weight associated with each 
cue). The coefficients obtained from logistic regression, 
and the average bias and weights of a perceptron, are pro-
vided in Table 5-3. The bottom row of this table provides 
the quantitative comparison of each pair of columns. An 
examination of Table 5-3 reveals that the structure of each 
perceptron is very similar to the set of coefficients of a 
logistic regression performed on the same data. In short, 
each perceptron matches training set probabilities by 
adopting a structure that implements a logistic regression 
that maps cue signals into expected reward probabilities.

5.1.6 Discussion
In Chapter 4, we conducted a formal analysis of 

perceptrons that learn to assert probabilities using two 
cues. We established that such perceptrons are naïve 
Bayesian mechanisms and that their weights and bias 
reflect the natural logarithm of odds ratios, where each of 
these weights uses this value to represent the effect of a 
cue while the effects of all other cues are held constant. 
We also established that these perceptrons are capable of 
estimating probabilities perfectly when the probabilities 
asserted by cues are conditionally independent but would 
be less accurate in estimating probabilities when condi-
tional independence between cues was not true.

The formal analysis presented in Chapter 4 could 
be extended for any number of cues, leading to identical 
conclusions. Rather than proceed with such proofs, we 
conducted a simulation study in which perceptrons are 
trained on a three-cue task, where each cue signals a 
different probability of reward, and the three cues were 
conditionally independent. The purpose of collecting these 
data is to permit comparisons to different simulations to 
be reported in following sections and comparisons to 
human performance later in this monograph. However, an 
examination of these simulation results should confirm the 
predictions that would be derived had a formal analysis of 
a three-cue perceptron been conducted.

The results of the simulations do indeed support 
these predictions. First, if the three-cue perceptron is a 
naïve Bayesian mechanism, and learns about the proba-
bility of reward signaled by conditionally independent 
cues, then we would expect it to estimate probabilities 
successfully. This is in accordance with our previous 
analysis. Our results support this prediction (Table 5-2). 
After 2,500 epochs of training, each of the 100 percep-
trons that we examined achieved a high degree of accu-
racy for its probability estimations.



86

PROBABILITY LEARNING BY PERCEPTRONS AND PEOPLE

Michael R.W. Dawson

Second, if the three-cue perceptron is a naïve 
Bayesian mechanism, and learns about the probability of 
reward signaled by conditionally independent cues, then 
we would expect that the values of its bias and connection 
weights would equal the natural logarithm of particular 
odds ratios. This prediction was confirmed by comparing 
the weights and biases of trained perceptrons to the co-
efficients of logistic regressions performed on the same 
training sets. As the coefficients of logistic regression are 
the same natural logarithms of odds ratios that are predict-
ed to be found in the network structure, we should find a 
strong relationship between regression coefficients and the 
values of network components. This prediction was also 
confirmed in the simulation study (Table 5-3).

Other conclusions that were established formally 
for two-cue perceptrons should also be true when three 
cues are used to signal reward. In particular, performance 
of these perceptrons should decrease when conditional 
dependence between cues is introduced. The next section 
explores this prediction by examining the performance 
and structure of perceptrons for which the probability 
of reward is signaled (in part) by an interaction between 
cues: the logical AND of cues B and C.

5.2 Probability Estimation  
With Interactions: High-Reward AND
The simulations described in Section 5.1 demonstrat-

ed that perceptrons accurately estimate probabilities when 
the likelihood of reward is signaled by three conditionally 
independent cues. We now begin an exploration of percep-
tron limitations by considering perceptron performance 
when an interaction between cues is present. One aspect of 
the interactions that we study is their logical structure: We 
create an interaction between two cues that is defined by 
a logical operation that is either linearly separable (AND) 
or linearly nonseparable (XOR). A second aspect of these 

interactions is the amount of conditional dependence they 
contribute, which is manipulated by varying the probabil-
ity of reward associated with the interaction.

To begin, let us consider a task in which the proba-
bility of reward is signaled by the presence of Cue A, or 
by the logical AND of Cues B and C. This latter signal 
involves an interaction between Cues B and C. It therefore 
should pose some difficulty for a perceptron that attempts 
to match probabilities using these signals. Furthermore, 
in this first set of simulations the probability of reward 
associated with the AND of Cues B and C is set high, pro-
ducing a higher amount of conditional dependence than 
is present in a later simulation involving this interaction.

5.2.1 Network Architecture and Training Set
The perceptrons described in Section 5.2 have the 

identical structure as those discussed in Section 5.1. The 
coding of stimuli is identical to the coding described earlier 
in Section 5.1.2, because the same set of stimuli is used to 
train the perceptrons. The difference between the current 
perceptrons and those presented earlier is the set of rules 
used to determine probability of reward signaled by the 
cues. That is, although these perceptrons are provided the 
same stimuli as were those described in Section 5.1, these 
stimuli are associated with different probabilities of reward.

In this new set of simulations, the presence of Cue 
A indicated a reward probability of 0.48. In addition, the 
logical AND of Cues B and C signaled a reward proba-
bility of 0.48. These reward probabilities were selected to 
ensure that the overall likelihood of reward—the proba-
bility of reward across all of the training patterns—was 
approximately 0.33. This overall likelihood of reward was 
the same as that for the Section 5.1 simulations. This is 
called the High-Reward AND condition because the re-
ward associated with the AND of the two cues is higher 
than is the case in another condition (Low-Reward AND) 
that is described later in the chapter.

Table 5-4. The probability of reward for each of the eight possible cue states of a training set in which the probability of reward is signaled by the 
presence of Cue A or by the AND of Cues B and C. See text for details.

Input Pattern Probability Expected Set 1 Set 2 Set 3 Set 4 Set 5
(0,0,0) P(R|~A~B~C) 0.00 0.00 0.00 0.00 0.00 0.00

(0,0,1) P(R|~A~BC) 0.00 0.00 0.00 0.00 0.00 0.00

(0,1,0) P(R|~AB~C) 0.00 0.00 0.00 0.00 0.00 0.00

(0,1,1) P(R|~ABC) 0.48 0.475 0.45 0.45 0.425 0.525

(1,0,0) P(R|A~B~C) 0.48 0.5 0.45 0.425 0.425 0.475

(1,0,1) P(R|A~BC) 0.48 0.55 0.4 0.425 0.475 0.50

(1,1,0) P(R|AB~C) 0.48 0.45 0.45 0.45 0.50 0.50

(1,1,1) P(R|ABC) 0.7296 0.725 0.75 0.725 0.75 0.70
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We constructed five training sets. Each training set 
consisted of 320 different input patterns; we replicated 
each of the eight possible cue configurations 40 times 
in a training set. Each input pattern was either rewarded 
(desired output activity = 1) or not (desired output activity 
= 0). The expected probability of reward for each type 
of stimulus is provided in Table 5-4. Note that the final 
expected probability in the table is computed using the 
addition rule (P(R|A) + P(R|B∩C) - P(R|A) • P(R|B∩C)).

For each of the five training sets, we used the Section 
5.1.2 stochastic procedure to determine whether a pattern 
was rewarded, but this time with the new set of expected 
probabilities provided in Table 5-4. The final five columns 
in Table 5-4 provide the actual probability of reward for 
each of the eight possible input patterns in each training 
set. Although these columns are not exact matches to the 
expected column, each is highly correlated with it, with 
each correlation being over 0.98. We used chi-square tests 

to compare the probability of reward for each type of pat-
tern in a training set to the expected probability generated 
by the addition rule for multiple cues. None of the training 
sets differed significantly from the expected values.

5.2.2 Perceptron Training
Once again, we trained 20 different perceptrons 

on each of the five training sets using a gradient de-
scent rule with a learning rate of 0.05, with connection 
weights randomly set in the range from −0.1 to 0.1 prior 
to training, and with the bias θ of the logistic activation 
function initialized to 0. During one epoch of training, we 
presented a network each of the 320 patterns: the learning 
rule modified connection weights and the bias after each 
pattern presentation. We randomized the order of input 
pattern presentations every epoch. Training proceeded 
for 2,500 epochs; we then recorded network responses 

Table 5-5. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the three-cue training sets that include the 
AND relation of Cues B and C. 

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean P(R) Mean P(R) Mean P(R) Mean 
Response P(R) Mean

0,0,0 0.000 0.061 0.000 0.050 0.000 0.049 0.000 0.046 0.000 0.062

0,0,1 0.000 0.157 0.000 0.122 0.000 0.125 0.000 0.117 0.000 0.153

0,1,0 0.000 0.122 0.000 0.138 0.000 0.133 0.000 0.126 0.000 0.152

0,1,1 0.475 0.285 0.450 0.298 0.450 0.298 0.425 0.282 0.525 0.328

1,0,0 0.500 0.338 0.450 0.263 0.425 0.257 0.425 0.288 0.475 0.309

1,0,1 0.550 0.593 0.400 0.485 0.425 0.487 0.475 0.525 0.500 0.548

1,1,0 0.450 0.521 0.450 0.521 0.450 0.506 0.500 0.544 0.500 0.548

1,1,1 0.725 0.757 0.750 0.742 0.725 0.738 0.750 0.766 0.700 0.767

R2 0.815 R2 0.811 R2 0.826 R2 0.873 R2 0.791

Note. Each mean summarizes the performance of 20 perceptrons. The final row indicates the squared correlation (R2) between the 
eight perceptron responses and the eight probabilities of reward for each of the training sets.

Table 5-6. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the five 
three-cue training sets that involve an AND interaction between Cue B and C. 

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -3.318 -2.731 -3.525 -2.950 -3.523 -2.957 -3.630 -3.025 -3.264 -2.714

w 2.484 2.057 2.388 1.918 2.357 1.894 2.585 2.119 2.322 1.909

w 0.942 0.759 1.271 1.118 1.233 1.085 1.261 1.084 1.144 0.998

w 1.242 1.049 1.120 0.973 1.157 1.012 1.183 1.006 1.144 0.999

R2 1.000 R2 0.999 R2 0.999 R2 1.000 R2 1.000

Note. The final row indicates the squared correlation (R2) between perceptron structure and logistic regression coefficients.
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to each of the eight possible input patterns, as well 
as the structure of the perceptron.

5.2.3 Perceptron Performance
An examination of the 20 perceptrons trained on the 

same training set revealed very high degrees of similarity 
between them, in terms of both their responses to each 
type of stimulus and their internal structure. Because 
of this similarity, Table 5-5 provides the mean response 
of the 20 perceptrons to each type of stimulus for each 
of the five training sets. When Table 5-5 is compared to 
Table 5-2 in Section 5.1, it becomes apparent that the 
Table 5-5 perceptrons did not match probabilities as well. 
The bottom row of Table 5-5 reports the same measure 
of goodness of fit (squared correlation) that was also re-
ported in Table 5-2. This measure indicates quite clearly 
that when probability of reward is signaled in part by an 
interaction between cues, performance is poorer. For in-
stance, the squared correlations in Table 5-5 indicate that 
the responses of these perceptrons typically capture only 
about 81% of the variance of the actual probabilities of 
reward. In contrast, most of the perceptrons reported in 
Table 5-2 captured well over 90% of the variance in actual 
probabilities. The worst perceptron reported in Section 
5.2 (trained on Training Set 2) performed better than all 
but one of the perceptrons (the one trained on Training 
Set 4) reported in Table 5-5. A detailed discussion of the 
relative differences in performance between perceptrons is 
presented later in in this chapter.

5.2.4 Perceptron Structure
Table 5-5 demonstrates that the perceptrons faced 

with estimating reward probabilities when the AND of 
Cues B and C signals reward have poorer probability 
estimation performance than when this type of interaction 
is not present (i.e., the simulations reported in Section 
5.1). Important to note, this is not because the structure 

of these perceptrons departs from expectations. To inves-
tigate perceptron structure, we again performed a logistic 
regression for each of the training sets, using the glm 
function in R. Each logistic regression fit a model derived 
from the 2×2×2 contingency table for each training set. 
We then used R2 to assess the relationship between the four 
coefficients of the logistic regression and the four charac-
teristics of network structure (i.e., the bias of the output 
unit and the connection weight associated with each cue). 
The coefficients obtained from logistic regression, and the 
average bias and weights of a perceptron, are provided 
in Table 5-6. The bottom row of this table provides the 
quantitative comparison of each pair of columns. These 
comparisons reveal that the structure of each perceptron 
is very similar to the set of coefficients of a logistic re-
gression performed on the same data.

5.2.5 Discussion
The main results of this second set of simulations are 

again consistent with expectations derived from our formal 
analyses in Chapter 4. First, if the three-cue perceptron 
is a naïve Bayesian mechanism and receives signals from 
conditionally dependent cues, then we expect that it will 
not match probabilities correctly. This is because a naïve 
Bayesian mechanism is blind to interactions between input 
cues. Our results support this prediction (Table 5-5). After 
2,500 epochs of training, each of the 100 perceptrons 
that we examined achieved a reasonably high degree 
of accuracy in its probability estimation performance, 
but this performance was not perfect.

Second, even when some cues are conditionally 
dependent, we expect that the perceptron will still be able 
to produce the best naïve Bayesian fit to the data, even if 
this type of prediction cannot capture all of the variability 
of the training set. This is confirmed by the strong rela-
tionship between network structure (biases and weights) 
and the coefficients of logistic regression. These logistic 

Table 5-7. The probability of reward for each of the eight possible cue states of a training set in which the probability of reward is signaled by the 
presence of Cue A or by the XOR of Cues B and C. See text for details.

Input Pattern Probability Expected Set 1 Set 2 Set 3 Set 4 Set 5
(0,0,0) P(R|~A~B~C) 0.00 0.00 0.00 0.00 0.00 0.00

(0,0,1) P(R|~A~BC) 0.36 0.4 0.35 0.35 0.325 0.325

(0,1,0) P(R|~AB~C) 0.36 0.35 0.35 0.45 0.35 0.375

(0,1,1) P(R|~ABC) 0.00 0.00 0.00 0.00 0.00 0.00

(1,0,0) P(R|A~B~C) 0.37 0.4 0.325 0.425 0.35 0.4

(1,0,1) P(R|A~BC) 0.5968 0.575 0.55 0.65 0.675 0.6

(1,1,0) P(R|AB~C) 0.5968 0.65 0.625 0.625 0.65 0.6

(1,1,1) P(R|ABC) 0.37 0.375 0.325 0.425 0.4 0.45
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regressions provide the best fit that they can to the training 
sets but are also blind to interactions between cues. The 
logistic regressions fit the data to the best of their ability 
by using main effects, the size of which are reflected in 
the natural logarithms of odds ratios. We expect that the 
perceptrons will perform in essentially the same manner 
and that their structure will reflect the same odds ratios. 
The results of Table 5-6 confirm this expectation.

Although it is clear that the perceptrons described 
in this section have problems with the interaction, their 
performance is still satisfactory. It would appear that 
these perceptrons are capable of estimating, to a level just 
above 80%, the actual probabilities of reward reflected in 
the training set. In Section 5.3, we next turn to percep-
trons faced with a different interaction between Cues B 
and C—the linearly nonseparable XOR of these two 
cues. Will these perceptrons have similar performance to 
the ones that we have just discussed?

5.3 Probability Estimation With Interactions: 
High-Reward XOR

5.3.1 Network Architecture and Training Set
This next set of perceptrons has the identical struc-

ture as those discussed in the previous two sections: 
They are modern perceptrons comprising a single output 
unit and three input units. The stimulus encoding is also 
identical to the coding that described earlier because the 
same set of stimuli is used to train these perceptrons. 
The difference between this simulation and the two 
described in Sections 5.1 and 5.2 is with respect to the 

probability of reward associated with each stimulus. 
In these simulations, the presence of Cue A indicated a 
reward probability of 0.36. In addition, the logical XOR 
of Cues B and C signaled a reward probability of 0.37. 
These reward probabilities were selected to ensure that the 
overall likelihood of reward—the probability of reward 
across all of the training patterns—was approximately 
0.33. This overall likelihood of reward was the same as 
that for the previous simulations described in this chapter. 
This is called the High-Reward XOR condition because 
the reward associated with the XOR of the two cues is 
higher than is the case in another condition (Low-Reward 
XOR) that is described later in the chapter.

We constructed five training sets. Each training set 
consisted of 320 input patterns; we replicated each of the 
eight possible cue configurations 40 times in a training 
set. Each input pattern was either rewarded (desired out-
put activity = 1) or not (desired output activity = 0). The 
expected probability of reward for each type of stimulus 
is provided in Table 5-7. Note that when both Cue A is 
present and the XOR of Cues B and C is true the expected 
probability in the table is computed using the addition rule 
(P(R|A) + P(R|XOR(B,C)) – P(R|A) • P(R|XOR(B,C))).

For each of the five training sets that were construct-
ed, we used the same stochastic procedure to determine 
whether a pattern was rewarded that was described in 
Section 5.1.2. However, this time we used a new set of 
expected probabilities provided in Table 5-7. The final 
five columns in Table 5-7 provide the actual probability 
of reward for each of the eight possible input patterns in 
each training set. Although these columns are not exact 

Table 5-8. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the three-cue training sets that include the 
XOR relation of Cues B and C. 

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean P(R) Mean P(R) Mean P(R) Mean 
Response P(R) Mean

0,0,0 0.000 0.189 0.000 0.172 0.000 0.199 0.000 0.159 0.000 0.166

0,0,1 0.400 0.171 0.350 0.151 0.350 0.188 0.325 0.171 0.325 0.167

0,1,0 0.350 0.197 0.350 0.193 0.450 0.210 0.350 0.165 0.375 0.182

0,1,1 0.000 0.179 0.000 0.170 0.000 0.198 0.000 0.178 0.000 0.184

1,0,0 0.400 0.505 0.325 0.452 0.425 0.530 0.350 0.504 0.400 0.498

1,0,1 0.575 0.475 0.550 0.414 0.650 0.512 0.675 0.526 0.600 0.501

1,1,0 0.650 0.518 0.625 0.488 0.625 0.546 0.650 0.515 0.600 0.527

1,1,1 0.375 0.487 0.325 0.449 0.425 0.528 0.400 0.537 0.450 0.530

R2 0.502 R2 0.457 R2 0.512 R2 0.554 R2 0.597

Note. Each mean summarizes the performance of 20 perceptrons. The row indicates the squared correlation (R2) between the eight 
perceptron responses and the eight probabilities of reward for each of the training sets.
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matches to the expected column, each is highly correlated 
with it, with each correlation being greater than 0.98. 
We used chi-square tests to compare the probability of 
reward for each type of pattern in a training set to the 
expected probability generated by the addition rule for 
multiple cues. None of the training sets differed sig-
nificantly from the expected values.

5.3.2 Perceptron Training and Performance
Once again, we trained 20 perceptrons on each of 

the five training sets using the same procedure that was 
described in the previous two sections. An examination 
of the 20 perceptrons trained on the same training set 
revealed very high degrees of similarity between them, 
both in terms of their responses to each type of stimulus 
and in terms of their internal structure. Because of this 
similarity, Table 5-8 provides the mean response of the 20 
perceptrons to each type of stimulus for each of the five 
training sets. When Table 5-8 is compared to the earlier 
Tables 5-3 or 5-6, it becomes apparent that the Table 5-8 
perceptrons did not estimate probabilities as well. The 
bottom three rows of Table 5-8 report the same measure 
of goodness of fit (squared correlation) that was also re-
ported in those previous tables. These measures indicate 
quite clearly that when probability of reward is signaled in 
part by the XOR interaction between cues, performance is 
poorer. For instance, the squared correlations in Table 5-8 
indicate that the responses of these perceptrons typically 
capture only between 46% and 60% of the variance of the 
actual probabilities of reward. The probability estimation 
ability of each of these perceptrons is poorer than the worst 
performance of any reported in Table 5-2 or in Table 5-5. 

5.3.3 Perceptron Structure
Table 5-8 demonstrates that the perceptrons faced 

with estimating reward probabilities when the XOR of 
Cues B and C signals reward have poorer performance 
than do the perceptrons described earlier in this chapter. 

Important to note, this is once again not because the struc-
ture of these perceptrons departs from expectations. To 
investigate perceptron structure, we again performed a lo-
gistic regression for each of the training sets, using the glm 
function in R. Each logistic regression fit a model derived 
from the 2×2×2 contingency table for each training set. 
We then used R2 to assess the relationship between the four 
coefficients of the logistic regression and the four charac-
teristics of network structure (i.e., the bias of the output 
unit and the connection weight associated with each cue). 
The coefficients obtained from logistic regression, and the 
average bias and weights of a perceptron, are provided 
in Table 5-9. The bottom row of this table provides the 
quantitative comparison of each pair of columns. These 
comparisons reveal that there are nearly perfect correla-
tions between logistic coefficients and network structures. 
An examination of Table 5-9 indicates, in fact, that the 
structure of these perceptrons is more similar to the lo-
gistic regression coefficients than was the structure of the 
perceptrons confronted with the AND of Cues B and C.

5.3.4 Discussion
The results of this set of simulations are again con-

sistent with expectations derived from our formal analyses 
in Chapter 4. First, if the three-cue perceptron is a naïve 
Bayesian mechanism, and receives signals from condition-
ally dependent cues, then its probability estimates will not 
be accurate. Our results support this prediction (Table 5-8).

Second, even when some cues are conditionally 
dependent, we expect that the perceptron will still be able 
to produce the best naïve Bayesian fit to the data, even if 
this type of prediction cannot capture all of the variability 
of the training set. This is confirmed by the strong rela-
tionship between network structure (biases and weights) 
and the coefficients of logistic regression. These logistic 
regressions provide the best fit that they can to the training 
sets but are also blind to interactions between cues. The 

Table 5-9. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the five 
three-cue training sets that involve an XOR interaction between Cue B and C. 

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -1.436 -1.455 -1.552 -1.574 -1.388 -1.392 -1.659 -1.667 -1.615 -1.618

w 1.467 1.475 1.376 1.382 1.513 1.511 1.670 1.682 1.602 1.611

w 0.000 0.050 0.096 0.144 0.092 0.066 0.064 0.046 0.160 0.117

w -0.062 -0.121 -0.096 -0.157 -0.092 -0.072 0.064 0.088 0.000 0.010

R2 0.999 R2 0.999 R2 1.000 R2 1.000 R2 1.000

Note. The final row indicates the squared correlation (R2) that between perceptron structure and logistic regression coefficients.
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logistic regressions fit the data to the best of their ability 
by using main effects, the size of which are reflected in 
the natural logarithms of odds ratios. We expect that the 
perceptrons will perform in essentially the same manner 
and that their structure will reflect the same odds ratios. 
The results of Table 5-9 confirm this expectation.

Third, it is apparent that the performance of per-
ceptrons that estimate probability in the face of the XOR 
interaction is much poorer than that of those that estimate 
probability in the face of the AND interaction. Given 
the traditional view of perceptrons as pattern classifiers, 
this result may seem unsurprising at first glance. This is 
because perceptrons cannot solve linearly separable prob-
lems (Minsky & Papert, 1969), AND is linearly separable, 
whereas XOR is not. Thus, it may not be surprising that 
the perceptrons faced with XOR are poorer performers.

However, there is a more fruitful interpretation of 
differences between perceptron performances. First, given 
that AND is linearly separable, why do the perceptrons 
faced with this interaction perform more poorly than do 
those faced with three conditionally independent cues? 
Second, given that both AND and XOR involve interac-
tions between Cues B and C, why is one interaction more 
detrimental than the other? A better approach to consid-
ering differences between perceptron performances is to 
turn away from the logical structure of the interactions 
and instead consider the interactions in terms of degrees 
of conditional dependence (Dawson & Gupta, 2017). The 
next section provides a brief comparison of the different 
results provided by the three sets of simulations that 
we have been considering to this point and begins to 
tease out the different contributions of linear nonsepa-
rability and conditional dependence.

5.4 Manipulating Conditional Dependence: 
Low-Reward AND

In Section 5.4, we saw that perceptron perfor-
mance—the ability of a perceptron to estimate the actual 
probability of reward in a training set—was significantly 
affected by the presence of an interaction between signals 
of reward probability. When an interaction was present, 
performance decreased. We also saw that the nature of 
this interaction was important: Perceptrons faced with an 
AND interaction performed significantly better than did 
perceptrons faced with an XOR interaction.

At face value, the effect of the type of interaction 
agrees with standard accounts of perceptron performance: 
Section 5.4 demonstrated that perceptrons performed bet-
ter when faced with a linearly separable interaction than 
when faced with a linearly nonseparable interaction. The 
point of the remaining simulations reported in Chapter 5 is 
to show that linearly separability is not the most appropri-
ate influence on perceptron performance when signals of 
reward are uncertain. Dawson and Gupta (2017) showed 
that one could manipulate the degree of conditional de-
pendence in training sets like those discussed in Sections 
5.1 and 5.2 by varying the probability of reward associated 
with the logical combination of cues. In other words, one 
can alter conditional dependence while holding the logical 
structure of an interaction constant. The simulations in this 
section and the next reveal that perceptron performance 
changes when such a manipulation is explored. 

In this section, we describe another set of simula-
tions. Each of these simulations involves an interaction 
between two cues (the AND of Cues B and C). However, 
in these simulations the likelihood of reward associ-
ated with the interaction is reduced, which decreases 
the amount of conditional dependence between the 

Table 5-10. The probability of reward for each of the eight possible cue states of a training set in which the probability of reward is signaled by the 
presence of Cue A or by the XOR of Cues B and C. See text for details.

Input Pattern Probability Expected Set 1 Set 2 Set 3 Set 4 Set 5
(0,0,0) P(R|~A~B~C) 0 0 0 0 0 0

(0,0,1) P(R|~A~BC) 0 0 0 0 0 0

(0,1,0) P(R|~AB~C) 0 0 0 0 0 0

(0,1,1) P(R|~ABC) 0.18 0.175 0.2 0.175 0.225 0.25

(1,0,0) P(R|A~B~C) 0.6 0.5 0.6 0.65 0.675 0.6

(1,0,1) P(R|A~BC) 0.6 0.525 0.525 0.625 0.575 0.6

(1,1,0) P(R|AB~C) 0.6 0.6 0.575 0.65 0.675 0.575

(1,1,1) P(R|ABC) 0.672 0.65 0.65 0.8 0.725 0.65
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interacting cues. At issue is whether this manipulation 
also affects perceptron performance.

5.4.1 Network Architecture and Training Set
The next set of perceptrons has the identical structure 

as those discussed in the earlier sections: They are percep-
trons comprising a single output unit and three input units. 
The stimulus encoding is also identical to the coding that 
described earlier because the same set of stimuli is used to 
train these perceptrons. The difference between the current 
perceptrons and those presented in Section 5.2 is the set of 
rules used to determine probability of reward signaled by 
the cues. In this study, the presence of Cue A indicated a 
reward probability of 0.6. In addition, the logical AND of 
Cues B and C signaled a reward probability of 0.18. These 
reward probabilities were selected to (a) lower the reward 
associated with Cues B and C while (b) ensuring that the 
overall likelihood of reward—the probability of reward 
across all of the training patterns—was approximately 
0.33. This overall likelihood of reward is the same as that 
for the previous simulations. In other words, in compari-
son to the simulations reported in Section 5.2, there is a 
higher reward associated with Cue A and a lower reward 
associated with the interaction between Cues B and C.

We used the same stochastic procedure employed 
earlier to construct five training sets. Each training set 
consisted of 320 input patterns; we replicated each of the 
eight possible cue configurations 40 times in a training 
set. Each input pattern was either rewarded (desired out-
put activity = 1) or not (desired output activity = 0). The 
expected probability of reward for each type of stimulus 
is provided in Table 5-10. Note that when both Cue A is 
present and the AND of Cues B and C is true the expected 
probability in the table is computed using the addition rule 
(P(R|A) + P(R|B∩C) – P(R|A) • P(R|B∩C)).

The final five columns in Table 5-10 provide the 
actual probability of reward for each of the eight possible 
input patterns in each training set. Although these col-
umns are not exact matches to the expected column, each 
is highly correlated with it, with each correlation being 
greater than 0.99. We used chi-square tests to compare the 
probability of reward for each type of pattern in a training 
set to the expected probability generated by the addition 
rule for multiple cues. None of the training sets differed 
significantly from the expected values.

The purpose of using the new set of reward prob-
abilities (Table 5-10) was to decrease the conditional 
dependence in the training sets that is supplied by Cues 
B and C interacting. Table 5-11 shows that a decrease in 
the reward associated with the AND of these two cues 

accomplishes this goal. It uses the log-likelihood ratio 
test (i.e., G, as described in Section 4.3.1) to measure 
conditional dependence (Woolf, 1957). 

Table 5-11. The degree of conditional dependence between Cues B and 
C in the training sets with a low reward associated with the AND of Cues 
B and C (P(R|BC) = 0.18) compared to the degree of conditional depen-
dence between Cues B and C in the training sets with a high reward 
associated with the AND of Cues B and C (P(R|BC)=0.48). 

Low-Reward AND High-Reward AND
Training Set 1 0.39 5.69

Training Set 2 1.40 8.35

Training Set 3 1.96 6.32

Training Set 4 1.59 4.60

Training Set 5 1.01 5.82

Mean 1.27 6.16
SE 0.27 0.62

Note. The G statistic, described in Section 4.3.1, is used to mea-
sure conditional dependence. The bottom two rows provide the 
mean and the standard error of each column.

To calculate G, a training set was split into four 2×2 
contingency tables, where each of these tables crossed the 
state of Cue B (absent vs. present) with the state of Cue 
C (absent vs. present). The four contingency tables were 
created by considering Cues B and C in the context of two 
other variables: the state of Cue A (absent or present) and 
the state of the reward (presented or not). G was calculated 
by using Woolf’s equation for each of these contingency 
tables and summing all of the computed values. Table 
5-11 shows that this measure is lower for each of the low 
AND reward training sets in comparison to the high AND 
reward training sets that were described in Section 5.2. 
The last two rows of the table provide the mean value of 
G for each condition, along with the standard error of the 
mean. These values indicate that the average value of G 
is significantly lower in the Low-Reward AND condition 
than in the High-Reward AND condition, indicating that 
there is significantly less conditional dependence.

5.4.2 Perceptron Training and Performance
Once again, we trained 20 perceptrons on each of the 

five training sets using the same procedure used for the 
simulations described earlier in this chapter. An examina-
tion of the 20 perceptrons trained on the same training set 
revealed very high degrees of similarity between them, in 
terms of both their responses to each type of stimulus and 
their internal structure. Because of this similarity, Table 
5-12 provides the mean response of the 20 perceptrons 



93

Volume 15, 2022

PROBABILITY LEARNING  BY PERCEPTRONS AND PEOPLE

to each type of stimulus for each of the five training 
sets. When Table 5-12 is compared to the results for the 
High-Reward AND simulation, it is apparent that the 
Table 5-12 perceptrons were better probability matches. 
The bottom row of Table 5-12 reports the same measure 
of goodness of fit (squared correlation) that were also 
reported in that previous table. These measures indicate 
quite clearly that when probability of reward is signaled 
in part by the XOR interaction between cues, performance 
is better, because these numbers are higher. A detailed dis-
cussion of the relative differences in performance between 
perceptrons is presented later in Section 5.6.

5.4.3 Perceptron Structure
Table 5-12 demonstrates that the perceptrons faced 

with estimating reward probabilities when the reward 
associated with the AND of Cues B and C is lowered has 
better performance than the perceptrons trained on a higher 
reward version of the same problem (Section 5.2). Once 

again, this performance is the result of perceptron structure 
approximating the optimal odds ratios. We again performed 
a logistic regression for each of the training sets, using 
the glm function in R. Each logistic regression fit a model 
derived from the 2×2×2 contingency table for each training 
set. We then used R2 to assess the relationship between 
the four coefficients of the logistic regression and the four 
characteristics of network structure (i.e., the bias of the 
output unit and the connection weight associated with each 
cue). The coefficients obtained from logistic regression, and 
the average bias and weights of a perceptron, are provided 
in Table 5-13. The bottom row of this table provides the 
quantitative comparison of each pair of columns. These 
comparisons reveal that the structure of each perceptron is 
very similar to the set of coefficients of a logistic regression 
performed on the same data. For instance, for each training 
set there are nearly perfect squared correlations between 
logistic coefficients and network structures.

Table 5-12. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the three-cue training sets that include the Low

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean P(R) Mean P(R) Mean P(R) Mean 
Response P(R) Mean

0,0,0 0.000 0.037 0.000 0.048 0.000 0.037 0.000 0.051 0.000 0.058

0,0,1 0.000 0.046 0.000 0.052 0.000 0.052 0.000 0.052 0.000 0.077

0,1,0 0.000 0.061 0.000 0.063 0.000 0.057 0.000 0.078 0.000 0.070

0,1,1 0.175 0.076 0.200 0.068 0.175 0.080 0.225 0.080 0.250 0.093

1,0,0 0.500 0.475 0.600 0.545 0.650 0.591 0.675 0.613 0.600 0.550

1,0,1 0.525 0.534 0.525 0.568 0.625 0.674 0.575 0.620 0.600 0.622

1,1,0 0.600 0.605 0.575 0.616 0.650 0.698 0.675 0.712 0.575 0.600

1,1,1 0.650 0.660 0.650 0.637 0.800 0.767 0.725 0.718 0.650 0.669

R2 0.970 R2 0.947 R2 0.971 R2 0.950 R2 0.934

Note. Each mean summarizes the performance of 20 perceptrons. The final row indicates the squared correlation (R2) between the 
eight perceptron responses and the eight probabilities of reward for each of the training sets.

Table 5-13. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the 
five three-cue training sets that involve a Low 

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -3.747 -3.263 -3.427 -2.997 -3.829 -3.269 -3.393 -2.924 -3.282 -2.788

w 3.453 3.161 3.351 3.177 3.977 3.637 3.582 3.384 3.212 2.987

w 0.715 0.527 0.525 0.291 0.699 0.470 0.693 0.447 0.473 0.206

w 0.450 0.240 0.351 0.094 0.600 0.356 0.325 0.029 0.558 0.298

R2 0.998 R2 0.994 R2 0.997 R2 0.993 R2 0.993

Note. The final two rows indicate the sum of squared error and squared correlation that compares perceptron structure perceptrons 
to logistic regression coefficients.
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5.4.4 Discussion
The results of this set of simulations are again con-

sistent with expectations derived from our formal analyses 
in Chapter 4. First, if the three-cue perceptron is a naïve 
Bayesian mechanism, and receives signals from condi-
tionally dependent cues, then it will not be able to match 
probabilities perfectly. Our results support this prediction 
(Table 5-12). After 2,500 epochs of training, each of the 
100 perceptrons that we examined achieved a high degree 
of accuracy in its probability estimation performance, but 
performance is poorer than that which is achieved when 
no conditional dependence is present.

Second, even when some cues are conditionally 
dependent, we expect that the perceptron will still be able 
to produce the best naïve Bayesian fit to the data, even if 
this type of prediction cannot capture all of the variability 
of the training set. This is confirmed by the strong rela-
tionship between network structure (biases and weights) 
and the coefficients of logistic regression. These logistic 
regressions provide the best fit that they can to the training 
sets but are also blind to interactions between cues. The 
logistic regressions fit the data to the best of their ability 
by using main effects, the size of which are reflected in 
the natural logarithms of odds ratios. We expect that the 
perceptrons will perform in essentially the same manner 
and that their structure will reflect the same odds ratios. 
The results of Table 5-13 confirm this expectation.

Third, it is apparent that the performance of percep-
trons that probability match in the face of the lower reward 
associated with the AND of Cues B and C is better than 
that observed for perceptrons trained on the high-reward 
version of the same training set. A more detailed compar-
ison of perceptron performance, one that examines the 
different influences of conditional dependence and linear 
separability, is provided later in Section 5.6.

5.5 Manipulating Conditional Dependence: 
Low-Reward XOR

5.5.1 Network Architecture and Training Set
This final set of perceptrons described has the iden-

tical structure as those discussed in the previous sections: 
They are modern perceptrons comprising a single output 
unit and three input units. The stimulus encoding is also 
identical to the coding that described earlier, because 
the same set of stimuli is used to train these perceptrons. 
The difference between the current perceptrons and 
those presented in Section 5.3 is the set of rules used to 
determine probability of reward signaled by the cues. In 
particular, there is a lower probability of reward signaled 
by the XOR of Cues B and C. In this last simulation, the 
presence of Cue A indicated a reward probability of 0.53. 
In addition, the logical XOR of Cues B and C signaled 
a reward probability of 0.18. These reward probabilities 
were selected to (a) lower the reward associated with Cues 
B and C while (b) ensuring that the overall likelihood 
of reward—the probability of reward across all of the 
training patterns—was approximately 0.33. This overall 
likelihood of reward was the same as that for the earlier 
simulations. In other words, in comparison to the simu-
lations reported in Section 5.3, there is a higher reward 
associated with Cue A and a lower reward associated with 
the interaction between Cues B and C.

We used the same stochastic procedure described 
earlier to construct five training sets. Each training set 
consisted of 320 input patterns; we replicated each of the 
eight possible cue configurations 40 times in a training 
set. Each input pattern was either rewarded (desired out-
put activity = 1) or not (desired output activity = 0). The 
expected probability of reward for each type of stimulus 
is provided in Table 5-14. Note that when both Cue A is 
present and the XOR of Cues B and C is true, the expected 

Table 5-14. The probability of reward for each of the eight possible cue states of a training set in which the probability of reward is signaled by the 
presence of Cue A or by the XOR of Cues B and C. See text for details.

Input Pattern Probability Expected Set 1 Set 2 Set 3 Set 4 Set 5
(0,0,0) P(R|~A~B~C) 0 0 0 0 0 0

(0,0,1) P(R|~A~BC) 0.18 0.175 0.175 0.225 0.125 0.175

(0,1,0) P(R|~AB~C) 0.18 0.2 0.2 0.175 0.175 0.225

(0,1,1) P(R|~ABC) 0 0 0 0 0 0

(1,0,0) P(R|A~B~C) 0.53 0.55 0.6 0.525 0.525 0.45

(1,0,1) P(R|A~BC) 0.6146 0.65 0.65 0.625 0.625 0.625

(1,1,0) P(R|AB~C) 0.6146 0.675 0.6 0.725 0.6 0.625

(1,1,1) P(R|ABC) 0.53 0.525 0.55 0.525 0.5 0.5
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probability in the table is computed using the addition rule 
(P(R|A) + P(R|XOR(B,C)) - P(R|A) • P(R| XOR(B,C))).

The final five columns in Table 5-14 provide the 
actual probability of reward for each of the eight pos-
sible input patterns in each training set. Although these 
columns are not exact matches to the expected column, 
each is highly correlated with it, with each correlation 
being over 0.99. We used chi-square tests to compare the 
probability of reward for each type of pattern in a training 
set to the expected probability generated by the addition 
rule for multiple cues. None of the training sets differed 
significantly from the expected values.

The purpose of using the new set of reward prob-
abilities (Table 5-14) was to decrease the conditional 
dependence in the training sets that is supplied by 
Cues B and C interacting. Table 5-15 shows that a 
decrease in the reward associated with the XOR of 
these two cues accomplishes this goal. 

It operationalizes the conditional dependence due to 
the interaction of Cues B and C as the G statistic following 
the same procedure that was described in Section 5.5.1. 
The means (and their standard errors) at the bottom of 
Table 5-15 indicate that there is significantly lower con-
ditional dependence in the Low-Reward XOR condition 
than in the High-Reward XOR condition.

5.5.2 Perceptron Training and Performance
Once again, we trained 20 perceptrons on each of 

the five training sets using the same procedure described 
for the simulations reported earlier in this chapter. An 
examination of the 20 perceptrons trained on the same 
training set revealed very high degrees of similarity 

between them, in terms of both their responses to each 
type of stimulus and their internal structure. Because of 
this similarity, Table 5-16 provides the mean response of 
the 20 perceptrons to each type of stimulus for each of 
the five training sets. When Table 5-16 is compared to the 
results for the High-Reward XOR simulation, it is appar-
ent that the Table 5-16 perceptrons are better probability 
estimators. The bottom row of Table 5-16 reports the same 
measure of goodness of fit (squared correlation) that was 
also reported in that earlier table. This measure indicates 
quite clearly that when probability of reward due to the 
XOR interaction between cues is lowered, performance is 
better, because these numbers are higher. A detailed dis-

Table 5-16. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the three-cue training sets that include the Low

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean P(R) Mean P(R) Mean P(R) Mean 
Response P(R) Mean

0,0,0 0.000 0.098 0.000 0.099 0.000 0.096 0.000 0.078 0.000 0.092

0,0,1 0.175 0.089 0.175 0.099 0.225 0.083 0.125 0.076 0.175 0.096

0,1,0 0.200 0.100 0.200 0.085 0.175 0.111 0.175 0.073 0.225 0.102

0,1,1 0.000 0.091 0.000 0.084 0.000 0.096 0.000 0.072 0.000 0.107

1,0,0 0.550 0.614 0.600 0.619 0.525 0.598 0.525 0.576 0.450 0.529

1,0,1 0.650 0.589 0.650 0.617 0.625 0.559 0.625 0.570 0.625 0.541

1,1,0 0.675 0.621 0.600 0.577 0.725 0.636 0.600 0.560 0.625 0.559

1,1,1 0.525 0.595 0.550 0.576 0.525 0.598 0.500 0.554 0.500 0.571

R2 0.910 R2 0.930 R2 0.885 R2 0.933 R2 0.864

Note. Each mean summarizes the performance of 20 perceptrons. The final row indicates squared correlation (R2) between the eight 
perceptron responses and the eight probabilities of reward for each of the training sets.

Table 5-15. The degree of conditional dependence between Cues B and 
C in the training sets with a low reward associated with the XOR of Cues 
B and C (P(R|BC) = 0.18) compared to the degree of conditional depen-
dence between Cues B and C in the training sets with a high reward 
associated with the XOR of Cues B and C (P(R|BC)=0.48).  

Low-Reward XOR High-Reward XOR
Training Set 1 24.90 56.66

Training Set 2 22.70 56.06

Training Set 3 27.57 59.34

Training Set 4 18.91 56.37

Training Set 5 27.37 49.61

Mean 24.29 55.61
SE 1.61 1.61

Note. Conditional dependence is measured using G. 
The final two rows provide the mean and the stan-
dard error of the mean of each column.
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cussion of the relative differences in performance between 
perceptrons is presented in Section 5.6.

5.5.3 Perceptron Structure
To compare the structure of perceptrons to the opti-

mal odds ratios revealed by logistic regression, we again 
performed a logistic regression for each of the training 
sets, using the glm function in R. Each logistic regression 
fit a model derived from the 2×2×2 contingency table for 
each training set. We then used R2 to assess the relationship 
between the four coefficients of the logistic regression and 
the four characteristics of network structure (i.e., the bias 
of the output unit and the connection weight associated 
with each cue). The coefficients obtained from logistic re-
gression, and the average bias and weights of a perceptron, 
are provided in Table 5-17. The bottom row of this table 
provides the quantitative comparison of each pair of col-
umns. These comparisons reveal that the structure of each 
perceptron is very similar to the set of coefficients of a lo-
gistic regression performed on the same data. For instance, 
for each training set there are nearly perfect correlations 
between logistic coefficients and network structures.

5.5.4 Discussion
The results of this final set of simulations are once 

again consistent with expectations derived from our formal 
analyses in Chapter 4. First, if the three-cue perceptron is a 
naïve Bayesian mechanism, and receives signals from cues 
that are conditionally dependent, then it will not be able 
to match probabilities perfectly. Our results support this 
prediction (Table 5-16). After 2,500 epochs of training, 
each of the 100 perceptrons that we examined achieved a 
reasonable degree of accuracy in its probability estimation 
performance, but performance is poorer than that which is 
achieved when no conditional dependence is present.

Second, even when some cues are conditionally 
dependent, we expect that the perceptron will still be able 

to produce the best naïve Bayesian fit to the data, even if 
this type of prediction cannot capture all of the variability 
of the training set. This is confirmed by the strong rela-
tionship between network structure (biases and weights) 
and the coefficients of logistic regression. These logistic 
regressions provide the best fit that they can to the training 
sets but are also blind to interactions between cues. The 
logistic regressions fit the data to the best of their ability 
by using main effects, the size of which are reflected in 
the natural logarithms of odds ratios. We expect that the 
perceptrons will perform in essentially the same manner 
and that their structure will reflect the same odds ratios. 
The results of Table 5-17 confirm this expectation.

Third, it is apparent that the performance of percep-
trons that probability match in the face of the lower reward 
associated with the XOR of Cues B and C is better than 
that observed for perceptrons trained on the high-reward 
version of the same training set. A more detailed compar-
ison of perceptron performance, one that examines the 
different influences of conditional dependence and linear 
separability, is provided in Section 5.6.

5.6 Linear Separability  
versus Conditional Dependence

Sections 5.2, 5.3, 5.4, and 5.5 presented the results 
of four different simulations that investigated the effects 
of conditional dependence on the ability of perceptrons to 
match probabilities. When considered together, these four 
simulations represent the four conditions of a two-factor 
experiment. One factor concerns the linear separability 
of the interaction being used to create conditional depen-
dence. For some simulations (those that used the AND 
of Cues B and C), this was linearly separable. For other 
simulations (those that used the XOR of Cues B and C), 
this was linearly nonseparable. The other factor concerns 
the level of reward that was used to manipulate conditional 

Table 5-17. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the 
five three-cue training sets that involve a Low 

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -2.232 -2.224 -2.193 -2.208 -2.198 -2.239 -2.473 -2.474 -2.274 -2.290

w 2.676 2.690 2.676 2.692 2.604 2.638 2.764 2.779 2.400 2.407

w 0.038 0.027 -0.115 -0.174 0.076 0.158 0.000 -0.065 0.148 0.119

w -0.115 -0.106 -0.038 -0.005 -0.076 -0.161 -0.079 -0.022 0.000 0.048

R2 1.000 R2 1.000 R2 0.999 R2 0.999 R2 1.000

Note. The final two rows indicate the sum of squared error and squared correlation that compares perceptron structure perceptrons 
to logistic regression coefficients.
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dependence. For some simulations, a high level of reward 
was used to introduce higher conditional dependence. 
For other simulations, a low level of reward was used to 
introduce lower conditional dependence.

The purpose of this section is to take advantage of 
this factorial design to investigate the relative impor-
tance of linear separability and conditional dependence 
in terms of their effects on the ability of perceptrons to 
match probabilities when learning about the likelihood 
of reward signaled by uncertain cues.

5.6.1 Analysis of Variance
To begin, let us consider the four simulations from 

the basic perspective of a two-factor analysis of variance 
(ANOVA). Table 5-18 provides the basic data for this by 
presenting the average measure of probability estimation 
for the 100 different perceptrons in each of the four condi-
tions defined by this two-factor design. 

Table 5-18. The mean probability estimation performance (standard 
deviations in parentheses) of perceptrons as a function of problem type 
and level of reward. 

High-Reward Low-Reward
AND of Cues B and C 0.82 0.95

XOR of Cues B and C 0.52 0.90

Note. Probability estimation performance is operational-
ized as the squared correlation between the perceptrons 
responses for each of eight stimuli and the actual reward 
probabilities for these same stimuli. Each mean is based on 
the performance of 100 perceptrons.

An inspection of Table 5-18 reveals several interest-
ing findings. First, on average, networks perform better 
when there is an AND relationship between Cues B and C 
than when there is an XOR relationship between these cues. 
Second, on average, networks perform better when Cues B 
and C combine to signal a lower probability of reward than 
when they combine to signal a higher probability of reward. 
Third, changing the probability of reward has a much larg-
er effect on network performance for the XOR versions of 
the training sets than for AND versions of the training sets.

An ANOVA of the data used to produce Table 5-18 
confirms these general observations. We conducted an 
ANOVA on the R2 scores for the networks in different 
conditions to test the effects of interaction type and size of 
reward. This analysis revealed a significant main effect of 
type, F(1, 396) = 3046, p < 2e-16, η2 = 0.264; a significant 
main effect of reward, F(1, 396) = 6543, p < 2e-16, η2 = 

0.567; and a significant Type × Reward interaction, F(1, 
396) = 1548, p < 2e-16, η2 = 0.134. Post hoc tests conduct-
ed using the Tukey honestly significant difference (HSD) 
statistic revealed that perceptrons trained on the AND 
interaction learned to be more accurate probability estima-
tors than did perceptrons trained on the XOR interaction 
(p < 1.0e-16). As well, perceptrons trained in conditions 
in which the interacting cues signaled low reward were 
more accurate probability estimators than network trained 
in conditions in which the interacting cues signaled high 
reward (p < 1.0e-16). The significant interaction emerged 
because the Low-Reward XOR networks performed sig-
nificantly better than did the High-Reward XOR networks 
(difference between conditions = 0.441), but there was a 
smaller effect of different reward levels on the AND net-
works (difference between conditions = 0.120). However, 
both of these differences were statistically significant (p < 
1.0e-16). All of these effects replicate those reported by 
Dawson and Gupta (2017) when they trained perceptrons 
on stimuli defined using four cues.

5.6.2 Predicting Performance From G
One problem with the ANOVA just reported is that the 

logical structure of the relationship between Cues B and C is 
confounded with conditional dependence. This is because 
when conditional dependence is operationalized using G, 
on average this metric is higher for the training sets based 
on XOR than it is for the training sets based on AND. For 
instance, the average value of G for the 10 AND training 
sets in Table 5-10 is 3.715, whereas the average value of G 
for the 10 XOR training sets in Table 5-10 is 39.95. We can 
carry out two alternative analyses in light of this problem.

First, we can simply predict the R2 fit between network 
responses and actual training set probabilities from G for 
each training set presented to each of the 400 perceptrons. 
This predicts network performance from degree of con-
ditional dependence and ignores the logical relationship 
between Cues B and C. When we perform this analysis, we 
find that the degree of conditional dependence accounts 
for more than 77% of the variance in the fit of network re-
sponses (R2 = .772), F(1, 398) = 1351.05, p < 5.2061E-130.

The logical structure of the interaction is also a sig-
nificant predictor of network performance. A regression 
equation that predicts the R2 fit between network responses 
and actual training set probabilities from the type of in-
teraction (AND vs. XOR) is also statistically significant 
and accounts for more than 26% of the variance in the 
fit of network responses (R2 = .264), F(1, 398) = 142.83, 
p < 2.43051E-28. However, this predictive relationship is 
weaker than the relationship between G and performance. 
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If one predicts performance from G, one captures nearly 
three times the variance of performance that is captured 
when one predicts performance from interaction type. 
This indicates that conditional dependence is a more 
powerful predictor of network performance than is the 
logical structure of the interaction.

Important to note, the level of reward (high vs. low) is 
a better predictor of network performance than is the type 
of interaction between Cues B and C. A regression equa-
tion that predicts the R2 fit between network responses and 
actual training set probabilities from reward level accounts 
for more than 56% of the variance in the fit of network 
responses (R2 = .567), F(1, 398) = 521.85, p < 2.09513E-
74. As level of reward manipulates response probabilities 
while holding the logical structure of the interaction 
between cues constant, and as this variable accounts for 
more than twice the amount of variance in performance 
as is captured by interaction type, this provides additional 
evidence that the logical structure of the training set does 
not provide the best account of network performance.

These three variables do appear to capture different 
components of performance variance. We used multiple 
regression to predict network performance from three 
variables: G, the logical relationship between Cues B and 
C, and level of reward. This equation accounted for almost 
all of the variance in network performance (R2 = .981), 
F(3, 396) = 6640.83, p < 0, and all three predictors are 
statistically significant. In this regression equation, the 
bulk of the variance is being captured by G, but the other 
two predictors capture a statistically significant amount 
of variance that G does not predict.
5.6.3 Comparison to Conditionally Independent Cues

The statistical analyses just reported proceeded 
by taking four of the simulations to represent cells in a 
2×2 factorial design. Another approach to examining the 
simulation results is to compare the results of the four sim-
ulation studies that involve an interaction between Cues B 
and C to a fifth simulation, the initial study in which all 
three cues were conditionally independent (Section 5.1). 
The means of the five conditions with their standard de-
viations are presented in Table 5-19. Each of these means 
summarizes the performance of 100 perceptrons; this 
performance is measured using R2 between the responses 
of a perceptron to each of the eight stimuli and the actual 
probability of reward associated with each.

Table 5-19 reveals that each mean is associated with 
an extremely small standard deviation, indicating that very 
similar responses were generated by different perceptrons 
trained in the same condition. Table 5-20 provides the 

results of using Welch two-sample t tests to compare 
network performance in each of these four conditions to 
network performance in the independent cue conditions. 
Each of these tests reveals a significant difference.

The statistical comparisons in Table 5-20 reveal one 
surprise: Perceptrons were better probability matchers in 
the Low-Reward AND condition than in the conditionally 
independent condition. The reason is that the stochastic 
method used to create training sets is not perfect: It intro-
duces a certain amount of noise when rewards are assigned 
to stimuli. As a result, there is a small degree of conditional 
dependence in the conditionally independent training set. 
When conditional dependence is operationalized as G, the 
average value of this measure for the conditionally inde-
pendent training set is 9.79. This value is higher than the 
mean G for the Low-Reward AND condition, which was 
equal to 1.27, which explains the results in Table 5-20.

This reinforces a key thread running through the sim-
ulation results presented in the current chapter: The best 
predictor of perceptron performance is the conditional 
dependence between cues in the environment and not the 
logical relationship between the cues. More confirmation 
for this conclusions comes from computing the correlation 
between the R2 measure of each perceptron’s performance 
(i.e., each of the 500 perceptrons trained in the five sim-
ulations reported in this chapter) to G for the training set 

Table 5-19. The mean probability estimation performance (with standard 
deviations) of perceptrons in each of the five simulations described in 
Chapter 5.

Independent 
Cues

High- 
Reward

High- 
Reward

Low- 
Reward

Low- 
Reward

Mean 0.93 0.82 0.52 0.95 0.90

SD 0.04 0.03 0.05 0.01 0.03

Note. Probability estimation performance is operationalized 
as the squared correlation between the response generated by 
a perceptron to each of eight possible stimuli and the actual 
probability of reward associated with each. Each mean is based 
on the performance of 100 perceptrons.

Table 5-20. The values of t obtained from independent t

High-Reward
AND

High-Reward
XOR

Low-Reward
AND

Low-Reward
XOR

20.271 62.779 -6.6047 4.1703

DF = 171.23 DF = 194.55 DF = 121.78 DF = 167.79

p = 2.2e-16 p = 2.2e-16 p = 1.102e-09 p = 4.8

Note. Each t was evaluated at 198 degrees of freedom.
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to which the perceptron was exposed. This correlation is 
−0.881, indicating that perceptron probability estimation 
is strongly (and inversely) related to conditional depen-
dence. The square of this correlation is 0.776, indicating 
that more than 77% of the variance in perceptron proba-
bility estimation can be explained by a single variable, one 
that measures conditional dependence.

5.7 Summary and Implications
5.7.1 Summary

Chapter 3 provided a formal analysis of what a per-
ceptron learns when it is confronted by a single cue that 
signals a reward with uncertainty. It proved that the per-
ceptron would learn to generate a conditional probability 
(i.e., the likelihood of reward given the presence of a cue) 
that is defined by Bayes’s theorem. Chapter 4 extended 
this formal analysis to the situation in which two uncer-
tain cues are encountered in the environment and proved 
that in this situation a perceptron will learn to generate 
conditional probabilities consistent with the naïve Bayes 
rule. It also argued that this proof could be extended to 
situations in which the probability of reward was signaled 
by more than two cues. Chapter 5 presented a number of 
simulations directly related to this last point.

Chapter 5 has provided the results of five simulations 
in which perceptrons learn the probabilities of reward 
signaled by three cues. One purpose of these simulations 
was to confirm empirically the formal prediction made 
in Chapter 4: that these perceptrons would act as naïve 
Bayesian mechanisms. A second purpose of these simu-
lations was to collect data that can be compared to data 
collected from human participants when they explore 
a particular three-cue environment, the one provided by 
the card-choice task that was introduced in Chapter 1 
(Section 1.2.3). A third purpose of these simulations was 
to explore the limitations of perceptrons in the context of 
their being limited to the naïve Bayes rule. In particular, 
these simulations explored performance when a traditional 
approach to perceptron limitations (linear nonseparability) 
is contrasted to a different approach that emerges from 
probability theory (conditional dependence).

The results of the various simulations reported in 
Chapter 5 lead to two general conclusions. First, all of 
the simulations are consistent with the expectation that 
perceptrons confronted with three uncertain signals of 
reward can be described as naïve Bayesian mechanisms. 
That is, all of the perceptrons learn the conditional prob-
abilities associated with the various cues under the re-
striction that the perceptrons are blind to any interactions 

between cues. Second, all of the simulations point to the 
conclusion that, when perceptrons learn about uncertain 
environments signaled by multiple cues, the limitations of 
perceptrons are best explained by appealing to the amount 
of conditional dependence between different environ-
mental cues. The traditional use of linear nonseparability 
to describe perceptron limitations is far less useful in 
the context of uncertain environments.

5.7.2 Implications
At this point in the monograph, we have established 

a detailed formal and empirical understanding of how 
perceptrons adapt to uncertain environments. In partic-
ular, when trained in an environment whose uncertainty 
is consistent with a probabilistic discrimination task, 
perceptrons learn to match probabilities. That is, the re-
sponse of a perceptron to a stimulus is its estimate of the 
probability that the stimulus signals a reward. However, 
these estimates are constrained by the fact that perceptrons 
are naïve Bayesians. This means as more conditional 
dependence exists among the cues that signal rewards, 
perceptron estimates become less accurate.

That perceptrons estimate that probabilities in 
this fashion is an interesting and useful phenomenon. 
However, this ability by itself is not sufficient to model 
human probability matching in probability discrimination 
paradigms like the three card-choice task. In Chapter 1, 
when human probability matching was introduced, it was 
described as a relationship between probability of reward 
and frequency of choice. That is, the frequency with which 
human participants choose particular entities is the variable 
that is related to the reward probabilities associated with 
these entities. That perceptrons are able to estimate such 
reward probabilities is an important element of this task. 
However, the perceptrons that we have been discussing 
are able only to make such estimates. If perceptrons are 
to be used to model something like human performance 
in the three card-choice task, then they must include an 
additional mechanism that permits them to convert their 
probability estimates into choices.

The purpose of the next chapter is to describe a straight-
forward addition to the gradient descent learning rule that 
permits perceptrons to choose (and then to learn about) 
different stimuli. We have seen that the gradient descent 
rule is an example of incorporating negative feedback into 
artificial neural networks. In contrast, Chapter 6 makes the 
case that to make perceptrons choose an additional concept 
from cybernetics must be included: positive feedback.
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Chapter 6: Choice and Positive Feedback
Up to this point, our formal understanding of per-

ceptron learning, and our demonstrations of this learning 
via simulations, has focused on negative feedback: using 
the difference between expectations and reality to adjust 
associations and improve predictions. Chapter 6 explores 
the implications of a different source of information—pos-
itive feedback. Positive feedback is a tendency to amplify 
existing expectations. It can be modeled by guiding choice 
behavior: having a system decide to choose a stimulus 
because of an expectation about its reward probability. In 
other words, the more likely we expect to receive a reward 
from a stimulus, the more likely we are to choose it. This 
type of positive feedback is introduced to perceptron 
learning by implementing operant learning. In operant 
learning, when a perceptron detects a stimulus, it gener-
ates a response—its estimate of the probability of reward. 
It then uses this estimate to make a decision about whether 
to choose the stimulus and learn about it. This means that 
learning does not occur with each stimulus presentation. 
Two very different operant learning rules are explored. 
One is an increasing returns rule, where networks are 
more likely to learn about stimuli with high-reward prob-
abilities than about stimuli with low-reward probabilities. 
In this rule, the likelihood of learning about a stimulus 
is equal to the estimated probability of reward. The other 
rule models the gambler’s fallacy, where participants feel 
that the luck has run out for a high-reward stimulus and 
therefore are more likely to learn about a low-reward 
stimulus. In this rule, the likelihood of learning about a 
stimulus is equal to 1 minus the estimated probability 
of reward. This chapter reports the results of a number 
of simulations that train operant networks in the five 
stimulus conditions that were detailed in Chapter 5. We 
discover that the two operant learning rules lead to very 
different patterns of choice behavior. However, we also 
discover that either of these patterns produces perceptrons 
that have essentially the same models of the probabilities 
of reward associated with each cue.

6.1 Choice and Positive Feedback
6.1.1 From Probability to Choice

Before this section, we have considered two interre-
lated topics. The first is an uncertain world in which en-
vironmental cues provide signals about the probability of 
reward. The second is a simple system, an artificial neural 
network called a perceptron, which learns what these cues 
signal. Previous chapters have described extensive formal 
and empirical explorations of what perceptrons learn when 

exposed to an uncertain environment. A variety of results 
support one general conclusion: When perceptrons learn 
about an uncertain environment, they behave as naïve 
Bayesian mechanisms. When presented a stimulus—a 
configuration of cues—a perceptron outputs an estimate 
of the probability of reward that the cues signal. It then 
uses the outcome associated with the stimulus—whether 
it actually is rewarded or not—to modify its structure to 
improve future estimates. However, these estimates are 
constrained by the assumption that the cues are inde-
pendent signals of reward probability.

We have spent a great deal of effort acquiring this 
technical understanding of perceptrons because our in-
tention to use these networks to shed light on probability 
learning in biological agents. Chapter 1 introduced the 
study of probability learning by experimental psycholo-
gists, highlighting one phenomenon of particular interest: 
probability matching. Probability matching occurs when 
the probability that participants make a particular choice 
closely corresponds to the probability that the chosen 
stimulus is rewarded (Estes, 1957a, 1964). In other words, 
psychologists view probability matching as a relationship 
between frequency of choice and likelihood of reward; 
psychological studies of probability learning do not focus 
on subjects’ probability estimates per se.

This definition of probability matching raises one 
problem: The perceptrons that have been discussed to 
this point do not make choices. Instead, they merely es-
timate reward probabilities. The purpose of this chapter 
is to remove this obstacle. It describes operant learning 
in perceptrons; with such learning, perceptrons only adapt 
to patterns that they choose to learn about (Dawson et 
al., 2009). In the operant paradigms introduced next, a 
perceptron detects a pattern and estimates the likelihood 
that the pattern signals reward. It then uses this likelihood 
to decide whether to choose the stimulus. If it chooses the 
stimulus, then it learns about it. If it instead ignores the 
stimulus, then it does not learn about it. This parallels the 
choice-driven learning in the card-choice task that was in-
troduced in Chapter 1: Participants learn about a card in this 
task only by choosing it to see if it will provide a reward.

Let us now introduce two different procedures for 
converting probability estimates into choices during 
operant learning before outlining the rationale for the 
simulations whose results make up the bulk of Chapter 6.

6.1.2 Increasing Returns Perceptrons
Instrumental or operant conditioning is a foundation-

al concept in the psychology of learning (Skinner, 1938). 
In operant conditioning, an agent first emits a behavior or 
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a response. Then, this response leads to particular con-
sequences. The behaving agent learns from these conse-
quences, and this learning affects the agent’s choices of its 
future actions. For instance, consider Thorndike’s (1901) 
famous studies of the behavior of animals escaping puzzle 
boxes. When placed in these homemade contraptions, the 
animals were intent on escaping. They could perform a 
variety of actions: squeezing, clawing, biting, and so on. 
Some of these actions (clawing a string or loop or button) 
result in a successful and rewarding escape. Thorndike 
found that with repeated experience in the puzzle box, 
animals were much more likely to perform behaviors that 
had led to escaping and were much less likely to perform 
behaviors that did not result in an escape. This led to a 
basic operant principle, Thorndike’s law of effect, which 
expressed the notion that some consequences of action 
increase the likelihood of choosing a particular behavior, 
whereas other consequences decrease this likelihood.

The law of effect in an example of a phenomenon 
called increasing returns. Increasing returns is a principle 
that has had a controversial history in economic theory 
(Arthur, 1989, 2015). It is used to account for why one 
technology can successfully corner a market after starting 
out competing against other similar technologies. Accord-
ing to increasing returns, this technology might begin with 
some small advantage that causes it to be slightly more 
preferred by consumers than are its competitors. Because 
of this small advantage, there are more purchases of this 
technology than of the others. This in turn leads to more in-
vestment in the technology (e.g., increasing sales of a tech-
nology result in a company putting resources into adding 
improvements to it), which in turn makes it more attractive 
than are its competitors. This is because there is less like-
lihood of the competitors investing in products that are not 
selling as well. The increasing attractiveness of the product 
increases its sales further, and the cycle continues until the 
point that one product might corner the market while the 
original competitors to it are taken out of production.

Economic theory that includes increasing returns 
is controversial because this principle conflicts with the 
more established notion that an economy will settle into 
a stable equilibrium and that when the economy moves 
away from this equilibrium, its underlying dynamics 
will return it to a stable state (Arthur, 2015). This more 
traditional view is essentially the claim that the economy 
is governed by negative feedback. Increasing returns is 
in conflict with this view because it claims that important 
regularities in the economy involve positive feedback that 
moves the economy away from equilibrium.

Recall that Chapter 2 introduced the cybernetic 
notion of negative feedback (Ashby, 1956). When a 
system is governed by negative feedback, it compares its 
current state to a goal state by computing the difference 
between the two. It then performs an adjustment to reduce 
this difference, taking it closer to the goal state. In other 
words, a system that uses negative feedback does so to 
maintain a desired or stable state. Beginning in Section 
2.5.2, it was argued that the error correcting rules used 
to train perceptrons are examples of employing negative 
feedback to achieve equilibrium (i.e., to achieve a state of 
minimal error of responses). Increasing returns is instead 
an example of positive feedback, which is the opposite 
of negative feedback, and which was of less interest to 
cyberneticists. Positive feedback is a signal that leads to 
changes that increase the difference between a system’s 
current state and an equilibrium state. These changes 
amplify a system’s move away from stability.

The principle of increasing returns can be added to 
the procedure used to train a perceptron to convert it into a 
system that learns via operant conditioning. For instance, 
consider the following learning paradigm (Dawson et al., 
2009): Training begins by presenting a stimulus to a per-
ceptron. This in turn causes the perceptron to respond; this 
response is the perceptron’s estimate of the probability that 
this stimulus will lead to reward. In nonoperant learning 
(used in the Chapter 5 simulations), the next step would be 
to compute response error and update connection weights. 
The increasing returns paradigm does not do this. Instead, 
it first uses the probability estimate to guide a decision 
about whether to proceed and learn about the stimulus. 
This is accomplished by making this choice with the same 
probability as the estimate. This means a perceptron is 
very likely to learn when a stimulus causes a high response 
but is much less likely to learn when a stimulus causes 
a low response. If the perceptron chooses to learn about 
the stimulus, then learning proceeds in the standard way. 
However, if the perceptron does not choose to learn about 
the stimulus, then it is simply ignored—no learning occurs, 
and the perceptron moves on to process the next stimulus.

This operant procedure is an example of using 
increasing returns because as the perceptron alters its 
connection weights, the responses made to the various 
stimuli will change. One result of these changes is that 
some stimuli will lead to higher probability estimates than 
will others. As a result, these stimuli will become more and 
more likely to be chosen for learning, whereas the oppo-
site will be true for stimuli that lead to weaker responses. 
However, increasing returns is not the only principle being 
employed. Whenever a stimulus is selected for learning, 
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this learning is accomplished by an error-correcting rule, 
which is an example of negative feedback. In other words, 
the operant training of a perceptron using an increasing 
returns paradigm leads to an interesting situation in which 
perceptron learning is guided by two principles—posi-
tive feedback and negative feedback.

The increasing returns paradigm will necessarily 
change how a perceptron experiences a training set. Con-
sider the simulations that were described in Chapter 5. 
Each of these simulations used a training set that consisted 
of 320 stimuli; it was constructed by taking eight stimuli 
(all possible configurations of three cues) and duplicating 
each of these stimuli 40 times. Every perceptron was 
trained on this training set for 2,500 epochs. In other 
words, each perceptron was trained on 100,000 stimuli. 
This will not be the case in the increasing returns paradigm. 
By definition, the use of this paradigm means that fewer 
stimuli will be involved in learning. This is because while 
in a training session, a perceptron might still be presented 
100,000 stimuli, the operant procedure will ensure that the 
perceptron will alter its weights only to a subset of these 
patterns—those that it chooses to learn about.

Furthermore, the increasing returns procedure will 
implement a bias in the patterns that the perceptron choos-
es to learn about so that there will be unequal learning 
about each different type of stimulus. The perceptron will 
learn more about stimuli that lead to higher responses (i.e., 
higher predictions of reward probability) and will learn 
less about stimuli that lead to lower responses.

This raises the question of whether the increasing re-
turns paradigm will produce different perceptron responses 
at the end of training in comparison to the responses of the 
nonoperant perceptrons that were detailed in Chapter 5. 
The main goal of Chapter 6 is to compare the performance 
of operant perceptrons to that of nonoperant perceptrons 
by using operant procedures to train networks on the same 
training sets that were introduced in Chapter 5.

6.1.3 Gambler’s Fallacy Perceptrons
One motivation for the increasing returns paradigm 

described in the previous section is that it provides a 
plausible approach to modeling the card-choice task that 
was introduced in Chapter 1. We can imagine a partici-
pant scanning these cards, which are presented in random 
order. Looking at one of the eight cards is analogous to 
presenting it to a perceptron. If the participant chooses 
the card and then sees whether it provides a reward, this 
is analogous to the perceptron deciding to learn about a 
stimulus. The increasing returns procedure assumes that 
if participants in the card-choice want to accumulate a 

large number of rewards, they will do so by probability 
matching. That is, they will be more likely to choose 
cards that they have found to be more likely to offer a 
reward, and they will be less likely to choose cards that 
have rewarded them less frequently.

However, human participants may use radically 
different strategies to select cards in the card-choice task. 
Chapter 1 briefly discussed some of the early results on 
probability discrimination learning, and noted (Section 
1.3.1) that it revealed individual differences in behavior. 
In particular, researchers discovered that some participants 
exhibited a “gambler’s fallacy”; they were more likely to 
predict an event the longer that it had not been rewarded 
(Jarvik, 1951). This strategy is the assumption that an of-
ten-rewarded event might be due to stop rewarding and that 
a rarely rewarded event might be due to deliver a reward. 
This is called the gambler’s fallacy because it is based on 
a mistaken assumption of dependence between events. For 
instance, to think that an event will start to provide rewards 
because it has been on a long cold streak is to assume that 
the current likelihood of a reward depends on this history.

Realizing that perceptron responses are subjective 
probabilities of reward, it is quite straightforward to de-
sign alternative operant paradigms for their training. For 
example, let P(x) be the response of a perceptron to some 
stimulus x. In the increasing returns paradigm, the proba-
bility of choosing to learn about stimulus x would also be 
P(x). The opposite approach—which we call the gambler’s 
fallacy paradigm—is to make the probability of choosing 
to learn about stimulus x equal 1 - P(x). This paradigm uses 
a rule that is opposite to that used in increasing returns. 
According to this gambler’s fallacy rule, a perceptron is 
more likely to learn about stimuli that cause low responses 
than to learn about stimuli that cause high responses.

The radical difference between the increasing returns 
paradigm and the gambler’s fallacy paradigm introduces 
an important idea: The rule for choosing to learn about 
a stimulus is quite distinct from the mechanism used to 
estimate reward probability. Both of these procedures use 
the same method for estimating probability (perceptron re-
sponses to stimuli) but then use a very different approach 
for converting probability estimates into choices to learn. 
Of particular interest in the current chapter is whether such 
radically different choice strategies will lead to radically 
different probability estimates at the end of training.

6.2 Operant Learning:  
Three Independent Cues

To investigate the effects of operant learning, let us 
begin by using it on a task in which three different and 
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independent cues are used to signal reward. For these 
new simulations, we use the identical training sets that 
were introduced earlier in Section 5.1. The effect of 
operant learning can be assessed by comparing the per-
formance of these new operant perceptrons to the perfor-
mance that was reported in Chapter 5.

6.2.1 Increasing Returns: Training
The first study examines learning with the increasing 

returns operant learning paradigm. All of its perceptrons are 
identical in structure to those described earlier in Chapter 5, 
having a single output unit and three input units. The input 
units use the same binary code to represent the presence 
or absence of three cues: Cue A, Cue B, and Cue C. The 
same five training sets that were described in Table 5-1 are 
used in this simulation, with 20 perceptrons being trained 
as individual “subjects” on each of these training sets for a 
total of 100 networks. Each of these training sets uses the 
three cues as independent signals of reward. The presence 
of Cue A indicates a reward probability of 0.14, the pres-
ence of Cue B indicates a reward probability of 0.20, and 
the presence of Cue C indicates a reward probability of 
0.40. The methods used to construct five training sets with 
these (ideal) probabilities, and the nature of the resulting 
training sets, were described in detail in Section 5.2.1.

Each perceptron is trained with a gradient descent 
rule, using the same parameters that were described earlier 
in Chapter 5: with a learning rate of 0.05, with connection 
weights randomly set in the range from −0.1 to 0.1 prior 
to training, and with the bias θ of the logistic activation 

function initialized to 0. The only difference between 
these networks and those described in Chapter 5 is that an 
increasing returns operant procedure is employed.

To be more specific, during one epoch of training, we 
present a network each of the 320 patterns in the training 
set in random order. For each pattern, the perceptron gen-
erates a response that serves as the perceptron’s prediction 
of the probability that this stimulus signals a reward. The 
perceptron then decides whether to learn about this stimulus 
or to ignore it; the probability that it decides to learn about 
the stimulus is equal to the predicted probability of reward 
(i.e., the output unit’s response). This is accomplished by 
generating a random number. If the random number is 
greater than the unit’s response then the pattern is ignored; 
otherwise, the perceptron updates its weights and bias for 
this pattern using the gradient descent rule. Thus, even 
though the perceptron is presented each of the 320 patterns 
during an epoch of training, it does not modify its weights 
for each of these stimuli. Instead, it modifies only weights 
for those patterns that it chooses to investigate.

Apart from including the increasing returns para-
digm, network training proceeds in the identical manner 
described in Chapter 5. We randomize the order of input 
pattern presentations every epoch. Training proceeds for 
2,500 epochs; we then record network responses to each 
of the eight possible input patterns, as well as the structure 
of the perceptron. As well, during training we record the 
number of times that each pattern is chosen for learning 
and save this information when training is complete.

Table 6-1. The average number of times that a perceptron selected each of the input patterns for learning using the increasing returns operant 
training paradigm.

Set 1 Set 2 Set 3 Set 4 Set 5
Probability P(R) Times P(R) Times P(R) Times P(R) Times P(R) Times

P(R|~A~B~C) 0.00 8758.3 0.00 14391.45 0.00 14024.95 0.00 11890.65 0.00 10421.65

P(R|~A~BC) 0.4 35932.8 0.35 34359.25 0.375 36117.55 0.4 41833.6 0.45 43976.75

P(R|~AB~C) 0.15 15475.75 0.175 20399.3 0.225 24505.45 0.275 19669.35 0.15 15206.6

P(R|~ABC) 0.5 51905.55 0.475 44361.85 0.55 53067.5 0.575 56626.25 0.55 54821.7

P(R|A~B~C) 0.15 14318.4 0.15 18639.5 0.1 17112.05 0.075 16075.9 0.075 11625.85

P(R|A~BC) 0.475 49671.5 0.45 41536.85 0.45 41718.1 0.55 50613.45 0.475 47035.45

P(R|AB~C) 0.25 24271.15 0.35 25830.55 0.375 29120 0.275 25874.75 0.225 16872.55

P(R|ABC) 0.675 65517.45 0.475 51991.7 0.55 58900.65 0.625 65070.6 0.575 57877.15

Total Choices 265850.9 251510.5 274566.3 287654.6 257837.7
Correlation 0.988 0.930 0.952 0.965 0.982

Note. Each average is the mean of 20 perceptrons. The table also provides the probability of reward for each of the patterns in each 
of the five training sets. The second-to-last row provides the average number of total choices made (from 100,000 presentations) for 
each training set. The bottom row provides the correlation between the probability of reward and the average number of times each 
pattern was chosen for each of the training sets.



104

PROBABILITY LEARNING BY PERCEPTRONS AND PEOPLE

Michael R.W. Dawson

6.2.2 Increasing Returns: Performance
We saw in Chapter 5 that when nonoperant networks 

learn about independent cue training sets, by the end of 
training perceptron, responses are accurate estimates of 
the reward probability associated with each stimulus. With 
operant training, there are now two measures relevant for 
demonstrating that perceptrons match probabilities. One 
is the response to each stimulus at the end of training. 
The other is the number of times that each stimulus is 
chosen for learning. With the increasing returns para-
digm, there should be a very strong relationship between 
stimulus rewards and stimulus choices.

Table 6-1 confirms the existence of this strong rela-
tionship for each of the five training sets. Averaging across 
the 20 perceptrons trained on each of these sets, it reports 
the average number of times that each stimulus was select-
ed for learning by the operant procedure. An inspection of 
Table 6-1 reveals that when a stimulus is associated with a 
higher probability of reward, it is more frequently selected 
for learning by this operant procedure. Table 6-1 also 
reports the actual probability of reward associated with 
each stimulus in a training set and provides the correlation 
between this probability and the average number of times 
that a stimulus is selected for learning. These correlations 
range from about 0.93 to 0.99, indicating that the operant 
perceptrons exhibit a very high degree of probability 
matching with respect to their choices. This is expected 
with this operant learning paradigm.

Table 6-1 also provides the average of the total num-
ber of patterns selected for learning by the perceptrons 
trained on each training set. In Chapter 5, perceptrons 

were trained for 2,500 epochs, and the stochastic nature of 
the training set was achieved by replicating each stimulus 
pattern 40 times. As a result, the Chapter 5 perceptrons 
learned about each of the eight stimulus patterns 100,000 
times. In contrast, as can be seen in the Total Choices row 
of Table 6-1, these operant perceptrons receive much less 
training. Total training ranges from just over 25,000 total 
patterns to just under 29,000 total patterns. In other words, 
these operant perceptrons received only between 25% and 
29% of the total amount of training that was received by 
the nonoperant perceptrons investigated in Chapter 5.

However, this reduction in training does not seem to 
have a negative impact on an operant perceptron’s ability to 
estimate the reward probability associated with each stim-
ulus. Table 6-2 provides the average response of a percep-
tron to each of the eight stimuli for each of the training sets. 
This average is the mean of the responses generated by the 
20 perceptrons trained on each training set. As was the case 
in Chapter 5, Table 6-2 reveals that perceptron responses 
are highly accurate estimates of reward probabilities.

To assess the accuracy of perceptron responses, we 
computed the same measure (R2) to compare actual prob-
abilities to perceptron responses that was used previously 
in Chapter 5. This measure is reported for each training 
set in the final row of Table 6-2. It supports the conclusion 
that the perceptrons were once again excellent probability 
matchers. The worst performance, for Training Set 2, pro-
duces an R2 of 0.860, indicating that perceptron responses 
capture almost 86% of the variance in the expected proba-
bilities. The best performance, for Training Set 1, produces 
an R2 of 0.987, indicating that perceptron responses capture 

Table 6-2. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the different conditionally independent 
three-cue training sets using the increasing returns operant paradigm. 

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean P(R) Mean P(R) Mean P(R) Mean 
Response P(R) Mean

0,0,0 0 0.084 0 0.141 0 0.134 0 0.117 0 0.099

0,0,1 0.4 0.362 0.35 0.341 0.375 0.353 0.4 0.428 0.45 0.441

0,1,0 0.15 0.149 0.175 0.199 0.225 0.240 0.275 0.197 0.15 0.149

0,1,1 0.5 0.521 0.475 0.440 0.55 0.526 0.575 0.580 0.55 0.555

1,0,0 0.15 0.141 0.15 0.180 0.1 0.165 0.075 0.164 0.075 0.110

1,0,1 0.475 0.505 0.45 0.409 0.45 0.409 0.55 0.526 0.475 0.469

1,1,0 0.25 0.239 0.35 0.250 0.375 0.286 0.275 0.267 0.225 0.164

1,1,1 0.675 0.661 0.475 0.512 0.55 0.585 0.625 0.672 0.575 0.583

R2 0.975 R2 0.860 R2 0.906 R2 0.931 R2 0.963

Note. Each mean summarizes the performance of 20 perceptrons. The final row indicates the squared correlation (R2) between the 
eight perceptron responses and the eight probabilities of reward for each of the training sets.
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almost 99% of the variance in the expected probabilities. 
All of the values reported in Table 6-2 are extremely close 
in value to those reported in Table 5-2 for the nonoperant 
perceptrons. To quantify this observation, we performed a 
Welch two-sample t test to compare the 100 R2 values used 
to create the Table 5-2 data for nonoperant perceptrons 
(M value = 0.925) to the compare the 100 R2 values used 
to create the Table 6-2 data for operant perceptrons (M 
value = 0.924). This comparison revealed no statistically 
significant difference, t(197.87) = 0.14636, p = .8838. 

6.2.3 Increasing Returns: Perceptron Structure
Previous work has shown that there exists formal 

equivalence between a perceptron that uses the logistic 
activation function and logistic regression (Schumach-
er et al., 1996). In particular, the weights and bias of a 
multiple cue perceptron represent the same type of odds 
ratios as the coefficients in logistic regression (e.g., 
Equations 4-14, 4-15, and 4-16). In Chapter 5, we took 
advantage of this relationship to confirm that the structure 
of trained perceptrons revealed the expected odds ratios. 
We did so by comparing the components of perceptron 
structure to the coefficients of logistic regressions per-
formed on each of the five training sets (Section 5.2.4). 
We employ this same approach to examine the final 
structure of the operant perceptrons.

Table 6-3 presents the logistic regression coefficients 
for each training set that were presented earlier in Table 
5-3. It also provides the average bias and weights of the 
20 perceptrons that learned about each of the training sets 
using the increasing returns operant paradigm. Finally, 
Table 6-3 offers the squared correlation between the re-
gression coefficients and the perceptron components for 
each training set. Each R2 is over 0.99, demonstrating that 
the operant training led to the same perceptron structure 
predicted by our Chapter 4 formal analysis, and exhibited 
by the nonoperant perceptrons trained on the same stimuli 

in Chapter 5. In short, the reduced amount of training that 
emerges from the increasing returns learning rule leads to 
nearly identical perceptron structure by the end of training.

Of interest, a comparison of the structure of non-
operant and operant perceptrons revealed a statistically 
significant difference. We performed a Welch two-sample 
t test to compare the 100 R2 values used to create the Table 
5-3 data for nonoperant perceptrons (M value = 0.999) to 
the compare the 100 R2 values used to create the Table 
6-3 data for operant perceptrons (M value = 0.994). This 
comparison revealed a statistically significant difference, 
t(103.06) = 11.091, p = 2.2e-16, despite that the two means 
differ by only 0.005. This is because this slight decrease in 
fit was true for almost all the operant perceptrons, and the 
variance of both sets of fit values is very small.

6.2.4 Gambler’s Fallacy: Training
The preceding material in Section 6.2 described sim-

ulations in which perceptrons used an increasing returns 
paradigm to learn about the probability of reward signaled 
by three independent cues. We now turn to a set of simula-
tions that use a different operant paradigm, the one based 
on the gambler’s fallacy. According to this rule, the like-
lihood of choosing to learn about a stimulus is equal to 1 
minus the predicted probability of reward. As a result, the 
perceptron is more likely to choose to learn about patterns 
that are associated with low probabilities of reward. Apart 
from this change in the operant paradigm, the simulations 
described next were performed using exactly the same 
methodology as that described in Section 6.2.1.

6.2.5 Gambler’s Fallacy: Performance
We saw earlier that operant paradigms provide two 

measures related to probability matching: the number of 
times that a stimulus is chosen for learning, and the per-
ceptron’s response to that stimulus at the end of training. 

Table 6-3. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the five 
conditionally independent three-cue training sets. 

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -2.680 -2.397 -2.296 -1.812 -2.381 -1.864 -2.466 -2.026 -2.637 -2.208

w 0.710 0.588 0.569 0.292 0.437 0.239 0.381 0.396 0.295 0.113

w 0.780 0.649 0.701 0.417 1.024 0.710 0.989 0.616 0.730 0.461

w 1.988 1.831 1.397 1.153 1.569 1.258 1.942 1.734 2.177 1.969

R 0.999 R 0.994 R 0.998 R 0.992 R 0.994

Note. All of these perceptrons were trained using the increasing returns operant paradigm. The final row indicates the squared 
correlation (R2) between perceptron structure and logistic regression coefficients.
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Let us consider these two measures for perceptrons trained 
with the gambler’s fallacy paradigm.

Table 6-4 reports the mean number of times that each 
stimulus was selected for learning using the operant pro-
cedure, averaging over the 20 perceptrons trained on each 
training set. An inspection of Table 6-4 reveals, as expected, 
that the gambler’s fallacy paradigm produces a strong neg-
ative correlation between a stimulus’ probability of reward 
and the number of times that it is selected for learning. For 
each of the training sets, the correlation between these two 
measures is extremely high but is in the opposite direction 
of the relationship observed for the other operant paradigm 
(Table 6-1). This shows that when a stimulus is associated 
with a lower probability of reward, it is more frequently 
selected for learning using this operant procedure. These 
correlations range from about −0.92 to −0.99, indicating 
that the operant perceptrons exhibit a very high degree of 
probability matching with respect to their choices. This is 
expected with this operant learning paradigm.

Table 6-4 clearly indicates that the perceptrons 
trained with the gambler’s fallacy operant procedure had 
a very different experience than did those trained accord-
ing to increasing returns. First, the two paradigms led to 
opposite preferences of pattern choice, as indicated by the 
opposite signed correlations when Table 6-4 is compared 
to Table 6-1. Second, the perceptrons trained with the 
gambler’s fallacy operant paradigm chose to learn about 
approximately twice the number of patterns than did the 
perceptrons trained with the other operant procedure. 

Table 6-4 indicates that, on average, these perceptrons 
chose to learn about between 51,000 and 55,000 of the 
total of 100,000 stimuli that they were presented, as 
indicated in the Total Choices row. This is substantially 
larger than the range from 26,000 to 29,000 choices pro-
vided by Table 6-1. In general, this is expected because 
the training sets were designed so that the likelihood of 
not being rewarded (roughly 0.66) is twice the likeli-
hood of being rewarded (roughly 0.33).

Although the different operant procedures led to very 
different choices about patterns to learn, these choices 
produced very similar probability estimates by the end 
of training. Table 6-5 provides the average response of a 
gambler’s fallacy perceptron to each of the eight stimuli 
for each of the training sets. This average is the mean of the 
responses generated by the 20 perceptrons trained on each 
training set. As was the case in Table 6-2, these responses 
are highly accurate estimates of reward probabilities, as 
shown by the goodness of fit measure provided in the bot-
tom row of Table 6-5. The worst performance, for Training 
Set 2, again produces an R2 of 0.860. The best performance, 
for Training Set 1 produces an R2 of 0.987. All the values 
reported in Table 6-5 are extremely close in value to those 
reported for the other operant procedure in Table 6-2.

We quantified this comparison by performing a 
Welch two-sample t test to compare the 100 R2 values used 
to create the Table 5-2 data for nonoperant perceptrons 
(M value = 0.925) to the compare the 100 R2 values used 
to create the Table 6-5 data for operant perceptrons (M 

Table 6-4. The average number of times that a perceptron selected each of the input patterns for learning using the gambler’s fallacy operant 
training paradigm. 

Set 1 Set 2 Set 3 Set 4 Set 5
Probability P(R) Times P(R) Times P(R) Times P(R) Times P(R) Times

P(R|~A~B~C) 0.00 92373.95 0.00 89793.9 0.00 90714.1 0.00 91337.1 0.00 92096.05

P(R|~A~BC) 0.4 64449.7 0.35 69647.7 0.375 67663.6 0.4 60792.2 0.45 59126.1

P(R|~AB~C) 0.15 85815.95 0.175 81829.95 0.225 78046.1 0.275 79731.45 0.15 85827.6

P(R|~ABC) 0.5 47410.2 0.475 53923 0.55 43025.55 0.575 36493.7 0.55 42752.2

P(R|A~B~C) 0.15 86638.2 0.15 83572 0.1 86118.35 0.075 87893.05 0.075 90120.55

P(R|A~BC) 0.475 49151.75 0.45 56908.4 0.45 56877.95 0.55 51580.2 0.475 52928.4

P(R|AB~C) 0.25 76395.2 0.35 72201.3 0.375 69164.75 0.275 73021.45 0.225 82493.75

P(R|ABC) 0.675 32563.5 0.475 40206.9 0.55 32321.9 0.625 28319.1 0.575 36803.2

Total Choices 534798.5 548083.2 523932.3 509168.3 542147.9
Correlation -0.986 -0.923 -0.945 -0.962 0.982

Note. Each average is the mean of 20 perceptrons. The table also provides the probability of reward for each of the patterns in each 
of the five training sets. The second-to-last row provides the average number of total choices made (from 100,000 presentations) for 
each training set. The bottom row provides the correlation between the probability of reward and the average number of times each 
pattern was chosen for each of the training sets.
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value = 0.920). This comparison revealed no statistically 
significant difference, t(197.54) = 0.86644, p = .3873.

6.2.6 Gambler’s Fallacy: Perceptron Structure
Given the high degree of similarity between the per-

ceptron responses provided in Tables 6-2 and 6-5, it would 
be expected that both types of operant training led to 
perceptrons with very similar structures. To examine this 
prediction we compared the structure of each perceptron 
(its weights and bias) to the logistic regression coefficients 
for each training sets. The results of this comparison are 
provided in Table 6-6. It provides the average bias and 
weights of the 20 perceptrons that learned about each 
training set using the gambler’s fallacy paradigm. The 
squared correlations at the bottom of Table 6-6 are each 
over 0.99, demonstrating that the operant training led to 
the same perceptron structure predicted by our Chapter 4 
formal analysis, exhibited by the nonoperant perceptrons 

trained on the same stimuli in Chapter 5, and exhibited 
by the other operant perceptrons described earlier in 
Section 6.2. In short, although the gambler’s fallacy op-
erant paradigm led to a very different kind of training (in 
terms of pattern choices) than did the increasing returns 
paradigm, the two operant paradigms zroduced percep-
trons of nearly identical structure, and which generated 
nearly identical probability estimates.

However, a comparison of the structure of nonoperant 
and operant perceptrons reveals a statistically significant 
difference. We performed a Welch two-sample t test to 
compare the 100 R2 values used to create the Table 5-3 data 
for nonoperant perceptrons (M value = 0.999) to the com-
pare the 100 R2 values used to create the Table 6-6 data for 
operant perceptrons (M value = 0.9994). This comparison 
revealed a statistically significant difference, t(189.38) = 
−5.9896, p = 1.038e-08, despite that the two means differ 

Table 6-5. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the different conditionally independent 
three-cue training sets using the gambler’s fallacy operant paradigm. 

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response

0,0,0 0 0.084 0 0.141 0 0.134 0 0.117 0 0.099

0,0,1 0.4 0.362 0.35 0.341 0.375 0.353 0.4 0.428 0.45 0.441

0,1,0 0.15 0.149 0.175 0.199 0.225 0.240 0.275 0.197 0.15 0.149

0,1,1 0.5 0.521 0.475 0.440 0.55 0.526 0.575 0.580 0.55 0.555

1,0,0 0.15 0.141 0.15 0.180 0.1 0.165 0.075 0.164 0.075 0.110

1,0,1 0.475 0.505 0.45 0.409 0.45 0.409 0.55 0.526 0.475 0.469

1,1,0 0.25 0.239 0.35 0.250 0.375 0.286 0.275 0.267 0.225 0.164

1,1,1 0.675 0.661 0.475 0.512 0.55 0.585 0.625 0.672 0.575 0.583

R2 0.975 R2 0.860 R2 0.906 R2 0.931 R2 0.963

Note. Each mean summarizes the performance of 20 perceptrons. The final row indicates the squared correlation (R2) between the 
eight perceptron responses and the eight probabilities of reward for each of the training sets.

Table 6-6. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the five 
conditionally independent three-cue training sets. 

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -2.680 -2.524 -2.296 -2.196 -2.381 -2.302 -2.466 -2.383 -2.637 -2.499

w 0.710 0.643 0.569 0.571 0.437 0.473 0.381 0.392 0.295 0.261

w 0.780 0.681 0.701 0.700 1.024 1.052 0.989 1.004 0.730 0.682

w 1.988 1.930 1.397 1.381 1.569 1.573 1.942 1.930 2.177 2.111

R2 0.999 R2 1.000 R2 1.000 R2 1.000 R2 1.000

Note. All these perceptrons were trained with the gambler’s fallacy paradigm. The final row indicates the squared correlation (R2) 
between perceptron structure and logistic regression coefficients.
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by 0.0004. In this case, the operant perceptrons revealed 
a small but reliable (and statistically significant) improve-
ment in fit in comparison to the nonoperant networks.

6.3 Operant Learning: High-Reward AND
Section 6.2 described how two operant paradigms, 

one based on increasing returns and another based on the 
gambler’s fallacy, performed on a probabilistic discrim-
ination task in which three independent cues signaled a 
probability of reward. The next four sections of Chapter 6 
investigate how learning for the four conditions involving 
an interaction between cues is accomplished by the two 
operant paradigms. This is of particular interest because we 
saw in Chapter 5 that the ability of perceptrons to estimate 
probabilities decreased when the conditional dependence 
in the training set increased. As both operant paradigms 
rely on a perceptron’s changing estimates of reward prob-
ability, it is important to determine whether either of these 
paradigms is useful when the signals from cues interact. 
Section 6.3 begins by considering operant learning when 
the training set uses the AND of Cues B and C to signal a 
probability of reward, and the probability of reward is high, 
leading to an increased amount of conditional dependence.

6.3.1 Architecture, Training Sets, and Training
The methodology used to collect the results detailed 

next parallels that described in Section 6.2. All the per-
ceptrons consisted of three input units and one logistic 
output unit. Perceptrons were trained on one of the five 

High-Reward AND training sets that were originally 
introduced in Section 5.3.1. These training sets were 
stochastically constructed so that the presence of Cue A 
signaled a reward probability of 0.48, and the AND of 
Cues B and C signaled a reward probability of 0.48. The 
properties of the five training sets were introduced ear-
lier in Table 5-4. All perceptrons were trained using the 
same parameters that were used throughout Chapter 5 as 
well as earlier in the current chapter. Connection weights 
were randomly initialized in the range from −0.1 to 0.1, 
the output unit bias was initialized to 0, and the learning 
rate was 0.05. Each network was trained for 2,500 epochs 
using the gradient descent rule, with each epoch involving 
the presentation of 320 stimuli in a random order. One 
hundred networks (20 for each training set) were trained 
using the increasing returns operant paradigm. Another 
100 networks (20 for each training set) were trained using 
the gambler’s fallacy operant paradigm.

6.3.2 Increasing Returns: Performance
Let us begin by discussing the performance of 

perceptrons that were trained on the High-Reward AND 
problem using the increasing returns operant paradigm. 
Averaging across the 20 perceptrons trained on each of the 
five training sets, Table 6-7 reports the mean number of 
times that each stimulus was selected for learning by this 
operant procedure. An inspection of Table 6-7 reveals that 
when a stimulus is associated with a higher probability of 
reward, it is more frequently selected for learning using 
this operant procedure. Table 6-7 also reports the actual 

Table 6-7. The average number of times that a perceptron selected each of the input patterns for learning using the increasing returns operant training 
paradigm when learning the High

Set 1 Set 2 Set 3 Set 4 Set 5
Probability P(R) Times P(R) Times P(R) Times P(R) Times P(R) Times

P(R|~A~B~C) 0 9313.2 0 5832.45 0 6571.1 0 6822.3 0 9719.7

P(R|~A~BC) 0 20303.5 0 14916.8 0 15903.65 0 15368.6 0 19946.6

P(R|~AB~C) 0 16032.55 0 16817.1 0 16873.3 0 16375.95 0 19896.1

P(R|~ABC) 0.475 32229.5 0.45 36926.8 0.45 35677.4 0.425 33088.35 0.525 36585.3

P(R|A~B~C) 0.5 35567.2 0.45 21976.4 0.425 23956.05 0.425 29198.75 0.475 32462.6

P(R|A~BC) 0.55 58020.8 0.4 45025 0.425 46366.05 0.475 51080.6 0.500 52645.6

P(R|AB~C) 0.45 50812.15 0.45 48625.7 0.45 48064.2 0.5 52910.2 0.500 52647.75

P(R|ABC) 0.725 72011.6 0.75 73343.3 0.725 71723.05 0.75 73874.15 0.700 71969.65

Total Choices 294290.5 263463.6 265134.8 278718.9 295873.3
Correlation 0.910 0.894 0.909 0.939 0.897

Note. Each average is the mean of 20 perceptrons. The table also provides the probability of reward for each of the patterns in each 
of the five training sets. The second-to-last row provides the average number of total choices made (from 100,000 presentations) for 
each training set. The bottom row provides the correlation between the probability of reward and the average number of times each 
pattern was chosen for each of the training sets.



109

Volume 15, 2022

PROBABILITY LEARNING  BY PERCEPTRONS AND PEOPLE

probability of reward associated with each stimulus in 
a training set and provides the correlation between this 
probability and the average number of times that a stimu-
lus is selected for learning. These correlations range from 
about 0.89 to 0.94, indicating that the operant perceptrons 
exhibit a very high degree of probability matching with 
respect to their choice behavior. This is as expected with 
this operant learning paradigm. However, the correlations 
in Table 6-7 are slightly lower than those reported in Table 
6-1, indicating that for this training set, although the net-
works were accurate probability matchers, this accuracy 
was slightly less than was observed when all three cues 
were independent signals of reward.

Table 6-7 also provides the average of the total num-
ber of patterns selected for learning by the 20 perceptrons 
trained on each training set. As can be seen in the Total 
Choices row of Table 6-7, these operant perceptrons re-
ceived less training than did the nonoperant perceptrons in 
Chapter 5, which were trained on 100,000 stimuli. Table 
6-7 shows that the total amount of training ranged from 
just over 26,000 total patterns to just under 30,000 total 
patterns. This is a similar range to that reported for the 
independent cue perceptrons in Table 6-1.

Table 6-8 provides the average response (after 
training is complete) of perceptrons to each of the eight 
stimulus types for each training set. Each average is 
the mean of the responses generated by the 20 percep-
trons trained on the same training set.

The results reported in Table 6-8 indicate, on one 
hand, strong relationships between perceptron responses 
and the actual probabilities of reward. For instance, the 
worst performance (Training Set 2) produces an R2 of 

0.797. The best performance, for Training Set 4, produces 
an R2 of 0.938. The results in this table seem very similar 
to those for nonoperant perceptrons trained on the same 
problems (Table 5-5). We performed a Welch two-sample 
t test to compare the 100 R2 values used to create the 
Table 5-5 data for nonoperant perceptrons (M value = 
0.823) to the 100 R2 values used to create the Table 6-8 
data for operant perceptrons (M value = 0.824). This 
comparison revealed no statistically significant differ-
ence, t(196.04) = −0.30199, p = .763.

Given this result, the structure of these operant per-
ceptrons should be similar to that of nonoperant percep-
trons and should be strongly related to logistic regression 
coefficients. Table 6-9 presents the logistic regression co-
efficients for each training set, as well as the average bias 
and weights of the 20 perceptrons that learned about each 
of the training sets using the increasing returns operant 
paradigm. The final row of Table 6-9 provides the mean 
squared correlation between the regression coefficients 
and the perceptron components for each training set. Each 
R2 is over 0.99, demonstrating that the operant training led 
to the same perceptron structure predicted by our Chapter 
4 formal analysis and exhibited by the nonoperant percep-
trons trained on the same stimuli in Chapter 5.

A comparison of the fit of the structure of nonoperant 
and operant perceptrons to regression coefficients revealed 
a statistically significant difference. We performed a Welch 
two-sample t test to compare the 100 R2 values used to cre-
ate the Table 5-6 data for nonoperant perceptrons (M value 
= 0.999) to the compare the 100 R2 values used to create 
the Table 6-9 data for operant perceptrons (M value = 
0.992). This comparison revealed a statistically significant 

Table 6-8. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the different High

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response

0,0,0 0.000 0.089 0.000 0.053 0.000 0.061 0.000 0.065 0.000 0.095

0,0,1 0.000 0.198 0.000 0.147 0.000 0.158 0.000 0.155 0.000 0.201

0,1,0 0.000 0.156 0.000 0.162 0.000 0.164 0.000 0.164 0.000 0.203

0,1,1 0.475 0.318 0.450 0.374 0.450 0.361 0.425 0.343 0.525 0.377

1,0,0 0.500 0.353 0.450 0.211 0.425 0.234 0.425 0.287 0.475 0.322

1,0,1 0.550 0.578 0.400 0.453 0.425 0.468 0.475 0.515 0.500 0.531

1,1,0 0.450 0.507 0.450 0.481 0.450 0.479 0.500 0.532 0.500 0.535

1,1,1 0.725 0.720 0.750 0.741 0.725 0.725 0.750 0.750 0.700 0.732

R2 0.828 R2 0.797 R2 0.824 R2 0.881 R2 0.804

Note. Each mean summarizes the performance of 20 perceptrons. The final row indicates the squared correlation (R2) between the 
eight perceptron responses and the eight probabilities of reward for each of the training sets.



110

PROBABILITY LEARNING BY PERCEPTRONS AND PEOPLE

Michael R.W. Dawson

difference, t(99.288) = 9.4554, p = 1.646e-15, despite that 
the two means differ only by 0.007. It appears that the 
operant procedure leads reliably to a slightly poorer fit to 
the odds ratios, even though this fit still accounts for over 
99% of the variance of the regression coefficients.

6.3.3 Gambler’s Fallacy: Performance
Section 6.3.2 described the performance of percep-

trons on the High-Reward AND problem when the increas-
ing returns paradigm was employed. Let us now consider 
the performance of perceptrons that were trained on the 
same problem using the gambler’s fallacy procedure.

Table 6-10 reports the mean number of times that 
each stimulus was selected for learning using the gam-
bler’s fallacy operant paradigm, averaging over the 20 
perceptrons trained on each training set. An inspection 

of Table 6-10 reveals the expected strong negative cor-
relation between a stimulus’ probability of reward and 
the number of times that it is selected for learning. For 
each of the training sets, the correlation between these two 
measures is very high but is in the opposite direction of 
the relationship observed for the other operant paradigm 
(Table 6-7). This shows that when a stimulus is associated 
with a lower probability of reward, it is more frequently 
selected for learning using this operant procedure. These 
correlations range from about −0.89 to −0.93.

Table 6-10 indicates that the perceptrons trained with 
the gambler’s fallacy operant paradigm once again chose 
to learn about approximately twice the number of patterns 
than did the perceptrons trained with the increasing returns 
procedure. Table 6-10 indicates that, on average, these per-

Table 6-9. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the 
five High

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -3.318 -2.323 -3.525 -2.888 -3.523 -2.735 -3.630 -2.670 -3.264 -2.250

w 2.484 1.715 2.388 1.567 2.357 1.552 2.585 1.755 2.322 1.507

w 0.942 0.634 1.271 1.243 1.233 1.108 1.261 1.043 1.144 0.882

w 1.242 0.922 1.120 1.130 1.157 1.060 1.183 0.973 1.144 0.866

R2 1.000 R2 0.983 R2 0.990 R2 0.996 R2 0.997

Note. All these perceptrons were trained using the increasing returns operant paradigm. The final row indicates the average squared 
correlation (R2) between perceptron structure and logistic regression coefficients.

Table 6-10. The average number of times that a perceptron selected each of the input patterns for learning using the gambler’s fallacy operant 
training paradigm.

Set 1 Set 2 Set 3 Set 4 Set 5
Probability Times P(R) Times P(R) Times P(R) Times P(R) Times P(R)

P(R|~A~B~C) 0 95632 0 95385.25 0 95639.95 0 96160.3 0 96020.35

P(R|~A~BC) 0 85966.4 0 88652.3 0 88450.8 0 89239.15 0 87100.15

P(R|~AB~C) 0 89209.9 0 87057.5 0 87616.65 0 88484.9 0 87116.35

P(R|~ABC) 0.475 69405.3 0.45 71486.75 0.45 70810.05 0.425 71347.3 0.525 64997.65

P(R|A~B~C) 0.5 65924 0.45 72065.2 0.425 73222.9 0.425 70652.85 0.475 68754.55

P(R|A~BC) 0.55 34559 0.4 48861.7 0.425 48164.65 0.475 43541.45 0.5 37516.2

P(R|AB~C) 0.45 41562.65 0.45 45172.5 0.45 46282.25 0.5 41784.85 0.5 37500.1

P(R|ABC) 0.725 16474.15 0.75 23519.15 0.725 22863.3 0.75 18883.8 0.7 14278.9

Total Choices 498733.4 532200.4 533050.6 520094.6 493284.3
Correlation -0.901 -0.898 -0.906 -0.932 -0.889

Note. Each average is the mean of 20 perceptrons. The table also provides the probability of reward for each of the patterns in each 
of the five training sets. The second-to-last row provides the average number of total choices made (from 100,000 presentations) for 
each training set. The bottom row provides the correlation between the probability of reward and the average number of times each 
pattern was chosen for each of the training sets.  
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ceptrons chose to learn about between 50,000 and 53,000 
of the total of 100,000 stimuli that they were presented, as 
indicated in the Total Choices row.

Although the different operant procedures produced 
very different choice behavior, these choices led to very 
similar probability estimates by the end of training. Table 
6-11 provides the average response of a perceptron to 
each of the eight stimulus types for each training set. This 
average is the mean of the responses generated by the 20 
perceptrons trained on the same training set. As was the 
case in Table 6-8, these responses are highly accurate es-
timates of reward probabilities, as shown by the measure 
of goodness of fit provided in the bottom row of Table 
6-11. The worst performance, for Training Set 5, pro-
duces an R2 of 0.792. The best performance for Training 
Set 4 produces an R2 of 0.871. All the values reported in  
Table 6-11 are extremely close in value to those reported 
for the other operant procedure in Table 6-8.

We quantified this comparison by performing a 
Welch two-sample t test to compare the 100 R2 values used 
to create the Table 6-8 data for increasing returns percep-
trons (M value = 0.824) to the compare the 100 R2 values 
used to create the Table 6-11 data for gambler’s fallacy 
perceptrons (M value = 0.819). This comparison revealed 
no statistically significant difference, t(196.33) = 1.2073, 
p = .2288. A similar test was performed to compare the 
performance of these perceptrons to the nonoperant per-
ceptrons whose performance was summarized in Table 
5-5 of Chapter 5. There was no statistically significant 
difference between the performance of the nonoperant and 
operant perceptrons, t(197.99) = 0.95501, p = .3407.

Finally, let us consider the structure of these per-
ceptrons. Table 6-12 presents the logistic regression 
coefficients for each training set, as well as the average 
bias and weights of the 20 perceptrons that learned about 
each of the training sets using the gambler’s fallacy 
paradigm. The final row of Table 6-12 provides the mean 

Table 6-11. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the different conditionally independent 
three-cue training sets using the gambler’s fallacy operant paradigm.  

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response

0,0,0 0.000 0.040 0.000 0.044 0.000 0.041 0.000 0.036 0.000 0.037

0,0,1 0.000 0.137 0.000 0.113 0.000 0.113 0.000 0.106 0.000 0.128

0,1,0 0.000 0.104 0.000 0.126 0.000 0.120 0.000 0.115 0.000 0.128

0,1,1 0.475 0.305 0.450 0.287 0.450 0.289 0.425 0.292 0.525 0.359

1,0,0 0.500 0.339 0.450 0.277 0.425 0.268 0.425 0.300 0.475 0.313

1,0,1 0.550 0.659 0.400 0.515 0.425 0.521 0.475 0.575 0.500 0.632

1,1,0 0.450 0.585 0.450 0.547 0.450 0.539 0.500 0.598 0.500 0.634

1,1,1 0.725 0.841 0.750 0.770 0.725 0.776 0.750 0.824 0.700 0.867

R2 0.811 R2 0.806 R2 0.821 R2 0.871 R2 0.792

Note. Each mean summarizes the performance of 20 perceptrons. The final row indicates the squared correlation (R2) between the 
eight perceptron responses and the eight probabilities of reward for each of the training sets.

Table 6-12. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the five High

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -3.318 -3.171 -3.525 -3.089 -3.523 -3.156 -3.630 -3.289 -3.264 -3.258

w 2.484 2.501 2.388 2.126 2.357 2.149 2.585 2.439 2.322 2.468

w 0.942 1.013 1.271 1.154 1.233 1.164 1.261 1.249 1.144 1.341

w 1.242 1.330 1.120 1.022 1.157 1.089 1.183 1.154 1.144 1.335

R2 1.000 R2 1.000 R2 1.000 R2 1.000 R2 1.000

Note. All these perceptrons were trained using the gambler’s fallacy operant paradigm. The final row indicates the average squared 
correlation (R2) between perceptron structure and logistic regression coefficients.
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squared correlation between the regression coefficients 
and the perceptron components for each training set. Each 
R2 is over 0.99, demonstrating that the operant training 
led to the same perceptron structure predicted by our 
Chapter 4 formal analysis, exhibited by the nonoperant 
perceptrons trained on the same stimuli in Chapter 5, and 
revealed in our analysis of the increasing returns percep-
trons described earlier in this chapter.

A comparison of the fit of the structure of nonoperant 
and operant perceptrons to regression coefficients revealed 
a statistically significant difference. We performed a Welch 
two-sample t test to compare the 100 R2 values used to cre-
ate the Table 5-6 data for nonoperant perceptrons (M value 
= 0.999) to the compare the 100 R2 values used to create 
the Table 6-12 data for operant perceptrons (M value = 
0.999). This comparison revealed a no statistically signifi-
cant difference, t(196.04) = −0.53181, p = .5955. A second 
comparison of the R2 measure of fit for the gambler’s falla-
cy networks to the same measure for the increasing returns 
perceptrons did reveal a statistically significant difference, 
t(99.352) = −9.484, p = 1.417e-15. This indicates that the 
fits provided in Table 6-12 are better than those provided 
in Table 6-9. However, there is little to be made of this 
difference, as both models provide near perfect fits, and 
the difference between these two means is a mere 0.007.

6.4 Operant Learning: High-Reward XOR
Section 5.8 described the four training sets involving 

interactions between Cues B and C as representing the 
four cells of a 2×2 factorial design that crossed the logical 
nature of the interaction (linearly separable AND versus 
linearly nonseparable XOR) with the degree of conditional 
dependence between the interacting cues (high reward vs. 
low reward). The results just presented in Section 6.3 are 
related to one cell in this design. The current section is con-
cerned with another cell, involving training sets that have 
a high reward associated with the XOR of Cues B and C.

6.4.1 Architecture, Training Sets, and Training
The methodology used to collect the results detailed 

next parallels that described in Sections 6.2 and 6.3. All 
the perceptrons consisted of three input units and one 
logistic output unit. Perceptrons were trained on one of 
the five High-Reward XOR training sets that were origi-
nally introduced in Section 5.4.1. These training sets were 
stochastically constructed so that the presence of Cue A 
signaled a reward probability of 0.37, and the XOR of 
Cues B and C signaled a reward probability of 0.36. The 
properties of the five training sets that were constructed 
were introduced earlier in Table 5-7. All perceptrons were 

trained using the same parameters that were used through-
out Chapter 5 as well as earlier in the current chapter. 
Connection weights were randomly initialized in the range 
from −0.1 to 0.1, the output unit bias was initialized to 0, 
and the learning rate was 0.05. Each network was trained 
for 2,500 epochs using the gradient descent rule, with 
each epoch involving the presentation of 320 stimuli in a 
random order. One hundred networks (20 for each training 
set) were trained using the increasing returns paradigm. 
Another 100 networks (20 for each training set) were 
trained using the gambler’s fallacy paradigm.

6.4.2 Increasing Returns: Performance
Let us begin by discussing the performance of 

perceptrons that were trained on the High-Reward XOR 
problem using the increasing returns paradigm. Averaging 
across the 20 perceptrons trained on each of these sets, 
Table 6-13 reports the mean number of times that each 
stimulus was selected for learning using this operant pro-
cedure. An inspection of Table 6-13 reveals that when a 
stimulus is associated with a higher probability of reward 
it is more frequently selected for learning. Table 6-13 also 
reports the actual probability of reward associated with 
each stimulus in a training set and provides the correlation 
between this probability and the average number of times 
that a stimulus is selected for learning. These correlations 
range from about 0.67 to 0.77, indicating that the operant 
perceptrons exhibit a strong degree of probability match-
ing with respect to their choices but not as high as was 
seen with this same operant technique in the previous 
two sections. This is not surprising, because the results in 
Chapter 5 lead us to expect that probability matching will 
not be as accurate for these particular training sets.

Table 6-13 also provides the average of the total num-
ber of patterns selected for learning by the 20 perceptrons 
trained on each training set. As can be seen in the Total 
Choices row of Table 6-13, these operant perceptrons 
received less training than did the nonoperant perceptrons 
in Chapter 5, which were trained on 100,000 stimuli. Table 
6-13 shows that the total amount of training ranged from 
about 25,000 total patterns to about 29,000 total patterns. 
This is a similar range to that observed in Tables 6-1 and 6-7.

Table 6-14 provides the average response (after 
training is complete) of a perceptron to each of the eight 
stimulus types for each of the training sets. This average 
is the mean of the responses generated by the 20 per-
ceptrons trained on each training set.

A comparison between different stimulus conditions 
in our 2×2 factorial design is presented later in this chapter 
once results for each condition have been presented. For 
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the time being, let us simply compare the performance 
summarized in Table 6-14 to the nonoperant perceptrons 
trained on the same patterns, whose performance was sum-
marized in the previous chapter in Table 5-8. We performed 
a Welch two-sample t test to compare the 100 R2 values 
used to create the Table 5-8 data for nonoperant percep-
trons (M value = 0.525) to the 100 R2 values used to create 
the Table 6-14 data for increasing returns perceptrons (M 

value = 0.521). This comparison revealed no statistically 
significant difference, t(197.63) = 0.57492, p = .566.

Given this result, the structure of these operant 
perceptrons should comprise the same odds ratios used by 
logistic regression to map cue patterns onto the likelihood 
of reward, and discovered inside the perceptrons described 
in Chapter 5. Table 6-15 presents the logistic regression 
coefficients for each training set, as well as the average bias 
and weights of the 20 perceptrons that learned about each 

Table 6-13. The average number of times that a perceptron selected each of the input patterns for learning using the increasing returns operant training 
paradigm when learning the High

Set 1 Set 2 Set 3 Set 4 Set 5

Probability P(R) Times 
Chosen P(R) Times 

Chosen P(R) Times 
Chosen P(R) Times 

Chosen P(R) Times 
Chosen

P(R|~A~B~C) 0 18807.75 0 17257.9 0 20166.8 0 16046.65 0 16704.15

P(R|~A~BC) 0.4 15581.75 0.35 13583.65 0.35 20094.35 0.325 17816.6 0.325 17135.45

P(R|~AB~C) 0.35 21344.3 0.35 21569.8 0.45 20163.4 0.35 16029.2 0.375 17999.65

P(R|~ABC) 0 17707 0 17106 0 20008.85 0 17749.65 0 18483

P(R|A~B~C) 0.4 50489.45 0.325 44991.15 0.425 53049.35 0.35 50080.95 0.4 49496.85

P(R|A~BC) 0.575 44788.95 0.55 37956.3 0.65 52801.25 0.675 53109.2 0.6 50230.25

P(R|AB~C) 0.65 54358.15 0.625 51844.4 0.625 52916.65 0.65 49949.35 0.6 51662.65

P(R|ABC) 0.375 48674.8 0.325 44738.45 0.425 52817.8 0.4 53066.15 0.45 52608.45

Total Choices 271752.2 249047.7 292018.5 273847.8 274320.5
Correlation 0.707 0.671 0.715 0.744 0.772

Note. Each average is the mean of 20 perceptrons. The table also provides the probability of reward for each of the patterns in 
each of the five training sets. The second-to-last row provides the average number of total choices made (from 100,000 different 
presentations) for each training set. The bottom row provides the correlation between the probability of reward and the average 
number of times each pattern was chosen for each of the training sets.

Table 6-14. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the different High

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response

0,0,0 0.000 0.189 0.000 0.171 0.000 0.198 0.000 0.158 0.000 0.162

0,0,1 0.400 0.156 0.350 0.135 0.350 0.198 0.325 0.177 0.325 0.164

0,1,0 0.350 0.216 0.350 0.212 0.450 0.193 0.350 0.158 0.375 0.174

0,1,1 0.000 0.179 0.000 0.170 0.000 0.192 0.000 0.176 0.000 0.176

1,0,0 0.400 0.507 0.325 0.453 0.425 0.527 0.350 0.503 0.400 0.491

1,0,1 0.575 0.448 0.550 0.386 0.650 0.526 0.675 0.536 0.600 0.494

1,1,0 0.650 0.548 0.625 0.519 0.625 0.518 0.650 0.502 0.600 0.512

1,1,1 0.375 0.489 0.325 0.451 0.425 0.518 0.400 0.535 0.450 0.516

R2 0.498 R2 0.452 R2 0.509 R2 0.554 R2 0.597

Note. Each mean summarizes the performance of 20 perceptrons. The final row indicates the squared correlation (R2) between the 
eight perceptron responses and the eight probabilities of reward for each of the training sets.The results reported in Table 6-14 
indicate much weaker relationships between perceptron responses and the actual probabilities of reward than were observed in 
Tables 6-2 or 6-8. For instance, the worst performance (Training Set 2) produces an R2 of only 0.452. The best performance, for 
Training Set 5, produces a relatively small R2 of 0.597. This level of performance is noticeably poorer than that observed for either 
the independent cue training sets or the High-Reward AND training sets. 
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of the training sets using the increasing returns operant 
paradigm. The final row of Table 6-9 provides the mean 
squared correlation between the regression coefficients 
and the perceptron components for each training set. Each 
R2 is over 0.98, demonstrating that the operant training led 
to the same perceptron structure predicted by our Chapter 
4 formal analysis, and exhibited by the nonoperant percep-
trons trained on the same stimuli in Chapter 5.

A comparison of the fit of the structure of nonoperant 
and operant perceptrons to regression coefficients revealed 
a statistically significant difference. We performed a 
Welch two-sample t test to compare the 100 R2 values used 
to create the Table 5-10 data for nonoperant perceptrons 
(M value = 0.999) to the compare the 100 R2 values used 
to create the Table 6-9 data for operant perceptrons (M 

value = 0.992). This comparison revealed a statistically 
significant difference, t(99.774) = 8.5717, p = 1.338e-13, 
despite that the two means only differ by 0.007.

6.4.3 Gambler’s Fallacy: Performance
Let us now consider the performance of the other 

perceptrons that were trained on the same problem using 
the gambler’s fallacy procedure. Table 6-16 reports the 
mean number of times that each stimulus was selected for 
learning using the gambler’s fallacy operant paradigm, 
averaging over the 20 perceptrons trained on each training 
set it. An inspection of Table 6-16 reveals the expected 
negative correlation between a stimulus’s probability 
of reward and the number of times that it is selected for 
learning. For each of the training sets, the correlation 
between these two measures is moderately high but is in 

Table 6-15. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the 
five High

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -1.436 -1.457 -1.552 -1.583 -1.388 -1.399 -1.659 -1.671 -1.615 -1.646

w 1.467 1.483 1.376 1.393 1.513 1.508 1.670 1.684 1.602 1.608

w 0.000 0.165 0.096 0.268 0.092 -0.035 0.064 -0.006 0.160 0.087

w -0.062 -0.236 -0.096 -0.273 -0.092 -0.003 0.064 0.133 0.000 0.015

R2 0.987 R2 0.987 R2 0.994 R2 0.998 R2 0.999

Note. All these perceptrons were trained using the increasing returns operant paradigm. The final row indicates the average squared 
correlation (R2) between perceptron structure and logistic regression coefficients.

Table 6-16. The average number of times that a perceptron selected each of the input patterns for learning using the gambler’s fallacy operant training paradigm. 

Set 1 Set 2 Set 3 Set 4 Set 5

Probability P(R) Times 
Chosen P(R) Times 

Chosen P(R) Times 
Chosen P(R) Times 

Chosen P(R) Times 
Chosen

P(R|~A~B~C) 0 80752.7 0 82444.95 0 79877.9 0 83967.4 0 83270.45

P(R|~A~BC) 0.4 81786.05 0.35 84001.2 0.35 81594.05 0.325 83075.6 0.325 83461.15

P(R|~AB~C) 0.35 80710 0.35 80959.6 0.45 78189.55 0.35 83168.55 0.375 81452.35

P(R|~ABC) 0 81639.05 0 82516.25 0 79911.5 0 82203.7 0 81552.2

P(R|A~B~C) 0.4 49149.4 0.325 54219.55 0.425 46519.95 0.35 49447.45 0.4 50008.95

P(R|A~BC) 0.575 50741 0.55 57020.25 0.65 49250 0.675 47930.6 0.6 50281.5

P(R|AB~C) 0.65 49063.3 0.625 51684.6 0.625 43929.05 0.65 48096.25 0.6 46925.25

P(R|ABC) 0.375 50649.85 0.325 54359.6 0.425 46537.6 0.4 46330.8 0.45 47083.25

Total Choices 524491.4 547206 505809.6 524220.4 524035.1
Correlation -0.707 -0.674 -0.714 -0.743 -0.772

Note. Each average is the mean of 20 perceptrons. The table also provides the probability of reward for each of the patterns in each 
of the five training sets. The second-to-last row provides the average number of total choices made (from 100,000 presentations) for 
each training set. The bottom row provides the correlation between the probability of reward and the average number of times each 
pattern was chosen for each of the training sets.
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the opposite direction of the relationship observed for the 
other operant paradigm (Table 6-13).

The perceptrons trained with the gambler’s fallacy 
paradigm once again chose to learn about approximate-
ly twice the number of patterns in comparison to the 
perceptrons trained with the other operant procedure. 
Table 6-16 indicates that on average these perceptrons 
chose to learn about between 52,000 and 55,000 of the 
total of 100,000 stimuli that they were presented, as 
indicated in the Total Choices row.

Table 6-17 provides the average response of a per-
ceptron to each of the eight stimuli for each of the training 
sets. This average is the mean of the responses generated 
by the 20 perceptrons trained on each training set. As was 
the case in Table 6-14, these responses are less accurate 
estimates of reward probabilities, as shown by the bottom 
row of Table 6-17. The worst performance, for Training 
Set 2, produces an R2 of .456, indicating that perceptron 
responses capture less than half of the variance in the 
expected probabilities. The best performance, for Training 
Set 5, produces an R2 of .597, indicating that perceptron 
responses capture just under 60% of the variance in the 
expected probabilities. All of the values reported in Table 
6-17 are extremely close in value to those reported for the 
other operant procedure in Table 6-14.

We performed a Welch two-sample t test to compare 
the 100 R2 values used to create the Table 6-14 data for in-
creasing returns perceptrons (M value = 0.521) to the 100 
R2 values used to create the Table 6-17 data for gambler’s 
fallacy perceptrons (M value = 0.523). This comparison 
revealed no statistically significant difference, t(197.76) 
= −0.41847, p = .6761). A similar test was performed 

to compare the performance of the gambler’s fallacy 
perceptrons to the nonoperant perceptrons whose perfor-
mance was summarized in Table 5-8 of Chapter 5. This 
comparison also did not reveal a statistically significant 
difference, t(197.99) = 0.15763, p = .8749.

Finally, let us consider the structure of these per-
ceptrons. Table 6-18 presents the logistic regression 
coefficients for each training set, as well as the average 
bias and weights of the 20 perceptrons that learned about 
each of the training sets using the increasing returns 
paradigm. The final row of Table 6-18 provides the mean 
squared correlation between the regression coefficients 
and the perceptron components for each training set. 
Each R2 is 1.00, demonstrating that the operant training 
led to the same perceptron structure predicted by our 
Chapter 4 formal analysis, exhibited by the nonoperant 
perceptrons trained on the same stimuli in Chapter 5, and 
revealed in our analysis of the increasing returns percep-
trons described earlier in this chapter.

A comparison of the fit of the structure of nonop-
erant and operant perceptrons to regression coefficients 
revealed a statistically significant difference. We per-
formed a Welch two-sample t test to compare the 100 R2 
values used to create the Table 5-9 data for nonoperant 
perceptrons (M value = 0.999) to the compare the 100 
R2 values used to create the Table 6-18 data for operant 
perceptrons (M value = 0.998). This comparison revealed 
a statistically significant difference, t(151.53) = 3.4378, 
p = .0007575. A comparison of these fits to the regres-
sion model to those observed for the increasing returns 
perceptrons did reveal a statistically significant difference, 
t(101.7) = −8.0786, p = 1.403e-12, that indicates that the 

Table 6-17. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the different High

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response

0,0,0 0.000 0.191 0.000 0.174 0.000 0.198 0.000 0.160 0.000 0.162

0,0,1 0.400 0.180 0.350 0.160 0.350 0.184 0.325 0.169 0.325 0.164

0,1,0 0.350 0.195 0.350 0.193 0.450 0.216 0.350 0.170 0.375 0.181

0,1,1 0.000 0.184 0.000 0.178 0.000 0.200 0.000 0.180 0.000 0.183

1,0,0 0.400 0.509 0.325 0.458 0.425 0.531 0.350 0.512 0.400 0.490

1,0,1 0.575 0.491 0.550 0.434 0.650 0.508 0.675 0.529 0.600 0.493

1,1,0 0.650 0.516 0.625 0.489 0.625 0.558 0.650 0.530 0.600 0.523

1,1,1 0.375 0.498 0.325 0.465 0.425 0.535 0.400 0.547 0.450 0.526

R2 0.502 R2 0.456 R2 0.512 R2 0.554 R2 0.597

Note. Each mean summarizes the performance of 20 perceptrons. The final row indicates the squared correlation (R2) between the 
eight perceptron responses and the eight probabilities of reward for each of the training sets.
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fits provided in Table 6-18 are better than those provided 
in Table 6-15. However, there is little to be made of this 
difference, as both models provide near perfect fits, and 
the difference between means is a mere 0.006. 

6.5 Operant Learning: Low-Reward AND
We now turn to the third cell of our 2×2 factorial design 

by describing operant learning for training sets that have 
a low reward associated with the AND of Cues B and C.

6.5.1 Architecture, Training Sets, and Training
The methodology used to collect the results detailed 

next parallels that described in Sections 6.2 through 6.4. 
All the perceptrons were networks that consisted of three 
input units and one logistic output unit. Perceptrons were 
trained on one of the five LowReward AND training sets 
that were originally introduced in Section 5.6.1. These 
training sets were stochastically constructed so that the 
presence of Cue A signaled a reward probability of 0.6, 
and the AND of Cues B and C signaled a reward proba-
bility of 0.18. The properties of the five training sets that 
were constructed were introduced earlier in Table 5-10. 
All perceptrons were trained using the same parameters 
that were used throughout Chapter 5 as well as earlier in 
the current chapter. Connection weights were randomly 
initialized in the range from −0.1 to 0.1, the output unit 
bias was initialized to 0, and the learning rate was 0.05. 
Each network was trained for 2,500 epochs using the 
gradient descent rule, with each epoch involving the pre-
sentation of 320 stimuli in a random order. One hundred 
networks (20 for each training set) were trained using 
the increasing returns operant paradigm. Another 100 
networks (20 for each training set) were trained using the 
gambler’s fallacy operant paradigm.

6.5.2 Increasing Returns: Performance
Let us begin by discussing the performance of 

perceptrons that were trained on the Low-Reward AND 
problem using the increasing returns paradigm. Averaging 
across the 20 perceptrons trained on each of these sets, 
Table 6-19 reports the mean number of times that each 
stimulus was selected for learning using this operant pro-
cedure. An inspection of Table 6-19 reveals that when a 
stimulus is associated with a higher probability of reward it 
is more frequently selected for learning using this operant 
procedure. Table 6-19 also reports the actual probability 
of reward associated with each stimulus in a training set 
and provides the correlation between this probability and 
the average number of times that a stimulus is selected 
for learning. These correlations range from about 0.96 
to 0.99, indicating that the operant perceptrons exhibit a 
very high degree of probability matching with respect to 
their choices. This is not surprising, because the results in 
Chapter 5 lead us to expect that probability matching will 
be accurate for these training sets.

Table 6-19 also provides the average of the total num-
ber of patterns selected for learning by the 20 perceptrons 
trained on each training set. As can be seen in the Total 
Choices row of Table 6-19, these operant perceptrons 
received less training than did the nonoperant perceptrons 
in Chapter 5, which were trained on 100,000 stimuli. Table 
6-19 shows that the total amount of training ranged from 
about 25,000 total patterns to about 30,000 total patterns.

Next, Table 6-20 provides the average response 
(after training is complete) of a perceptron to each of the 
eight stimuli for each of the training sets. This average is 
the mean of the responses generated by the 20 perceptrons 
trained on each training set. The results reported in Table 
6-20 indicate very strong relationships between percep-
tron responses and the actual probabilities of reward than 
were observed in Tables 6-2 or 6-8. For instance, the worst 

Table 6-18. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the 
five High

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -1.436 -1.446 -1.552 -1.559 -1.388 -1.398 -1.659 -1.659 -1.615 -1.646

w 1.467 1.484 1.376 1.391 1.513 1.525 1.670 1.707 1.602 1.606

w 0.000 0.027 0.096 0.125 0.092 0.105 0.064 0.072 0.160 0.133

w -0.062 -0.073 -0.096 -0.098 -0.092 -0.093 0.064 0.068 0.000 0.014

R2 1.000 R2 1.000 R2 1.000 R2 1.000 R2 1.000

Note. All these perceptrons were trained using the gambler’s fallacy operant paradigm. The final row indicates the average squared 
correlation (R2) between perceptron structure and logistic regression coefficients.
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performance (Training Set 5) produces an R2 of 0.932, 
indicating that perceptron responses capture well over 
90% of the variance in the expected probabilities. The best 
performance, for Training Sets 1 and 3, produces an R2 
of 0.972, indicating that perceptron responses capture just 
over 97% of the variance in the expected probabilities.

We performed a Welch two-sample t test to compare 
the 100 R2 values used to create the Table 5-12 data for non-
operant perceptrons (M value = 0.954) to the 100 R2 values 
used to create the Table 6-20 data for operant perceptrons 

(M value = 0.954). This comparison revealed no statisti-
cally significant difference, t(196.3) = 0.41419, p = .6792.

Given this result, it would be expected that the struc-
ture of these operant perceptrons comprised the same odds 
ratios used by logistic regression to map cue patterns onto 
the likelihood of reward. Table 6-21 presents the logistic 
regression coefficients for each training set, as well as the 
average bias and weights of the 20 perceptrons that learned 
about each of the training sets using the increasing returns 
operant paradigm. The final row of Table 6-21 provides the 

Table 6-19. The average number of times that a perceptron selected each of the input patterns for learning using the increasing returns operant training 
paradigm when learning the Low

Set 1 Set 2 Set 3 Set 4 Set 5

Probability P(R) Times 
Chosen P(R) Times 

Chosen P(R) Times 
Chosen P(R) Times 

Chosen P(R) Times 
Chosen

P(R|~A~B~C) 0 5756.2 0 6822.75 0 5709.5 0 7016.05 0 7792.1

P(R|~A~BC) 0 6654.05 0 6912.85 0 7486.2 0 6429.2 0 9100.85

P(R|~AB~C) 0 8685.2 0 8191.6 0 8269.8 0 9458.45 0 8361.25

P(R|~ABC) 0.175 10073.7 0.2 8358.7 0.175 10684.75 0.225 8722.5 0.25 9779.05

P(R|A~B~C) 0.5 48879.5 0.6 55759.8 0.65 60072.05 0.675 63412.5 0.6 57343.2

P(R|A~BC) 0.525 53083.15 0.525 56216.6 0.625 66922.65 0.575 61174.55 0.6 61634.5

P(R|AB~C) 0.6 60365.9 0.575 60846.45 0.65 69435.85 0.675 70917.75 0.575 59201.9

P(R|ABC) 0.65 64219.8 0.65 61243.6 0.8 75276.9 0.725 69019.7 0.65 63458.75

Total Choices 257717.5 264352.4 303857.7 296150.7 276671.6
Correlation 0.986 0.973 0.986 0.974 0.966

Note. Each average is the mean of 20 perceptrons. The table also provides the probability of reward for each of the patterns in each 
of the five training sets. The second-to-last row provides the average number of total choices made (from 100,000 presentations) for 
each training set. The bottom row provides the correlation between the probability of reward and the average number of times each 
pattern was chosen for each of the training sets.

Table 6-20. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the different Low

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response

0,0,0 0.000 0.046 0.000 0.054 0.000 0.047 0.000 0.058 0.000 0.067

0,0,1 0.000 0.055 0.000 0.054 0.000 0.063 0.000 0.055 0.000 0.080

0,1,0 0.000 0.072 0.000 0.068 0.000 0.070 0.000 0.079 0.000 0.072

0,1,1 0.175 0.085 0.200 0.068 0.175 0.092 0.225 0.074 0.250 0.086

1,0,0 0.500 0.488 0.600 0.554 0.650 0.606 0.675 0.636 0.600 0.576

1,0,1 0.525 0.534 0.525 0.554 0.625 0.675 0.575 0.620 0.600 0.622

1,1,0 0.600 0.604 0.575 0.611 0.650 0.699 0.675 0.708 0.575 0.592

1,1,1 0.650 0.647 0.650 0.612 0.800 0.758 0.725 0.694 0.650 0.637

R2 0.972 R2 0.946 R2 0.972 R2 0.948 R2 0.932

Note. Each mean summarizes the performance of 20 perceptrons. The final row indicates the squared correlation (R2) between the 
eight perceptron responses and the eight probabilities of reward for each of the training sets.
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mean squared correlation between the regression coeffi-
cients and the perceptron components for each training set. 
Each R2 is greater than 0.98, demonstrating that the operant 
training led to the same perceptron structure predicted by 
our Chapter 4 formal analysis and exhibited by the nonop-
erant perceptrons trained on the same stimuli in Chapter 5.

A comparison of the structure of nonoperant and 
operant perceptrons to regression coefficients revealed a 
statistically significant difference. We performed a Welch 
two-sample t test to compare the 100 R2 values used to 
create the Table 5-13 data for nonoperant perceptrons 
(M value = 0.995) to the 100 R2 values used to create 
the Table 6-21 data for operant perceptrons (M value = 
0.990). This comparison revealed a statistically significant 
difference, t(124.79) = 8.8174, p = 8.556e-15, despite that 
the two means only differ by 0.005.

6.5.3 Gambler’s Fallacy: Performance
Section 6.5.2 described the performance of per-

ceptrons on the Low-Reward AND problem when the 
increasing returns operant paradigm was employed. Let 
us now consider the performance of the other percep-
trons that were trained on the same problem using the 
gambler’s fallacy operant procedure.

Table 6-22 reports the mean number of times that 
each stimulus was selected for learning using the gam-
bler’s fallacy paradigm, averaging over the 20 perceptrons 
trained on each training set. An inspection of Table 6-22 
reveals the expected negative correlation between a stim-
ulus’s probability of reward and the number of times that 
it is selected for learning. For each of the training sets, the 
correlation between these two measures is very high but is 

Table 6-21. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the five Low

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -3.747 -3.028 -3.427 -2.861 -3.829 -3.005 -3.393 -2.786 -3.282 -2.631

w 3.453 2.980 3.351 3.078 3.977 3.436 3.582 3.346 3.212 2.936

w 0.715 0.470 0.525 0.236 0.699 0.411 0.693 0.329 0.473 0.067

w 0.450 0.186 0.351 0.002 0.600 0.300 0.325 -0.070 0.558 0.192

R2 0.996 R2 0.991 R2 0.995 R2 0.986 R2 0.984

Note. All these perceptrons were trained using the increasing returns operant paradigm. The final row indicates the average squared 
correlation (R2) between perceptron structure and logistic regression coefficients.

Table 6-22. The average number of times that a perceptron selected each of the input patterns for learning using the gambler’s fallacy operant training paradigm. 

Set 1 Set 2 Set 3 Set 4 Set 5

Probability P(R) Times 
Chosen P(R) Times 

Chosen P(R) Times 
Chosen P(R) Times 

Chosen P(R) Times 
Chosen

P(R|~A~B~C) 0 96298.45 0 95252.05 0 96372.7 0 95344.75 0 94811.1

P(R|~A~BC) 0 95033.8 0 94372.1 0 94565.65 0 94102.75 0 91910.95

P(R|~AB~C) 0 93607.5 0 93317.95 0 93969.7 0 91746.65 0 92508.2

P(R|~ABC) 0.175 91475.55 0.2 92049.65 0.175 90870.95 0.225 89577.9 0.25 88451.95

P(R|A~B~C) 0.5 53625.85 0.6 47461.3 0.65 41956.9 0.675 41884.95 0.6 48287.05

P(R|A~BC) 0.525 45458 0.525 42844.8 0.625 31384.1 0.575 35742.6 0.6 36416.3

P(R|AB~C) 0.6 38954.6 0.575 38291.75 0.65 29044.5 0.675 27754.15 0.575 38417.25

P(R|ABC) 0.65 31534.85 0.65 33929.65 0.8 20651.55 0.725 22895.05 0.65 27828

Total Choices 545988.6 537519.3 498816.1 499048.8 518630.8
Correlation -0.985 -0.973 -0.985 -0.973 -0.964

Note. Each average is the mean of 20 perceptrons. The table also provides the probability of reward for each of the patterns in each 
of the five training sets. The second-to-last row provides the average number of total choices made (from 100,000 presentations) for 
each training set. The bottom row provides the correlation between the probability of reward and the average number of times each 
pattern was chosen for each of the training sets.
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in the opposite direction of the relationship observed for 
the other operant paradigm (Table 6-19).

The perceptrons trained with the gambler’s fallacy 
paradigm once again chose to learn about approximately 
twice the number of patterns than did the perceptrons trained 
with the other operant procedure. Table 6-22 indicates that, 
on average, these perceptrons chose to learn about between 
50,000 and 55,000 of the total of 100,000 stimuli that they 
were presented, as indicated in the Total Choices row.

Next, Table 6-23 provides the average response 
of a perceptron to each of the eight stimulus types for 
each of the training sets. This average is the mean of 
the responses generated by the 20 perceptrons trained 
on the same training set. As was the case in Table 6-20, 
these responses are very accurate estimates of reward 
probabilities. The worst performance, for Training Sets 5, 
produces an R2 of .929. The best performance, for Training 
Set 3, produces an R2 of .970. All the values reported in 
Table 6-23 are close in value to those reported for the 
other operant procedure in Table 6-20.

We performed a Welch two-sample t test to com-
pare the 100 R2 values used to create the Table 6-20 data 
for increasing returns perceptrons (M value = 0.954) to 
the 100 R2 values used to create the Table 6-23 data for 
gambler’s fallacy perceptrons (M value = 0.951). This 
comparison revealed no statistically significant differ-
ence, t(196.28) = 1.4471, p = .1495. A similar test was 
performed to compare the performance of the gambler’s 
fallacy perceptrons to the nonoperant perceptrons whose 
performance was summarized in Table 5-12 of Chapter 5. 
This comparison also did not reveal a statistically signifi-
cant difference, t(196.3) = 0.41419, p = .6792.

Finally, let us consider the structure of these per-
ceptrons. Table 6-24 presents the logistic regression co-
efficients for each training set, as well as the average bias 
and weights of the 20 perceptrons that learned about each 
of the training sets using the increasing returns operant 
paradigm. The final row of Table 6-24 provides the mean 
squared correlation between the regression coefficients 
and the perceptron components for each training set. Each 

Table 6-23. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the different Low

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response

0,0,0 0.000 0.034 0.000 0.044 0.000 0.033 0.000 0.043 0.000 0.049

0,0,1 0.000 0.046 0.000 0.053 0.000 0.051 0.000 0.056 0.000 0.077

0,1,0 0.000 0.061 0.000 0.065 0.000 0.058 0.000 0.080 0.000 0.073

0,1,1 0.175 0.082 0.200 0.078 0.175 0.089 0.225 0.103 0.250 0.112

1,0,0 0.500 0.460 0.600 0.524 0.650 0.581 0.675 0.580 0.600 0.515

1,0,1 0.525 0.540 0.525 0.572 0.625 0.686 0.575 0.644 0.600 0.630

1,1,0 0.600 0.611 0.575 0.621 0.650 0.717 0.675 0.726 0.575 0.616

1,1,1 0.650 0.684 0.650 0.665 0.800 0.800 0.725 0.777 0.650 0.720

R2 0.969 R2 0.945 R2 0.970 R2 0.945 R2 0.929

Note. Each mean summarizes the performance of 20 perceptrons. The final row indicates the squared correlation (R2) between the 
eight perceptron responses and the eight probabilities of reward for each of the training sets.

Table 6-24. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the five Low

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -3.747 -3.356 -3.427 -3.071 -3.829 -3.390 -3.393 -3.095 -3.282 -2.964

w 3.453 3.195 3.351 3.168 3.977 3.718 3.582 3.418 3.212 3.026

w 0.715 0.615 0.525 0.397 0.699 0.605 0.693 0.655 0.473 0.413

w 0.450 0.321 0.351 0.193 0.600 0.455 0.325 0.272 0.558 0.472

R2 0.999 R2 0.998 R2 0.999 R2 1.000 R2 0.999

Note. All these perceptrons were trained using the gambler’s fallacy operant paradigm. The final row indicates the average squared 
correlation (R2) between perceptron structure and logistic regression coefficients.
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R2 is greater than .99, demonstrating that the operant train-
ing led to the same perceptron structure predicted by our 
Chapter 4 formal analysis, exhibited by the nonoperant 
perceptrons trained on the same stimuli in Chapter 5, and 
revealed in our analysis of the increasing returns percep-
trons described earlier in this chapter.

We performed a Welch two-sample t test to compare 
the 100 R2 values used to create the Table 5-13 data for 
nonoperant perceptrons (M value = 0.995) to the compare 
the 100 R2 values used to create the Table 6-24 data for 
operant perceptrons (M value = 0.998). This comparison 
revealed a statistically significant difference, t(144.5) 
= −17.894, p = 2.2e-16, indicating that the gambler’s 
fallacy perceptrons reliably generated better fits to the 
coefficients, though the absolute value of this difference 
was quite small. A comparison of these fits to the regres-
sion model to those observed for the increasing returns 
perceptrons also revealed a statistically significant differ-
ence, t(105.38) = −16.386, p = 2.2e-16.

6.6 Operant Learning: Low-Reward XOR
Finally, we turn to the last cell of our 2×2 factorial 

design by considering operant learning for training sets that 
have a low reward associated with the XOR of Cues B and C.

6.6.1 Architecture, Training Sets, and Training
The methodology used to collect the results detailed 

next parallels that described in Sections 6.2 through 6.5. 
All the perceptrons consisted of three input units and one 
logistic output unit. Perceptrons were trained on one of 
the five Low-Reward XOR training sets that were origi-
nally introduced in Section 5.7.1. These training sets were 
stochastically constructed so that the presence of Cue A 
signaled a reward probability of 0.53, and the AND of 
Cues B and C signaled a reward probability of 0.18. The 
properties of the five training sets that were constructed 
were introduced earlier in Table 5-14. All perceptrons were 
trained using the same parameters that were used through-
out Chapter 5 as well as earlier in the current chapter. 
Connection weights were randomly initialized in the range 
from −0.1 to 0.1, the output unit bias was initialized to 0, 
and the learning rate was 0.05. Each network was trained 
for 2,500 epochs using the gradient descent rule, with 
each epoch involving the presentation of 320 stimuli in a 
random order. One hundred networks (20 for each training 
set) were trained using the increasing returns operant 
paradigm. Another 100 networks (20 for each training set) 
were trained using the gambler’s fallacy operant paradigm.

6.6.2 Increasing Returns: Performance
Let us begin by discussing the performance of 

perceptrons that were trained on the Low-Reward XOR 
problem using the increasing returns paradigm. Averaging 
across the 20 perceptrons trained on each of these sets, 
Table 6-25 reports the mean number of times that each 
stimulus was selected for learning using the operant pro-
cedure. An inspection of Table 6-25 reveals that when a 
stimulus is associated with a higher probability of reward, 
it is more frequently selected for learning using this operant 
procedure. Table 6-25 also reports the actual probability 
of reward associated with each stimulus in a training set 
and provides the correlation between this probability and 
the average number of times that a stimulus is selected 
for learning. These correlations range from about 0.96 
to 0.99, indicating that the operant perceptrons exhibit a 
very high degree of probability matching with respect to 
their choices. This is not surprising, because the results in 
Chapter 5 lead us to expect that probability matching will 
be accurate for these training sets.

Table 6-25 also provides the average of the total 
number of patterns selected for learning by the 20 per-
ceptrons trained on each training set. The total amount 
of training ranged from about 25,000 patterns to about 
28,000 patterns. This range is similar to that observed 
for other perceptrons we have seen that were also trained 
with the increasing returns paradigm.

Table 6-26 provides the average response (after 
training is complete) of a perceptron to each of the eight 
stimuli for each of the training sets. This average is the 
mean of the responses generated by the 20 perceptrons 
trained on each training set. The results reported in 
Table 6-26 indicate strong relationships between per-
ceptron responses and the actual probabilities of reward. 
For instance, the worst performance (Training Set 5) 
produces an R2 of .864, whereas the best performance 
(Training Set 4) produces an R2 of .933.

We performed a Welch two-sample t test to compare 
the 100 R2 values used to create the Table 5-15 data for non-
operant perceptrons (M value = 0.904) to the 100 R2 values 
used to create the Table 6-26 data for operant perceptrons 
(M value = 0.904). This comparison revealed no statisti-
cally significant difference, t(198) = 0.21832, p = .8274.

Given this result, it would be expected that the struc-
ture of these operant perceptrons is comprised of the same 
odds ratios used by logistic regression to map cue patterns 
onto the likelihood of reward and discovered inside the 
perceptrons described in Chapter 5. Table 6-27 presents 
the logistic regression coefficients for each training set, as 
well as the average bias and weights of the 20 perceptrons 
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that learned about each of the training sets using the in-
creasing returns operant paradigm. The final row of Table 
6-27 provides the mean squared correlation between the 
regression coefficients and the perceptron components for 
each training set. Each R2 is greater than .99.

We performed a Welch two-sample t test to compare 
the 100 R2 values used to create the Table 5-16 data for non-
operant perceptrons (M value = 0.999) to the 100 R2 values 
used to create the Table 6-27 data for operant perceptrons 

(M value = 0.998). This comparison did not reveal a statisti-
cally significant difference, t(190.48) = −1.0776, p = .2826.

6.6.3 Gambler’s Fallacy: Performance
Section 6.6.2 described the performance of percep-

trons on the Low-Reward XOR problem when the increas-
ing returns paradigm was employed. Let us now consider 
the performance of the other perceptrons that were trained 
on the same problem using the gambler’s fallacy procedure.

Table 6-28 reports the mean number of times that 
each stimulus was selected for learning using the gam-

Table 6-25. The average number of times that a perceptron selected each of the input patterns for learning using the increasing returns operant training 
paradigm when learning the Low

Set 1 Set 2 Set 3 Set 4 Set 5

Probability P(R) Times 
Chosen P(R) Times 

Chosen P(R) Times 
Chosen P(R) Times 

Chosen P(R) Times Chosen

P(R|~A~B~C) 0 10682.4 0 10829.15 0 10236.4 0 8997.2 0 9934.3

P(R|~A~BC) 0.175 9691 0.175 10880.15 0.225 8373.8 0.125 8932.55 0.175 10562.5

P(R|~AB~C) 0.2 10748.7 0.2 9050.95 0.175 12345.6 0.175 8187.1 0.225 10770.55

P(R|~ABC) 0 9724.7 0 9049.7 0 10118.3 0 8141.15 0 11424.45

P(R|A~B~C) 0.55 61095.3 0.6 62223.95 0.525 59999.95 0.525 57343.65 0.45 52732.4

P(R|A~BC) 0.65 58328.6 0.65 62337.6 0.625 54328 0.625 57196.5 0.625 54478.55

P(R|AB~C) 0.675 61268.5 0.6 57309.85 0.725 64924.8 0.6 54813.7 0.625 55018.35

P(R|ABC) 0.525 58590.4 0.55 57363.15 0.525 59712.95 0.5 54695.3 0.5 56780.95

Total Choices 280129.6 279044.5 280039.8 258307.2 261702.1
Correlation 0.954 0.964 0.940 0.966 0.930

Note. Each average is the mean of 20 perceptrons. The table also provides the probability of reward for each of the patterns in each 
of the five training sets. The second-to-last row provides the average number of total choices made (from 100,000 presentations) for 
each training set. The bottom row provides the correlation between the probability of reward and the average number of times each 
pattern was chosen for each of the training sets.

Table 6-26. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the different Low

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response

0,0,0 0.000 0.097 0.000 0.098 0.000 0.093 0.000 0.077 0.000 0.092

0,0,1 0.175 0.086 0.175 0.097 0.225 0.075 0.125 0.077 0.175 0.097

0,1,0 0.200 0.098 0.200 0.082 0.175 0.113 0.175 0.070 0.225 0.101

0,1,1 0.000 0.087 0.000 0.080 0.000 0.092 0.000 0.071 0.000 0.106

1,0,0 0.550 0.608 0.600 0.619 0.525 0.595 0.525 0.578 0.450 0.536

1,0,1 0.650 0.577 0.650 0.614 0.625 0.539 0.625 0.579 0.625 0.551

1,1,0 0.675 0.611 0.600 0.569 0.725 0.645 0.600 0.554 0.625 0.561

1,1,1 0.525 0.580 0.550 0.564 0.525 0.592 0.500 0.555 0.500 0.575

R2 0.910 R2 0.930 R2 0.884 R2 0.933 R2 0.864

Note. Each mean summarizes the performance of 20 perceptrons. The row indicates the squared correlation (R2) between the eight 
perceptron responses and the eight probabilities of reward for each of the training sets.
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bler’s fallacy paradigm, averaging over the 20 perceptrons 
trained on each training set. An inspection of Table 6-28 
reveals the expected negative correlation between a stim-
ulus’s probability of reward and the number of times that 
it is selected for learning. For each of the training sets, the 
correlation between these two measures is very high but is 
in the opposite direction of the relationship observed for 
the other operant paradigm (Table 6-25).

Table 6-28 indicates that the perceptrons trained with 
the gambler’s fallacy procedure learn about approximately 
twice the number of patterns than did the perceptrons trained 
with the other operant procedure. Table 6-28 indicates, on 
average, these perceptrons chose to learn about between 
51,000 and 55,000 of the total of 100,000 stimuli that they 
were presented, as indicated in the Total Choices row.

Table 6-23 provides the average response of a 
perceptron to each of the eight stimuli for each of the 
training sets. This average is the mean of the responses 
generated by the 20 perceptrons trained on each training 
set. As was the case in Table 6-20, these responses are very 
accurate estimates of reward probabilities, as shown by 
the measure of goodness of fit provided in the bottom row 
of Table 6-23. The worst performance, for Training Set 
5, produces an R2 of .864, whereas the best performance 
(Training Set 2) produces an R2 of .930.

We performed a Welch two-sample t test to com-
pare the 100 R2 values used to create the Table 6-26 data 
for increasing returns perceptrons (M value = 0.904) 
to the 100 R2 values used to create the Table 6-29 data 
for gambler’s fallacy perceptrons (M value = 0.903). 

Table 6-27. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the 
five Low

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -2.232 -2.236 -2.193 -2.215 -2.198 -2.283 -2.473 -2.489 -2.274 -2.288

w 2.676 2.676 2.676 2.700 2.604 2.669 2.764 2.805 2.400 2.433

w 0.038 0.014 -0.115 -0.207 0.076 0.215 0.000 -0.099 0.148 0.101

w -0.115 -0.130 -0.038 -0.019 -0.076 -0.227 -0.079 0.005 0.000 0.057

R2 1.000 R2 0.999 R2 0.997 R2 0.999 R2 0.999

Note. All these perceptrons were trained using the increasing returns operant paradigm. The final row indicates the average squared 
correlation (R2) between perceptron structure and logistic regression coefficients.

Table 6-28. The average number of times that a perceptron selected each of the input patterns for learning using the gambler’s fallacy operant training paradigm.

Set 1 Set 2 Set 3 Set 4 Set 5

Probability P(R) Times 
Chosen P(R) Times 

Chosen P(R) Times 
Chosen P(R) Times 

Chosen P(R) Times 
Chosen

P(R|~A~B~C) 0 90094.9 0 89889.65 0 89937.4 0 92008.55 0 90519.65

P(R|~A~BC) 0.175 91125.7 0.175 90083.35 0.225 90756.95 0.125 92381.45 0.175 90418.15

P(R|~AB~C) 0.2 89816.45 0.2 90944.2 0.175 89104.35 0.175 92232.6 0.225 89331.55

P(R|~ABC) 0 90809.75 0 91135.4 0 89989.05 0 92620.5 0 89123.2

P(R|A~B~C) 0.55 38792.65 0.6 38084.65 0.525 39811.4 0.525 42496.25 0.45 46768.95

P(R|A~BC) 0.65 41658.15 0.65 38584.5 0.625 42061.2 0.625 43743.6 0.625 46379.95

P(R|AB~C) 0.675 38065.95 0.6 41123.2 0.725 37771 0.6 43320.25 0.625 43359.85

P(R|ABC) 0.525 40791.8 0.55 41628.2 0.525 39890.15 0.5 44605.5 0.5 42990.3

Total 
Choices 521155.4 521473.2 519321.5 543408.7 538891.6

Correlation -0.954 -0.964 -0.940 -0.966 -0.929

Note. Each average is the mean of 20 perceptrons. The table also provides the probability of reward for each of the patterns in each 
of the five training sets. The second-to-last row provides the average number of total choices made (from 100,000 presentations) for 
each training set. The bottom row provides the correlation between the probability of reward and the average number of times each 
pattern was chosen for each of the training sets.
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This comparison revealed no statistically significant 
difference, t(197.98) = 0.027326, p = .9782. This com-
parison also did not reveal a statistically significant differ-
ence, t(197.99) = 0.24458, p = .807.

Finally, let us consider the structure of these per-
ceptrons. Table 6-30 presents the logistic regression co-
efficients for each training set, as well as the average bias 
and weights of the 20 perceptrons that learned about each 
of the training sets using the increasing returns operant 
paradigm. The final row of Table 6-30 provides the mean 
squared correlation between the regression coefficients 
and the perceptron components for each training set. 
Each R2 is 1.00, demonstrating that the operant training 
led to the same perceptron structure predicted by our 
Chapter 4 formal analysis, exhibited by the nonoperant 
perceptrons trained on the same stimuli in Chapter 5, and 
revealed in our analysis of the increasing returns percep-
trons described earlier in this chapter.

A comparison of the fit of the structure of nonoperant 
and operant perceptrons to regression coefficients was 
again conducted. We performed a Welch two-sample t 
test to compare the 100 R2 values used to create the Table 
5-17 data for nonoperant perceptrons (M value = 0.9995) 
to the compare the 100 R2 values used to create the Table 
6-24 data for operant perceptrons (M value = 0.9995). 
This comparison did not reveal a statistically significant 
difference, t(190.48) = −1.0776, p = .2826. A comparison 
of these fits to the regression model to those observed for 
the increasing returns perceptrons did reveal a statistically 
significant difference, t(115.43) = −6.7085, p = 7.673e-10.

6.7 Operant Learning  
and Conditional Dependence

Sections 6.2 through 6.6 described a number of 
simulations that involved using two operant learning par-
adigms to train perceptrons on the same training sets that 

Table 6-29. The probability of reward (P(R)) and the mean responses of perceptrons after being trained on the different Low

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Input P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response P(R) Mean 

Response P(R) Mean 
Response

0,0,0 0.000 0.096 0.000 0.097 0.000 0.098 0.000 0.076 0.000 0.092

0,0,1 0.175 0.088 0.175 0.095 0.225 0.090 0.125 0.073 0.175 0.094

0,1,0 0.200 0.098 0.200 0.087 0.175 0.106 0.175 0.074 0.225 0.106

0,1,1 0.000 0.090 0.000 0.085 0.000 0.098 0.000 0.071 0.000 0.108

1,0,0 0.550 0.613 0.600 0.611 0.525 0.601 0.525 0.568 0.450 0.533

1,0,1 0.650 0.589 0.650 0.606 0.625 0.577 0.625 0.557 0.625 0.538

1,1,0 0.675 0.619 0.600 0.581 0.725 0.622 0.600 0.560 0.625 0.572

1,1,1 0.525 0.594 0.550 0.577 0.525 0.599 0.500 0.549 0.500 0.576

R2 0.910 R2 0.930 R2 0.884 R2 0.933 R2 0.864

Note. Each mean summarizes the performance of 20 perceptrons. The final row indicates the squared correlation (R2) between the 
eight perceptron responses and the eight probabilities of reward for each of the training sets.

Table 6-30. The comparison between components of a logistic regression (Logit) and the average structure of a perceptron (Network) for each of the 
five Low

Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5
Source Logit Network Logit Network Logit Network Logit Network Logit Network

θ -2.232 -2.244 -2.193 -2.235 -2.198 -2.220 -2.473 -2.498 -2.274 -2.289

w 2.676 2.705 2.676 2.686 2.604 2.629 2.764 2.771 2.400 2.424

w 0.038 0.024 -0.115 -0.122 0.076 0.090 0.000 -0.033 0.148 0.155

w -0.115 -0.102 -0.038 -0.018 -0.076 -0.097 -0.079 -0.044 0.000 0.019

R2 1.000 R2 1.000 R2 1.000 R2 1.000 R2 1.000

Note. All these perceptrons were trained using the gambler’s fallacy operant paradigm. The final row indicates the average squared 
correlation (R2) between perceptron structure and logistic regression coefficients.
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were explored in Chapter 5. The earlier sections of this 
chapter have established that in spite of the radical differ-
ences between the increasing demands procedure and the 
gambler’s fallacy paradigm, differences that lead to very 
different experiences of the various training sets, both of 
these operant techniques produce nearly identical networks 
to the nonoperant perceptrons discussed in Chapter 5.

We now turn to exploring the effects of the various dif-
ferences between training sets. In Chapter 5, we identified 
a number of different results based on such comparisons. 
First, ANOVAs concerned with the ability of perceptron 
responses to estimate probabilities revealed that these 
were significantly better for linearly separable interactions 
between Cues B and C than for linearly nonseparable inter-
actions between these cues. We also saw that performance 
was significantly better when interactions between Cues 
B and C were associated with low rewards than with high 
rewards. We finally noted that there was a significant inter-
action between these two factors; probability estimations 
with high reward, linearly nonseparable interactions were 
significantly poorer than probability estimations in other 
conditions. Second, we discovered using multiple regres-
sion that the degree of conditional dependence related to 
the interaction between Cues B and C could predict almost 
all of the variance of network probability estimates, sug-
gesting that this was the key predictor to consider when 
uncertain environments were of interest.

Given that each operant network that has been 
discussed earlier in the current chapter produces nearly 
identical behavior to a corresponding nonoperant percep-
tron from Chapter 5, we should expect to replicate these 
key results from Chapter 5. To begin, let us consider using 
ANOVA to explore the effects of the two factors, interaction 
type and amount of reward, that were crossed in the four 
sets of simulations presented in Sections 6.3 through 6.6.

6.7.1 Analysis of Variance
To begin, let us consider the performance of percep-

trons trained using the increasing returns procedure. Table 
6-31 summarizes the basic data for this by presenting the 
average measure of probability matching performance 
for the 100 perceptrons in each of the four conditions 
defined by this two-factor design. 

An inspection of Table 6-31 reveals several inter-
esting findings. First, it is nearly identical to Table 5-18, 
which summarized probability estimations learned by 
nonoperant perceptrons. Second, on average networks 
perform better when there is an AND relationship between 
Cues B and C than when there is an XOR relationship 
between these cues. Third, on average networks perform 

better when Cues B and C combine to signal a lower 
probability of reward than when they combine to signal 
a higher probability of reward. Fourth, changing the 
probability of reward has a much larger effect on network 
performance for the XOR versions of the training sets than 
for AND versions of the training sets.

An ANOVA of the data used to produce Table 6-31 
confirms these general observations. We conducted this 
analysis on the R2 scores for the networks in different 
conditions to test the effects of interaction type and level 
of reward. This analysis revealed a significant main effect 
of type, F(1, 396) = 2840, p < 2e-16, η2 = 0.267; a signif-
icant main effect of reward, F(1, 396) = 5948, p < 2e-16, 
η2 = 0.559; and a significant Type × Reward interaction, 
F(1, 396) = 1462, p < 2e-16, η2 = 0.134. Post hoc tests 
conducted using the Tukey HSD statistic revealed that 
perceptrons trained on the AND interaction learned to be 
more accurate probability estimators than did perceptrons 
trained on the XOR interaction (p < 1.0e-16). As well, 
perceptrons trained in conditions in which the interacting 
cues signaled low reward were more accurate probability 
estimators than networks trained in conditions in which 
the interacting cues signaled high reward (p < 1.0e-16). 
The significant interaction emerged because the difference 
between Low-Reward XOR networks and High-Reward 
XOR networks was greater than the difference between 
the two reward conditions involving the AND interaction.

Table 6-32 provides a similar summary of probability 
estimation performance for the other set of perceptrons 
trained using the gambler’s fallacy procedure. This table 
is nearly identical to Table 6-31. Thus it is not surprising 
that an ANOVA of the data used to produce Table 6-32 a 
significant main effect of type, F(1, 396) = 2888, p < 2e-16, 
η2 = 0.258; a significant main effect of reward, F(1, 396) = 
6399, p < 2e-16, η2 = 0.572; and a significant Type × Re-
ward interaction, F(1, 396) = 1503, p < 2e-16, η2 = 0.134. 

Table 6-31. The mean probability matching performance (with standard 
deviations in parentheses) of perceptrons as a function of problem type 
and level of reward. 

High-Reward Low-Reward
AND of Cues B and C 0.82 (0.03) 0.95 (0.02)

XOR of Cues B and C 0.52 (0.05) 0.90 (0.03)

Note. All the perceptrons summarized in this table were trained 
with the increasing returns procedure. Probability matching 
performance is operationalized as the squared correlation be-
tween the perceptrons responses for each of eight stimuli and the 
actual reward probabilities for these same stimuli. Each mean is 
based on the performance of 100 perceptrons.
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Post hoc tests conducted using the Tukey HSD statistic 
revealed the same pattern of differences that were reported 
for Table 6-31. These results are also essentially the same 
as those reported for nonoperant perceptrons in Section 5.8

Table 6-32. The mean probability matching performance (with standard 
deviations in parentheses) of perceptrons as a function of problem type 
and level of reward. 

High-Reward Low-Reward
AND of Cues B and C 0.82 (0.03) 0.95 (0.02)

XOR of Cues B and C 0.52 (0.05) 0.90 (0.03)

Note. All the perceptrons summarized in this table were trained 
with the gambler’s fallacy procedure. Probability matching 
performance is operationalized as the squared correlation be-
tween the perceptrons responses for each of eight stimuli and the 
actual reward probabilities for these same stimuli. Each mean is 
based on the performance of 100 perceptrons.

6.7.2 Predicting Performance From G
As was noted earlier in Chapter 5, one problem with 

the ANOVAs just reported is that the logical structure 
of the relationship between Cues B and C is confound-
ed with conditional dependence. This is because when 
conditional dependence is operationalized using G, on 
average this metric is higher for the training sets based 
on XOR than it is for the training sets based on AND 
(Dawson & Gupta, 2017). We can carry out two alterna-
tive analyses in light of this problem.

First, we can use our measure of conditional de-
pendence for a training set (G as described in Section 
5.5.1) to predict the R2 fit between network responses and 
actual training set probabilities. This predicts network 
performance from degree of conditional dependence, 
and ignores the logical relationship between Cues B and 
C. When we perform this analysis for the increasing re-
turns perceptrons, we find that the degree of conditional 
dependence accounts for just under 80% of the variance 
in the fit of network responses (R2 = 0.776), F(1, 398) = 
1376.43, p = 3e-131. We can contrast this result with a 
second analysis that predicts network performance using 
the dichotomous nature of the relationship between Cues 
B and C (i.e., XOR vs. AND). This result is significant 
as well but accounts for only one fourth of the variance 
in network performance accounted for by our measure of 
conditional dependence (R2 = 0.267), F(1, 398) = 144.8, p 
= 1.17e-28. In short, the amount of conditional dependence 
provides a much better prediction of network performance 

than is provided by linear separability, though both are 
statistically significant predictors.

Similar results are obtained for the gambler’s 
fallacy networks. Using G to predict the R2 fit between 
network responses and actual training set probabilities 
also accounts for nearly 80% of the variance in the fit of 
network responses (R2 = .766), F(1, 398) = 1307.38, p 
= 8e-128. Making the same prediction only on the basis 
of the relationship between Cues B and C (i.e., XOR vs 
AND) is significant as well but accounts for only fourth of 
the variance in network performance accounted for by our 
measure of conditional dependence (R2 = .258), F(1, 398) 
= 138.5, p = 1.22E-27. In short, the amount of conditional 
dependence provides a much better prediction of network 
performance than is provided by linear separability, though 
both are statistically significant predictors
6.7.3 Comparison to Conditionally Independent Cues

The statistical analyses just reported proceeded by 
taking four of the simulations to represent cells in a 2×2 
factorial design. In Chapter 5, another approach was also 
taken to examine the simulations: comparing the results of 
the four simulation studies that involve an interaction be-
tween Cues B and C to a fifth simulation, the initial study 
in which all three cues were conditionally independent 
(Section 6.2). Let us conduct the same kind of analysis 
for operant perceptrons, beginning with those trained us-
ing the increasing returns paradigms.

The means of the five conditions with their stan-
dard deviations are in Table 6-33. Each of these means 
summarizes the performance of 100 perceptrons; this 
performance is the R2 between the responses of a per-
ceptron to each of the eight stimulus types and the actual 
probability of reward associated with each.

The means in Table 6-33 are each associated 
with an extremely small standard deviation, indicating 
very similar probability estimates were generated by 

Table 6-33. The mean probability matching performance (with standard 
deviations) of perceptrons trained using the increasing returns procedure.

Independent 
Cues

High- 
Reward

High- 
Reward

Low- 
Reward

Low- 
Reward

Mean R2 0.92 0.82 0.52 0.95 0.90

SD 0.04 0.03 0.05 0.02 0.03

Note. Probability matching is operationalized as the squared 
correlation between the response generated by a perceptron 
to each of eight possible stimuli and the actual probability 
of reward associated with each. Each mean is based upon 
the performance of 100 perceptrons.
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different perceptrons trained in the same condition. 
Statistical comparisons between the independent cues 
condition and the other four conditions were performed 
by using Welch two-sample t tests. The results of these 
comparisons are presented below in Table 6-34. Every 
single t test indicated a significant difference between the 
means of the conditions being compared. 

Table 6-34. The results of independent t tests used to compare  
the independent cues condition to the other four conditions from  
Table 6-33. 

High- 
Reward 

AND

High- 
Reward 

XOR

Low- 
Reward AND

Low- 
Reward XOR

Inde-
pendent 

Cues

18.894 61.05 −6.3789 4.0865
df = 178.5 df = 193.6 df = 125.14 df = 165.01

p = 2.3e-16 p = 2.2e-16 p = 3.142e-09 p = 6.822e-05

Note. Each simulation used the increasing returns procedure to 
train perceptrons.

Let us now perform the same analysis for the gam-
bler’s fallacy perceptrons. The means of the five conditions 
with their standard deviations are in Table 6-35. Each of 
these means summarizes the performance of 100 percep-
trons; this performance is the R2 between the responses 
of a perceptron to each of the eight stimuli and the actual 
probability of reward associated with each.

Table 6-35. The mean probability matching performance (with  
standard deviations) of perceptrons trained using the gambler’s fallacy 
procedure. 

Independent 
Cues

High- 
Reward

High- 
Reward

Low- 
Reward

Low- 
Reward

Mean 
R2 0.92 0.82 0.52 0.95 0.90

SD 0.04 0.03 0.05 0.03 0.03

Note. Probability matching is operationalized as the squared 
correlation between the response generated by a perceptron 
to each of eight possible stimuli and the actual probability 
of reward associated with each. Each mean is based upon 
the performance of 100 perceptrons.

Statistical comparisons between the means pre-
sented in Table 6-35 were performed by using Welch 
two-sample t tests to compare the independent cue con-
dition to the other four conditions. The results of these 
t tests are presented in Table 6-36.

Table 6-36. The results of independent t-tests used to compare the 
independent cues condition to the other four conditions from Table 6-33. 

High- 
Reward 

AND

High- 
Reward 

XOR

Low- 
Reward 

AND

Low- 
Reward 

XOR

Independent 
Cues

19.255 60.53 −6.7183 3.1779

df = 167.23 df = 196.28 df = 124.05 df = 163.71

p = 2.2e-16 p = 2.2e-16 p = 
5.933e-10 p = .001774

Note. Each simulation used the gambler’s fallacy procedure to 
train perceptrons.

The results provided in Tables 6-33 through 6-36 
indicate that both operant learning procedures replicated 
the results that were observed for the nonoperant percep-
trons that were detailed in Chapter 5.

6.8 Summary and Implications
6.8.1 Summary

Chapter 5 provided the results of five simulations in 
which perceptrons learn the probabilities of reward sig-
naled by three cues. The results of the various simulations 
reported in Chapter 5 indicated that that perceptrons con-
fronted with uncertain signals of reward behave as naïve 
Bayesian mechanisms. The limitations of perceptrons are 
best explained by appealing to the amount of condition-
al dependence between different cues.

Chapter 6 noted that one issue with the Chapter 5 
perceptrons was that they were nonoperant. That is, they 
did not use any procedure to choose whether to learn about 
a stimulus. Chapter 6 began by describing two very differ-
ent operant learning procedures that can be used to train 
perceptrons—one based on increasing returns, the other 
based on the gambler’s fallacy. Chapter 6 then proceeded 
to use each of these techniques to train perceptrons on the 
same set of problems that were explored in Chapter 5.

Chapter 6 therefore considered five simulation con-
ditions. For each of these conditions, the stimuli that were 
experienced by perceptrons trained with increasing returns 
were quite different from those experienced by perceptrons 
trained with the gambler’s fallacy. For each training set, the 
choices made by increasing returns perceptrons had a very 
high positive correlation with the probabilities of stimulus 
in reward. In contrast, for each training set the choices 
made by gambler’s fallacy perceptrons exhibited a very 
high negative correlation between the same variables. Fur-
thermore, although increasing returns perceptrons chose to 
learn about one fourth to one third of the stimuli that were 
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presented, the gambler’s fallacy perceptrons chose to learn 
about approximately half of the presented stimuli.

In spite of these differences between training ex-
periences, the main result of Chapter 6 was to replicate 
all of the Chapter 5 results. For each condition, and for 
either operant paradigm, the Chapter 6 perceptrons 
generated identical responses and network structures as 
were observed in the corresponding Chapter 5 networks. 
When comparisons were made between different condi-
tions trained with the same operant paradigm, the same 
pattern of results was revealed as was discovered for the 
nonoperant perceptrons in Chapter 5.

6.8.2 Implications
One major implication of these results is that very 

different operant paradigms can produce identical results 
to those produced via nonoperant training. This is because 
both of the operant paradigms studied in this chapter led to 
sufficient exploration of all of the training stimuli. Looking 
back at any table in Chapter 6 that provides the number of 
times that each stimulus type was selected for training, one 
will see that each stimulus was chosen many times. This 
permitted negative feedback to lead the network to learn 
the optimal probability estimates, independent of which 
operant paradigm was used for stimulus selection.

Of course, this result will hold only for operant meth-
ods that permit sufficient training on each possible stimuli. 
One can imagine other operant rules that cause networks 
only to learn about a subset of stimuli; these rules would 
be expected to lead to very different probability estimates.

A second implication of these results is the surpris-
ing distinction between the procedure used to choose a 
stimulus for learning and the procedure used to modify 
probability estimates. If we were to look only at the choice 
behavior of the perceptrons, we would note striking differ-
ences between the selections made according to increasing 
returns and those made according to the gambler’s fallacy. 
We might then be tempted to conclude that very different 
probability estimates underlie these very different patterns 
of behavior. However, our ability to examine the internal 
structure and the responses of perceptrons indicates that 
this conclusion is erroneous. Identical probability esti-
mates can emerge from very different patterns of choice.

This has a further implication for the study of proba-
bility learning in biological agents. If different patterns of 
choice behavior can be mediated by identical probability 
estimates, then we should conduct experiments that not 
only record choice behavior but also collect responses that 
can be used to assess probability estimates. The preceding 
simulations have established that we cannot use different 

patterns of choices to conclude different probability mod-
els. In short, the probability matching behavior does not 
necessarily provide an accurate measure of what has been 
learned about reward probabilities.

We are now in a position to move away from simu-
lation studies and to consider the results of an analogous 
experiment involving human participants. The next 
chapter describes the results of human performance on a 
probability discrimination task, the card-choice task that 
was introduced in Chapter 1. This task is one in which 
three cues signal the likelihood of reward associated with 
each of eight cards. Participants discover the probability 
structure of the task via operant learning: They choose a 
succession of cards and learn whether a card delivers a 
reward only after it has been chosen. The rules used to 
convert cues into reward probabilities can be manipulated, 
just as was the case with the three cue simulations that 
were described in Chapters 5 and 6. In fact, we can train 
human participants in versions of the card-choice task 
where the rules used to determine reward probability are 
identical to those used to create the various simulation 
conditions that we have been considering.
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Chapter 7: Human Performance  
On The Card-Choice Task

The purpose of this chapter is to explore whether 
perceptrons can serve as potential models of human 
probability learning. Is the probability learning of humans 
similar to that of perceptrons with respect to the effects of 
conditional dependence? If not, then more sophisticated 
systems, such as multilayer networks, need to be consid-
ered. This chapter describes a study that presents human 
participants a tableau of eight different cards, each of which 
can be identified by a pattern of three different symbols. 
These patterns are analogous to the three-cue stimuli that 
were studied in the Chapter 5 and 6 simulations. Human 
participants took part in one of five conditions. In one, the 
three symbols were independent signals of reward. In the 
other four, there was one of two interactions (AND vs. 
XOR) between two of the symbols, and this interaction 
signaled one of two reward probabilities (high vs. low). 
In the first phase of the study, participants explored the 
environment by successively choosing cards and learning 
about the probability of reward associated with each card. 
Analysis of the choice behavior in this phase indicates that 
human choices are influenced by the manipulated variables 
in a similar fashion to that observed in perceptrons, which 
suggests that perceptrons offer potential models of human 
behavior. In the second phase of the study, participants 
were presented pairs of cards and chose the member of the 
pair that they believed was more likely to offer a reward 
based on their experiences in the first phase. Analyses of 
these preferences suggest that participants are affected by 
the type of interaction between variables in a manner sim-
ilar to that observed in trained perceptrons. Such results 
suggest that when humans learn the probabilities of reward 
in the card-choice task, they behave as if they too are naïve 
Bayesians. This supports the hypothesis that perceptrons 
are potential models of human probability learning.

7.1 From Perceptrons to People
7.1.1 Perceptrons and Probabilities

In Chapter 4, we explored the ability of perceptrons 
to adapt to uncertain environments when reward probabil-
ity is signaled by multiple cues. We did so by developing a 
formal description of perceptrons faced with this situation 
and then by using this formal description to make asser-
tions about what perceptrons can and cannot learn. One 
key assertion was that perceptrons, because of their simple 
structure, are limited in their ability to estimate reward 
probabilities. Perceptrons are naïve Bayesian mechanisms. 

Constrained by their simple structure, perceptrons must 
treat cues as conditionally independent signals of reward 
probability. Perceptrons are blind to signals carried by 
interactions between different cues. As the probability of 
reward signaled by interacting cues increases, the ability 
of perceptrons to accurately estimate reward probabilities 
decreases. This was illustrated, for instance, via Chapter 
4’s discussion of perceptron performance on uncertain 
Boolean operators (e.g., Table 4-2).

The Chapter 4 proofs were developed for perceptrons 
that received signals from only two different cues. They 
revealed that the connection weights in such a perceptron 
represented a particular measure of an individual cue’s 
influence, the natural logarithm of its odds ratio. These 
proofs were developed in such a way that they could be 
extended to more complex situations (i.e., situations in 
which more than two cues signal reward probability). 
Rather than continue this formal development, Chapters 
5 and 6 used simulation studies to examine probability 
estimates when reward probabilities are signaled by three 
cues. It was shown that these simulations were consistent 
with the formal analyses of Chapter 4, because connection 
weights in trained networks attained values equal to the 
natural logarithms of odds ratios (i.e., these weights were 
strongly related to the coefficients of logistic regression 
equations fit to the same data). Previously published 
research established the same result for perceptrons that 
receive signals about reward probabilities from four 
different cues (Dawson & Gupta, 2017).

Dawson and Gupta (2017) were the first to study the 
probability estimates of perceptrons by manipulating the 
interactions between cues that signaled reward probability. 
Dawson and Gupta (Study 2) created four conditions by 
crossing two different factors that related to the interaction 
between these two cues. The first factor was the logical 
type of the interaction. Half of the training sets used the 
logical AND of two cues to signal reward probability. The 
other half of the training sets used the logical XOR of 
two cues to signal reward likelihood. The second factor 
was the amount of reward (more properly, the size of the 
probability of reward) signaled by the interacting cues 
regardless of the logical nature of the interaction. In half 
of the training sets, the interaction signaled a much higher 
probability of reward than was signaled by the interaction 
in the other half of the training sets.

Dawson and Gupta (2017) found a significant main 
effect of both manipulations. In general, perceptrons 
trained on stimuli that included an AND interaction were 
more accurate probability estimators than were percep-
trons trained on stimuli that included an XOR interaction. 
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As well, perceptrons trained on stimuli for which the 
interaction signaled a lower probability of reward were 
more accurate probability estimators than were percep-
trons trained on stimuli for which the interaction signaled 
a higher probability of reward. Furthermore, Dawson and 
Gupta discovered a significant interaction between their 
two factors: Decreasing the probability of reward associ-
ated with an XOR interaction led to a larger improvement 
in a perceptron’s probability estimation performance than 
was produced by decreasing the probability of reward 
associated with an AND interaction.

Simulations reported in Chapters 5 and 6 replicate 
the results reported by Dawson and Gupta (2017) for 
perceptrons trained on three-cue stimuli. Chapter 5 re-
vealed the same effects of interaction type and level of 
reward for nonoperant perceptrons, whereas Chapter 6 
replicated these effects in perceptrons trained by two 
operant procedures. In short, we are currently armed with 
a substantial technical understanding of what perceptrons 
learn from uncertain environments, an understanding 
based on both formal analyses and simulation studies. We 
have established that perceptrons are naïve Bayesians and 
their estimates of the probabilities of reward signaled by 
different cues assume that each cue provides a signal that 
is conditionally independent from other signals.

7.1.2 Are People Naïve Bayesians? 
An important question remains: Are these simple 

networks possible models of human probability learning? 
A primary goal of the current monograph is to use percep-
trons to provide insights into the probability learning of 
humans and animals. To satisfy this goal, we must support 
the claim that perceptrons can provide these insights be-
cause they are potential models of probability learning in 
biological agents. The purpose of the current chapter is to 
provide such support. It does so by investigating whether 
human performance on the card-choice task is similar to 
the perceptrons described in Chapters 5 and 6.

How might we support the claim that perceptrons 
are possible models of human probability learning? One 
approach is to have human participants learn about re-
ward probabilities signaled by cues in conditions that are 
analogous to those that we have explored in the computer 
simulations. In particular, imagine an environment in 
which different objects are identified by unique patterns 
of three cues and that these cues signal the probability that 
an object will provide a reward if it is selected. Imagine 
that in some conditions there exists an interaction between 
the signals of two of the cues. In this environment, we can 
manipulate the logical type of this interaction (AND vs. 

XOR), as well as the probability of reward associated with 
this interaction (high vs. low). How is human probability 
learning affected by these manipulations? Is it affected in 
a fashion similar to that of perceptrons?

One possibility is that human probability learning 
is not plausibly modeled by the perceptron. For instance, 
human probability learning might be better described by 
a more powerful model. If this is the case, then we might 
discover that human probability learning is not affected by 
the type of interaction between cues or by the probability 
of reward associated with this interaction. This is because 
if human probability learning is better modeled with a 
more powerful system, then it may not be limited by the 
constraints that we have explored in earlier chapters. In 
short, if human probability learning is accomplished by 
mechanisms that are more powerful than a perceptron, 
then human participants will not be naïve Bayesians, and 
their performance in the presence of interacting cues will 
be quite different from that of perceptrons. Modeling 
human performance in this situation will require using 
models that are more powerful, such as the multilayered 
networks that were briefly discussed in Section 1.7.

Another possibility is that human probability learn-
ing is similar to that of the perceptron, because human 
probability learners behave as if they are naïve Bayesians. 
If this is the case, then we should expect to see a pattern 
of results in human probability learning similar to what 
we have already observed in the computer simulations. In 
particular, human participants should be poorer probabili-
ty learners when there is an XOR interaction between two 
cues than when there is an AND interaction. In addition, 
human performance should improve when the probability 
of reward associated with either type of interaction is low-
er in comparison to when this probability is higher. If these 
results were observed, it would suggest that perceptrons 
are plausible models of human performance in this task.

The purpose of this chapter is to describe the results 
of an experiment in which human participants learn prob-
abilities of reward in different conditions that permit their 
performance to be compared to the performance of percep-
trons. Before providing the results of this experiment, let 
us briefly discuss the different types of evidence that can be 
used to compare the performance of human participants to 
computer models in the context of the experiment’s design.

7.1.3 Rationale for the Experiment
In cognitive science, there is a long history of com-

paring the performance of models to the performance of 
biological agents (Fodor, 1968; Pylyshyn, 1980, 1984). Py-
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lyshyn described three general types of evidence for eval-
uating the relationship between models and participants.

The first is relative complexity evidence. Relative 
complexity evidence involves presenting a variety of stim-
uli to models and to human participants while measuring 
in some way the difficulty that each stimulus poses to the 
two types of systems (Pylyshyn, 1984). If one’s model 
provides a valid account of one’s participants, then the 
model and the human participants should exhibit the same 
relative difficulties with the problems.

The current chapter describes an experiment with 
the primary purpose of delivering relative complexity 
evidence. It explores human probability matching in the 
card-choice task that was briefly introduced in Chapter 
1. In this task, eight stimuli are uniquely identified by 
a pattern of three different cues. These cues signal the 
probability that a stimulus will deliver a reward if it is 
chosen. Participants explore these stimuli for a while, 
making 320 different stimulus choices, with the goal of 
obtaining as many rewards as possible. It is assumed 
that this exploration gives participants an opportunity to 
learn the probability of reward associated with the various 
stimuli and that the better it is learned, the better will be a 
participant’s performance on the task. It is also expected 
that participants will exhibit probability matching. That is, 
it is expected that there should be a strong relationship 
between the probability that a stimulus provides a reward 
and the probability that a participant chooses it during 
their exploration of the environment.

This experiment is designed to acquire relative com-
plexity evidence by manipulating the rules that convert cue 
patterns into reward probabilities. Five conditions—the 
same five that were explored in the simulations reported in 
Chapters 5 and 6—are created. In one, the three cues are 
independent signals of reward likelihood. In the other four 
conditions, two of the cues signal reward probability by 
interacting. In parallel with Dawson and Gupta (2017), and 
with the simulations of Chapters 5 and 6, this interaction 
is one of two types (AND vs. XOR) and is associated with 
two probabilities of reward (high vs. low). If perceptrons 
plausibly model human performance in this task, then 
human performance will parallel perceptron performance. 
In particular, relative complexity evidence in favor of 
using perceptrons as models would be obtained if human 
participants were influenced in the same way by the two 
manipulations of cue interactions as were perceptrons.

Relative complexity evidence is not the only way 
that humans and models can be compared. A second type 
of information to use is intermediate state evidence (Py-
lyshyn, 1984). Intermediate state evidence is based on the 

assumption that an input/output mapping is not computed 
directly but instead requires a different stages of process-
ing, with each stage representing an intermediate result 
in a different way. To collect intermediate state evidence, 
one attempts to determine the number and nature of these 
intermediate results. One example of this type of interme-
diate state evidence for probability matching would be ex-
amining rates of learning—that is, changes in probability 
matching to various types of stimuli over time. If both the 
model and the participant produce similar learning curves, 
then this would provide even more evidence of the strong 
relationship between the two, because of a correspondence 
between changes in information over time.

A third type of information to use to compare mod-
els and participants is error evidence (Pylyshyn, 1984). 
Imagine that perceptrons and humans provide relative 
complexity evidence indicating that both have difficulties 
learning probabilities in the same conditions. This rela-
tionship could be strengthened by examining the kinds of 
difficulties that the two systems have with more challeng-
ing tasks. For instance, what kinds of errors do the two 
systems make to particular stimuli? If we were to discover 
that the kinds of probability matching errors made to var-
ious stimuli were similar, this would strengthen our view 
that we had developed a valid model of our participants.

In summary, determining whether a particular model 
provides a valid or useful model of human behavior re-
quires the systematic examination of this behavior, and its 
orderly comparison to that of the model. Before we use the 
limits of perceptrons to abandon them as models of human 
probability matching, we must first observe whether hu-
man probability matching exhibits similar limitations.

The remainder of Chapter 7 details an experiment 
that provides data that can be used to compare human 
probability matching to that of perceptrons via relative 
complexity evidence, intermediate state evidence, and 
error evidence. To foreshadow the major results, Chap-
ter 7 shows that human probability matching exhibits 
similar limitations to those that have just been described. 
This suggests that perceptrons, in spite of their simplic-
ity, are possible models of human probability matching, 
because humans—like perceptrons—behave like naïve 
Bayesians in the card-choice task. 

7.2 Methodology for the Card-Choice Task
7.2.1 Overview of the Experiment

The card-choice task was briefly introduced in 
Section 1.2.3. It involves a computer environment that 
presents a tableau of eight different “cards” (Figure 7-1). 



131

Volume 15, 2022

PROBABILITY LEARNING  BY PERCEPTRONS AND PEOPLE

Each card has three symbols on it (a diamond, a club, and 
a heart); each of these symbols can be either blue or green. 
When a participant uses the computer mouse to choose one 
of the eight cards, the person may receive a reward. Each 
card provides a reward with a certain probability, and par-
ticipants are given the goal of obtaining as many rewards 
as possible. Thus, the card-choice task is an example of a 
probability discrimination task: To obtain many rewards, 
a participant must learn the probability structure of the 
environment and then use this knowledge to choose cards 
that are more likely to offer rewards. Good performance 
on this task requires participants to match probabilities.

The symbols on each card make the card-choice task 
analogous to the three-cue probability learning tasks that 
were studied in the Chapter 5 and Chapter 6 perceptron 
studies. The two possible colors of each symbol on a card 
are used to code two states of a particular cue. The proba-
bility that a particular card provides a reward is determined 
by a rule based on the states of the card’s cues. However, it 
is clear from Figure 7-1 that all three cues are always pres-
ent on each card; the only difference between “present” 
cues is their color. This might raise concerns that this task 
is not analogous to the simulations described in Chapters 
5 and 6, because in those simulations cues were coded as 
being present (1) or not (0). To address these concerns, 
new sets of simulations that code present cues as being of 
one color (1) or not (2) are presented later in this chapter.

7.2.2 Human Participants
Two hundred introductory psychology students (135 

female) served as participants in the experiment. Following 
approval from the Ethics Review Board at the University 
of Alberta, participants were recruited via the online sys-
tem that manages the Introductory Psychology participant 
pool. Each participant was randomly assigned to one of 
the five conditions described in Section 7.2.3. Forty partic-
ipants were randomly assigned to each condition.

7.2.3 Card-Choice Conditions
Each participant in the card-choice task took part in 

one experimental condition. Five conditions were created 
by using five different sets of rules to convert card cues 
into reward probabilities. These five conditions paralleled 
the five conditions used to study perceptron learning in 
previous chapters: one condition in which the three cues 
were conditionally independent signals of reward, and 
four conditions in which there was an interaction between 
two cues. These latter four conditions crossed type of in-
teraction (AND vs. XOR) with probability of reward (high 
vs. low) in the same fashion as in the computer simulation 
studies considered earlier. Table 7-1 provides the probabil-
ity of reward associated with each cue, or each cue interac-
tion, in each of the five conditions of the card-choice task. 
These probabilities are identical to those used to create 
the training sets for each condition of the perceptron sim-
ulations described in previous chapters. These probability 
values were selected to ensure that the overall probability 
of reward in each condition was approximately 0.33.

As was the case in the earlier simulation studies, the 
additive probability rule was used to convert the individual 
probabilities of reward signaled by a card’s cue states into 
an overall likelihood of reward. The resulting probability 
of reward associated with each card in each condition of 
the card-choice task is provided in Table 7-2. Note that 
the probabilities of reward in this table are identical to 

Table 7-1. The ideal probability of reward associated with individual cues 
in each of the five conditions of the card-choice task.

Cue Indepen-
dent

High- 
Reward-

AND

High- 
Reward 

XOR

Low- 
Reward 

AND

Low- 
Reward 

XOR
A 0.14 0.48 0.37 0.60 0.53

B 0.2 - - - -

C 0.4 - - - -

AND 
(B, C) - 0.48 - 0.18 -

XOR 
(B,C) - - 0.36 - 0.18

Figure 7-1. A view of the card tableau with which participants in the card-
choice task interact. In this particular image, a participant has already 
made 16 card choices and has been rewarded for six of them.
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the probabilities of reward used to create the training 
sets in the various conditions of the simulation studies 
that were reported in Chapters 5 and 6.

The probabilities of reward provided in Table 7-2 
were used to manage the rewards provided when a card 
was selected by a participant during the card-choice 
task. Participants saw all eight cards in a tableau at the 
same time (Figure 7-1) and used the mouse to choose a 
card. When selected, the probability that the card pro-
vided a reward was determined by the card’s probabil-
ity of reward as given in Table 7-2.

7.2.4 Card-Choice Task Instructions
Before beginning the card-choice task, groups of 

participants received instructions about the experiment. 
Participants saw a demonstration of the task, learned how 
they were to choose cards, and experienced what occurred 
when a selected card delivered a reward. They were told 
that each card generated a reward with a certain proba-
bility so that sometimes a card choice may be rewarded 
but that at other times the same card may not provide a 
reward. Participants were informed that the symbols 
on each card might provide information about reward 
probability, and were told that the location of a card was 
irrelevant. To emphasize this latter point, participants were 
informed that after each succession of 16 card choices the 
arrangement of the cards on their computer screen would 
be randomly shuffled. Participants were instructed that as 
they explored the environment they could learn about its 
reward structure and could use this knowledge to try to 
achieve a higher number of rewards.

After receiving these instructions, each participant 
moved to an individual testing room that separated them 
from all other participants and that contained a desktop 
computer running the Microsoft Windows operating 

system. The program that conducted the experiment 
was running when a participant entered this room; the 
participant initiated data collection by using the mouse to 
press a button labeled “Start the Study.” When this was 
pressed, the computer program displayed the set of eight 
cards in a tableau (e.g., Figure 7-1). The locations of the 
cards in this tableau were randomly assigned. Participants 
then worked through their 320 card selections at their 
own pace. With each selection, the computer program 
recorded what card was selected, where it was locat-
ed, and whether it provided a reward.

7.2.5 The Card-Choice Task Program
Data were collected using Microsoft Office Excel 

2013 spreadsheet; the experiment was itself programed 
using Excel’s Visual Basic for Applications. Before 
presenting the display to a participant, the computer pro-
gram randomly selected which of the two symbol colors 
indicated that a cue was present. For the independent 
cues condition, the program randomly assigned reward 
probabilities (the independent cues column in Table 7-1) 
to symbols. For instance, for one participant, one symbol 
signaled a reward probability of 0.4, whereas a different 
symbol signaled this probability for another participant. 
For the other four conditions, the program randomly 
selected which cue was the independent signal of reward 
probability and which two cues interacted.

The computer program that conducted the study 
generated a reward for a selected card by using the card’s 
reward probability given in Table 2. Whenever a card 
was selected by a participant, the program generated 
a random number between 0 and 1. If this number was 
greater than the card’s Table 2 reward probability, then the 
card was not rewarded. Otherwise, the card was reward-
ed. A reward was signaled by generating a tone and by 

Table 7-2. The ideal probability of reward in each condition for each of the eight cards in the card-choice task. 

Cue Pattern Probability Independent High-Reward AND High-Reward XOR Low-Reward AND Low-Reward XOR
(0,0,0) P(R|~A~B~C) 0.00 0.00 0.00 0.00 0.00

(0,0,1) P(R|~A~BC) 0.4 0.00 0.36 0.00 0.18

(0,1,0) P(R|~AB~C) 0.2 0.00 0.36 0.00 0.18

(0,1,1) P(R|~ABC) 0.52 0.48 0.00 0.18 0.00

(1,0,0) P(R|A~B~C) 0.14 0.48 0.37 0.60 0.53

(1,0,1) P(R|A~BC) 0.484 0.48 0.5968 0.60 0.6146

(1,1,0) P(R|AB~C) 0.312 0.48 0.5968 0.60 0.6146

(1,1,1) P(R|ABC) 0.5872 0.7296 0.37 0.672 0.53

Note. In the Cue Pattern column, a 0 indicates that the cue is absent (i.e., is of one color) and a 1 indicates that the cue is 
present (i.e., is of the other color).
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increasing the participant’s displayed score by 10 points. 
After 16 card selections, the positions of the cards were 
randomly reassigned. This process was repeated until the 
participant had made 320 card choices.

7.2.6 Measuring Card Preferences
The card-choice task was the first phase in a two-phase 

experiment. First, participants explored the card-choice 
environment to learn the probability of reward associated 
with each card. It provides one kind of data that can be 
used to infer what participants learned: If participants are 
probability matchers, then the frequency with which they 
choose a card reflects their sense of its probability of reward.

However, the operant perceptron simulations that 
were presented in Chapter 6 demonstrated that very dif-
ferent patterns of choice behavior could be mediated by 
the same underlying knowledge of probability structure. 
For this reason, we sought an additional measure of 
what participants had learned about the environment and 
collected this information from participants in a second 
phase of the study that occurred immediately after they 
had completed choosing cards as just described.

Probability theory is often developed from an un-
derlying theory of choice behavior (Savage, 1951, 1954, 
1962). The basic idea is that if two events have different 
probabilities of reward, then a participant—if given the 
choice—will prefer the event with the higher probability 
of reward to the event with the lower probability of reward. 
This, of course, assumes that the participant values being 
rewarded. If the two events have identical reward proba-
bilities, then the participant will not prefer one to the other.

The second phase of the card-choice experiment col-
lected such preference data. When participants completed 
the card-choice task, the computer program presented a 
second button that enabled them to begin the next phase of 
the study when they were ready. In this phase, participants 
were presented a sequence of card pairs. Their task was 
to choose the card in each pair that they believed was 
more likely to provide a reward based on what they had 
learned about the cards in the first phase of the study. After 
choosing a card, the next pair of cards was presented. 
Unlike the card-choice task, participants never received 
any feedback about their choices. Participants had been 
instructed about this task and given a demonstration of 
how to proceed through it, as part of the instruction session 
at the beginning of the study. Figure 7-2 provides an ex-
ample display to show what participants were interacting 
with in this second phase of the study.

Participants were presented 112 different pairs of 
cards in this card preference task. Each possible pair of 

cards was presented four times in this session. The two 
cards that were presented were always different from 
each other (i.e., a card was never compared to itself). 
In other words, participants were presented two cards 
(A and B) four times during this task; the position of 
the cards was counterbalanced (for some pair A and B, 
Card A appeared on the left in two of the pairs and on 
the right in the other two). The order of presentation of 
the 112 card pairs was randomized for each participant. 
With each choice, the computer recorded the pair of cards 
presented and the card that was preferred.

7.3 Human Choice Behavior
We now turn to describing the results of the 

card-choice task. We begin by examining the re-
sults of the first phase of the study.

7.3.1 Combined Human Performance
For the participants in the first phase of the card-

choice task, we do not have direct measures of probability 
estimates as we did have for the perceptron simulations 
reported earlier. Instead, we must rely on the phenomenon 
of probability matching: that the probability of choosing a 
stimulus reflects a participant’s estimate of the probability 
that the stimulus will deliver a reward (Estes, 1964). Par-
ticipants’ data require preprocessing before this measure 
can be calculated because the program that conducted 
the experiment randomly assigned certain properties for 

Figure 7-2. A view of the card display that participants interact with in the 
second phase of the study. In this phase, participants are presented a 
sequence of 112 card pairs like the one illustrated in the figure, and they 
choose the card they believe to be more likely to offer a reward.
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each participant, such as the color that signaled a cue 
was “present” (in terms of the probability rules of Table 
7-2), and assigned which cue was the independent signal. 
The preprocessing involved relabeling each participant’s 
cards so that different cards that served the same function 
for different participants were provided the same cue 
labels. For instance, for one participant the card with 
three blue cues might be the card for which all cues are 
present, whereas for a different participant the card with 
three green cues served this function instead. The pre-
processing of the cards would give these two cards the 
same set of labels—that is, (1,1,1). In short, the purpose 
of preprocessing was simply to map each participant’s 
cards to the appropriate row of Table 2.

After preprocessing, choice behavior can be deter-
mined for each participant in each condition. This simply 
involves counting the number of times that a participant 
chose each of the eight cards during the first phase of the 
study. Table 7-3 presents the mean number of times each 
card was selected by the 40 participants in each condition. 
When averaging over all of the participants in a condition, 
it can be seen that this measure is strongly related to the 
reward probabilities. The eight average choices in each 
column is the squared correlation between these choices 
and the appropriate probability of reward column from 
Table 7-2. The high values of R2 in the bottom row of Ta-
ble 7-3 indicate that the number of times that participants 
chose each of the eight stimuli is strongly related to the 
probability structure of the environment.

7.3.2 Individual Choice Behavior
The R2 values at the bottom of Table 7-3 indicate a 

strong relationship between choice behavior and reward 

probability. Yet these values are also surprising. For in-
stance, the values for the two XOR conditions are higher 
than the other values, which is quite different from the ex-
pectations generated from the simulation results reported 
in Chapters 5 and 6. However, the strong fit between the 
average choice performance in Table 7-3 and the reward 
probabilities in Table 7-2 hides the fact that within each 
condition there are substantial individual differences in the 
choice behaviors of participants, which is a common finding 
in the probability learning literature (Estes, 1964). Further-
more, individual participants in each condition tend to be 
far less accurate probability estimators than are the “aver-
age participants” represented by each column in Table 7-3.

To demonstrate this, we calculated the squared 
correlation between each participant’s choices and the 
reward probabilities for his or her condition of the card-
choice task. Figure 7-3 presents box plots of these results, 
with each box plot representing the distribution of the R2 
values computed for 40 participants. Figure 7-3 clearly 
shows that within each condition there is a great deal of 
variation between participants in terms of the relationship 
between their choice behavior and reward probabilities. 
This is reflected in the width of each box and the spread 
of each box’s tails. In addition, the means of each distribu-
tion—the dark horizontal line through the middle of each 
box in Figure 7-3—exhibit a pattern that is much more 
consistent with the expectations generated by earlier sim-
ulations. Note, for instance, that the lowest mean is in the 
High-Reward XOR condition, whereas the highest mean 
is in the Low-Reward AND condition.

Table 7-4 presents the average R2 value, with stan-
dard error, for each condition. Each average is the mean of 
the R2 values computed for the 40 participants in a condi-

Table 7-3. The mean choice behavior of participants in each condition, taken over the number of times that each participant in each condition chose 
each of the eight stimuli. 

Cue Pattern Probability High-Reward High-Reward AND Independent XOR Low-Reward AND Low-Reward XOR
(0,0,0) P(R|~A~B~C) 19.73 24.68 23.23 17.95 20.18

(0,0,1) P(R|~A~BC) 25.00 37.40 34.65 21.63 30.03

(0,1,0) P(R|~AB~C) 22.30 41.85 29.08 20.30 29.55

(0,1,1) P(R|~ABC) 43.78 30.00 50.05 34.68 29.73

(1,0,0) P(R|A~B~C) 37.68 39.85 28.23 43.45 44.73

(1,0,1) P(R|A~BC) 45.65 51.70 50.60 53.05 58.93

(1,1,0) P(R|AB~C) 46.40 56.13 39.83 54.33 55.73

(1,1,1) P(R|ABC) 79.48 38.40 64.35 74.63 51.15

R 0.831 0.905 0.861 0.860 0.920

Note. The R2 row provides the squared correlation between these columns of means and the appropriate column of 
reward probabilities from Table 7-2.
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tion. The values in this table are similar to those in earlier 
tables reporting the performance of perceptrons trained in 
analogous conditions, with one exception: Performance 
in the independent cues condition is poorer for human 
participants than for perceptrons. This result is discussed 
in more detail later in this chapter.

There is an interesting and important discrepancy 
between the results reported in Table 7-3 and those report-
ed in Table 7-4. In essence, Table 7-3 shows that if one 
totals the stimulus choices made by each participant and 
then relates these choices to ideal reward probabilities, the 
choice behavior accurately reflects the reward probabil-
ities in each condition. In contrast, Table 7-4 shows that 
if one does not combine the responses of all participants 
but instead relates the choices of each participant to ideal 
reward probabilities, then individual choice behavior is 
a much less accurate estimator of reward probabilities 
than is the choice behavior of the “average participants” 
presented in Table 7-3. What is the source of the dif-
ferences between Tables 7-3 and 7-4?

Table 7-4. The mean squared correlation between individual participant’s 
choices of stimuli and the ideal reward probabilities. 

High- 
Reward 

AND

High- 
Reward  

XOR
Independent

Low- 
Reward  

AND

Low- 
Reward  

XOR
Mean 

R2 0.569 0.380 0.480 0.626 0.550

SE 0.043 0.045 0.037 0.043 0.040

Note. The SE row provides the standard errors of these means, 
each of which is based on 40 participants.

Table 7-3 illustrates the phenomenon of coarse cod-
ing, which is well known in the artificial neural network 
literature (Hinton, McClelland, & Rumelhart, 1986; Van 
Gelder, 1991). In coarse coding, an accurate response of a 
network is achieved by combining a number of inaccurate 
estimates related to the response. These inaccurate esti-
mates are typically produced by various hidden units in a 
multilayer perceptron. For example, networks can gener-
ate accurate judgments of the distance between points on a 
map, or the direction between these points, by combining 
multiple hidden unit responses, where each hidden unit 
represents a much more inaccurate measure of distance or 
direction (Dawson, Boechler, & Orsten, 2005; Dawson, 
Boechler, & Valsangkar-Smyth, 2000).

Coarse coding succeeds because each inaccurate 
component can be viewed as making a response that 
contains both signal and noise. If these components have 
a different perspective on the problem being solved, they 
will have a different source of noise but will be receiving 
similar information about the signal. When the components 
are combined, the different sources of noise tend to cancel 
one another out, leaving a better (i.e., less noisy) estimate 
of the signal than can be achieved by any component on 
its own. Figure 7-3 and Table 7-4 indicate that the choice 
behavior of each participant in the card-choice task may 
not be a highly accurate estimate of ideal reward probabil-
ity. However, if the choice behavior of the participants is 
combined, there is a marked improvement between choice 
behavior and reward probability, presumably because there 
is a different pattern of error or noise in each participant’s 
choices that is canceled out when responses are combined.

In the current chapter, our interest is in the choice 
behavior of individual participants, just as in earlier chap-
ters we were concerned with the responses of individual 
perceptrons. In particular, how is the choice behavior of 
human participants affected by the different conditions in 
the card-choice task? Let us explore this question by study-

Figure 7-3. Box plots showing the distribution of R2 values between the 
choice behavior of individuals and ideal reward probabilities for each of 
the conditions in the card-choice task. Each box plot summarizes the 
responses of 40 participants.
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ing the effects of different cue interactions on a variety of 
behaviors that were measured in the first phase of the study.

7.4 Cue Interactions and  
Relative Complexity Evidence
7.4.1 Exploring Relative Complexity

As noted in Section 7.1.3, one approach to comparing 
models and humans is to use relative complexity evidence. 
This type of evidence involves examining participant 
performance in different conditions, with the expectation 
that it will be poorer in some conditions than in others. 
To use relative complexity evidence to compare models 
to humans, one determines whether the same pattern of 
performance is exhibited by both models and human 
participants. If one has a plausible model of human perfor-
mance, then the model and the human participants should 
similar differences of performance between conditions. 
That is, if the model performs worst in one condition, 
then this predicts that human participants should find 
this condition the most difficult. Similarly, if the model 
performs best in another condition, then this predicts that 
human participants should find this condition the easiest. 
Relative complexity evidence in essence examines human 
performance in light of these model predictions.

To explore relative complexity evidence in the card-
choice task, let us focus on the four conditions that involve 
manipulating the type of interaction between cues as well 
as the probability of reward associated with this interac-
tion. We saw in Chapters 5 and 6 that these manipulations 
affected the probability estimates made by perceptrons. 
In this section, our relative complexity evidence emerges 
from comparing the performance of human participants 
in the card-choice task to expectations generated from 
simulations reported earlier in Chapters 5 and 6.

7.4.2 Human Probability Matching
Section 7.3.2 described how we used the R2 statistic 

to measure the relationship between the frequency that each 
participant chose each of the eight cards and the probability 
of reward associated with each card. The mean values of this 
statistic for each condition were reported in Table 7-4. We 
now consider statistical differences between these means.

First, let us consider the four conditions of the card-
choice task that involve an interaction between two of the 
three cues. These four conditions make up a 2×2 factorial 
design that crosses interaction type (XOR vs. AND) with 
probability of reward (high vs. low). We performed an 
ANOVA on this design to determine whether these two 
factors had similar effects on the human card choices 
as they did on perceptron responses.

This ANOVA reveals a significant main effect of type, 
F(1, 156) = 9.573, p = .002, η2 = 0.549, and a significant 
main effect of reward, F(1, 156) = 7.088, p = .009, η2 = 
0.041. However, the Type × Reward interaction was not 
significant, F(1, 156) = 0.129, p = .186, η2 = 0.01. Post hoc 
tests conducted using the Tukey HSD statistic reveal that 
there was a significantly better fit between human choice 
frequencies and reward probabilities for participants who 
experienced the AND interaction than for those who expe-
rienced the XOR interaction (p < .002). As well, there was 
a significantly better relationship between choice frequen-
cies and reward probabilities for human participants who 
experienced a low probability of reward condition than for 
participants who experienced a high probability of reward 
condition (p = .009). The two significant main effects 
were seen earlier in our computer simulation studies and 
are our first indications that human choices in the card-
choice task are consistent with the view that participants 
are behaving as if they are naïve Bayesians.

7.4.3 Success in Obtaining Rewards
In earlier chapters, it was argued that one reason 

that probability learning is adaptive is because the better 
an agent understands the reward probabilities signaled 
by various cues, the more successful will the agent be 
in obtaining rewards. We can explore this in our human 
participants by examining whether they were more suc-
cessful in obtaining rewards in some of the conditions 
of the card-choice task than in others. For the time 
being, we consider only the four conditions that involve 
an interaction between Cues B and C.

To perform this analysis, we simply counted the 
number of times that each participant in each condition 
was rewarded when a card was selected in the first phase 
of the card-choice task. Table 7-5 provides the mean num-
ber of successes for each condition (averaging over its 40 
participants) along with the standard errors of these means.

We again used an ANOVA to examine the effects of 
type of interaction (AND vs. XOR) and amount of reward 
(high vs. low) on the number of rewards achieved. This 
analysis reveals a significant main effect of type, F(1, 156) 
= 23.908, p = 2.49e-06, η2 = 0.128, and a significant main 
effect of reward, F(1, 156) = 6.192, p = .0139, η2 = 0.033. 
The Type × Reward interaction was not significant, F(1, 
156) = 0.210, p = .647, η2 = .001. Post hoc tests conducted 
using the Tukey HSD statistic reveal that human partici-
pants who explored the AND interaction obtained signifi-
cantly more rewards than did those who explored the XOR 
interaction (p < 2.5e-06). As well, human participants who 
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experienced a low reward condition obtained significantly 
more rewards than participants who did not (p = .014).

These results are consistent with the analyses of 
choice behavior in Section 7.4.2. The ANOVA reported 
in that section indicated that human choice behavior was 
more consistent with ideal reward probabilities for AND 
interactions than for XOR interactions, as well as when an 
interaction was associated with a low-reward probability 
in comparison a high-reward probability. The ANOVA of 
the data used to create Table 7-5 reveals this pattern of re-
sults. This agrees with our expectation that better learning 
of the reward contingencies in an environment will lead to 
a better ability to obtain rewards in that environment.

Table 7-5. The mean number of rewards (with standard deviations) 
obtained by each 

High- 
Reward 

AND

High- 
Reward 

XOR

Low- 
Reward 

AND

Low- 
Reward  

XOR
Mean Number 

of Rewards 141.10 122.73 148.08 132.85

SE 3.44 2.68 4.20 3.25

Note. Each mean is the average over the 20 participants in  
a condition.

7.5 Intermediate State  
Evidence: Independent Cues
7.5.1 Intermediate State Evidence

Section 7.3 provided relative complexity evidence in 
its examination of the performance of people and perceptrons 
in the four conditions of the card-choice task that involved 
an interaction between two of the three cues. This evidence 
indicated a similar pattern of behavior across participants 
and across conditions and suggests that human participants, 
like simple networks, behave as if they are naïve Bayesians. 
This, in turn, suggests that perceptrons are possible models 
of human performance in the card-choice task.

Let us now turn to a different kind of evidence, 
intermediate state evidence. This evidence comes from 
examining information processing at some intermediate 
point of time. We do not have direct access to such infor-
mation in the card-choice task. However, we do have the 
ability to observe networks at any time during learning and 
have started to establish a relationship between perceptron 
behavior and human probability learning. Next we use this 
relationship to help explain one puzzling aspect of human 
performance in the card-choice task.

7.5.2 Poor Performance With Independent Cues
The previous section examined human performance 

in card-choice task conditions that crossed a manipulation 
of the type of interaction between Cues B and C with a 
manipulation of the amount of reward associated with 
this interaction. Let us now compare performance in these 
conditions with the performance of participants in the 
condition in which all three cues in the card-choice task 
were independent signals of reward.

We saw earlier (Figure 7-3 and Table 7-4) that human 
performance in the card-choice task revealed one surprise: 
The fit of participants’ card choices to reward probabilities 
was lower than expected for the independent cues condi-
tion. The relationship between card choices and reward 
probabilities was lower in the independent cues condition 
than in all of the other conditions except for High-Reward 
XOR. This is surprising because the simulation results that 
we reported in Chapters 5 and 6, and the formal analyses 
reported in Chapter 4, lead us to expect that the independent 
cue condition should be conducive to very high probabil-
ity matching performance in humans. 

To examine this pattern in more detail, four Welch 
two-sample t tests were used to compare the performance of 
the 40 participants in the independent cue conditions to the 
performance of the 40 participants in each of the other four 
conditions. The results of these comparisons are provided 
in Table 7-6. These results show that performance in the in-
dependent cue condition was significantly poorer than per-
formance in the Low-Reward AND condition, and not sig-
nificantly different from the High-Reward AND condition. 
With respect to the other type of interaction, performance 
in the independent cues condition was not significantly 
different from performance in either the Low-Reward or 
the High-Reward XOR condition. However, the difference 
between the independent cues condition and the High-Re-
ward XOR condition is approaching marginal statistical 
significance. Thus for human participants performance in 
the independent cues condition is intermediate, better than 
High-Reward XOR and poorer than Low-Reward AND but 
no different from the other two conditions.

Table 7-6. The results of using Welch two-sample t

High- 
Reward 

AND

High- 
Reward 

XOR

Low- 
Reward 

AND

Low- 
Reward  

XOR

Independent  
Cues

t = -1.5605 t = 1.723 t = -2.565 t = -1.2866

DF = 
76.381

DF = 
75.291 DF = 76.38 DF = 

77.581

p = 0.1228 p = 
0.08899

p = 
0.01228 p = 0.2021
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7.5.3 Is More Learning Required?
Human choice behavior in the independent cues con-

dition does seem to provide a poorer fit to reward proba-
bilities than we might expect. Why might this be the case?

One possibility is that the human participants in the 
independent cue condition may have needed more train-
ing in this environment to improve their performance to 
expected levels. Although the cues in this condition are 
mutually independent signals of reward probability, in 
some respects it may still be a difficult condition. Each 
cue signals a different probability of reward, and some 
of the differences between signaled probabilities are not 
large (see Tables 7-1 and 7-2). Perhaps participants require 
more experience in this environment to tease out the subtle 
differences in probabilities associated with different cues.

To test the plausibility of this hypothesis, we con-
ducted a set of perceptron simulations in which 20 per-
ceptrons were trained in each of the five conditions. Each 
perceptron was trained on its own training set, where each 
training set was created using a method that is described 
in more detail later in this chapter. These training sets used 
the same encoding of inputs and outputs that were used 
in the Chapters 5 and 6 simulation studies. In this new 
set of simulations, perceptrons were trained for only 20 
epochs, and perceptron performance was examined after 
every 2 epochs of training. Perceptron performance was 
measured by taking the squared correlation of a percep-
tron’s responses to each stimulus type with the appropriate 
set ideal probabilities from Table 7-2.

Figure 7-4 provides the results of this simulation 
study. It graphs the mean performance of perceptrons in 
each condition (averaging more than 20 networks), along 
with the standard error of this performance. This figure 
shows that there is rapid learning for all five conditions. 
However, of particular interest in this figure is the shape 
of the solid black line that plots the performance of the 
perceptrons trained in the independent cue condition. Af-
ter 2 epochs of training, these perceptrons are performing 
surprisingly poorly given that they face no interactions 
between cues: They are significantly poorer than all but 
the High-Reward XOR condition (i.e., standard error bars 
do not overlap), which is a pattern similar to that revealed 
in the Table 7-4 summary of human performance. Howev-
er, over the next 4 to 8 epochs of additional training, the 
performance of these independent cue networks rapidly 
rises to achieve levels that are much more consistent with 
the simulations that were discussed in Chapters 5 and 6.

Figure 7-4 provides information about the intermedi-
ate states of networks (i.e., a measure of their knowledge 
about an environment’s probabilities of rewards) over 

a period of training. This evidence indicates that even 
though in principle the independent cue condition should 
lead to highly accurate probability estimates, it takes 
some training to achieve this accuracy. This condition is 
clearly very difficult for networks early in their learning, 
as evidence by the low level of the line for this condi-
tion at 2 epochs of training. Why might this condition 
be difficult to learn? One reason is that in this condition 
each cue signals different amounts of information about 
reward probability (see Table 7-1), and the signals car-
ried by two of the cues (A and B) are similar. It is not 
surprising that it might take a certain amount of learning 
for a network to sort out these subtleties in order to gen-
erate accurate probability estimates.

This might explain why human performance in the 
independent cue condition was poorer than expected. 
Human participants, like the networks, might need more 
experience with an environment to sort out the differences 
between signals that are being communicated by three 
independent cues. This suggests that if participants were 
offered more opportunity to explore this environment, 
their performance would likely improve to be more 
consistent with the expectations that were generat-
ed by our earlier simulation studies.

Figure 7-4. Mean probability learning performance (averaging more 
than 20 perceptrons) with standard errors for networks trained in the five 
conditions. Probability estimation is assessed as the R2 between network 
responses and the probability of reward associated with each stimulus 
type. Performance is plotted as a function of the number of epochs of 
training received.
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7.6 Training Perceptrons  
With an Alternative Input Code

7.6.1 The Need for Additional Simulations
Network simulations have played an important role 

in the narrative that has led to the human experiments 
described in this chapter. In particular, earlier chapters 
reported the effects of manipulating the type of interaction 
between cues that signal reward probability, as well as the 
amount of the probability signaled by an interaction. These 
effects have motivated the experimental design of the card-
choice task described in Chapter 7. With this experimental 
design, we are in essence comparing these effects on 
human probability learning to the effects that were discov-
ered in the computer simulations from Chapters 5 and 6.

However, some might be concerned that there are 
critical differences between the simulations that were 
reported earlier and the card-choice task described here. 
In particular, all of our previous work on perceptrons—
both the formal work from Chapter 4 and the empirical 
studies from Chapters 5 and 6—use the values of 0 and 1 
to represent the states of environmental cues. One reason 
is that this representation is very typical of perceptron re-
search. Another reason is that it is with this encoding that 
an equivalence is established between perceptron structure 
and the coefficients of logistic regression.

However, the standard interpretation of this [0, 
1] encoding is that the two codes represent the states of 
“absent” or “present.” Indeed, this interpretation has 
been tacitly assumed throughout this book. However, 
this interpretation does not apply to the card-choice task. 
This is because in the card-choice task there are always 
three cues present on any of the eight stimulus cards. The 
cues differ in color; they do not differ in being present 
or absent. It could be argued that this difference between 
the card-choice task and the perceptron simulations is 
sufficient to invalidate comparing perceptrons to people 
in this chapter. This is because when a perceptron’s input 
unit is activated with a value of 0, its connection weight 
is not updated by the learning rule (Dawson, 2008). When 
ai is 0 in Equation 1-3 or 1-6, the equation makes Δwij 
equal to 0. Studies of associative learning have shown that 
humans can learn from cues that are not present, and this 
has caused models to be changed to account for this find-
ing (Ghirlanda, 2005; Van Hamme & Wasserman, 1994; 
Witnauer & Miller, 2011). In this monograph, we are faced 
with the opposite situation: The input representation for 
the perceptrons assumes that cues may be absent, but these 
cues are actually visible to human participants.

It should be stressed that as far as perceptron learn-
ing is concerned, the [0, 1] encoding for the perceptrons 
in Chapters 5 and 6 means that the logical nature of the 
problem that they learn about is identical to the structure of 
the card-choice task. Nonetheless, it is prudent to perform 
additional simulations that use an alternative encoding to 
eliminate this concern. In this section we report the results 
of simulations in which a [1, 2] encoding is employed. 
The interpretation of this encoding is that when a cue is 
rendered in one color, the input unit that represents it is 
activated with the value 1. When the cue is rendered in 
the other color, its input unit is activated with the value 2. 
With this representation, both cues are still represented as 
being in one of two states but are present to the network 
in either state—that is, the input unit’s connection weight 
will be modified for either value of ai. We see that this 
change in encoding does not alter perceptron performance 
in any significant way. Furthermore, some interesting 
insights can be obtained from examining the structure of 
networks trained using this alternative input code.

7.6.2 Methodology
We now turn to describing an additional set of 

perceptron simulations that attempt to make a stronger 
analogy between perceptron training and human perfor-
mance in the card-choice task. As was the case for the ear-
lier simulations, each perceptron consisted of three input 
units and a single output unit that employed the logistic 
activation function. The primary difference between these 
simulations and those reported earlier is the use of [1, 2] 
encoding of cues as discussed in the previous section. In 
addition, all of these perceptrons were trained with the in-
creasing returns operant rule that was discussed in Chapter 
6. Operant training was adopted in these simulations to 
increase the similarity between perceptron training and 
human learning, because human participants in the card 
choice-task successively choose which cards to learn. We 
employed the same learning rate of 0.05 that was used in all 
of the previous simulations and used the same procedures 
as before to randomize networks prior to training. We did 
so to be better able to compare these new simulations to 
the earlier ones. In contrast to earlier simulations, these 
new perceptrons were trained for only 40 epochs. Pilot 
studies revealed that with this amount of operant training, 
the performance of the perceptrons in the two high reward 
conditions (measured by R2 fit between perceptron respons-
es and ideal probabilities) was similar to the probability 
matching of human participants in these two conditions. 
This amount of training was then used for the remaining 
conditions to permit valid comparisons between networks.
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Our previous simulations (Chapters 5 and 6) trained 
many different networks on the same training set, under 
the assumption that random differences between the 
starting states of networks would introduce variability. 
However, those results demonstrated that there was a 
very high degree of similarity between different networks 
trained on the same stimuli. For these new simulations, 
we created a different training set for each perceptron that 
was studied. We were interested in seeing whether this ap-
proach would increase the within-condition variability of 
perceptron performance, making network behavior more 
similar to that of our human participants.

For these new simulation studies, we developed 40 
training sets for each of the five conditions from Table 
7-2. Each training set consisted of 320 stimuli. This was 
accomplished by duplicating each of the eight possible 
three-cue configurations (i.e., each row in Table 7-2) 40 
times in a training set. Then, the same stochastic procedure 
that was used to determine rewards in the card-choice task 
(described in Section 7.2.5) was also used to determine 
whether a particular training pattern was rewarded (i.e., 
the perceptron was trained to turn on to the input pattern; 
Dawson, 2008) or not rewarded (i.e., the perceptron was 
trained to turn off to the pattern). That is, whether a par-
ticular stimulus was rewarded in a training set was deter-
mined by comparing a random number to the appropriate 
probability of reward from Table 7-2. After a training set 
was created, the probability of reward for each of the eight 
stimulus types was determined by dividing the number of 
times each type was rewarded by the number of times it 
appeared in the training set. The eight reward probabilities 
computed in this way were then correlated with the eight 
ideal probabilities from Table 7-2. For the 20 training sets 
created for each condition, these probabilities were very 
high and ranged from 0.93 to 0.99. This indicates that the 
stochastic procedure used to determine reward for net-
works (or for humans) provides reward probabilities that 
are strong approximations of the ideal values in Table 7-2.

Although these modifications to the simulation meth-
odology were an attempt to make perceptrons more similar to 
people, it is important to recognize that there are still import-
ant differences between the two. For instance, even with 40 
epochs of training perceptrons learn about many more stimuli 
than the mere 320 that were selected by human participants. 
Furthermore, all the perceptrons use the increasing returns 
operant rule; we cannot say whether human participants use 
this rule, and it is unlikely that every participant uses the 
same strategy to choose stimuli. However, these differences 
are acceptable because we are not interested in using the 
perceptrons as models of human performance. That is, our 

goal is not to fit perceptron performance to human behavior. 
Instead, we are exploring the possibility that perceptrons 
and people belong to the same class (naïve Bayesian mech-
anisms) and are using relative complexity evidence (instead 
of model fitting) to evaluate this possibility.

7.6.3 Perceptron Performance
As was the case in the earlier simulations, perceptron 

responses to the eight types of stimuli can be interpret-
ed as estimates of the probability of reward associated 
with each. We are particularly interested in using these 
responses as relative complexity evidence: Do they vary 
in the same way from condition to condition as does 
human probability matching behavior?

 To explore this possibility, for each condition and for 
each perceptron we correlated the eight network responses 
to the appropriate column of reward probabilities from Ta-
ble 7-2. Table 7-7 reports the mean values of this measure 
of fit between perceptron probability estimates and ideal 
reward probabilities. The pattern of results in Table 7-7 is 
very similar to the pattern of results observed in previous 
simulations: Perceptron estimates are lower for XOR 
interactions, higher for low reward conditions, and very 
high for the independent cue condition. All of these results 
are consistent with the formal analyses of Chapter 4. The 
pattern of results in Table 7-7 is also similar to the human 
probability matching behavior summarized in Table 7-4. 
However, these simulations (like the earlier ones) produce 
much better performance for the independent cues condi-
tions than is observed for human participants.

To compare the performance of these networks to 
human performance, we conducted analogous sets of 
statistical analyses of perceptron performance. In parallel 
to Section 7.4.2, we examined perceptron performance by 
conducting an ANOVA on the R2 values for networks in 
the four conditions involving an interaction between Cues 
B and C. This analysis revealed a significant main effect 
of type, F(1, 156) = 95.31, p = 2.0e-16, η2 = 0.135; a 
significant main effect of reward, F(1, 156) = 409.32, p = 

Table 7-7. The mean squared correlation between individual network 
responses to each stimulus and the ideal reward probabilities.  

High- 
Reward  

AND

High- 
Reward  

XOR
Independent

Low- 
Reward 

AND

Low- 
Reward 

XOR
Mean 0.585 0.337 0.572 0.786 0.742

SE 0.022 0.013 0.029 0.011 0.010

Note. Each mean is based on 40 perceptrons. The SE row pro-
vides the standard errors of these means.
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2.0e-16, η2 = 0.579; and a significant interaction between 
type and reward, F(1, 156) = 46.68, p = 1.77e-10, η2 = 
0.066. Post hoc tests conducted using the Tukey HSD 
statistic demonstrated that participants exposed to the 
AND interaction learned to be more accurate probability 
estimators than did participants exposed to the XOR inter-
action (p = .009). As well, participants who experienced 
a low-reward condition performed better than did partic-
ipants exposed to a high-reward condition (p = 1.0e-16). 
Finally, the significant interaction emerged because the 
difference between Low-Reward XOR and High-Reward 
XOR networks (M difference = 0.404) was significantly 
larger than the difference between Low-Reward AND and 
High-Reward AND networks (M difference = 0.200).

This pattern of results is very similar to the pattern 
observed in previous simulations (Chapters 5 and 6), 
indicating that changing input unit encoding does not 
change the effects of interaction type and probabili-
ty of reward on perceptron behavior. 

These results are also identical to those provided by 
the analysis of human probability matching behavior, with 
the exception that human participants did not exhibit a sig-
nificant interaction between these two factors. However, 
the differences between mean R2 in Table 7-4 are consistent 
with this interaction. The difference between the Low-Re-
ward XOR condition and the High-Reward XOR condition 
is 0.186, whereas the difference between the Low-Reward 
AND condition and the High-Reward AND condition is 
only 0.054. One reason that the interaction is significant 
for networks, but not for humans, is that within-condition 
variability between networks is much lower than with-
in-condition variability between humans (see Figure 7-3).

In parallel with Section 7.5.2, we also compared 
perceptron performance in the independent cues condition 
to perceptron performance in each of the other four condi-
tions using Welch two-sample t tests. The results of these 
comparisons are provided in Table 7-8. 

These results indicate that perceptrons in the 
independent cues condition generated responses that 

were significantly better fits to reward probabilities than 
was the case for perceptrons in the High-Reward XOR 
condition, and significantly poorer than was the case for 
perceptrons in either of the two low-reward conditions. 
For these perceptrons, independent cues performance 
was not significantly different from performance in the 
High-Reward AND condition. This pattern of results is 
consistent with the differences observed in human per-
formance (Table 7-6) but is sharper. The key differences 
between the two tables is a stronger difference between 
the independent cues condition and both the High-Reward 
and Low-Reward XOR conditions for perceptrons than for 
humans. The strong performance for these networks in the 
Low-Reward XOR condition is reminiscent of network 
performance that was observed in Chapters 5 and 6.

7.6.4 Perceptron Structure and Input Encoding
Before continuing with our examination of human 

performance in the card-choice task, let us briefly consider 
the effect of different input encodings (i.e., [1, 2] vs. [0, 1]) 
on the structure of perceptrons. This is because concerns 
about learning about absent cues have influenced proposals 
for models of associative learning (Ghirlanda, 2005; Van 
Hamme & Wasserman, 1994; Witnauer & Miller, 2011).

Let us start with the results of a simulation study 
that compares performance using the two encodings. In 
one condition, we repeated the simulation methodology 
described in 7.6.2, training 40 networks in each condi-
tion. In this case, however, each network was trained for 
2,500 epochs to ensure that network performance was 
near a dynamic equilibrium of the sort discussed earlier 
in Section 2.6. This condition used exactly the same 
training sets for as were used in the earlier Section 7.6 
simulations, so these simulations used the [1, 2] encoding 
and can illustrate changes in network performance (i.e., 
Table 7-7) when training is extended from 40 epochs to 
2,500. In a second condition, 40 new training sets were 
created for each condition using the procedure described 
in Section 7.6.2, but these training sets used the [0, 1] 
encoding. What is the effect of the different encoding on 
the networks trained in the various conditions?

Table 7-9 summarizes the key results of this simula-
tion study. For both encodings, this table reports the av-
erage network structure (the average bias and the average 
of each of the three weights), where each average is the 
mean of a network component taken over 40 perceptrons. 
The table also reports the average fit of networks to reward 
probabilities for each encoding in each of the five con-
ditions, where this fit is the squared correlation between 
network responses and Table 7-2 probabilities.

Table 7-8. The results of using Welch two-sample t

High- 
Reward  

AND

High- 
Reward  

XOR

Low- 
Reward  

AND

Low- 
Reward  

XOR

Independent  
Cues

t = 
-0.37793 t = 7.3053 t= -6.9102 t = -5.509

df = 72.915 df = 54.815 df = 49.158 df = 48.785

p = .7066 p = 
1.214e-09

p = 
8.997e-09

p = 
1.338e-06
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Three key regularities are apparent in Table 7-9. First, 
for each condition there is no significant difference between 
the performances of networks trained with one encoding in 
comparison to networks trained with the other encoding. 
This is to be expected given that, as noted in Section 7.6.1, 
the change in encoding does not change the logical nature 
of the problem being presented to a perceptron.

Second, for each condition the three average network 
weights obtained using one encoding are nearly identical 
to the three average network weights obtained using the 
other encoding. Differences between weights are not 
significant; variations between weights in each stimulus 
condition are due to the random variations intrinsic to 
network training (e.g., random variations in initial states, 
random variations in operant choices). Again, this is not 
surprising. We proved in Chapter 4 that a perceptron’s 
connection weight for a probabilistic task is a particular 
measure of a cue’s effect on reward probability (i.e., the 
natural logarithm of the odds ratio). As in each stimulus 
condition all networks are trained on logically equivalent 
problems (the only difference is input encoding), regard-
less of encoding the relationship between a cue and reward 
probability is the same, so we expect the same connection 
weights (the same odds ratios) for networks trained in the 
same condition using different encodings.

Third, for each stimulus condition there appears 
to be a marked difference between the bias of networks 
trained with one encoding and the bias of networks 
trained with the other. For these simulations, the bias of 
networks trained using the [1, 2] encoding is approxi-
mately double the bias of networks trained using the [0, 
1] encoding. A straightforward computational analysis 
shows that there is a very systematic relationship be-
tween bias values and input encoding.

The response of a network is the conversion of a 
net input value into activity using the logistic activation 
function, as was introduced in Chapter 1 in Equation 1-4. 
The net input for the output unit is the sum of weighted 
input signals plus the network’s bias. Equation 7-1 pro-
vides a net input equation for a perceptron that uses a [0, 
1] encoding. In this equation, the subscript [0, 1] is used 
to identify the network’s input encoding to distinguish 
it from the other network. A, B, and C are all input sig-
nals that are either equal to 0 or 1.

(7-1)

Now consider the net input for a perceptron that is 
given the same input pattern as is represented in Equation 
7-1, but with the [1, 2] encoding. The expression for this net 
input is provided in Equation 7-2. Note that the components 
of this equation are differentiated from those of Equation 
7-1 with the use of the [1, 2] subscript. Note, too, that the 
input pattern in this is equation is represented as (A + 1), 
(B + 1), and (C + 1). This is because if the same stimulus is 
being used to determine net input in Equation 7-1 and 7-2, 
then one converts the [0, 1] encoding for Equation 7-1 into 
the [1, 2] encoding for Equation 7-2 by adding 1 to each 
Equation 7-1 input value. The remainder of Equation 7-2 is 
produced by multiplying the weights through the equation 
and rearranging the resulting equation components. 

(7-2)

Table 7-9. The comparison between components of networks trained on different input encodings ([1,2] vs [0,1]) in each of the five conditions of the 
analog card-choice task. 

High-Reward AND High-Reward XOR Independent Low-Reward AND Low-Reward XOR
Source [1, 2] [0, 1] [1, 2] [0, 1] [1, 2] [0, 1] [1, 2] [0, 1] [1, 2] [0, 1]

θ − − − − − − − − − −

w 1.75 1.97 1.48 1.46 0.43 0.41 3.11 3.29 2.65 2.63

w 1.03 1.09 − 0.07 0.59 0.46 0.23 0.22 0.04 −

w 0.97 1.06 0.02 − 1.62 1.56 0.18 0.16 0.01 0.00

R 0.774 0.773 0.445 0.424 0.880 0.880 0.946 0.954 0.900 0.890

SE 0.007 0.009 0.012 0.016 0.010 0.010 0.004 0.002 0.003 0.006

Note. All networks were trained for 2,500 epochs using the increasing returns operant method. Each entry is the mean of a network 
component (bias or weight) taken over 40 networks. The bottom two rows provide the average R2 fit, with standard error, of the 
network responses in each condition to the appropriate column of reward probabilities provided in Table 7-2.
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Let us now make some simplifying assumptions us-
ing our logical understanding of the problem being learned 
by perceptrons under either encoding, assumptions that 
are also supported by the simulation results presented 
in Table 7-9. First, given that the logical structure of the 
problem is not affected by encoding—the mapping from 
stimuli to responses remains the same—when perceptrons 
trained with different encodings reach dynamic equilib-
rium they must generate the same response to the same 
stimulus. This is only possible if the net input produced by 
this stimulus under one encoding is equal to the net input 
produced by this stimulus under the other encoding. This 
assumption is provided in Equation 7-3 and leads to the 
conclusion that Equation 7-1 and 7-2 must generate the 
same values when presented the same stimulus.

(7-3)

Next, given that the logical structure of the task is not 
affected by encoding, the relationship between each cue 
and each reward probability must be the same regardless 
of encoding. In other words, the odds ratios achieved by 
a network faced with one encoding must be the same as 
those achieved by a network faced with the other encoding 
when dynamic equilibrium is achieved. This means that 
the weight associated with a cue in one network must be 
the same as the weight associated with the same cue in 
the other network. The relationships between network 
weights are provided in Equation 7-4, which also uses this 
relationship to simplify the notation for each weight by 
removing the subscript denoting encoding.

(7-4)

The assumptions made explicit in Equations 7-3 
and 7-4 permit us to equate the net input expression in 
Equation 7-1 to the net input expression in Equation 
7-2. This relationship is made explicit in Equation 7-5, 
which also simplifies matters by removing the sub-
script denoting encoding where possible. Important to 
note, this subscript cannot be removed from either bias 
term, because we have no prior knowledge about the 
relationship between these two terms.

(7-5)

However, we can derive an equation that converts 
the bias for one encoding into the bias for the other 
encoding using Equation 7-5. Equation 7-6 presents this 

expression. It is derived by subtracting the three terms that 
appear on both sides of Equation 7-5:

(7-6)

With Equation 7-6 in hand, let us return to the simula-
tion results reported in Table 7-9. Equation 7-6 makes the 
prediction that if we sum the bias and the weights obtained 
from networks trained using the [1, 2] encoding, the result 
should be the bias for networks trained in the same con-
dition using the [0, 1] encoding. Table 7-10 confirms this 
prediction, taking into account random variations between 
network performances in the different conditions.

Table 7-10. The use of the Table 7-9 simulation results to test the predic-
tion made by Equation 7-6. 

High- 
Reward  

AND

High- 
Reward  

XOR

Inde-
pendent 

Cues

Low- 
Reward  

AND

Low- 
Reward  

XOR
 θ[0,1] −2.98 −1.66 −1.99 −2.98 −2.35

θ[1, 2] + wA + 
wB+ wC −2.64 −1.67 −2.14 −2.89 −2.44

Note. The first row provides the average bias of networks 
trained with the [0, 1] encoding, each of which is taken from 
Table 7-9. The second row presents the sum of the average bias 
and the average weights of networks trained with the [1, 2] 
encoding, also taken from Table 7-9.

In summary, the formal and empirical analyses pre-
sented in this section indicate that the choice of encoding 
used to represent inputs to networks will have only one 
effect if the logical structure of a problem—the mapping 
between stimuli and responses—is maintained. This effect 
is to change the bias of the output unit. In essence, the 
learning process adjusts the bias to take into effect the 
magnitude of the signals used to encode the state of the 
codes. One important implication of this result is that 
the formal and empirical results obtained in previous 
chapters still apply to the results of Chapter 7, because 
the logical nature of the card-choice task is not changed 
by encoding cue states as being absent versus present, or 
instead as being one color versus another.

7.7 Fitting Logistic Equations  
to Human Choices

7.7.1 Rationale
The purpose of the current chapter is to determine 

whether perceptrons are potential models of human per-
formance in a probabilistic discrimination task. Previous 
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sections in this chapter have presented analyses of human 
performance in the card-choice task and have compared 
this performance to that of perceptrons. These results 
suggest that human participants, like perceptrons, behave 
in this task as if they are naïve Bayesians. This is because 
human choice behavior is affected in a similar fashion 
to perceptron responses when interactions between cues 
signal reward probabilities. In particular, human perfor-
mance is poorer when an XOR interaction between cues 
is present than when an AND interaction between cues is 
present. In addition, human performance is poorer when 
an interaction signals a higher probability of reward in 
comparison to when the interaction signals a lower proba-
bility of reward. These two results are consistent with the 
hypothesis that human participants have similar difficul-
ties recognizing the signals of cue interactions as we have 
seen in simple artificial neural networks.

One consequence of the observed similarities between 
human and network performance is that we should be able to 
model human responses using an equation like the one that 
defines perceptron behavior. In this section we explore this 
possibility by employing a modeling approach that is more 
typical of experimental psychology—fitting a mathemati-
cal model to empirical data (Dawson, 2004). In particular, 
we use logistic regression to model the choice behavior of 
participants in each condition of the card-choice task.

7.7.2 Methodology
The goal was to discover the logistic equation that 

generated the best overall fit to the eight choice probabil-
ities produced by the 40 participants in each condition in 
the card-choice task. This was accomplished by summa-
rizing the choice behavior for each condition in a format 
that could permit logistic regression to be used to fit the 
data. This involved summing the card choice frequencies 
made by the 40 human participants in each condition, 
separating the choices that led to a reward from those that 
did not. Table 7-11 presents the summarized frequency 
data that was used for this analysis.

The glm function in the R statistical programming 
language was used to predict reward frequency from the 
states of the three cues using the binomial (logit) model. 
This was performed for each of the five columns of fre-
quencies in Table 7-11. This analysis produces a logistic 
equation for each condition that predicts choice probabili-
ty from the cue states of the eight stimuli.

7.7.3 Results
The results of these logistic regressions are presented 

in Table 7-12. Each column in this table provides the con-
stant of the regression equation as well as the coefficient 

associated with each cue. These regression equation 
components are labeled to highlight their relationship be-
tween logistic regression and perceptron structure. Table 
7-12 also presents the fit between the equation and human 
choice behavior. This fit was determined by generating the 
predicted probability of choice for each stimulus using 
a regression equation. The squared correlation between 
these eight predictions and the average number of times 
each of the eight cards was selected by the 40 participants 
in a condition (i.e., the appropriate column of Table 7-3) 
was then determined. The second row from the bottom 
of Table 7-12 presents this measure of the equation’s fit 
to the human choices in each condition. The bottom row 
of the table presents the squared correlation between the 
probability estimates generated by the regression equation 
and the ideal reward probabilities from Table 7-2.

The results presented in Table 7-12 indicate that the 
logistic regression equations capture a great deal of the 
variance in human choice behavior. The worst fit is for 
the High-Reward XOR condition, but the equation still 
accounts for 46% of the variance in the human data. In 
all other conditions, the logistic equation accounts for 
86% of the variance or higher. Of interest, the best fit is 
for the independent cues condition. 

Although the logistic equations are being fit to human 
choice behavior, these choices are also being made in an 
environment governed by particular rules that convert cues 
into reward probabilities. How related are these models 
of choices to the ideal reward probabilities? The bottom 
row of Table 7-12 presents the relevant measures of fit, 
and the numbers in this row follow a similar pattern to 
that which was seen earlier for both human behavior and 
for network responses. In particular, these fit values seem 
very similar to those reported for the two sets of networks 
trained to dynamic equilibrium (Table 7-9).

In fact, there is a striking similarity between the logistic 
regression coefficients and the structure of these networks. 
Table 7-13 presents the regression coefficients from Table 
7-12 along with the average network structure from the 
[0, 1] encoding previously seen in Table 7-9. This permits 
pairs of structures to be easily compared. It is apparent 
from Table 7-13 that there is a striking similarity between 
the regression equations and the network structures; the 
bottom row of the table provides the squared correlation 
between each pair of columns. This result is particularly 
interesting because the two structures arise from very dif-
ferent sources—one from being fit to human choices, the 
other from networks that are trained on an analogous task.
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7.8 Exploring Human Choice Strategy

7.8.1 Choice Strategy
To this point, the examination of participant behavior 

in the card-choice task has focused on the relationship 
between the frequency that various cards were selected 
and the probability of reward associated with these cards. 
In this section, we briefly consider possible strategies 
that participants may have employed when deciding 
which card to choose next when they were participating 
in the first phase of the study. From one perspective, this 
is an exploration of another kind of intermediate state 
evidence, where the intermediate state is a transition 
from the current card to the next card.

One famous study of how human participants learned 
artificial concepts (Bruner, Goodnow, & Austin, 1956) 
emphasized the importance of strategy. In the operant 
version of this task, participants viewed a set of 81 cards. 
Each card depicted a unique pattern of four features; each 
feature could take on three values. Participants were given 
the task of learning a rule (e.g., “three red circles”) that 
defined a concept. This was accomplished by participants 
choosing one of the cards and being informed whether the 
chosen card belonged to the target category. In this study, 
Bruner et al. were interested in the processes used by partic-
ipants to choose the next card. They called these processes 
strategies: “A strategy refers to a pattern of decisions in 

the acquisition, retention, and utilization of information 
that serves to meet certain objectives, i.e., to insure certain 
forms of outcome and to insure against others” (Bruner 
et al., 1956, p. 54). It was discovered that changing task 
conditions, for instance to increase or decrease cognitive 
load, would alter the strategies adopted by participants.

The operant nature of the card-choice task permits 
participant strategy to come into play. This is because par-
ticipants are free to choose any of the eight cards as they 
learn about the probability structure of the environment. 
The computer program that runs the card-choice task 
permits strategy to be examined because it records each 
card choice made by a participant, where the card was 
located, and whether the card was rewarded.

Many questions about strategy could be explored 
using this record of participant choices. The current sec-
tion considers only one. To this point in Chapter 7, we 
have been considering human participants as probability 
matchers who learn about the probability of reward asso-
ciated with each card. However, some might argue that 
these participants only seem to be probability matchers. 
Some have suggested that the behavior that we have been 
describing earlier in this chapter is not actually probability 
matching, but is instead an artifact of a simple strategy. 
Let us call this strategy “randomly choose but stay when 
rewarded.” In this strategy, whenever a participant choos-
es a card, this choice is random. If the selected card is 

Table 7-11. Total card choice frequencies for the 40 participants in each condition. Each frequency is associated with a reward state (1 = reward, 0 = 
no reward) and a [0, 1] encoding of the state of each cue on the chosen card.

Reward Cue A Cue B Cue C High-Reward 
AND

High-Reward 
XOR

Independent 
Cues

Low-Reward 
AND

Low-Reward 
XOR

1 0 0 0 0 0 0 0 0

1 0 0 1 0 503 560 0 225

1 0 1 0 0 631 229 0 229

1 0 1 1 823 0 1032 249 0

1 1 0 0 747 636 158 1056 923

1 1 0 1 874 1238 984 1269 1430

1 1 1 0 888 1344 501 1320 1387

1 1 1 1 2312 557 1490 2029 1120

0 0 0 0 789 987 929 718 807

0 0 0 1 1000 993 826 865 976

0 0 1 0 892 1043 934 812 953

0 0 1 1 928 1200 970 1138 1189

0 1 0 0 760 958 971 682 866

0 1 0 1 952 830 1040 853 927

0 1 1 0 968 901 1092 853 842

0 1 1 1 867 979 1084 956 926
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not rewarded, then participants randomly choose another 
card (which may include the card that was not rewarded 
with the previous choice). However, if the selected card is 
rewarded, then the participant chooses it again. In short, 
according to this strategy participants always continue 
to choose a card when it rewards and randomly choose a 
card when a reward is not received.

Why might the “randomly choose but stay when re-
warded” strategy generate probability matching behavior 
without participants learning reward probabilities? The 
answer is that with this strategy, participants are simply 
more likely to choose cards associated with higher reward 
probabilities because they are more likely to be rewarded 
by these cards and are therefore more likely to continue to 
choose them. With this strategy, probability matching might 
emerge from the structure of the environment, instead of 
from what participants have learned from this environment.

This section explores this possibility. It does so 
by using the methodology of Bruner et al. (1956), who 
compared predictions generated by assuming that an ideal 

participant adopted a particular strategy to the behavior 
produced by actual participants. To preview our results, 
we do discover that the “randomly choose but stay when 
rewarded” strategy can predict a large amount of variance 
in our summary of human choices. However, significantly 
more variance is accounted for by exploiting a strategy 
that assumes that human participants are actually learning 
about the probability structure of the environment and are 
using this knowledge to guide their choice of the next card.

7.8.2 Summarizing Human Choices
Participant choices were summarized as follows: The 

first card selected by a participant is the starting point of 
the data summary. It is designated as being the “current 
card.” After selecting the current card, the participant then 
selects a stimulus designated as being the “next card.” After 
these two choices have been made, a frequency matrix that 
describes the participant’s choice behavior can be updated. 
This is accomplished by adding 1 to the cell in the matrix 
with the row that corresponds to the current card and with 
the column that corresponds to the next card. For example, 

Table 7-12. The structure of equations that result from using logistic regression to fit the frequency data from Table 7-11.

Logistic Regression 
Coefficient High-Reward AND High-Reward XOR Independent Cues Low-Reward AND Low-Reward XOR

θ -2.78 -1.23 -2.17 -3.07 -1.21

wA 1.97 1.34 0.46 3.22 1.50

wB 0.96 -0.02 0.65 0.35 0.04

wC 0.94 -0.15 1.57 0.31 -0.01

R 0.890 0.461 0.929 0.859 0.876

R 0.811 0.498 0.941 0.967 0.921

R2 Fit To Average 
Human Choices 0.890 0.461 0.929 0.859 0.876

R2 Fit To Ideal 
Reward Probabilities 0.811 0.498 0.941 0.967 0.921

Note. The bottom row presents the R2 fit between choice probabilities generated from each equation and the average choice be-
havior reported earlier in Table 7-3.

Table 7-13. The comparison between logistic regression equation coefficients (from Table 7-12) and the structure of networks trained to equilibrium on 
the [0, 1] encoding of the analog to the card-choice task (from Table 7-9).

High-Reward AND High-Reward XOR Independent Cues Low-Reward AND Low-Reward XOR
Source Logistic Network Logistic Network Logistic Network Logistic Network Logistic Network

θ − − − − − − − − − −

wA 1.97 1.97 1.34 1.46 0.46 0.41 3.22 3.29 1.50 2.63

wB 0.96 1.09 − 0.07 0.65 0.46 0.35 0.22 0.04 −

wC 0.94 1.06 − − 1.57 1.56 0.31 0.16 − 0.00

R2 0.998  0.985  0.995  0.998  0.999  

Note. The bottom row presents the R2 fit between choice probabilities generated from each equation and the average choice be-
havior reported earlier in Table 7-3.
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if Card 5 is the current card and Card 3 is the next card, the 
cell (5,3) in the participant’s data matrix is incremented by 
one. For the next choice, the “next card” from the previous 
step becomes the “current card,” the new choice becomes 
the “next card” for the current step, and the matrix is up-
dated accordingly. This process is continued until all 319 
choices made by a participant have been summarized.

For the current section, our interest is in the se-
quences of card choices made by all of the participants 
in a condition, and not in the strategic behavior of indi-
vidual participants. For this reason, we summed the 40 
summary matrices for the participants in each condition. 
Table 7-14 provides one of these matrices, the one created 
for the 40 participants in the independent cues condi-
tion. Similar matrices were produced for the other four 
conditions of the card-choice task.

Table 7-14 provides the overall summary of partici-
pant choices—frequencies of transitions from the current 
card to the next card. Other summary matrices can also 
be constructed for the same experimental condition. For 
instance, Table 7-15 provides a summary matrix for the 
independent cues condition but only summarizes choices 
made after the current card has been rewarded.

A matrix that is complementary to Table 7-15 that only 
summarizes card transitions when the current card is not 
rewarded can also be created. Table 7-16 provides this ma-
trix for the independent cues condition. Note that this table 
can be created by subtracting Table 7-15 from Table 7-14.

One approach to studying participants’ choice strat-
egy is to compute some simple statistics that summarize 
key properties of matrices like Tables 7-14, 7-15, and 
7-16. For instance, if one sums the diagonal of one of these 
matrices and then divides this sum by the sum of the entire 
matrix the result is the overall probability of staying with 
the current card. The first three rows of Table 7-17 pro-
vide this probability for the overall summary matrix, the 
rewarded summary matrix, and the not rewarded summary 
matrix for each of the five conditions. These values indi-
cate that the overall probability of staying with the current 
card is about 0.29, although it is slightly lower for the two 
XOR conditions. The probability of staying tends to be 
higher (about 0.38) when the current card is rewarded in 
comparison to the probability of staying when the current 
card is not rewarded (about 0.22). On one hand, this seems 
to be consistent with the “randomly choose but stay when 
rewarded” strategy, because across conditions participants 
are more likely to stick with the current card when it 
rewards. On the other hand, the probability of staying 
with the current card seems much lower than one might 
expect if this strategy was being employed. This is the 

first suggestion that the “randomly choose but stay when 
rewarded” strategy does not provide the best account of 
how the participants behave in the card-choice task.

Other simple summary statistics can be used to 
explore the utility of explaining participant choices via 
the “randomly choose but stay when rewarded” strategy. 
For instance, according to this strategy staying with 
the current card should be strongly related to the card’s 
probability of reward. This can be assessed by relating the 
eight diagonal entries of a choice summary matrix with 
the eight ideal reward probabilities associated with the 
stimuli (i.e., the appropriate column of Table 7-2). The 
second-to-last row of Table 7-17 presents the squared 
correlations between these two variables for each of the 
conditions of the card-choice task and does show a strong 
relationship: across conditions, the average R2 between 
the diagonal entries of the overall choice matrix and the 
set of reward probabilities is 0.722.

However, a similar analysis again suggests that par-
ticipant choices are informed by learning reward probabil-
ities and are not simply made using the “randomly choose 
by stay when rewarded” strategy. The sum of each column 
of a choice matrix indicates the number of times the 
stimulus associated with that column is selected overall. 
If stimulus choices are based on (learned) probabilities of 
reward, which is inconsistent with the “randomly choose 
but stay when rewarded” strategy, then these column sums 
should be strongly related to reward probability, because 
the column sums should provide evidence of probability 
matching. The final row of Table 7-17 indicates that this is 
indeed the case. It presents the R2 between column sums 
and reward probabilities for each of the overall choice ma-
trices. The average R2 in this row is 0.864, indicating that 
these relationships are stronger than those between diag-
onal entries and reward probabilities. The diagonal entry 
relationship is stronger than the column sum relationship 
for only one condition, Low-Reward XOR. 

7.8.3 Modeling Human Choices
The preceding discussion suggests that a simple heu-

ristic does not provide the best account of human choices 
of cards—how participants choose the next stimulus after 
being rewarded (or not) for their current choice. A more 
appropriate test of a claim like this is to use a heuristic 
or strategy to simulate a set of stimulus choices and then 
to compare this simulated data to the choices generated 
by human participants (Bruner et al., 1956). In this sec-
tion, we perform this test to examine the relationship of 
five strategies to human choice data for each of the five 
conditions in the card-choice task.



148

PROBABILITY LEARNING BY PERCEPTRONS AND PEOPLE

Michael R.W. Dawson

We conducted five simulation studies. In each study, 
20 experiments were simulated. Each of these experiments 
used a strategy to simulate the choices of 40 participants, 
and therefore generated a data matrix that could be com-
pared to human participant data such as Table 7-14. Each 
experiment started with a random choice of one of the 
eight stimulus cards. It then used a heuristic to generate 
the next 319 stimulus choices made by a single participant. 
This process was then repeated until the choices of 40 
participants had been simulated. This method was used to 
simulate stimulus choices for each of the five conditions 
in the card-choice task. One condition was differentiated 
from another by the probability that a chosen stimulus 
was rewarded: The reward probabilities for a particu-
lar condition were always the ideal probabilities (i.e., 
the appropriate column of Table 7-2).

Once created, the data for a single simulation (i.e., 
one simulation of 40 participants in one condition of the 
card-choice task) were compared to the actual choice 
data obtained from human participants (i.e., to data 
like Table 7-14 but for the appropriate condition). This 
comparison was conducted by measuring the Euclidean 
distance between the simulated matrix and the partic-
ipant matrix. This distance is simply the square root of 
the sums of the squared differences between the 64 
corresponding cells in each of the two matrices. Higher 
distances between matrices indicate higher dissimilarity 
between simulated and actual choice data.

Three of the five strategies used to simulate data 
included a Stay rule: If the current stimulus was rewarded, 
then this stimulus was selected as the next card. One of 
these strategies (Random Choice) involved randomly 

choosing the next stimulus if the current stimulus was not 
rewarded. (This random choice could include choosing 
the current stimulus again.) A second strategy (Ideal 
Choice) involved choosing the next stimulus using the 
ideal probabilities of reward if the current stimulus was 
not rewarded. That is, the likelihood that the simulation 
chose a particular card was equal to the probability that 
the card is rewarded. A third strategy (Human Choice) was 
the same as the previous, but the probability of choosing 
a card when the current card was not rewarded was the 
probability that human participants actually selected 
the card in the appropriate condition of the card-choice 
task. This strategy was studied under the assumption 
(supported by results reported earlier in this chapter) that 
human participants did not learn the ideal reward probabil-
ities in some of the task’s conditions.

The remaining two strategies did not use a Stay 
rule but instead employed a Do Not Stay rule. For both 
strategies, the choice of the next card was not affected by 
whether the current card was rewarded. Instead, these Do 
Not Stay strategies always selected the next card using a 
probabilistic rule. One always chose the next card accord-
ing to its ideal reward probability. The other always chose 
the next card according to the choice probability for the 
card observed for human participants.

Figure 7-5 presents the results of comparing the 
data generated by each of these different strategies to the 
appropriate choice data obtained from human participants. 
Each bar in Figure 7-5 presents the average Euclidean 
distance between simulated data and human choices, 
where this average is taken over the 20 simulations for a 

Table 7-14. The overall summary of choices made by the 40 participants who experienced the independent cues condition of the card-choice task. 

Next Card
1 2 3 4 5 6 7 8 Sum

C
ur

re
nt

 C
ar

d

1 238 90 85 93 95 81 94 153 929
2 124 397 123 128 122 143 181 167 1385
3 79 143 285 123 131 164 98 135 1158
4 91 134 132 624 146 303 220 346 1996
5 92 145 111 144 268 125 108 133 1126
6 90 161 163 309 111 606 219 362 2021
7 75 162 120 229 114 238 397 253 1588
8 133 152 136 349 137 357 275 1018 2557

Sum 922 1384 1155 1999 1124 2017 1592 2567 12760

Note. The rows of the matrix correspond to the “current card” and the columns correspond to the “next card.” Each cell entry 
represents the number of times that a participant chose a particular “next card” after choosing a particular “current card.” The 
diagonal entries therefore indicate the frequency with which participants decided to choose the “current card” again.
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particular condition. The standard error of each mean is 
also provided on each bar in Figure 7-5.

The motivation for these simulations of choice 
behavior was to explore the possibility (introduced in 
Section 7.8.2) that human participants were not actually 
learning reward probabilities but were instead employing 
a simple heuristic to choose successive stimuli. According 
to this possibility, probability matching is simply a con-
sequence of the strategy. However, Figure 7-5 indicates 
that the best accounts of human choice data are not 
those that assume a heuristic in which participants stay 
with a stimulus when it is rewarded.

The standard error bars in Figure 7-5 are sufficiently 
short to indicate that within-condition differences in bar 

height represent significant differences between strategies 
with respect to the fit to data. In each condition, the two 
strategies that employ a Do Not Stay heuristic (the two 
rightmost bars for each condition) are significantly shorter 
than the other three strategies that employ a Stay heuristic. 
This suggests that staying with a rewarded stimulus does 
not provide a more accurate account of human choices 
than does an account that presumes that participants are 
using reward probabilities to choose successive stimuli.

Why do the Stay strategies provide poorer fits to hu-
man choice data? The primary reason is that each of these 
strategies inflates the diagonals of the choice matrix and 
correspondingly deflates the off-diagonal values. As noted 
in the discussion of Section 7.8.2, the lower diagonal values 

Table 7-15. The overall summary of choices made by the 40 participants who experienced the independent cues condition of the card-choice task. 

Next Card

C
ur

re
nt

 C
ar

d

1 2 3 4 5 6 7 8 Sum
1 0 0 0 0 0 0 0 0 0
2 44 205 51 45 43 52 65 54 559
3 14 26 67 23 21 35 17 26 229
4 39 62 65 360 77 139 113 173 1028
5 10 20 12 19 60 15 7 15 158
6 37 75 76 127 47 363 99 158 982
7 18 56 34 52 34 67 174 66 501
8 62 74 76 197 73 186 152 662 1482

Sum 224 518 381 823 355 857 627 1154 4939

Note. The rows of the matrix correspond to the “current card” and the columns correspond to the “next card.” Each cell entry 
represents the number of times that a participant chose a particular “next card” after choosing a particular “current card.” The 
diagonal entries therefore indicate the frequency with which participants decided to choose the “current card” again.

Table 7-16. The overall summary of choices made by the 40 participants who experienced the independent cues condition of the card-choice task. 

Next Card
1 2 3 4 5 6 7 8 Sum

C
ur

re
nt

 C
ar

d

1 238 90 85 93 95 81 94 153 929

2 80 192 72 83 79 91 116 113 826

3 65 117 218 100 110 129 81 109 929

4 52 72 67 264 69 164 107 173 968

5 82 125 99 125 208 110 101 118 968

6 53 86 87 182 64 243 120 204 1039

7 57 106 86 177 80 171 223 187 1087

8 71 78 60 152 64 171 123 356 1075

Sum 698 866 774 1176 769 1160 965 1413 7821

Note. The rows of the matrix correspond to the “current card” and the columns correspond to the “next card.” Each cell entry 
represents the number of times that a participant chose a particular “next card” after choosing a particular “current card.” The 
diagonal entries therefore indicate the frequency with which participants decided to choose the “current card” again.
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of human choice matrices provides evidence that human 
participants are much less likely to stay with a rewarded 
card than any of the three Stay strategies of Figure 7-5.

7.9 Error Evidence: Analysis  
of Human Card Preferences

7.9.1 Error Evidence
The previous sections have examined the relative 

complexity evidence and the intermediate state evidence 
provided by the first phase of the study, the phase in 
which participants choose cards to learn about the reward 
structure of the card-choice task. Error evidence is an 
additional source of information that can be used to in-
vestigate the relationship between the behavior of humans 
and models. In this section, we consider a particular form 
of error evidence made available by the card preference 
judgments obtained in the second phase of the experiment. 
In particular, we can compare human preferences for 

each card to the preferences derived from ideal reward 
probabilities. In general, we are interested in using this 
comparison to answer a basic question: At the end of 
exploring the environment, how much did participants 
learn about its reward probabilities?

Another reason for exploring the human preferences 
that were obtained in the second phase of the card-choice 
task was revealed by the Chapter 6 simulations that used 
operant perceptrons. Those simulations demonstrated that 
very different choice behaviors—increasing returns versus 
gambler’s fallacy—could lead to identical estimates of 
reward probabilities. This was discovered by examining 
the connection weights of the operant perceptrons at the 
end of training. However, if information about perceptron 
structure was not available, and if we could rely on only the 
choice behavior of networks, then we might infer that very 
different patterns of choice reflect very different models 
of reward probabilities. This inference would be mistaken. 
The examination of human card preferences provides a 
different measure of probability learning from the choice 
behavior that has been examined up to this point.

7.9.2 Row Sums of Human Preference Matrices
We began by preprocessing the card preference data 

using the same procedure described in Section 7.3.1. This 
relabeling assigned the same name to the different cards 
that provided the same function (i.e., the same reward 
probability) to different participants in the same condition. 
Next, for each participant we created an 8×8 preference 
matrix. Each row of this matrix was associated with 
one of the eight cards, as was each column. A particular 
entry in the matrix indicated the number of times that 
the card represented by the matrix’s row was preferred 
over the card represented by the matrix’s column. For 
each participant, the sum of the entries in the matrix was 
112, as each pair of cards was judged four times, but 
a card was never compared to itself.

Table 7-17. Some summary statistics for the choice summary matrices (e.g., Table 7-14) created for each of the conditions in the card-choice task.

Logistic Regression High-Reward AND High-Reward XOR Independent Cues Low-Reward AND Low-Reward XOR
Probability of staying  

with the current card (overall) 0.300 0.273 0.300 0.300 0.267

Probability of staying with  
the current card when rewarded 0.375 0.370 0.375 0.375 0.392

Probability of staying with  
the current card when not rewarded 0.241 0.212 0.241 0.241 0.178

R 0.620 0.809 0.620 0.620 0.941

R 0.832 0.906 0.832 0.832 0.920

Figure 7-5. The average Euclidean distances between simulated choice 
data and observed choice data for each of the five conditions of the  
card-choice task. Note. Five strategies were used to simulate data for 
each condition.
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Table 7-18 provides the sum of each of the preference 
matrices for each of the 40 participants in the independent 
cues condition. It represents 4,480 preference judgments. 
It shows, for instance, that Card 1—with the cue pattern 
(0,0,0)—was preferred over Card 2, with the cue pattern 
(0,0,1), six times in the preference phase of the study. In 
contrast, Card 2 was preferred over Card 1 154 times.

Table 7-18 also provides the sum of the entries in each 
row. These sums give a general sense of how preferred a 
particular card was in general in comparison to the other 
seven cards taken as a whole. For instance, the sum of the 
first row is 53, whereas the sum of the second row is 465. 
This result indicates that participants preferred Card 2 to 
the other cards more than 8 times more frequently than 
they preferred Card 1 to the other cards. As Card 2 had a 
probability of reward of 0.4, and Card 1 was never reward-
ed in this condition, these values make sense because they 
are consistent with the reward structure of the independent 
cues condition. We expect, in fact, that there should be a 
strong relationship between the sum of each row and the 
reward probabilities from Table 7-2. For instance, the R2 
between the row sums in Table 7-18 and the independent 
cues reward probabilities from Table 7-2 is 0.87.

This relationship suggests one method for relating 
each participant’s preference judgments to the ideal reward 
probabilities associated with the cards in their environment: 
Compute the R2 between the row sums of each partici-
pant’s preference matrix and the card-choice task reward 
probabilities. Table 7-19 provides the mean R2 for each of 
the five card-choice task conditions, where each mean is 
the average of this measure taken over 40 participants.

Two analyses were conducted on the data used to 
create the means presented in Table 7-19. The first was an 
ANOVA involving the four conditions of the card-choice 
task that make up a 2×2 factorial design which crosses in-

teraction type (XOR vs. AND) with probability of reward 
(high vs. low). This ANOVA reveals a significant main 
effect of type, F(1, 156) = 27.263, p = 5.6e-07, η2 = 0.145, 
and a significant interaction between type and reward, F(1, 
156) = 4.625, p = .033, η2 = 0.025. However, the main 
effect of reward was not significant, F(1, 156) = 0.099, 
p = .754, η2 = 0.001. Post hoc tests conducted using the 
Tukey HSD statistic reveal that there was a significantly 
better fit between sums of rows of preference matrices 
and sets of ideal reward probabilities for participants 
who experienced the AND interaction than for those who 
experienced the XOR interaction (p < .300e-07). The 
significant interaction reflects the fact that the fit between 
these two variables was lower for Low-Reward AND than 
for High-Reward AND, but the effect of reward was in the 
opposite direction for the two XOR conditions.

The second statistical analysis involved using Welch 
two-sample t tests to compare performance of participants 
in the independent cues condition to the other four con-
ditions. The results of these comparisons are provided 
in Table 7-20. These results indicate that in terms of 
the relationship between preference matrix row sums 
and ideal reward probabilities, there was no significant 

Table 7-18. The sum of each preference matrix for the 40 participants in the independent cues condition of the card-choice task. 

Cue 
Pattern Card 1 2 3 4 5 6 7 8 Sum

(0,0,0) 1 0 6 8 6 7 8 7 11 53

(0,0,1) 2 154 0 83 29 108 21 40 30 465

(0,1,0) 3 152 77 0 24 94 22 22 25 416

(0,1,1) 4 154 131 136 0 135 71 106 35 768

(1,0,0) 5 153 52 66 25 0 11 20 29 356

(1,0,1) 6 152 139 138 89 149 0 104 38 809

(1,1,0) 7 153 120 138 54 140 56 0 37 698

(1,1,1) 8 149 130 135 125 131 122 123 0 915

Sum 1067 655 704 352 764 311 422 205 4480

Table 7-19. The mean squared correlation between the sums of the rows 
of each participant’s preference matrix and the ideal reward probabilities. 

High- 
Reward 

AND

High- 
Reward 

XOR
Independent

Low- 
Reward 

AND

Low- 
Reward 

XOR
Mean 

R2 0.655 0.349 0.638 0.579 0.451

SE 0.036 0.047 0.045 0.039 0.043

Note. Each mean is based on 40 participants. The SE row pro-
vides the standard errors of these means.
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differences between participants in the independent cues 
condition and participants in either of the conditions in 
which there was an AND interaction between cues. In 
contrast, participants in the independent cues condition 
had a significantly stronger relation between row sums 
and reward probabilities than was the case for either of the 
conditions involving an XOR interaction between cues. 
The pattern of results presented in Table 7-20 because it 
reveals that performance for the independent cues condi-
tion is higher when measured by Phase II preferences than 
might be predicted from performance in this condition 
when measured by Phase I choice behavior.

Table 7-20. The results of using Welch two-sample t

High- 
Reward 

AND

High- 
Reward 

XOR

Low- 
Reward 

AND

Low- 
Reward 

XOR
Independent 

Cues
t = 

-0.29741 t = 4.4577 t = 
-0.99842 t = 3.0268

df = 74.863 df = 77.734 df = 76.792 df = 77.874

p = .767 p = 
2.749e-05 p = .3212 p = .00335

7.9.3 Distance From Simulated Preference Matrices
The previous section examined the relationship 

between human card preferences and ideal reward 
probabilities using one measure: the sums of the rows 
of participants’ preference matrices. In this section, we 
explore human preferences with a different approach that 
involves measuring the distances between participants’ 
preference matrices and simulated preference matrices 
created from ideal reward probabilities.

Imagine a pair of objects i and j that can be assigned 
some real value score that permits the two objects to be 
compared (si and sj). For example, the two objects might 
be sports teams, and their score might be a measure of 
team ability. If the two teams played one another, what 
is the probability that team i would defeat team j? One 
answer to this question comes from statistics in the form 
of the Bradley–Terry model (Bradley & Terry, 1952). 
According to this model, this probability—represented as 
P(i > j)—can be defined as in Equation 7-7:

(7-7)

The Bradley–Terry model can be used to simulate 
card preferences, and these simulated card preferences 

can be compared to the actual preference matrix for each 
participant. Each simulated preference matrix is based 
upon the assumption that an ideal agent knows the actual 
probability of reward (Table 7-2) for each stimulus. These 
probabilities are used as the scores in Equation 7-7 to com-
pute the probability that card i is preferred to card j for any 
pair of compared cards. Table 7-21 presents a simulated 
preference matrix for the independent cues condition. This 
matrix was created by first simulating the 112 preferences 
made by a single participant using ideal probabilities in 
Equation 7-7. A random number between 0 and 1 was 
generated and compared to the Equation 7-7 probability 
for each compared pair. If the random number was greater 
than the value from Equation 7-7, then cell (j, i) in the 
preference matrix was incremented by 1. Otherwise, cell 
(i, j) was incremented by 1. This process was then repeated 
until the data from 500 participants had been simulated. 
These 500 preference matrices were then averaged to pro-
duce the ideal preference matrix presented in Table 7-21. 
The same procedure, using appropriate probabilities from 
Table 7-2, was used to generate ideal preference matrices 
for the remaining four conditions of the card-choice task.

The logic of creating these five ideal preference 
matrices was to compare them to the actual preference 
matrices generated by each individual participant. This 
comparison was conducted by computing the Euclidean 
distance between an ideal matrix and a participant ma-
trix; the smaller the measured distance, the stronger the 
relationship between ideal probabilities and the dimension 
used by a participant to decide whether to choose one card 
over another from the various card pairs. Table 7-22 pro-
vides the average distance between ideal and participant 
preference matrices for each condition in the card-choice 
task, where this average is the mean distance computed 
over the 40 participants in each condition.

As was the case in Section 7.9.2, two analyses were 
conducted on the data used to create the means presented 
in Table 7-22. The first was an ANOVA involving the 
four conditions of the card-choice task that make up a 
2×2 factorial design that crosses interaction type (XOR 
vs. AND) with probability of reward (high vs. low). This 
ANOVA reveals a significant main effect of type, F(1, 
156) = 23.020, p = 3.72e-06, η2 = 0.128. Neither the main 
effect of reward, F(1, 156) = 0.635, p = .427, η2 = 0.004, 
nor the Type × Reward interaction, F(1, 156) = 0.231, 
p = .631, η2 = 0.001, were statistically significant. Post 
hoc tests conducted using the Tukey HSD statistic reveal 
that the distance between ideal and participant preference 
matrices was significantly shorter for conditions involving 
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the AND interaction in comparison to conditions involv-
ing the XOR interaction (p < 3.7e-06).

Table 7-22. The mean distance between ideal preference matrices and 
participant preference matrices. 

High- 
Reward  

AND

High- 
Reward  

XOR

Independent  
Cues

Low- 
Reward 

AND

Low- 
Reward 

XOR
M M Eu-
clidean 

Distance
9.897 11.656 9.395 10.026 12.177

SE 0.309 0.356 0.193 0.382 0.544

Note. Each mean is based on 40 comparisons. The SE row pro-
vides the standard errors of these means.

The second statistical analysis involved using Welch 
two-sample t tests to compare preferences of participants in 
the independent cues condition to the other four conditions. 
The results of these comparisons are provided in Table 7-23.

These results indicate that in terms of the distance 
between ideal and participant preference matrices, there 
were no significant differences between participants in 
the independent cues condition and participants in either 
of the conditions in which there was an AND interaction 
between cues. In contrast, participants in the independent 
cues condition had significantly shorter distances between 
matrices than was the case for either of the conditions 
involving an XOR interaction between cues. This pattern 
of results parallels those reported in Table 7-20 for the 
analyses of preference matrix row sums.

7.9.4 Summary
This section has explored performance of human 

participants in the second phase of the card-choice task 
by examining their preferences when faced with the job 
of choosing which card in presented pairs is associated 
with a higher reward. These card preferences provide an 
alternative measure of what participants had learned about 
the probability structure of the environment.

Two measures of card preferences were considered. 
One compared the sums of the rows of card preference 
matrices to the reward probabilities associated with each 
card. The other examined the Euclidean distance between 
each participant’s preference matrix and an ideal matrix 
simulated from reward probabilities.

Analyses of both measures revealed an important 
finding that was also present in the analyses of probability 
learning in the first phase of the card-choice task. When 
human preferences were compared to ideal reward prob-
abilities, performance was more accurate for conditions 
involving an AND interaction between cues than for con-
ditions involving an XOR interaction between cues.

Table 7-21. The ideal preference matrix for Phase II of the independent cues condition of the card-choice task. 

Cue 
Pattern Card 1 2 3 4 5 6 7 8 Sum

(0,0,0) 1 0 0.012 0.014 0.006 0.03 0.004 0.012 0.006 0.084

(0,0,1) 2 3.988 0 2.686 1.682 2.964 1.798 2.21 1.626 16.954

(0,1,0) 3 3.986 1.314 0 1.112 2.302 1.134 1.532 0.988 12.368

(0,1,1) 4 3.994 2.318 2.888 0 3.164 2.134 2.478 1.844 18.82

(1,0,0) 5 3.97 1.036 1.698 0.836 0 0.884 1.248 0.814 10.486

(1,0,1) 6 3.996 2.202 2.866 1.866 3.116 0 2.432 1.84 18.318

(1,1,0) 7 3.988 1.79 2.468 1.522 2.752 1.568 0 1.416 15.504

(1,1,1) 8 3.994 2.374 3.012 2.156 3.186 2.16 2.584 0 19.466

Sum 27.916 11.046 15.632 9.18 17.514 9.682 12.496 8.534 112

Note. This matrix presents the average set of preferences for the 112 card comparisons generated from the Bradley–Terry 
model for 500 simulated participants.

Table 7-23. The results of using Welch two-sample t tests to compare the 
distances for the independent cue condition to distances computed for 
the four other conditions in the chard-choice task.

High- 
Reward  

AND

High- 
Reward  

XOR

Low- 
Reward  

AND

Low- 
Reward  

XOR

Independent  
Cues

t = −1.3756 t = −5.5821 t = −1.4717 t = −4.8205

df = 65.372 df = 60.09 df = 57.66 df = 48.67

p = 0.1736 p = 
6.032e-07 p = .1465 p = 

1.445e-05
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Analyses of both measures also suggested that 
preferences for the independent cue condition were 
more accurate (i.e., more strongly related to ideal reward 
probabilities) than was apparent when choice behavior 
was examined. This finding is more consistent with the 
various simulation results that have been presented earlier. 
Phase II of the card-choice task may have produced this 
result because it measured participant performance after 
all learning was complete. All of the choice behavior 
described earlier included choices made by participants in 
the early trials of the study when they had no knowledge 
of the probability structure of the environment. It is pos-
sible that participants learned more about the independent 
cues condition than choice behavior can reveal, and that 
preference measures taken at the end of learning provide a 
more accurate measure of overall learning.

One interesting difference between measures of 
choice behavior and measures of card preferences was 
that the latter did not reveal a significant effect of level 
of reward associated with an interaction between cues. It 
is not clear why this variable would affect performance 
in Phase I of the card-choice task, but would not affect 
performance in Phase II. One possibility is that the two 
tasks tap different kinds of processing (e.g., learning vs. 
decision-making) and that probability discrimination 
learning is affected by reward level, but making judgments 
after this learning has taken place is not. Another possibil-
ity is that because the preference task forces participants 
to choose, their behavior is more “digital” than is the 
case when learning is occurring. For instance, Bruner et 
al. (1956, Chap. 7) discussed this type of conversion in 
the context of learning probabilistically defined concepts. 
Clearly, this issue requires future exploration.

7.10 Summary and Implications

7.10.1 Summary
Chapters 4, 5, and 6 provided many formal and 

empirical details about what perceptrons learn when they 
are confronted with an uncertain environment. However, 
perceptrons are very simple artificial neural networks, 
and this in turn means that there are limits to what they 
can learn. The connectionist approach to human cogni-
tion began to thrive only after researchers discovered 
methods for training networks that were more powerful 
because their structure was more complex (Medler, 
1998). This is because it was presumed that human 
cognition was complicated enough to require powerful 
network models that included hidden units.

The purpose of the current chapter was to determine 
whether simple networks like perceptrons are possible 
models of human probability learning. It did so by col-
lecting data from human participants in a card-choice task 
whose structure was analogous to the three-cue task used 
to train perceptrons in Chapters 5 and 6. Of interest is 
whether human performance would demonstrate patterns 
similar to those observed in these simple networks. If so, 
then this would suggest that both human and perceptron 
learn to discriminate probabilities by behaving like naïve 
Bayesians, which in turn supports the notion that percep-
trons are possible models of human performance.

In general, the results of the card-choice task support 
the claim that human probability learners do indeed be-
have as if they are naïve Bayesians. Our analyses of choice 
behavior revealed that the type of interaction between 
cues, and the level of reward associated with this interac-
tion, affected human choices in a similar fashion to that 
observed for perceptrons. That is, the relationship between 
human probability matching and ideal reward probabilities 
was stronger for the AND interaction than for the XOR 
interaction and was stronger when the interaction signaled 
lower reward than when it signaled higher reward. Our 
analyses of preference judgments replicated the effect of 
interaction type. The fact that human performance was 
affected by cue interactions, and was more adversely 
affected by a linearly nonseparable interaction than by a 
linearly separable interaction, provides support for using 
perceptrons to model human probability discrimination 
learning. At the very least the results of the card-choice 
task did not suggest that human probability discrimination 
learning was so powerful that it demanded modeling by 
systems more sophisticated than the perceptron.

One interesting discrepancy between human choice 
behavior and perceptron responses was observed for the 
independent cues condition. In general, human participants 
were poorer probability matchers for this condition than 
were perceptrons. It was suggested that this result might 
be changed if human participants received more training in 
this condition. Ignoring this possibility, this result certainly 
does not motivate the exploration of more powerful models. 
This is because the human participants are not performing 
as well as simple networks when facing independent cues.

Human performance in the card-choice task was also 
examined to find evidence that participants, like percep-
trons, are actually learning about reward probabilities. 
This was accomplished by determining whether simple 
heuristic processes, such as “randomly choose but stay 
when rewarded,” could account for the succession of 
choices from card to card by human participants. It could 
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be hypothesizes that by following such a strategy, humans 
could appear to be probability matchers without learning 
any reward probabilities at all. However, by comparing 
a number of simulated choice strategies to human data, 
we discovered that the best strategies (a) did not include 
a rule like “stay with a card that rewards” and (b) used 
reward probabilities to choose the next card. We have no 
evidence to support the claim that our participants were 
not learning the probabilities of reward associated with the 
various stimuli in the card-choice task.

7.10.2 Implications
In general, the analyses of human performance on 

the card-choice task support the view that can plausibly 
be modeled by simple artificial neural networks like per-
ceptrons. Our human participants behaved as if they were 
having difficulties identifying signals associated with cue 
interactions, producing behavior that was similar to that 
of the perceptrons. This indicates that for this particular 
probability discrimination task, both perceptrons and peo-
ple are behaving like naïve Bayesians. Our results do not 
support exploring more powerful or sophisticated systems 
as models of human probability discrimination learning.

There are many important implications of a potential 
correspondence between the probability learning of peo-
ple and the probability learning of perceptrons. First, this 
means that one can explore human probability learning by 
exploiting our formal understanding of how probability is 
related to perceptron structure (e.g., Chapter 4). Second, 
this means that one can use the probability learning of 
perceptrons to explore a variety of experimental situations 
to find promising results that can be pursued by studying 
human participants. Indeed, the entire experiment that 
has been detailed in this chapter was motivated by the 
simulation results presented in Chapters 5 and 6. Third, 
this suggests that a well-understood phenomenon—as-
sociative learning—can provide an account of basic 
probability learning processes in biological agents. These 
implications are unpacked in more detail in the next 
and final chapter of this monograph.
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Chapter 8: Synthetic Psychology  
And Probability Learning

The purpose of this final chapter is to review the results 
that have been reported in this monograph and to consider 
their implications. The chapter proceeds by first consider-
ing the computational results from formal examinations 
of how perceptrons adapt to uncertain environments. The 
key result was establishing that perceptrons belong to the 
class of naïve Bayesians. The chapter then considers the 
algorithmic results from simulation studies of perceptrons 
and from experimental studies of human participants. 
The results of the simulation studies are consistent with 
expectations based on the claim that perceptrons are naïve 
Bayesians. The results from the card-choice task support 
the claim that human participants can also be viewed as 
naïve Bayesians. The chapter ends by considering future 
avenues of using artificial neural networks to study prob-
ability learning, future variations of the card-choice task, 
and the prospects of using the methodology of synthetic 
psychology to study probability learning.

8.1 Adapting to Uncertain Worlds

8.1.1 The Causal Texture of the Environment
In 1935, Edward Tolman and Egon Brunswik present-

ed a theory of the relationship between biological agents 
and their environment (Tolman & Brunswik, 1935). At the 
core of this theory is the notion that the environment is a 
causal texture of events; different events regularly depend 
on one another, and therefore one event can be used as a 
local representative or signal of another. Thus, an organ-
ism can behave appropriately in the context of distal or 
directly unobservable situations by responding to locally 
available and observable signals of these distal events.

Another critical property of this causal texture is that 
dependencies between events in the world are equivocal 
to some degree. Local signals are not connected to dis-
tal events in a one-to-one fashion but can instead signal 
different distal events with different frequencies. In short, 
our relation to the world is intrinsically probabilistic. 
For Tolman and Brunswik (1935), this meant that both 
the perception of signals and the selection of appropriate 
actions require organisms to generate hypotheses. “A 
hypothesis ‘asserts’ that a given ‘a’ is the local represen-
tative of a given ‘b’” (Tolman & Brunswik, 1935, p. 47). 
However, the probabilistic nature of the causal texture of 
the environment imparts uncertainty to these hypotheses. 
“The organism behaves ‘as though’. That is, he ven-

tures a hypothesis. He may be right; but he may also be 
wrong” (Tolman & Brunswik, 1935, p. 46).

In Chapter 1, we reviewed three sources of uncer-
tainty about the environment. One is epistemic uncer-
tainty, our inability to predict the future perfectly due to 
our limited knowledge of the world. Another is somatic 
uncertainty, in which constraints in our bodily structure 
(e.g., sensory systems) prevent us from acquiring all of the 
information that we need to predict the future. A third is 
ontic uncertainty, which results from the fact that various 
worldly causal relations or events are intrinsically proba-
bilistic. All three of these sources of uncertainty can co-
exist, and each is consistent with Tolman and Brunswik’s 
(1935) position that the causal texture of an organism’s 
environment is intrinsically uncertain.

8.1.2 Coping With Uncertainty
For Tolman and Brunswik (1935), an organism’s 

ability to survive within an environment that has an un-
certain causal texture requires it to generate appropriate 
hypotheses. From whence do these hypotheses emerge, 
and how might they be modified by experience?

We saw in Chapter 1 (e.g., Figure 1-1) that Brunswik 
and his followers attempted to answer this question via 
the theory of probabilistic functionalism (Brunswik, 1943, 
1952, 1955; Brunswik & Herma, 1951; Hursch et al., 
1964; Peterson, Hammond, & Summers, 1965a, 1965b; 
Tucker, 1964). Many other theories have also arisen. These 
include viewing organisms as intuitive statisticians (P. W. 
Cheng & Holyoak, 1995; Gigerenzer & Murray, 1987; 
Peterson & Beach, 1967), as implementing mathematical 
decision or choice theory (Bock & Jones, 1968; Einhorn & 
Hogarth, 1981; Luce, 1959; Resnik, 1987), as exploiting 
cognitive heuristics of one form or another (Gigerenzer, 
2000, 2010; Tversky & Kahneman, 1974), as exploiting 
mechanisms that predict future sensory stimulation (Clark, 
2016; Hohwy, 2013), as estimators of Bayesian probabil-
ities (Chater, Oaksford, Hahn, & Heit, 2010; Doya, 2007; 
Oaksford & Chater, 2007) or as using learning mechanisms 
that emphasize probabilistic relations like contingency 
(Allan, 1993; Allan, Siegel, & Tangen, 2005; Jenkins & 
Ward, 1965; Wasserman, Elek, Chatlosh, & Baker, 1993).

This list is incomplete, and these various theories 
need not be mutually exclusive. If we take the probabilistic 
nature of the causal texture of the environment as a given, 
then it makes sense that organisms may possess a variety 
of means for coping with uncertainty.
8.1.3 Cognitive Science, Association, and Uncertainty

The current monograph has explored another theory 
about adapting to uncertainty. It focused on the associative 
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learning of an extremely simple system, the perceptron. 
We have considered how perceptron learning is affected 
when the relationship between stimuli and responses is 
probabilistic. One reason for studying this simple system 
is that its connection to core psychological theories of 
associative learning has long been established (Dawson, 
2008; Gluck & Bower, 1988; Gluck & Myers, 2001; 
Sutton & Barto, 1981). As a result, by understanding how 
perceptrons learn in probabilistic environments, we are 
also in a position to make claims about how theories of 
associative learning are related to uncertainty.

The current research demonstrates the study of asso-
ciative learning and probability by exploiting two related 
approaches from cognitive science. The first is using syn-
thetic psychology to explore learning under uncertainty. 
In synthetic psychology, one studies a phenomenon by 
first building a simple working system and only then 
by examining its behavior when it is placed in different 
environments (Braitenberg, 1984; Dawson, 2004, 2013; 
Dawson et al., 2010). The logic of this approach is that a 
simple system is often capable of generating interesting, 
complicated, or surprising behavior because of the manner 
in which it is coupled with its environment. Furthermore, 
given that the researcher has constructed this simple sys-
tem, she should be in a much better position to explain how 
this surprising behavior emerges. For Braitenberg (1984), 
synthetic psychology is a methodology for producing 
simpler theories of complicated performance.

Synthetic psychology explores “what if” questions 
by using working systems (Braitenberg, 1984; Minsky, 
1985). We have followed this approach by investigating 
what happens to perceptron learning if the relationship be-
tween training stimuli and desired responses is uncertain. 
In the beginning, we trained perceptrons on very simple 
problems, including probabilistic variants of Boolean 
operators (Chapters 2, 3, and 4). These simulations re-
vealed several important regularities. First, when learning 
in uncertain environments, perceptron responses quickly 
adapt and reach an equilibrium in which the activity of an 
output unit represents the probability of reward associated 
with a stimulus (Figures 1-8, 2-2, 2-3). In other words, 
perceptrons exhibit probability matching similar to that 
long studied by psychologists (Estes, 1964). Second, 
this equilibrium is dynamic: If the uncertain relationship 
between cues and rewards is altered, perceptrons quickly 
adapt to match the new probabilities (Figure 2-5). Third, 
the probabilities being learned by perceptrons appear 
to be Bayesian in nature (Table 4-2).

The second methodology adopted in the current 
monograph is cognitive science’s multiple levels of 

analysis. In general, cognitive science analyses phenom-
ena at different levels, using different paradigms, in an 
attempt to capture different kinds of regularities (Marr, 
1982; Pylyshyn, 1984). At the computational level of 
analysis, formal methods are used to define what infor-
mation-processing problem is being solved by a system. 
At the algorithmic level of analysis, behavioral methods 
are employed to discover the information processing pro-
cedures that the system is using to solve this problem. At 
the implementational level of analysis, attempts are made 
to determine how these information processing procedures 
are realized by physical mechanisms.

The current monograph has explored learning under 
uncertainty at the computational level by using mathemat-
ical analyses to determine what kind of probabilities are 
being computed by perceptrons and how these computa-
tions are reflected in the details of perceptron structure. 
It has also explored learning under uncertainty at the 
algorithmic level by examining perceptron performance 
when the conditions of a simple three-cue probability dis-
crimination task are manipulated. In particular, simulation 
studies have determined how both nonoperant and operant 
perceptron learning is affected when multiple cues simul-
taneously signal reward probability, including situations 
in which signals are carried by cue interactions. Further-
more, the performance of human participants in a card-
choice task has been studied in an attempt to relate human 
probability learning processes to those of perceptrons. We 
have not explicitly considered probability learning at the 
implementational level, although some might argue that 
one advantage of using perceptrons to study this phenome-
na is their biological or neuronal plausibility (McClelland, 
Rumelhart, & Hinton, 1986; McCulloch & Pitts, 1943). 
We consider this issue in more detail in Section 8.6.

The remainder of this chapter summarizes our results 
and considers their implications. It begins by first consid-
ering the main computational results and by reviewing 
algorithmic results from both networks and human partici-
pants. It then considers the implications of these results in 
terms of relationships to current theories and models, as 
well as with respect to future research directions.

8.2 Computational-Level Results
8.2.1 Perceptrons Are Naïve Bayesians

Our computational analyses of probability learning 
by perceptrons were motivated by simulation results in-
dicating that perceptron responses can be interpreted as 
estimates of the probability of reward (Chapters 2 and 3; 
see also Dawson & Dupuis, 2012; Dawson et al., 2009a; 
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Dawson & Gupta, 2017). Given these results, we were in-
terested in determining the mathematical basis of percep-
tron responses. We did so by translating these responses 
into mathematical equations of conditional probability.

Our first computational analysis considered the sim-
plest of perceptrons, a network with a single input unit 
and a single output unit (Chapter 3). Such a network can 
be trained on a probabilistic problem typically represented 
using a 2×2 contingency table (e.g., Table 3-1). Under 
the assumption that the network’s output unit employed 
the popular logistic activation function, we were able to 
translate network responses into a particular conditional 
probability equation, Bayes’s theorem.

Our second computational analysis extended the 
simple proof of Chapter 3 into the situation in which the 
probability of reward is signaled by two cues that can 
appear simultaneously. We translated perceptron activity 
into Bayes’s theorem, but in this case the equation took 
the specific form of naïve Bayes (Equation 4-5). This 
equation computes the probability of reward, using states 
of different cues, under the assumption that the cues 
are independent signals. We used this result to predict 
the performance of perceptrons trained on a variety of 
stochastically defined Boolean operators (Table 4-11). 
Finally, we developed this proof in such a way that it 
could be extended to cases in which reward probability 
was signaled by three or more different cues.

8.2.2 Weights and Odds Ratios
The computational analyses just summarized focus 

on one characteristic: the relationship between perceptron 
activity and Bayes’s equation for conditional probability. 
Important to note, computational analyses also provide im-
portant information about perceptron structure, detailing 
exactly how connection weights and biases represent causal 
relations that are converted into conditional probabilities.

In particular, as part of our proofs in Chapters 3 and 
4, it was demonstrated that the value of any connection 
weight or bias in a modern perceptron is related to a partic-
ular measure of association, the odds ratio. An odds ratio 
represents the effect of a variable on an outcome. It is the 
ratio of the odds that the outcome will occur if the variable 
is present to the odds that the outcome will occur if the 
variable is absent. Our computational analyses show that 
any perceptron weight is the natural logarithm of the odds 
ratio associated with the cue with a signal that is modified 
by that weight. This means that perceptrons work in the 
world of natural logarithms, summing these logarithms 
up when net input is calculated, and finally using the ex-

ponential component of the logistic activation function to 
convert logarithmic net input into probability.

There are several implications of this finding that are 
discussed in more detail in Section 8.3. Let us simply note 
them now. First, we now have an explicit understanding 
of how perceptron structure is related to computing con-
ditional probability. Second, this permits the structure of a 
perceptron to be mapped directly onto the coefficients of 
logistic regression. We took advantage of this mapping in 
Chapters 5 and 6 to confirm our expectations about per-
ceptron structure. Third, this suggests that the odds ratio 
deserves a more explicit role in theories about how agents 
associate stimuli and responses in uncertain environments.

8.2.3 Input Encodings
One additional computational analysis was per-

formed later in the monograph (Section 7.6.4). This anal-
ysis examined the effect of different encodings of cues. 
The proofs in Chapters 3 and 4, and the simulations in 
Chapters 5 and 6, represented the presence of a cue with 1, 
and represented the absence of a cue with 0. However, cues 
were never absent when participants examined stimuli in 
the card-choice task (Chapter 7); They were always visible 
and were in one of two states that were represented by 
using two colors. A mathematical analysis of perceptron 
structure was conducted to determine how perceptron 
structure would be altered by using different encodings 
of the two possible states of a cue.

The computational analysis described in Section 
7.6.4 compared perceptron structure using two encod-
ings. The first used the values [0, 1], consistent with the 
interpretation that a cue in one state was literally absent. 
The second used the values [1, 2], consistent with the 
interpretation that a cue was always present, but had dif-
ferent appearances in its two states. Our analysis revealed 
three important effects of encoding.

First, changes in encoding did not alter the values of 
a perceptron’s connection weights. This is not surprising, 
because regardless of encoding, each cue has the same 
relationship to the desired output (i.e., each cue signals the 
same probability of reward). As a result, each cue should be 
associated with the same odds ratio with either encoding and 
therefore should be assigned the same connection weight.

Second, marked differences were observed in the 
biases of perceptrons that experienced different input 
encodings. In other words, perceptrons learned to deal 
with encoding differences by keeping the same connec-
tion weights and by adjusting their bias. Again, because 
connection weights should be independent of encoding, 
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this makes perfect sense—the only structural compo-
nent that can be adjusted is the bias.

Third, a simple expression (Equation 7-6) indicated 
the relationship between biases of perceptrons trained with 
different input encodings. One can determine the bias of 
a [0, 1] encoding perceptron by summing the bias and the 
weights of a [1, 2] encoding perceptron. The main import 
of this computational analysis is that the results that we 
obtained from perceptrons are applicable to those ob-
tained from human participants regardless of the encoding 
that was used to train the networks.

This section has briefly summarized three major 
results of our computational analyses of perceptrons 
trained in uncertain environments. The next section turns 
to considering a number of implications of these results.

8.3 Computational-Level Implications  
and Future Directions

8.3.1 Toward Bayesian Mechanisms
One theme of this final chapter is the utility of con-

sidering adaptation to uncertainty from multiple levels of 
analysis: computational, algorithmic, and implementation-
al (Marr, 1982). However, Marr did far more than simply 
argue for multiple levels of analysis: He argued that it was 
necessary to establish links between levels and provided 
case studies of how to do so. For example, in Chapter 2 of 
his seminal 1982 book, Marr made a computational argu-
ment for using a difference of Gaussians function to detect 
visual edges, proposes algorithms for applying this func-
tion and related this function to single-cell recordings from 
neurons in the lateral geniculate nucleus. One can look at 
his figure of these recordings (Marr, 1982, Figure 2-17) 
and literally see their relation to the mathematical function!

Marr established links between different levels of 
analysis via an explicit top-down strategy. He began with 
the most abstract (the computational) level and then worked 
downward through the more concrete algorithmic and then 
the implementational levels. Marr offered two justifications 
for this top-down approach. First, he observed that one 
could study the computational level in the absence of re-
sults at lower levels of analysis. Hence, the computational 
level was to Marr a natural and obvious starting point for 
an investigation. Second, Marr believed that lower-level 
results would not constrain higher-level inquiries. Thus, 
one should proceed with a top-down research strategy 
because the constraints propagate from the computational 
level downward and not in the reverse direction.

One finds modern examples of Marr’s top-down 
approach in Bayesian theories of human reasoning, which 

offer one approach to explaining adapting to uncertainty 
(Oaksford & Chater, 2007, 2009; Oaksford et al., 2000). 
This work deliberately begins at the computational level. 
Oaksford and Chater (e.g., 2007) pointed out that a com-
putational theory of reasoning provides an account of a 
system’s competence or of its ideal behavior. Bayesian 
probability is their choice for a computational account 
of human reasoning and rationality.

However, Bayesian cognitive science illustrates a 
problem that emerges when the top-down research strat-
egy is interrupted—when links to lower levels of analysis 
are not pursued. For example, Oaksford and Chater (e.g., 
2007) are reluctant to explore their theory of reasoning 
at other levels of analysis. That is, they do not propose 
Bayesian algorithms or mechanisms for human reasoning. 
They believe that algorithms or mechanisms will at best 
only approximate their computational theory.

We suspect that, in general, the probabilistic problems 
faced by the cognitive system are simply too complex to 
be solved directly, by probabilistic calculation. Instead, we 
suspect that the cognitive system has developed relatively 
computationally “cheap” methods for reaching solutions 
that are “good enough” probabilistic solutions to be ac-
ceptable. (Oaksford & Chater, 2007, p. 15)

Critics claim the failure to explore probabilistic algo-
rithms or mechanisms is a fundamental flaw of Bayesian 
cognitive science (Bowers & Davis, 2012; Jones & Love, 
2011). Although there is a growing literature concerning 
the Bayesian nature of neural mechanisms (Doya, 2007; 
Rao et al., 2002), skeptics point out that this evidence is 
behavioral and not biological (Bowers & Davis, 2012). 
In addition, it is argued that the nature of Bayesian com-
putation is incompatible with psychologically plausible 
algorithms or mechanisms for carrying them out, such 
as artificial neural networks (Jones & Love, 2011). In 
other words, critics claim that agents may behave as if 
they are using Bayesian probability to make judgments 
or decisions, but Bayesian cognitive scientists have failed 
to provide an account of procedures or mechanisms that 
explain exactly how this actually accomplished.

One implication of the computational results re-
viewed in Section 8.2, and of the general approach used to 
obtain them, is that they point the way to algorithmic and 
possibly implementational accounts of Bayesian inference. 
To begin, these results clearly establish that perceptrons 
behave “as if” they are using the naïve Bayesian equa-
tion to estimate the probability of reward signaled by a 
particular pattern of cues. However, because these results 
were developed in a synthetic framework—we conducted 
a computational analysis of a working system, the percep-
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tron—we also have a clear understanding about how this 
“as if” behavior comes about. First, we are already armed 
with a detailed understanding about how perceptrons 
learn associations between stimuli and responses, not to 
mention how this processing is related to well-developed 
psychological accounts of associative learning (Dawson, 
2008) like the Rescorla–Wagner model (Rescorla & Wag-
ner, 1972). Second, our results permit us to say much more 
than the associations learned by a perceptron represent the 
probabilistic relation between a cue and a reward. We can 
also say exactly how the relation is represented—as the 
natural logarithm of an odds ratio—and how this repre-
sentation is converted into a conditional probability, via 
the logistic activation function. In short, our analyses do 
not merely say that perceptrons behave as if they are naïve 
Bayesians, they also provide a detailed account of how this 
behavior is implemented by the structure that perceptrons 
attain via associative learning in an uncertain environment.

8.3.2 The Importance of Odds
One important discovery from our computation-

al analysis of perceptron structure is that perceptron 
weights are literally the natural logarithm of a particular 
measure of association, the odds ratio. This discovery 
has implications for relating perceptrons to the psycho-
logical study of association, and has implications for 
relating earlier computational analysis of more com-
plex networks to this same literature.

As was noted earlier in Section 3.6, the odds ratio 
is one of the most important statistical measures of asso-
ciation for a contingency table (Agresti, 2002; Y. M. M. 
Bishop et al., 1975; Rudas, 1998). Manipulating such an 
association is fundamental to the psychological study of 
how biological agents learn contingent relations between 
stimuli and responses. One core issue in this literature how 
should this association be measured or represented (Allan, 
1980; Allan & Jenkins, 1980, 1983; P. W. Cheng, 1997; P. 
W. Cheng & Holyoak, 1995; P. W. Cheng & Novick, 1990, 
1992; De Houwer & Beckers, 2002; Jenkins & Ward, 1965; 
Rescorla, 1967, 1968; Shanks, 2007; Ward & Jenkins, 
1965). Allan and Jenkins examined several different mea-
sures of association and concluded that the best one is the 
difference in conditional probabilities ΔP, which is equal 
to the difference between the conditional probability of the 
response when the stimulus is present and the conditional 
probability of the response when the stimulus is absent.

However, the odds ratio is one measure of associ-
ation that has not been considered in the psychological 
literature on contingency, even though it is the preferred 
measure statisticians. This is unfortunate, because we saw 

in Chapter 3 that for simple contingency tables, there is 
a very strong relationship between ΔP and the natural 
logarithm odds ratio (Figure 3-1). Furthermore, we saw 
that the odds ratio offers additional advantages over ΔP. 
First, as we know from Chapters 5 and 6, the odds ratio 
can be used in situations involving many-dimensioned 
contingency tables, whereas ΔP is only defined for the 
2×2 case. As well, the odds ratio can be computed when 
some contingency table cells are equal to zero, but this is 
not true for ΔP. Finally, the odds ratio can generate results 
that are consistent with the ΔP literature. For instance, 
the behavior of the modern perceptron can generate ΔP 
even though it does not explicitly represent this metric in 
is structure (Dawson & Dupuis, 2012).

It appears that our computational results suggest a 
new metric of association is worthy to be considered by 
psychologists interested in contingency learning. A pre-
liminary investigation of our own suggests that this explo-
ration will be fruitful. One study provides the frequency 
values for 25 different 2×2 contingency tables (constructed 
to generate an interesting range of ΔP values), as well as 
human ratings related to these tables obtained in two stud-
ies (Wasserman et al., 1990). Wasserman et al. found that 
ΔP was highly correlated with both sets of human ratings 
(r = .94 with one study, r = .93 with the other). We took 
these same 25 contingency tables and computed the natural 
logarithm of the odds ratio for each one. For this sample 
of contingency data, the correlation between ΔP and ln(ad/
bc) was essentially perfect (r = .999). Given this relation-
ship between the two metrics, it is no surprise that the 
natural logarithm of the odds ratio generated equally high 
correlations with the human judgments (r = .94 with one 
set, r = .93 with the other). Clearly the odds ratio is worthy 
of further study in the contingency literature and offers the 
possibility for extending this literature into the study of 
more complicated (e.g., three or more cue) situations.

8.3.3 Interpreting Deep Belief Networks
The history of using artificial neural networks to 

study human cognition reveals a trend toward using net-
works of greater and greater complexity (Medler, 1998). 
The earliest networks that could learn from experience 
had no hidden units intervening between input and output 
units (Rosenblatt, 1958, 1962; Widrow & Hoff, 1960). 
The limited power of these networks resulted in declining 
interest in connectionist models of cognition (Minsky & 
Papert, 1969). A revival in connectionist cognitive science 
occurred in the mid-1980s with the discovery of techniques 
that could train networks that included hidden units, and 
which were therefore far more powerful than earlier ar-
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chitectures (McClelland & Rumelhart, 1986; Rumelhart 
et al., 1986; Rumelhart & McClelland, 1986). Networks 
with a single layer of hidden units had the in principle 
power to model the complex capabilities of human cog-
nition (Hornik et al., 1989; Lippmann, 1989; Siegelmann, 
1999; Siegelmann & Sontag, 1995). However, in practice, 
the learning rules for these systems had a great deal of 
trouble realizing the potential power of these networks, 
and again connectionist cognitive science waned. More 
recently, new learning rules have been discovered for 
training of so-called deep belief network (Bengio, 2009; 
Bengio et al., 2013; Hinton, 2002, 2007; Hinton et al., 
2006). These networks have several layers of hidden units, 
and new advances in deep learning permit training such 
networks to solve difficult problems in speech recognition, 
object detection, and recognition and a variety of other 
domains that depend on discovering regularities in big 
data (LeCun, Bengio, & Hinton, 2015).

Artificial neural networks have two roles in the study 
of cognition. One is serving as an artifact to accomplish 
some intelligent task, such as performing gene sequencing 
(DePristo et al., 2011), detecting diabetic retinopathy from 
photographs (Gulshan et al., 2016), predicting traffic flow 
(Lv, Duan, Kang, Li, & Wang, 2015), or discovering new 
drugs by finding regularities in large amounts of experimen-
tal data (Gawehn, Hiss, & Schneider, 2016; Mamoshina, 
Vieira, Putin, & Zhavoronkov, 2016). Deep belief networks 
excel as intelligent artifacts and are driving many new de-
velopments in artificial intelligence (LeCun et al., 2015).

The other role of artificial neural networks is to pro-
vide theoretical insights to cognitive science. However, 
the ability to create a working model does not immediately 
imply a greater understanding of a phenomenon (Lewand-
owsky, 1993). Computer simulations of cognitive process-
es often face Bonini’s paradox: The simulation can be as 
difficult to understand as is the phenomenon being mod-
eled (Dutton & Starbuck, 1971). This may be particularly 
true of artificial neural networks, for network structures 
are typically very difficult to understand because of their 
messy, distributed, nonlinear nature (McCloskey, 1991; 
Mozer & Smolensky, 1989; Seidenberg, 1993). “One thing 
that connectionist networks have in common with brains 
is that if you open them up and peer inside, all you can 
see is a big pile of goo” (Mozer & Smolensky, 1989, p. 
3). Accordingly, connectionists typically accept that the 
internal structure of their networks is very difficult to 
understand, and detailed analyses of network structure are 
rare occurrences in the literature. With their many layers 
of hidden units, the interpretation of deep belief networks 
presents an even greater challenge (Erhan et al., 2010). 

Certainly, networks are hard to interpret. However, 
it is not impossible to explore the internal structure of a 
trained network in order to explain how it converts its inputs 
into its responses. Connectionist cognitive scientists have 
developed many techniques for interpreting the internal 
structure of artificial neural networks that are simpler than 
modern deep belief networks (Baesens, Setiono, Mues, 
& Vanthienen, 2003; Berkeley, Dawson, Medler, Schop-
flocher, & Hornsby, 1995; Dawson, 2004, 2005; Gallant, 
1993; Hanson & Burr, 1990; Hayashi, Setiono, & Yoshida, 
2000; Hinton, 1986; Moorhead, Haig, & Clement, 1989; 
Omlin & Giles, 1996; Setiono, Baesens, & Mues, 2011; 
Setiono, Thong, & Yap, 1998; Taha & Ghosh, 1999). These 
techniques can reveal surprising new theories of cognitive 
phenomena that have been discovered by networks as they 
learn to accomplish a task (Dawson, 2018).

There is a pressing need to develop similar techniques 
for interpreting the structure of deep belief networks. First, 
the successes of these networks in learning difficult tasks 
indicate that they are more and more likely to be explored 
by cognitive scientists. However, their usefulness for cog-
nitive science requires the ability to understand how they 
actually solve complicated problems. Second, new legali-
ties are forcing deep learning researchers to move beyond 
mere developing an artifact that can solve problems and 
to provide means of interpreting why networks respond as 
they do. For instance, in May 2018 the European Union 
activated the General Data Protection Regulation (GDPR), 
which is a set of laws designed to strengthen and unify 
data protection for all European Union members. Some 
provisions in the GDPR have been interpreted as making 
the use of deep belief networks illegal if the reasons that 
these networks make particular responses is not under-
stood. For instance, Article 22 of the GDPR stipulates that 
individuals cannot be subject to a decision (e.g., being 
denied a loan) based on a purely algorithmic decision, 
and Recital 71 gives an individual the right to have the 
reason for an algorithmic decision explained to them. If 
deep belief networks cannot be interpreted, then they will 
be unable to meet these legal requirements.

Methods for understanding the internal workings 
of deep belief networks are being developed, but this 
research is in its infancy (Erhan et al., 2010). Much of this 
research emphasizes the interpretation of networks that 
have been trained on visual tasks. This is because different 
approaches can be used to visualize what hidden units are 
responding to, permitting hierarchies of visual features to 
be mapped onto the processing layers of a network (Liu et 
al., 2017; Mousavi, Siqueira, Barros, Fernandes, & Wer-
mter, 2016; Zeiler & Fergus, 2014). Other approaches for 
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networks trained on nonvisual problems have also been 
explored (Mallat, 2016; Montavon et al., 2018) but are less 
common, and sometimes approach the issue by redefining 
the purpose of interpretation. For instance, Montavon et al. 
(2018) “seek to characterize the model’s black-box behav-
ior, without however trying to elucidate its inner workings 
or shed light on its internal representations” (p. 2).

Of course, the networks we have been exploring in 
this monograph are dramatically simpler than modern 
deep belief networks. Nevertheless, our understanding of 
perceptron structure that results from adapting to uncer-
tainty has implications for the problem of understanding 
the internal structure of modern systems. This is because 
the properties of a perceptron are in fact quite similar to 
the properties of a processing layer in a deep belief net-
work. For example, in many deep belief networks, there 
are layers of hidden units connected to a layer of units that 
provide weighted signals. The hidden units often employ 
an activation function like the logistic. The hidden units 
operate by computing their logistic activation and then by 
turning on with the probability indicated by this activation. 
In other words, each hidden unit in this layer operates in a 
fashion that is very similar to an operant perceptron.

Our analyses indicate that the probabilistic behavior 
of such a system can be explained by using the odds ratio 
as a measure of the association between an input signal 
and the output probability. Under the assumption that this 
understanding maps onto a processing layer in a deep be-
lief network, this suggests a method for considering links 
between layers in terms of a specific probabilistic measure 
of input effects on responses. This could provide a means 
of interpreting the kinds of (probabilistic) features that 
hidden units respond to even in cases where a deep belief 
network has not been trained on a visual problem. In addi-
tion, the link between perceptrons and deep network layers 
would also suggest that these probabilistic features do not 
involve interactions, because the probabilistic relationship 
between layers would be consistent with naïve Bayes.

8.3.4 Cue Encoding and Bias
Section 7.6 provided an extended analysis of the ef-

fect of input encoding on perceptron structure. This analy-
sis examined simulation results that compared perceptrons 
trained with different encodings of the same problem and 
developed a proof to show how the structure of a percep-
tron trained with one encoding could be translated into 
the structure of a different perceptron trained with another 
encoding. The key implication of this analysis was that 
the formal results developed in Chapters 3 and 4 are still 

relatable to human performance in the card-choice task in 
spite of the fact that in the latter no cues were ever absent.

Another implication of the computational analysis 
provided in Section 7.6 is that manipulations of cue states 
in something like the card-choice task should have very 
specific effects. Consider a logistic regression equation 
that predicts the probability of reward associated with a 
particular stimulus (i.e., a particular pattern of cues). This 
prediction starts with a general expectation of reward 
probability that is represented by constant of the regres-
sion equation. This general expectation is then modified 
upward or downward by combining the constant with the 
state of each cue multiplied by the regression coefficient 
associated with the cue. The same method is imple-
mented in a perceptron, where the general expectation 
is represented by an output unit’s bias, and this expecta-
tion is further modified by the signals arriving through 
the network’s weighted connections.

 The analysis in Section 7.6 indicates that changes 
in encoding will not affect the predictive power of indi-
vidual cues (e.g., connection weights). However, the same 
analysis predicts that changes in encoding will alter the 
general expectation of reward (e.g., output unit bias). 
This formal analysis suggests if one were to manipulate 
the relative salience of cue states in the card-choice task, 
then one should affect a participant’s general expectation 
of reward but not the predictive power of the individual 
cues. Furthermore, the size of this effect should be related 
to cue salience (see Equation 7-6). This prediction could 
be tested by seeing, for example, if manipulations of cue 
salience affected the likelihood that human participants 
choose the card with no cues present.

This is a straightforward example of one advantage of 
examining a phenomenon at multiple levels. In this particu-
lar case, a computational result predicts a result that should 
arise in an algorithmic or behavioral analysis. In addition, 
the use of simulations in Section 7.6 provides an example 
of one advantage of the synthetic approach. Computational 
results have established the relationship between models 
of animal learning and the perceptron (Dawson, 2008). 
This relationship in turn implies that regularities observed 
when perceptrons learn should also be observed in animal 
learning. Important to note, it is much easier to simulate 
experiments with perceptrons than with biological agents. 
Experiments on perceptrons can be used to discover inter-
esting or surprising effects, or to identify manipulations 
that are not of interest. Once the simulations have been 
used to survey a variety of experiments, one can then use 
these results to motivate experiments using biological 
agents. The idea is that these experiments are expensive 
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and time-consuming to conduct, so the synthetic approach 
offers some guidance to maximize experimental payoff. 
This theme is encountered again later in this chapter.

8.3.5 Alternative Activation Functions
The formal analyses presented in Chapters 3 and 4 

proceeded by translating the mathematical expression for 
Bayes’s theorem into the mathematical expression for 
the logistic activation function. The ability to perform 
this translation provides the proof that the perceptron is 
implementing Bayesian probability theory.

One consequence of this formal approach is the 
tacit assumption that the probabilistic behavior of a 
perceptron depends upon its using the logistic activation 
function. One problem with this assumption is that it 
constrains the applicability of the relationships that we 
have explored between perceptron behavior and prob-
ability. This is because the logistic equation is only one 
of many mathematical functions that have been explored 
in the connectionist literature. One review discovered 
that researchers have explored the use of 640 activation 
functions in artificial neural networks (Duch & Jankowski, 
1999). Might networks that use activation functions other 
than the logistic also adapt appropriately to uncertain 
environments and generate responses that can be related 
to one theory of probability or another?

This issue is particularly relevant in our lab because 
it has an extensive history of studying artificial neural 
networks that use a Gaussian activation function instead 
of the logistic (Dawson & Schopflocher, 1992). These 
systems, called networks of value units, have many inter-
esting properties. First, they lead to networks that have 
more computational power than do similar-sized networks 
that only use the logistic (Dawson & Schopflocher, 1992). 
Second, although networks of value units have the same 
formal relationship to models of animal learning as do 
more traditional perceptrons, they can generate different 
responses because the Gaussian is essentially a different 
model of how internal associations are converted into 
behavior (Dawson, 2008). Third, networks of value units 
have certain emergent features that make them particu-
larly well suited to projects that require interpreting the 
internal structure of networks after they have been trained 
(Berkeley et al., 1995; Dawson, 2018).

A pilot study suggests that value unit networks, 
like perceptrons, can adapt to uncertain environments, 
but their responses take on different values than those 
observed in networks that use the logistic. We trained two 
types of perceptrons on five training sets used in an earlier 
study (Dawson & Gupta, 2017). Each of these training sets 

uses four cues, with each cue serving as an independent 
signal of reward probability. The ideal reward probability 
associated with each of the 16 cue patterns in a training 
set is provided in Table 8-1. Both types of perceptrons 
were trained for 2,500 epochs on a training set using a 
learning rate of 0.05; networks were initialized using the 
same procedure reported earlier in Chapters 5 an 6. A 
network was trained only once on each of the five training 
sets. One set of five networks used the logistic activation 
function and were therefore identical to the perceptrons 
described in Chapter 5. The other set of five networks used 
the Gaussian activation function. The mean response of 
each type of network (averaging over the five networks) 
for each stimulus is also provided in Table 8-1.

Table 8-1. The average responses of two types of perceptrons to the five 
independent cue training sets studied by Dawson and Gupta (2017).  

Cue Pattern Ideal Reward 
Probability

Average 
Logistic 

Response

Average 
Gaussian 
Response

(0,0,0,0) 0.000 0.155 0.332

(0,0,0,1) 0.630 0.754 0.796

(0,0,1,0) 0.640 0.554 0.630

(0,0,1,1) 0.900 0.955 0.962

(0,1,0,0) 0.350 0.371 0.551

(0,1,0,1) 0.880 0.908 0.918

(0,1,1,0) 0.810 0.798 0.822

(0,1,1,1) 0.980 0.986 0.889

(1,0,0,0) 0.210 0.225 0.331

(1,0,0,1) 0.790 0.826 0.814

(1,0,1,0) 0.700 0.659 0.638

(1,0,1,1) 0.960 0.970 0.989

(1,1,0,0) 0.470 0.480 0.556

(1,1,0,1) 0.940 0.939 0.940

(1,1,1,0) 0.770 0.860 0.848

(1,1,1,1) 0.960 0.991 0.913

Note. One type of perceptron uses the logistic activation function, 
whereas the other uses the Gaussian activation function. The av-
erage is the mean of the responses of five networks, each trained 
on a different version of the training set, to the same stimulus.

The pilot results presented in Table 8-1 replicate 
the finding that perceptrons using the logistic activation 
function do an excellent job at matching the ideal re-
ward probabilities. The squared correlation between the 
ideal probabilities and the logistic responses is 0.961. 
Perceptrons using the Gaussian activation function are 
poorer probability matchers, but their relationship to the 
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ideal probabilities is still surprisingly high. The squared 
correlation between the ideal probabilities and the lo-
gistic is 0.915. This is a surprising value because when 
the Gaussian activation function is used to replace the 
logistic, the formal results relating perceptron responses 
to Bayesian probabilities no longer hold.

The value unit networks in Table 8-1 perform sur-
prisingly well, which suggests that probability matching is 
possible even when alternate activation functions are used. 
This raises a number of new computational questions that 
require formal exploration. When the Gaussian activation 
function is used, can network responses be translated into 
probabilities? If so, are these probabilities Bayesian, or do 
networks of value units implement an alternative probabil-
ity theory? What is the relationship between the structure 
of a value unit network trained on an uncertain training 
set and probability theory—do its weights represent odds 
ratios too? Finally, it is well established that networks 
that use value units are more powerful than those with 
units that use the logistic, because a value unit perceptron 
can learn to solve some linearly nonseparable problems 
(Dawson, 2005; Dawson & Schopflocher, 1992). Does 
this mean that such networks will behave differently when 
presented cue interactions than do the perceptrons that 
have been reported in this monograph?

8.4 Algorithmic-Level Results
The two preceding sections have reviewed the com-

putational results reported earlier in this monograph and 
have considered the implications of these results. We now 
turn to reviewing results that have emerged from studies 
that have considered probability learning at the algorith-
mic level of analysis. These results come from two types 
of studies: computer simulations involving perceptrons, 
and experiments involving human participants. These 
studies reflect the algorithmic level of analysis because 
they focus on empirical observations of learning behav-
ior and do not involve formal proofs. 

8.4.1 Probability Discrimination  
by Nonoperant Perceptrons

The formal analyses of Chapters 3 and 4 led to the 
basic conclusion that when a perceptron learns about the 
reward probabilities signaled by multiple cues, it acts as 
a naïve Bayesian. In other words, the probabilities that 
it learns are constrained by the assumption that each cue 
is an independent signal of reward probability. A naïve 
Bayesian is blind to interactions between cues.

Chapter 5 presented a number of computer simula-
tions that empirically tested this formal conclusion. Each 

simulation involved training perceptrons (with logistic 
activation functions) on a task in which reward was un-
certain. These perceptrons were trained with a nonoperant 
procedure, meaning that they learned after every stimulus 
presentation; they did not choose whether to learn. In 
this task, perceptrons were presented stimuli defined by 
three cues, each of which could be present or absent. 
Thus, eight stimuli could be presented.

The pattern of cues on a stimulus signaled reward 
probability. In one condition, each of the three cues was 
an independent signal of the likelihood of reward. In four 
other conditions, reward probability was signaled by the 
state of one cue and by the state of the interaction between 
the other two cues. These four conditions defined a 2×2 
factorial design. One factor was the logical type of the 
interaction between the two cues. In two conditions the 
logical AND of the two cues was the signal of reward 
probability, whereas in the other two the logical XOR of 
the two cues provided this signal. This factor was included 
because perceptrons can represent linearly separable func-
tions like AND but cannot represent linearly nonseparable 
functions like XOR (Minsky & Papert, 1969). The other 
factor was the size of reward probability that was signaled 
by the interaction between cues. In two conditions, the 
interaction signaled a smaller probability of reward than it 
did in the other two conditions. This factor was included 
because when the reward associated with an interaction 
between cues is higher, the interaction is more important, 
and therefore should pose greater difficulties to a naïve 
Bayesian system (Dawson & Gupta, 2017).

The simulation results are consistent with the 
hypothesis that perceptrons are naïve Bayesians. First, 
consider the four conditions that crossed the two factors 
of the type of interaction between cues and the amount 
of reward signaled by this interaction. Analyses were per-
formed to examine how closely network responses to each 
stimulus matched the ideal reward probability associated 
with the stimulus. These analyses found a significant ef-
fect of type of interaction: probability matching was better 
for perceptrons exposed to the AND interaction than for 
perceptrons exposed to the XOR interaction. A significant 
effect of amount of reward was also revealed: Probability 
matching was better for perceptrons when the cue inter-
action signaled a low reward than when it signaled a high 
reward. A significant interaction between these two factors 
was also evident because the manipulation of amount 
of reward had a stronger effect on the XOR interaction 
than it did on the AND interaction.

Second, consider the relationship between perceptron 
responses and reward probabilities when the independent 
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cues condition is compared to the other four conditions. It 
was discovered that the independent cues condition led to 
a significantly better relationship between responses and 
probabilities than three of the conditions (High-Reward 
AND, High-Reward XOR, Low-Reward XOR) but a 
significantly poorer relationship than was the case for the 
Low-Reward AND condition. This last result was surpris-
ing, but further investigation of the stochastically gener-
ated training sets for the conditions indicated that there 
was enough conditional dependence randomly present in 
the independent cues condition to account for this finding.

If perceptrons are naïve Bayesians, then their struc-
ture (weights and bias) should represent odds ratios. This 
hypothesis was also tested in Chapter 5 by performing 
logistic regression on each of the training sets. The co-
efficients delivered by this type of analysis are known to 
represent odds ratios. When the structures of the various 
perceptrons were compared to the regression equations 
that were obtained, a very strong relationship between 
the two was observed. This provided additional empirical 
support to the notion that the perceptrons were behaving 
as expected from the Chapter 4 formalisms.

8.4.2 Probability Discrimination  
by Operant Perceptrons

One purpose of training perceptrons with three cues 
that signaled reward probability was to provide simulation 
results that could be compared to human performance on 
the card-choice task. However, one difference between 
the Chapter 5 simulations and the human experiment 
reported in Chapter 7 is that human performance in the 
card-choice task is operant. Each event in the first phase 
of the card-choice task requires a human participant to 
choose a stimulus for learning. One concern is that the 
operant nature of the card-choice task distinguishes it 
from the Chapter 5 simulations. To address this issue, 
Chapter 6 reported the results of simulations that used an 
operant technique to train perceptrons.

Chapter 6 studied the same experimental condi-
tions used in the Chapter 5 simulations. The difference 
between the simulations in the two chapters was that 
Chapter 6 studied two different operant paradigms. In 
each paradigm, on being presented a stimulus the per-
ceptron generated a response (its prediction of reward 
probability for that stimulus). It then used this probabil-
ity to decide whether to learn about the stimulus. These 
operant procedures were intended to make perceptron 
learning more similar to human performance in the 
card-choice task, in the sense that the networks (like the 
humans) learned only about chosen stimuli.

One operant paradigm used an increasing returns 
rule, for which the probability of choosing to learn about 
a stimulus was equal to the predicted reward probability. 
The other operant paradigm used a gambler’s fallacy 
rule, for which the probability of choosing to learn about 
a stimulus was equal to 1 minus the predicted reward 
probability. This meant that the two paradigms imple-
mented opposite types of choice rules.

One major finding in Chapter 6 was that, regardless 
of operant paradigm, the same pattern of results was 
observed as was reviewed in Section 8.3.1. Furthermore, 
regardless of operant paradigm, perceptrons achieved 
the same final structures (weights and biases) as did the 
Chapter 5 nonoperant perceptrons. The only reliable dif-
ference between operant paradigms involved the number 
of stimuli that perceptrons chose. In general, although the 
gambler’s fallacy networks chose to learn about half of the 
stimuli that they encountered, increasing returns networks 
chose to learn about one third of the stimuli. However, 
differences in the number of stimuli learned about, or in 
the particular stimuli selected for learning, did not cause 
the perceptrons to respond differently to the stimuli in the 
different conditions once training had ended.

8.4.3 Probability Discrimination  
by Human Participants

The formal analyses of Chapters 3 and 4, and the al-
gorithmic analyses of Chapters 5 and 6, clearly established 
the naïve Bayesian nature of perceptrons. An important 
question that was not answered, though, was whether this 
knowledge also applies to human probability learners. 
This is a particularly important issue because perceptrons 
are frequently ignored as models of human information 
processing because of the general assumption that they are 
not powerful enough to capture the computational power 
of human cognition (Dawson, 2004). A vital issue is to 
determine whether models of human probability learning 
need to be more powerful than perceptrons.

Chapter 7 presented the results of human participa-
tion in the card-choice task. The purpose of this task was 
to determine whether perceptrons could possibly serve as 
models of human probability learning. The card-choice 
task was designed to be analogous to the three-cue simu-
lations used in Chapters 5 and 6. In Phase I, participants 
explored an environment composed of eight cards. Each 
card was identified by a unique pattern of three symbols, 
each in one of two colors. Each cue signaled the probabili-
ty that a participant would receive a reward if she selected 
it. This phase of the study ended after each participant 
made 320 different card choices. They then proceeded to 
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Phase II, in which they were presented pairs of cards and 
had to choose which member was more likely to offer a 
reward on the basis of Phase I learning.

The purpose of the card-choice task was to collect 
human data that were analogous to the simulation data 
collected in Chapters 5 and 6. To this end, five different 
experimental conditions were created, with each condition 
implementing the same relationship between cue states 
and reward probabilities that characterized the different 
conditions of the simulation studies. There were 40 human 
participants in each of these conditions.

The question of interest was whether manipula-
tions of the mapping from cues to rewards would affect 
human participants in a similar fashion as they affected 
probability learning in perceptrons. Phase I of the card 
choice replicated two of the key effects observed in the 
simulations (e.g., Table 7-4). Like perceptrons, the rela-
tionship between reward probability and human proba-
bility matching (i.e., the likelihood of human participants 
choosing the various cards) was poorer when there was an 
XOR interaction between two cues than when there was 
an AND interaction between two cues. As well, and again 
like perceptrons, there was a poorer relationship between 
reward probability and human probability matching when 
an interaction between cues signaled a higher reward than 
when an interaction signaled a lower reward.

One surprising discrepancy in the Phase I data 
collected from human participants was that, in terms of 
their probability matching behavior, they performed 
poorer than expected when the three cues on the cards 
were independent signals of reward probability. It was 
suggested that this might be because human participants 
needed more training in this condition. Nevertheless, 
this discrepancy is not one that suggests that perceptrons 
are not powerful enough to model human probability 
matching. This is because with respect to this condition, 
perceptrons are better performers than are the human 
participants. In short, this discrepancy does not motivate 
exploring models that are more powerful.

One of the hypotheses that motivated the card-choice 
task was that the perceptron might serve as a possible 
model of human probability learning. This hypothesis 
was tested, as just reviewed, by comparing performance 
between the different conditions. This hypothesis was also 
tested by exploring how well human data could be fit using 
logistic regression equations. The fit of these equations 
to human performance was examined because a logistic 
regression equation provides a mathematical description 
of a perceptron. These analyses indicated that these 
equations captured a great deal of the variance in human 

choice behavior in each condition (Table 7-12). They also 
revealed striking similarities between the equations fit 
to human choices and the structures of networks trained 
on analogous problems (Table 7-13).

Additional analyses were conducted on the Phase 
I data to explore the possibility that human participants 
appeared to be choosing cards in a pattern consistent with 
reward probability but were actually using a different 
strategy that did not require learning anything at all about 
the likelihood that the different cards would be rewarded. 
For instance, participants might simply randomly choose a 
card and keep on choosing this card as long as it provided 
a reward. However, data simulations based on this strategy 
did not fit human choices as well as other simulations that 
assumed that participants were using reward probabilities 
to guide card choices (Figure 7-5).

Phase II of the card-choice task was conducted, in 
part because of the operant simulation results from Chapter 
6. Those simulations demonstrated that very different pat-
terns of stimulus choices could lead to the same underlying 
knowledge of an environment’s probability structure. This 
motivated measuring the knowledge of human participants 
using some other means than stimulus choices, which pro-
vided the key dependent measure for Phase I. Card prefer-
ences provide the alternative dependent measure in Phase 
II; such preferences are presumed indicators of underlying 
probabilities (Savage, 1954) accomplished this by measur-
ing card preferences. Card preferences were summarized 
by creating a preference matrix for each participant that 
indicated the frequency that one card in a presented pair 
was preferred over the other. These matrices were then 
examined in two ways: by correlating the sums of their 
rows to ideal reward probabilities (Table 7-19), and by 
measuring the distance between a preference matrix and 
other matrices simulated by applying the Bradley–Terry 
model to ideal reward probabilities (Table 7-22).

Statistical analyses of the relationship between the 
sums of preference matrix rows and ideal reward proba-
bilities replicated a key finding from Phase I: The prefer-
ences of human participants were more strongly related to 
reward probabilities for AND interaction conditions than 
for XOR interaction conditions. These analyses also re-
vealed that performance in the independent cues condition 
was better in Phase II than might have been expected from 
the Phase I data. However, these analyses did not reveal 
any statistically significant effects of manipulating the 
probability of reward signaled by interacting cues. When 
distances between preference matrices and simulated ma-
trices were examined, it was again discovered that there 
was a stronger relationship for AND interaction conditions 
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than for XOR interaction conditions. Again, no significant 
effect was revealed involving the probability of reward 
associated with cue interactions. Finally, comparisons of 
distance measures between conditions placed the inde-
pendent cues conditions as having a significantly better 
relation to reward probabilities than was the case for the 
two XOR conditions, and as having a significantly poorer 
relation to reward probabilities than was the case for the 
two AND conditions. This pattern of results was similar to 
that observed in Phase I of the card-choice task.

8.5 Algorithmic-Level Implications  
and Future Directions

8.5.1 Algorithmic Implications
When the cognitive revolution began in psychology 

in the middle of the 20th century, one of the topics that 
flourished was the study of concept learning (Bruner et al., 
1956; Hunt, 1962). Bruner et al. developed a set of stimuli 
that varied on a number of features. A rule based on these 
features was created to define a category, and participants 
had the task of learning this rule. In some studies, partici-
pants chose specific cards and learned whether the select-
ed card belonged to the target category. In other studies, 
participants were presented stimuli, again being informed 
about the relationship between each stimulus and the target 
category. This general approach was used to study difficul-
ty of learning different kinds of category rules, strategies 
for exploring a stimulus space in search of the correct rule, 
and other topics central to cognitive psychology.

One issue that received a good deal of attention in the 
concept learning literature during this era was the relative 
ease of learning conjunctive concepts versus disjunctive 
concepts. A conjunctive concept involves a category de-
fined by the necessary presence of two or more features 
(e.g., red triangle). In other words, it is defined using the 
logical AND of features. In contrast, a disjunctive con-
cept is defined using the logical OR of features (e.g., red 
and/or triangle). For this latter example, a red stimulus, 
a triangle stimulus, or a red triangle stimulus all belong 
to the disjunctive concept. Results from a variety of 
experiments indicate that conjunctive concepts are more 
easily learned by human participants than are disjunctive 
concepts (Bruner et al., 1956; Conant & Trabasso, 1964; 
Haygood & Bourne, 1965; Laughlin & Jordan, 1967; 
Neisser & Weene, 1962; Wells, 1963).

One question of interest was the source of the differ-
ence in ease of learning of conjunctive versus disjunctive 
concepts. Two main hypotheses were explored. One was 
that conjunctive concepts are more common in everyday 

experience and are easier to talk about, which leads to 
more practice and skill in thinking or using them. It is 
certainly the case that people believe that conjunctive cat-
egories are more common than are disjunctive categories 
(Brockner, Paruchuri, Idson, & Higgins, 2002) and have a 
preference for hypothesizing conjunctive categories over 
disjunctive categories (Hunt & Hovland, 1960). The other 
hypothesis about the ease of learning conjunctive concepts 
over disjunctive concepts was that “disjunctive concepts 
are inherently more difficult, or psychologically complex, 
because the human brain is not built to think disjunctive-
ly” (Snow & Rabinovitch, 1969, p. 1). Evidence supported 
this second hypothesis. For instance, children of different 
ages show the same differences in performance between 
conjunctive and disjunctive concepts, indicating that this 
difference is not due to different amounts of experience 
(King, 1966; Snow & Rabinovitch, 1969).

The results of algorithmic-level analyses that have 
been presented in this monograph represent an extension 
of this older research tradition, because our results concern 
concepts that are defined by probabilistic rules. Our results 
from human participants show that performance is better 
for AND interactions than for XOR interactions, which is 
consistent with earlier research demonstrating better learn-
ing of conjunctive concepts over disjunctive concepts. 
XOR is a different kind of disjunction (Hunt, 1962). Fur-
thermore, our results from computer simulations, coupled 
with our formal understanding of perceptrons and their 
limitations, position us to propose one reason why this dif-
ference occurs. This reason is that human participants, like 
perceptrons, learn reward probabilities in the card-choice 
task by behaving like naïve Bayesians who have difficulty 
with cue interactions. As a disjunctive interaction defined 
by XOR introduces more conditional dependence than 
does a conjunctive interaction defined by AND, prob-
ability learning in a disjunctive condition is poorer than 
this learning in a conjunctive condition. Furthermore, the 
observed effect of manipulating reward as well as the type 
of cue interaction (on perceptron learning and on human 
probability matching in Phase I) adds further support 
to this Bayesian hypothesis because reward can affect 
performance when the logical structure of the task is held 
constant. This effect is because reward manipulations can 
also affect conditional dependence, which in turn alters the 
performance of naïve Bayesians (Dawson & Gupta, 2017).

When cognitive psychology began to study concept 
learning, it started by considering this learning from older 
perspectives more aligned with psychological behaviorism 
(Hunt, 1962). It concluded that these older theories were 
not adequate and proceeded to develop new theories that 
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were consistent with cognition as being a form of infor-
mation processing. For instance, Hunt explored computer 
simulations that developed decision trees that could be 
used to model human learning of categories. Bruner et al. 
(1956) considered category learning as involving strate-
gies for proposing, testing, and modifying hypotheses. 
We saw in Section 8.1.2 that these information-processing 
inspired approaches evolved in various directions (proba-
bilistic functionalism, intuitive statistics, decision theory, 
heuristics, and Bayesian inference) and that many of these 
approaches are applicable to uncertain environments.

Perhaps one major implication of our algorith-
mic-level analyses is that they suggest that associative 
learning still has a role to play in this literature. We have 
identified relationships between the performance of human 
participants and the performance of perceptrons when both 
learn about similar uncertain environments. Furthermore, 
we know that this relationship is particularly important 
because of another established relationship between per-
ceptrons and psychological models of associative learning 
(Dawson, 2008). Because human performance appears to 
show some of the limitations that are revealed by studying 
perceptrons indicates that models of associative learning 
are relevant to studying adapting to uncertainty.

This is not to say that the current monograph is 
proposing the perceptron as a competitor to other cog-
nitive theories. It is reasonable to expect that cognitive 
processes, such as using strategies to test hypotheses 
or employing heuristics to generate educate guesses, 
are important components of adapting to uncertainty. 
Nonetheless, we are claiming that associative learning 
has a role to play in this processing and might indeed be 
capable of providing information to be used by other cog-
nitive processes (e.g., generating subjective probabilities 
that can be used to guide strategy).

This is also not to say that the current monograph has 
presented all of the necessary evidence to confirm the role 
of associative learning in adapting to uncertainty. Clearly 
more evidence—both algorithmic and computational—is 
required. However, the evidence that has been reported 
herein suggests that gathering additional information 
concerning association and probability is a worthy enter-
prise. Fortunately, the card-choice task is flexible enough 
to serve as a source for exploring this issue in more de-
tail, as discussed in the next section.

8.5.2 Future Card-Choice Task Directions
The particular version of the card-choice task detailed 

in Chapter 7 was an attempt to collect data about human 
probability learning that could be directly compared to 

the performance of perceptrons trained on an analogous 
task. The particular manipulations that defined the various 
conditions described in that chapter were specifically 
designed to match manipulations that were explored in 
the Chapter 5 and 6 simulations. Some of the results of 
the card-choice task have themselves raised additional 
questions; other questions arise from our computational 
understanding of artificial neural networks. In our view, 
the card-choice task is flexible enough to be used to 
explore a variety of different variables in an attempt to 
further our understanding of human probability learning. 
Let us briefly consider some of these variables.

Additional cue interactions. Section 8.5.1 noted that 
a long-standing issue in the concept learning literature 
is the logical relationship used to define concepts as 
combinations of features. The card-choice task explored 
this issue by using two relationships (AND and XOR) to 
signal reward probability using the logical combination 
of two cues. If we restrict ourselves to two interacting 
cues, then 16 logical relationships can be defined be-
tween them. These different relationships are associated 
with different degrees of conditional dependence, not to 
mention different kinds of linear separability (e.g., Table 
4-2). The card-choice task can be easily modify to explore 
alternative relationships between cues. Essentially, all that 
is required is to define the probability of reward associated 
with the cue relationship of interest and to then use the 
additive probability rule to determine the probability of 
reward associated with each stimulus. Once this is done, 
the card-choice task can proceed in the same fashion as 
described in Chapter 7. For additional experiments of this 
sort, our understanding of the perceptron would suggest 
that human performance on new logical relationships 
could be predicted from the conditional dependence 
that exists between interacting cues.

Additional training. In Chapter 7, one issue that 
emerged was that human choice probabilities did not match 
ideal reward probabilities to the expected degree for the 
independent cues condition. It was suggested (e.g., Figure 
7-4) that this was possibly because human participants re-
quired more experience in the independent cues condition 
in order to learn the subtleties of its reward probabilities. 
Clearly the amount of training permitted in the card-choice 
task could be easily modified (i.e., by varying the number 
of choices participants can make in Phase I) to determine 
how this factor affects human probability learning.

Alternative reward probabilities. One variable that 
could be responsible for participants requiring more 
training in a card-choice task condition is the difference 
between reward probabilities associated with different 
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stimuli. For instance, in Section 7.5.3 it was suggested that 
human participants found the independent cues condition 
difficult because there were relatively small differences in 
the reward probabilities associated with different stimuli. 
This possibility could be studied further with variations 
of the card-choice task. For instance, different versions 
of the independent cues condition could be created by 
varying the reward probability signaled by each cue, 
which in turn would manipulate similarities or differences 
between reward likelihoods of different stimuli. If the 
Section 7.5.3 hypothesis were correct, then it would be 
expected that probability learning in this condition would 
be hindered in conditions in which there were high simi-
larities between reward probabilities.

Changing probabilities midway through learning. In 
Chapter 2, it was noted that when perceptrons are being 
trained in an uncertain environment, they adopt a structure 
that is maintained in a dynamic equilibrium (e.g., Figure 
2-5). This structure provides the perceptron the best prob-
ability estimates possible given the fact that the network 
is never going to be completely correct when it predicts 
environmental rewards. However, this equilibrium is 
dynamic in the sense that if an environment’s reward prob-
abilities are altered, then the perceptron quickly modifies 
its structure to adapt to the new contingencies. This kind 
of rapid adaptation was not studied in Chapter 7 but could 
be easily implemented in the card-choice task. This would 
be accomplished by using one set of reward probabilities 
for a set number of participant choices and then by using 
a different set of reward probabilities for later choices. Do 
human participants also quickly adapt to changing contin-
gencies? This methodology could be used to answer this 
question. It could also be used to explore whether learning 
one kind of probability in the first set of choices (e.g., one 
involving a particular logical relationship between cues) 
would help or hinder adapting to a different kind of prob-
ability when reward probabilities change.

Alternative encodings of cues. One issue that 
was singled out for attention in Chapter 7 involved cue 
encoding in the card-choice task. In particular we ex-
plored whether the (0, 1) encoding of cues used to study 
perceptrons prevented these results from being compared 
to human performance. This is because the perceptron 
encoding tacitly assumes that cues are either present 
or absent, but for human participants cues were always 
visible in one state or another. Additional computational 
analyses suggested that the perceptron results were appli-
cable (Section 7.6). However, this issue can be explored 
in variations of the card-choice task. For instance, in one 
variation cues could literally be present or absent. Will this 

alter human probability learning? In another variation, the 
salience of the difference between a cue’s two states could 
be systematically varied. The analyses of Section 7.6 pre-
dict that this latter manipulation would alter participants’ 
general expectation of being rewarded, because if they are 
behaving like perceptrons, then this manipulation alters 
the bias term of the logistic equation.

Alternative numbers of cues. The card-choice task 
can easily be extended to involve variations of the cues 
used to signal reward probabilities. One obvious way to do 
so would be to use a different number of cues. For instance, 
if one were to use four cues instead of three, human results 
could be compared to perceptrons of the sort studied by 
Dawson and Gupta (2017). However, a more interesting 
approach might be to keep the number of cues constant 
but to vary the number of states that cues can adopt. For 
instance, classic studies of concept learning often used 
three values for each cue (Bruner et al., 1956). The card-
choice task could easily be changed to explore this kind 
of manipulation. For instance, cues might take on one of 
three colors instead of two, with each color used to modify 
the probability of reward being signaled. This would make 
the environmental probabilities much more complicated to 
learn. It would be interesting to determine whether basic 
associative processes could still be used to model human 
probability learning in this more complicated environment.

The preceding paragraphs have suggested a number 
of different issues that could be explored by varying some 
basic properties of the Chapter 7 card-choice task. It is 
also true that this task records a great deal of informa-
tion that could be used to explore probability learning 
in ways that were not discussed in Chapter 7. The next 
paragraphs briefly consider some additional analyses 
of the card-choice task that could be used to gain more 
insight into human probability learning.

Broadening the notion of cues being attended to by 
participants. The analyses in Chapter 7 were all conducted 
under the assumption that human participants were treating 
the cues on each card as signals of reward probability. This 
assumption is justified in the sense that participants were 
explicitly told that this was the case and were explicitly 
told that other facets of the task (such as card location) 
did not signal reward. However, this does not mean that 
these other properties did not affect performance. For 
instance, it is well established that certain variables can 
affect performance in navigation tasks even when these 
variables are irrelevant to the task, and when the task 
can be accomplished by paying attention to other highly 
reliable cues (K. Cheng, 1986). Thus, it is possible that 
one factor influencing human card choices involves card 
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location. This factor might be more important in condi-
tions where learning from cues is more difficult than in 
conditions where learning from cues is less difficult. The 
program that conducts the card-choice task records the 
location of a card whenever it is selected by a participant. 
Thus, it is possible to explore whether additional cues, like 
card location, are also being used.

Considering alternative choice strategies. It was 
already noted that the data collected for each participant 
in the card-choice task could be used to explore choice 
strategies: The process used by a participant to choose the 
next card. It was argued that the expected probability of 
reward played an important role in this decision (Section 
7.8). Additional influences on card-choice strategy can 
also be explored. For instance, perhaps card location also 
influences which card is to be selected next—all things be-
ing equal in terms of expected reward probability, perhaps 
participants prefer choosing a next card that is closer to 
the current card than are others. This possibility suggests 
another manipulation of the card-choice environment: the 
physical arrangement of stimuli. If location is affecting 
some component of human choices, then these choices may 
be altered when stimuli are arranged in a different layout.

8.6 Implementational-Level Considerations
8.6.1 Networks and Biological Plausibility

Cognitive science’s earliest approaches to modeling 
cognition were inspired by the digital computer (Dawson, 
1998, 2013). As a result, cognitive scientists adopted func-
tionalist philosophy and were concerned with what func-
tions were involved in information processing; they were 
not concerned with how those functions were physically 
instantiated. Functionalism made computer simulations of 
cognition possible, because it permitted researchers to ar-
gue that their computer models were relevant even though 
the physical implementation of computers is enormously 
different from the biological implementation of cognition 
by the brain. Functionalism makes the physical differences 
between computers and brains irrelevant.

However, the rise of connectionism in cognitive 
science occurred because some cognitive scientists were 
convinced that biological implementation was important 
to consider. Connectionist cognitive scientists were mo-
tivated by the belief that artificial neural networks could 
fill a biological vacuum left by functionalism (Amit, 1989; 
Clark, 1989; Feldman & Ballard, 1982; McClelland et al., 
1986; Rojas, 1996). Artificial neural networks were touted 
as being biologically plausible or neuronally inspired. 
Processing units are roughly equivalent to neurons, and 

connections between processors are roughly equivalent 
to synapses (see, e.g., the visual analogy rendered in 
Rumelhart, Hinton, & McClelland, 1986, Figure 1). The 
link between artificial neural networks and the brain has 
a long history. For example, the earliest networks arose 
from attempts to describe the all-or-none behavior of 
neurons with propositional logic (McCulloch & Pitts, 
1943). The most detailed exposition of the perceptron 
was titled Principles of Neurodynamics (Rosenblatt, 
1962). Clearly, artificial neural networks have provided a 
medium for emphasizing the relationship between cogni-
tion and the brain. These networks have been described 
as providing an implementational account of associative 
learning (Shanks, 1995). Critics have, in fact, argued that 
research that employs artificial neural networks cannot 
be properly viewed as being “cognitive” because these 
networks provide only implementational accounts (Broad-
bent, 1985; Fodor & Pylyshyn, 1988).

However, it is also true that many researchers are 
highly skeptical of the claim that artificial neural networks 
are more biologically plausible than are other kinds of 
models (Reeke & Edelman, 1988). For instance, one 
can generate long lists of properties of artificial neural 
networks that are clearly not true of the brain (Crick & 
Asanuma, 1986; Smolensky, 1988). As a result, PDP 
models are often vilified as oversimplifications by neuro-
scientists; some have called them stick and ball models 
(Douglas & Martin, 1991). Reeke and Edelman (1988) 
offered this blunt assessment of the neurophysiological 
relevance of PDP connectionism: “These new approaches, 
the misleading label ‘neural network computing’ notwith-
standing, draw their inspiration from statistical physics 
and engineering, not from biology” (p. 144).

8.6.2 Are Perceptrons Biologically Plausible?
With respect to the current monograph and its re-

lationship to the implementational level, one could ask 
whether the perceptron is biologically plausible. This 
monograph does not make this claim. Instead, and as has 
been shown in earlier sections of Chapter 8, the perceptron 
is of interest because it provides new computational and 
algorithmic insights into probability learning, and these 
insights can be used to generate new ideas for experiments.

That being said, it could be plausibly argued that the 
understanding of the perceptron that we have developed 
in the current monograph is such that it could be used 
to guide the search for implementational evidence about 
probability learning. An architecture in cognitive science 
provides an account of the basic or primitive characteris-
tics of an information-processing system (Dawson, 2013). 
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We have developed a detailed architectural understanding 
of how perceptrons learn to estimate probabilities that in-
cludes an account of how information about probabilities 
is encoded in connection weights and how this encoding 
is transformed by the perceptron’s activation function. 
If one was intent on using the perceptron to suggest an 
implementational account, then the first step would be to 
explore how these basic architectural properties could be 
implemented by neural systems. From this perspective, the 
perceptron might be more biologically plausible than other 
models of associative learning, like the Rescorla–Wagner 
model, which do not typically do not provide architectural 
details to be related to biological mechanisms.

8.7 The Synthetic Approach  
and Associative Learning
8.7.1 The Synthetic Approach

Section 8.5 suggested a number of variations of the 
card-choice task; many other variants of this task are likely 
possible. In pursuing any of these possibilities, there are a 
number of specific design decisions to be made (e.g., spe-
cific values of reward probabilities signaled by cues, spe-
cific values of cue attributes, etc.). How might one explore 
these card-choice task possibilities, seeking studies that 
might lead to particularly interesting or surprising results?

The answer to this question lies in one of the main 
themes of the current monograph: studying a phenomenon 
from a variety of perspectives. In particular, we have stud-
ied not only human probability learning experimentally 
but also this phenomenon computationally and algorith-
mically by using a particular artificial neural network, the 
perceptron. The relationship between this kind of network 
and psychological models of learning is well established 
(Dawson, 2008; Gluck & Bower, 1988; Sutton & Barto, 
1981). One of the main implications of Chapter 7 is that 
there also exists a relationship between perceptron learning 
and human performance in a particular type of probability 
learning task. Together, these implications indicate that 
one can use perceptron simulations to explore the effects 
of a variety of manipulations on probability learning. The 
results of these simulations can identify effects that seem 
particularly interesting or important. These simulation 
results can then motivate particular experimental stud-
ies of human or animal participants.

The use of simulations to explore the potential ben-
efits of various experiments is an example of the allure 
synthetic psychology (Braitenberg, 1984; Dawson, 2004, 
2013; Dawson et al., 2010a). As was noted earlier in this 
chapter, synthetic psychology proceeds by building simple 

systems for exploring “what if” questions about behavior. 
Perceptrons are examples of simple systems; they are eas-
ily trained, and one can simulate a variety of experiments 
with the clever construction of different training sets. As 
a result, perceptrons can be quickly used to explore a va-
riety of different experimental configurations in search of 
manipulations that seem particularly promising. It is much 
simpler and faster to perform this search with these net-
works than it is to conduct pilot studies with biological par-
ticipants. If one is confident that perceptrons are potential 
models of human performance, an interesting result with 
networks is also likely to be discovered when an analogous 
study is performed with human or animal participants.

In many respects, the current monograph is a case 
study in this synthetic approach. The computational studies 
of perceptrons led to simulations that explored the effects 
of two variables (type of cue interaction, probability of re-
ward signaled by the interaction) on probability learning. 
These simulations revealed significant effects associated 
with each of these factors. This result was deemed inter-
esting enough to lead to a parallel probability learning 
study involving human participants. This study revealed a 
similar pattern of results and supported the notion that both 
perceptrons and human participants treated this particular 
type of probability learning as naïve Bayesians.

Of course, the synthetic psychology of probability 
learning can include other models than perceptrons. Even 
if we were to (unwarrantedly) restrict it to connectionist 
systems, we have already noted that other artificial neural 
networks may provide insight into adapting to uncertainty. 
These networks could include multilayer networks and 
networks that use activation functions other than the lo-
gistic. There is no reason that a synthetic approach could 
not also be developed around other kinds of simulations. 
However, we are confident that the results that have been 
summarized in the current chapter are sufficient to justify 
the further exploration of probability learning in a synthet-
ic approach that focuses on simple perceptrons.

8.7.2 The Centrality of Associative Learning
One reading of the current monograph is as a case 

study in the synthetic psychology of probability learning. 
Another reading is as an exploration of the centrality of 
theories of associative learning. This exploration proceeds 
with one established link—the relationship between psy-
chological models of associative learning and the kind of 
learning performed by the perceptron (Dawson, 2008). It 
has then explored links between perceptron learning and 
other core topics: probability theory, information theory, 
different types of feedback in cybernetics, and systems 
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theory. There are important mappings from artificial neu-
ral networks to all of these disciplines. This, in turn, means 
that these same mappings should hold between these disci-
plines and psychological theories of associative learning.

To a large extent, theories of associative learning 
were casualties of the cognitive revolution in the 20th cen-
tury (G. A. Miller, 2003). With the rise of new cognitive 
theories that focused on active information processing, 
theories that were linked to psychological behaviorism 
were abandoned because they were interpreted as mod-
eling psychological processing as the passive response to 
the environment. Many criticisms of associative theories 
claim that associations are not powerful enough to model 
human cognition (Bever et al., 1968; Chomsky, 1959; 
Fodor & Pylyshyn, 1988). However, a slight change of 
perspective reveals that associationist models provide 
alternative proposals for information processing that share 
many properties with the cognitivist theories that reacted 
against them (Dawson, 1998, 2013, 2018). It is both possi-
ble and fruitful to consider associative learning as a topic 
within cognitive science (Shanks, 1995). I hope that this 
monograph has shown not only that theories of associative 
learning provide insight into probability learning but also 
that they do so by appealing to ideas that are foundations 
of the very disciplines that gave birth to cognitivism.
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