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We explore the ability of a very simple artificial neural network, a perceptron, to assert the musical key
of novel stimuli. First, perceptrons are trained to associate standardized key profiles (taken from 1 of 3
different sources) to different musical keys. After training, we measured perceptron accuracy in asserting
musical keys for 296 novel stimuli. Depending upon which key profiles were used during training,
perceptrons can perform as well as established key-finding algorithms on this task. Further analyses
indicate that perceptrons generate higher activity in a unit representing a selected key and much lower
activities in the units representing the competing keys that are not selected than does a traditional
algorithm. Finally, we examined the internal structure of trained perceptrons and discovered that they,
unlike traditional algorithms, assign very different weights to different components of a key profile.
Perceptrons learn that some profile components are more important for specifying musical key than are
others. These differential weights could be incorporated into traditional algorithms that do not themselves
employ artificial neural networks.
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A critical component of listening to music is identifying its
musical key. When a piece of music is in a particular musical key,
certain tones or musical pitches are more stable than are others.
That is, a musical key establishes the tonality of a piece. Human
listeners, whether musically trained or not, are able to identify
musical key very rapidly (Butler, 1989). Not surprisingly there is
considerable interest in proposing procedures for musical key-
finding, both to contribute to theories of music perception and to
develop computer algorithms for automatically asserting the keys
of musical stimuli (Albrecht & Shanahan, 2013; Frankland &
Cohen, 1996; Handelman & Sigler, 2013; Holtzman, 1977;
Longuet-Higgins & Steedman, 1971; Sapp, 2005; Shmulevich &
Yli-Harja, 2000; Temperley, 1999, 2004, 2007; Temperley &
Marvin, 2008; Tillmann, Bharucha, & Bigand, 2000; Vos & Van
Geenen, 1996).

One model of key-finding is derived from empirical results
concerning the interrelationships between different pitches in a
given musical context. Human listeners, even those without formal
musical training, organize musical events according to tonal hier-
archies (Krumhansl, 1979, 1990; Krumhansl & Shepard, 1979). A
tonal hierarchy represents the relative fit or stability of one pitch to
another in a given musical context. Tonal hierarchies can be
empirically determined using the probe tone method. This para-
digm has subjects use a seven-point scale to rate how well a tone
fits into the context of preceding tones heard before this probe is
presented; a rating of 1 indicates very bad whereas a rating of 7
indicates very good.

When the musical context establishes a particular tone as being
central, the probe tone method produces a regular pattern of ratings
(see Table 1, first two rows). From this table it can be seen that
when the context establishes a particular major key, the tonic note
of the established key (i.e., degree 0, which is the pitch C in the
key of C major, C# in the key of C# major, and so on) is the most
stable, because it receives the highest rating of 6.35. The next most
stable tone is a perfect fifth (7 semitones) above the tonic, with the
second highest rating of 5.19. The tones 1, 10, and 3 semitones
above the tonic are the least stable, because they receive the lowest
ratings in the probe tone method. A related tonal hierarchy is
obtained when a context establishes a minor key in the probe tone
method, as is shown in the second row of Table 1. Importantly, the
same basic tonal hierarchy is obtained for each major key (or for
each minor key) when a different tonal center is established. For
instance, two different major keys will generate the same basic
pattern of ratings; the difference between the two is simply that the
pattern shifts to align with the tonal center of the particular key.

Tonal hierarchies provide the foundation for one influential
model of key-finding proposed by Krumhansl and Schmuckler
(Krumhansl, 1990). The model uses tonal hierarchies to create a
set of standardized tone profiles, one for each of the 12 major and
for each of the 12 minor musical keys. In the Krumhansl/Schmuck-
ler key-finding algorithm, a to-be-analyzed musical stimulus is
also represented as a tone profile. This is accomplished by deter-
mining the total duration of each pitch-class in the stimulus.
Pitch-class is an equivalence class of different musical pitches that
are related by the musical interval of an octave. For instance,
middle C, the C an octave higher, and the C two octaves higher all
belong to the pitch-class ‘C.’ To use the Krumhansl/Schmuckler
algorithm, one tabulates the total number of beats in the stimulus
that involve hearing the pitch class A, the total number of beats of
the pitch class A#, and so on. Once the stimulus is represented in
this fashion, correlations are computed between the stimulus’
profile and each of the 24 standardized tone profiles. The algo-
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rithm identifies the standardized profile that produces the highest
correlation, and asserts that this is the key of the musical stimulus.
Krumhansl (1990) reports this algorithm performs very well. It
may also serve as a model of the cognitive processes involved
when human listeners establish tonal centers (Frankland & Cohen,
1996; Schmuckler & Tomovski, 2005).

However, the performance of the Krumhansl-Schmuckler algo-
rithm is not perfect. For example, when examining performance on
a test set of 492 selections of classical compositions, Albrecht and
Shanahan (2013) observed that Krumhansl-Schmuckler correlation
algorithm is only 74.2% accurate. Second, the performance of the
algorithm varies depending upon whether it is presented stimuli in
major or in minor keys. In Albrecht and Shanahan’s test set, the
Krumhansl-Schmuckler algorithm generated 69.0% accuracy to
major key compositions, while it was 83.2% accurate in assigning
minor keys.

Some researchers have investigated variations of the
Krumhansl-Schmuckler algorithm in an attempt to improve key-
finding performance. In general, these variations explore two dif-
ferent avenues. The first involves replacing the Krumhansl-
Schmuckler tone profiles with alternative profiles. For example,
both Temperley (2004) and Albrecht and Shanahan (2013) derive
new tone profiles from statistical analyses of large corpuses of
music pieces. These alternative tone profiles are also provided in
Table 1.

The second avenue for exploring variations of the Krumhansl-
Schmuckler algorithm involves comparing inputs to tone profiles
using some method other than correlation. For instance, Temperley
uses the Bayesian probability equation to choose the most probable
key to assign to an input stimulus. In contrast, Albrecht and
Shanahan assume that the tone profiles for each musical key, and
the to-be-classified stimulus, are all points located in a 12-
dimensional space; they choose the key whose point in this space
is the shortest distance from the point representing the stimulus.

The current manuscript explores a new variation of a key-
finding algorithm that employs tone profiles. Its general purpose is
to determine whether simple artificial neural networks trained on
tone profiles can serve as plausible methods for key-finding. It
describes the performance of artificial neural networks that assert
musical keys after learning the keys associated with different sets
of tone profiles.

Training Key-Finding Networks on Tone Profiles

Artificial Neural Networks

An artificial neural network is a computer simulation of a
system of simple processors that send signals to one another
through weighted connections (McClelland & Rumelhart, 1986;
Rumelhart & McClelland, 1986). In general, an artificial neural
network consists of layers of processing units; signals pass through
weighted connections from one layer to the next. The function of
a typical network is to generate a desired response to each stimulus
in a set of training patterns. Each stimulus is encoded as a pattern
of activity in a layer of input units. The network’s response to the
input is represented as a pattern of activity in a layer of output
units. Intervening layers of processors in the system, called hidden
units, may be required to detect more complex features of the
stimulus that allow the network to make a correct response.

An output unit in an artificial neural network is analogous to a
neuron, and behaves as follows: First, it computes the total signal
being received from other processors in the network, called the net
input. Second, the output unit converts this total signal into a
numerical value that represents its activity or response. This is
accomplished using an equation called the activation function. In
the current manuscript, the output units use the logistic function
(Rumelhart, Hinton, & Williams, 1986) as the activation function.
The logistic activation function is a sigmoid-shaped function that
squashes net input, which can in principle range from positive to
negative infinity, into activity that ranges between 0 and 1. The
logistic equation is a � 1/(1 � exp(�net � �)); in this equation a
is output unit activity, net is net input, and � is a parameter called
bias that is analogous to the output unit’s threshold.

An artificial neural network’s response to an input pattern is
defined by its set of weighted connections between the various
units in the network. However, artificial neural networks are
generally not programmed in any conventional sense. Instead, they
are taught. Networks receive a sequence of input patterns, and
learn by adjusting their connection weights based on feedback
about their responses. In the networks considered below, learning
is error-driven. After a network responds to a presented stimulus,
error—the difference between the desired and actual response for
each output unit—is calculated. A gradient descent learning rule
(Dawson, 2008) then uses the computed errors to modify the

Table 1
The Three Sets of Key Profiles Used in Simulation 1: The Major and Minor Profiles From the Krumhansl-Schmuckler Algorithm
Provided by Krumhansl (1990; Source Indicated as KS), the Major and Minor Profiles From Temperley (2007; Source Indicated as
T), and the Major and Minor Profiles From Albrecht and Shanahan (2013; Source Indicated as AS)

Source Type

Degree of pitch-class relative to tonal center of context

0 1 2 3 4 5 6 7 8 9 10 11

KS Maj 6.35 2.23 3.48 2.33 4.38 4.09 2.52 5.19 2.39 3.66 2.29 2.88
Min 6.33 2.68 3.52 5.38 2.60 3.53 2.54 4.75 2.98 2.69 3.34 3.17

T Maj .748 .060 .488 .082 .670 .460 .096 .715 .104 .366 .057 .400
Min .712 .084 .474 .618 .049 .460 .105 .747 .404 .067 .133 .330

AS Maj .24 .01 .11 .01 .14 .09 .02 .21 .01 .08 .01 .08
Min .22 .01 .10 .12 .02 .10 .01 .21 .06 .02 .06 .05

Note. Scale degree 0 is assumed to be the tonic pitch, etc.
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network’s connection weights. These modifications change
weights (and biases) in such a way that network error is reduced.
With repeated presentations of the stimuli in a training set, a
network’s error is reduced to the point that it can be claimed that
the network has learned the desired stimulus-response mapping.

Networks and Music Cognition

Artificial neural networks have been applied to a wide variety of
problems in music and in musical cognition (Bharucha, 1999;
Fiske, 2004; Griffith & Todd, 1999; Todd & Loy, 1991). A variety
of network architectures have been used to study to such topics as
classifying pitch and tonality, assigning rhythm and meter, classi-
fying and completing melodic structure, and composing new mu-
sical pieces. Let us briefly consider some examples of musical
connectionism.

Connectionist networks can accomplish a variety of tasks that
require classification of basic elements of Western music (e.g.,
pitch, tonality, and harmony). Artificial neural networks have been
trained to classify chords (Laden & Keefe, 1989; Yaremchuk &
Dawson, 2005, 2008), to assign notes to structures similar to the
tonal hierarchy (Leman, 1991; Scarborough, Miller, & Jones,
1989), to model the effects of musical expectations on musical
perception (Bharucha, 1987; Bharucha & Todd, 1989), to add
harmony to melodies (Berkeley & Raine, 2011; Shibata, 1991), to
determine the musical key of a melody (Griffith, 1995), to identify
a melody even when it has been transposed into a different key
(Benuskova, 1995; Bharucha & Todd, 1989; Page, 1994; Stevens
& Latimer, 1992), and to detect the chord patterns in a composition
(Gjerdingen, 1992). Artificial neural networks can also handle
other important aspects of music that are independent of tonality,
such as assigning rhythm and meter (Desain & Honing, 1989;
Griffith & Todd, 1999; Large & Kolen, 1994) or generating
preferences for, or expectancies of, particular rhythmic patterns
(Gasser, Eck, & Port, 1999).

The examples cited above generally involve using artificial
neural networks to detect properties of existing music. The ability
of networks to process tonality, harmony, meter, and rhythm also
permits them to generate new music. Composition has in fact been
of the most successful applications of musical connectionism.
Networks can compose single-voiced melodies on the basis of
learned musical structure (Mozer, 1991; Todd, 1989), can compose
harmonized melodies or multiple voiced pieces (Adiloglu & Al-
paslan, 2007; Bellgard & Tsang, 1994; Hoover & Stanley, 2009;
Mozer, 1994), can improvise when presented new jazz melodies
and harmonies (Franklin, 2006), and can improvise by composing
variations on learned melodies (Nagashima & Kawashima, 1997).

The ability of artificial neural networks to exploit similarity
relationships positions them to capture regularities that are difficult
to express in language or using formal rules (Loy, 1991). This
permits networks to solve musical problems that involve very
abstract properties. For example, human subjects can accurately
classify the genre or style of a short musical selection within a
quarter of a second (Gjerdingen & Perrott, 2008). The notion of
style or genre is too vague to be formalized in a fashion suitable for
a classical rule governed system (Loy, 1991). However, neural
networks are up to the task, and can classify musical patterns as
belonging to the early works of Mozart (Gjerdingen, 1990), can
classify selections as belonging to different genres of Western

music (Mostafa & Billor, 2009), can evaluate the affective aes-
thetics of a melody (Cangelosi, 2010; Coutinho & Cangelosi,
2009; Katz, 1995), and that can even predict the possibility that a
particular song has “hit potential” (Monterola, Abundo, Tugaff, &
Venturina, 2009).

Clearly artificial neural networks are popular models for study-
ing music cognition. Why might this be so? It has been argued that
artificial neural networks provide five different advantages for this
research domain (Bharucha, 1999). First, artificial neural networks
can account for how music is learned. Second, connectionist
theories of such learning are biologically plausible. Third, net-
works provide accounts of music perception phenomena, such as
contextual effects and the filling-in of incomplete information.
Fourth, networks exploit similarity-based regularities that are im-
portant in theories of musical cognition. Fifth, networks may
discover regularities that elude other analyses.

The current paper describes simulations that to a certain extent
react against this final point of Bharucha (1999). These simulations
belong to a broader research program (Dawson, in press) that does
not agree that a main goal of musical connectionism is to capture
informal regularities. Instead, this program uses musical networks
to reveal new formal properties of music. It does so by training
simple networks on basic musical tasks, such as identifying the
tonic or mode of a scale, or classifying chords into types. After
training is complete, the internal structure of a network is exam-
ined in an attempt to determine how it solves the problem that it
has been taught. In many cases, this interpretation reveals new
insights into musical regularities.

The current paper illustrates this approach by training a very
simple type of network, called a perceptron, to assert musical key
by training it using stimuli related to the tonal hierarchy. This
stimuli are taken from some traditional (i.e., nonconnectionist)
models of key-finding (Albrecht & Shanahan, 2013; Krumhansl,
1990; Temperley, 2007). After this training, a perceptron is pre-
sented a set of 296 new musical stimuli to assess its ability to assert
their musical keys. In general, we find that these networks perform
quite well on these new stimuli. We then examine the connection
weights of the trained network, and discover that these weights
indicate that the different components of a tonal hierarchy are not
equally informative signals of musical key. That is, the networks
learn that some stimulus components are more important than
others are, and assign them much stronger weights.

The remainder of this paper proceeds as follows: First, we
introduce the basic properties of a perceptron, and describe how it
can be trained for key-finding. Second, we describe the results of
this training, and evaluate the ability of trained perceptrons to
assert the musical keys of novel stimuli. Third, we examine the
internal structure of these networks, and discuss how these weights
can be used to inform some current models of key-finding. We end
with a general discussion of the implications of these results, as
well as how networks like the ones discussed below might be
situated in the experimental study of musical cognition.

A Perceptron for Key-Finding

Most previous studies of how neural networks process musical
tonality or musical key have employed complex, dynamic net-
works whose components interact over time. Such networks
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evolve into stable states that reflect responses to stimuli, and are
typically used to model changes in musical qualities over time.

For instance, one such model is a network of interacting oscil-
lators whose frequencies shift into stabilized patterns (Large, Kim,
Flaig, Bharucha, & Krumhansl, 2016). These patterns can be
interpreted as indicating that some tonal relationships are more
stable than are others in the context, and can be related to the tone
profiles introduced earlier. Another model is a self-organizing map
whose surface is arranged around the shape of a torus, and which
is trained on the 24 Krumhansl-Schmuckler profiles (Toivainen,
2005; Toiviainen & Krumhansl, 2003). When this network is
combined with a short-term memory (STM), it can represent
dynamic changes in tonality as a musical stimulus changes over
time. A similar dynamic network (Bharucha, 1987) uses different
processing units to represent various chords, musical keys, and
musical tones. Signals flow back and forth between these units;
changes in unit activity reflect changes over time of such attributes
as key or stable chords within a particular context (i.e., the various
stimuli that have been presented to the network, which are remem-
bered for a brief period).

In contrast to these complex dynamic networks, the current
manuscript explores a much simpler network: the perceptron
(Rosenblatt, 1958, 1962). A perceptron is a network that consists
of a layer of input units that are directly connected to a layer of
output units. Perceptrons do not include any intermediate layers of
processors. Perceptrons also do not settle into stable states, be-
cause they do not permit signals to move back and forth between
processors over a period of time. Instead, perceptrons are feedfor-
ward systems in which signals generated by activating input units
are scaled by weighted connections and then cause output unit
activity. In a trained perceptron, this output activity is the response
to the presented stimulus. Below we explore the behavior of such
networks when they learn a mapping between tone profiles and
musical keys, and are then faced with asserting the musical keys of
novel stimuli.

There are three main reasons for choosing the perceptron as the
type of network for investigating key-finding. First, the type of
learning rule used to train perceptrons is formally and empirically
related to psychological models of associative learning (Dawson,
2008), and perceptrons have successfully been used to model
behaviors observed in animals and humans (Dawson, Kelly,
Spetch, & Dupuis, 2010). Thus perceptrons are psychologically
plausible models. Second, and as discussed in more detail below,
if artificial neural networks are to contribute to musical cognition,
then these contributions will come from interpreting the internal
structure of trained networks (Dawson, in press). Perceptrons are
straightforward to interpret because of their simple structure.
Third, when a perceptron’s output units use the logistic activation
function, their outputs and their connection weights are strongly
related to elements of probability theory (e.g., Dawson & Gupta,
2017). Probability theory also has a growing importance in ac-
counts of music cognition (e.g., Temperley, 2007).

The general structure of a key-finding perceptron is illustrated in
Figure 1. It consists of 12 input units, each of which is associated
with a particular pitch class of Western music. This layer of input
units can represent a profile for a particular musical key, or a pitch
class profile for a musical composition. The perceptron also in-
cludes 24 output units, each of which is associated with a different
musical key. The task for the perceptron is to learn the mapping
from an input pattern to an output key. For example, once training
is complete it is expected that if the perceptron is presented the
tone profile for the key of A major then it will generate high
activity in the A major output unit while generating low activity in
each of the other output units.

In the study presented below, three different types of key-
finding perceptrons were trained. The first was trained on tone
profiles taken from the Krumhansl-Schmuckler algorithm
(Krumhansl, 1990), the second was trained on tone profiles taken
from the Temperley (2007) algorithm, and the third was trained on

Figure 1. A perceptron that can be trained to generate the musical key associated with a key profile that is
presented to its input units. The 12 input units can represent a key profile or a musical stimulus represented as
an analogous profile. The 24 output units each represent a different musical key. The lines between input and
output units represent connections; the weights of these connections are modified by training the perceptron on
a set of stimulus-response pairs.
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tone profiles taken from the Albrecht and Shanahan (2013) algo-
rithm.

These perceptrons represent variations of the original
Krumhansl-Schmuckler correlational algorithm. Consider a per-
ceptron trained on the Krumhansl-Schmuckler key profiles. Even
though it uses the same set of key profiles, this perceptron differs
from the Krumhansl-Schmuckler algorithm in two ways. First, it
does not directly match tone profiles to musical keys. Instead, it
uses its connection weights to transform tone profiles before their
signals reach the output units. Second, this network does not use
correlations to match stimuli with desired musical keys. Instead,
the output units take the signals from (transformed) input profiles
and then further transform them by applying a nonlinear activation
function, the logistic equation. Because of these two types of
differences, a perceptron trained on the Krumhansl-Schmuckler
key profiles may respond differently than will the Krumhansl-
Schmuckler correlation algorithm itself.

The Logic of Perceptrons

Before turning to our simulations, let us briefly consider an
important question: Why might we be interested in studying key-
finding with perceptrons? In spite of their simple structure, the
perceptrons described below illustrate several of the advantages
that have been claimed for connectionist explorations of music
cognition (Bharucha, 1999).

First, perceptrons offer a natural avenue for considering the role
of learning in studies of key-finding and tonality. The tonal hier-
archies derived from probe tone studies are highly correlated with
the frequency of occurrence of various pitch-classes in musical
corpuses; it has been hypothesized that human listeners learn
pitch-class distributions from the music that they hear (Krumhansl,
1990). However, to our knowledge the literature on key-finding
has not proposed how this learning might occur.

The learning rule used to train perceptrons is strongly related to
the psychological literature. It is formally equivalent to the seminal
Rescorla-Wagner model of classical conditioning (Rescorla &
Wagner, 1972); perceptrons have provided many insights into this
type of associative learning (Dawson, 2008; Gluck & Bower,
1988; Sutton & Barto, 1981). Perceptrons have also successfully
modeled learning to navigate from environmental cues and learn-
ing to match response probabilities to the likelihood of events
occurring in the world (Dawson & Dupuis, 2012; Dawson, Kelly,
Spetch, & Dupuis, 2008; Dawson et al., 2010; Dupuis & Dawson,
2013a).

Of course, this is not to say that the particular approach to
learning keys that is described below—the supervised pairing of
each musical key with a tone profile—is a realistic account of how
humans actually learn about musical keys. Some experimental
results suggest that human key-finding cannot be equated with the
typical key-finding process that assigns a precise key to a musical
stimulus.

For instance, in one psychological study subjects listened to
different melodies that were randomly generated so that their tonal
content was consistent with a specific tonal profile (Temperley &
Marvin, 2008). That is, stimuli were stochastically generated so
that the likelihood of a tone being added to a stimulus matched the
likelihood of its occurrence in the profile. For each stimulus,
subjects indicated one of 12 tones to specify the tonic of the

stimulus, as well as whether the stimulus was in the major or minor
mode. Temperley and Marvin found that while subject responses
were significantly better than chance, they were not as accurate as
expected. In general, subjects were only about 52% accurate in
indicating the expected key of a stimulus, and there were not high
levels of agreement between the judgments of different subjects.

Results such as those reported by Temperley and Marvin (2008)
raise questions about what exactly human listeners learn when they
experience tonality. From our perspective, the simulations de-
scribed below are a first step in permitting such issues to be
explored with artificial neural networks. In this first step, we
determine whether a very simple kind of network can learn the
same kind of mappings employed in other theories of key-finding
(i.e., a relationship between a particular tone profile and a specific
musical key), and can then adequately generalize this learning in
terms of asserting the musical keys of novel stimuli. If this capa-
bility can be demonstrated, then this would suggest that associative
learning mechanisms are worthy of further exploration in an at-
tempt to develop more realistic learning theories. Such an explo-
ration could involve exploring a wider variety of responses related
to tonality (e.g., judgments of mode only, judgments of whether
two stimuli are in the same key or not, etc.). The performance of
such networks could then be related to analogous human judg-
ments, for instance by using a methodology similar to that em-
ployed by Temperley and Marvin, but having subjects make dif-
ferent sorts of judgments.

The second characteristic of perceptrons that is related to Bharu-
cha’s (1999) list of connectionist advantages is that the perfor-
mance of our perceptrons demonstrates the power of exploiting
similarity-based regularities. We create our perceptrons by teach-
ing them the mapping between musical keys and a small number
of tone profiles taken from key-finding theories. Then the percep-
trons exploit the similarity relationships between these mappings
in order to assign musical keys to a large number of novel stimuli.

A third connectionist advantage cited by Bharucha (1999) is that
networks may discover regularities that elude other analyses. The
networks that we describe below do provide an interesting novel
discovery about using tone profiles to assert musical key. Network
interpretation plays a key role in the simulations described below.
By examining the connection weights of key-finding perceptrons,
we discover that some components of a single tone profile are far
more important for asserting key than are others, as was noted
above. Importantly, this difference in importance is over and above
the different sizes of the components that are already present in the
tone profile (e.g., the different values across a row of Table 1).
This result suggests possible alterations to existing key-finding
algorithms (Albrecht & Shanahan, 2013; Krumhansl, 1990; Tem-
perley, 2007).

Method

Design

This simulation study proceeds in two phases. First, a network
is trained to identify musical key using one of the three possible
sets of mean-centered normalized tone profiles described in more
detail below (see Table 2). Second, after successfully completing
the first phase, a network is tested on its ability to assert the
musical key of 296 different musical selections. These test stimuli
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represent four different sources. The first is the collection of 48
preludes and 48 fugues from both books of J.S. Bach’s Well-
Tempered Clavier. These compositions are a typical test bed for
key-finding algorithms (Albrecht & Shanahan, 2013; Temperley,
1999). The second is a collection of 24 preludes composed by
Frederic Chopin as his Opus 28. One prelude was written in each
musical key. These too are often used to test the accuracy of
key-finding theories; for instance, they pose some difficulty for the
Krumhansl-Schmuckler algorithm (Krumhansl, 1990). The third
test set is the 24 Preludes, Op. 67 composed by Johann Hummel.
As is the case for the Chopin preludes, Hummel composed one
prelude in each musical key. The fourth test set, the only selection
of music not from the classical genre, consists of 152 Nova Scotia
folk songs from Songs and Ballads from Nova Scotia (Creighton,
1932).

Training Patterns

One advantage that the Krumhansl-Schmuckler algorithm has
via its use of correlations to compare stimuli to tone profiles is that
this operation is not affected by stimulus magnitude. This is useful
because when a long musical selection is summarized as a pitch-
class profile, the magnitude of each value in its profile is expected
to be larger than would be observed when a shorter musical
selection is summarized in the same way. This is simply because
on average one would expect to find more instances of each
pitch-class in a longer piece than in a shorter one. Fortunately,
correlation is not sensitive to stimulus magnitude. Instead, it com-
putes the similarity of two patterns by only considering their
relative directions, and ignoring their relative magnitudes.

As the artificial neural networks to be considered below do not
use correlations, their outputs can be affected by differences in
stimulus magnitude. For this reason each pattern presented to a
network is first mean-centered and then normalized to unit mag-
nitude. This is accomplished by considering each pattern to be a
12-dimensional vector, with each entry in a vector being a profile
value. To mean-center this vector, the mean of its entries is
computed, and is then subtracted from each entry. To normalize
the mean-centered vector, its magnitude is computed, and then
each entry in the vector is divided by this value. When normalized
in this fashion every pattern presented to the network can be
described as a vector whose magnitude is equal to one. Note that
the operations used to mean-center and normalize a profile will not
affect the correlation between the profile and any set of numbers
with which it is being compared. Table 2 presents the three

different sets of tone profiles from Table 1 after they have been
mean-centered and normalized.

To build a training set for a perceptron trained on the
Krumhansl-Schmuckler profiles, the mean-centered normalized
major tone profile in the first row of Table 2 was used to generate
a key profile for each of the 12 major keys by associating the
values given in Table 2 with the appropriate input unit. That is, for
the key of C major the value of 0.655 was presented to the input
unit representing the pitch-class C, the value of �0.286 was
presented to the input unit representing the pitch-class C#, and so
on. Similarly the stimulus for the key of C# major involved
presenting the value of 0.655 to the input unit representing the
pitch-class C#, the value of �0.286 was presented to the input unit
representing the pitch class D, and so on. A similar procedure
created input stimuli for the 12 different minor keys using the
normalized minor key profile in the second row of Table 2. As a
result, the training set consisted of 24 different input patterns, one
for each musical key. A second set of 24 training patterns was
created by applying this method with the two mean-centered
normalized Temperley profiles from Table 2, and a third set of
24 training patterns was created by applying this method with
the two mean-centered normalized Albrecht-Shanahan profiles
from Table 2.

To use these profiles for training, each input pattern is paired
with a desired pattern of responses. For a particular stimulus, this
desired response pattern is one in which the output unit associated
with the stimulus’ key is given a value of 1, and all other output
units are given values of 0. When presented a stimulus, the
perceptron learns to turn a particular output unit on (i.e., assert a
particular musical key) and to turn all of the other output units off.

Testing Patterns and Methodology

As noted earlier, 296 test stimuli were taken from four different
collections of musical compositions. Each of these four collections
of musical selections is available in the kern file format at http://
kern.humdrum.org/. As a result, they can be analyzed using the
Humdrum toolkit (Huron, 1999). Humdrum’s key command can be
used to represent each of the 296 test stimuli in the format required
by the Krumhansl-Schmuckler algorithm. That is, the total dura-
tion of each of the 12 Western pitch-classes was computed for each
stimulus, producing a 12-entry vector representation. Each of these
vectors was then mean-centered and normalized to unit magnitude
prior to being presented to a trained network. This preprocessing
renders the test stimuli into a format that is identical to that used

Table 2
The Three Sets of Mean-Centered Normalized Key Profiles Used in the Simulation

Source Type

Degree of pitch-class relative to tonal center of context

0 1 2 3 4 5 6 7 8 9 10 11

KS Maj .655 �.286 �.001 �.263 .205 .139 �.220 .390 �.250 .041 �.273 �.138
Min .668 �.234 �.026 .433 �.253 �.024 �.268 .278 �.160 �.231 �.071 �.113

T Maj .442 �.330 .151 �.305 .355 .119 �.289 .405 �.280 .014 �.333 .052
Min .423 �.308 .146 .313 �.348 .130 �.283 .463 .064 �.327 �.251 �.022

AS Maj .575 �.287 .103 �.287 .199 .040 �.250 .485 �.276 �.012 �.280 �.009
Min .563 �.318 .086 .164 �.264 .082 �.293 .538 �.087 �.252 �.091 �.128

Note. These are all preprocessed versions of the original profiles presented in Table 1.
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to represent the training stimuli. It also ensures that network
performance is not affected by the varying magnitudes of each of
these test patterns.

During the test phase, network performance is assessed using a
procedure analogous to the Krumhansl-Schmuckler algorithm.
That is, when a test stimulus is presented to a network it produces
activity in 24 different output units, each one representing a
different musical key (see below). The output unit that generates
the highest activity is taken to indicate the musical key being
asserted by the network. The accuracy of this assertion is then
compared to the key in which the stimulus was actually composed
(information that is provided as part of the test stimulus’ kern file).

Network Architecture, Training, and Testing

Each network is a perceptron of the type illustrated in Figure 1.
Networks are trained with a gradient descent rule for perceptrons
(Dawson, 2004, 2008) using the Rosenblatt software program
(Dawson, 2005); this program is available as freeware from the
first author’s website. Before training begins all connection
weights in the network are set to random values between �0.1 and
0.1. The biases (�) of the output units are all initialized to 0, but are
then modified by the learning rule during training. A learning rate
of 0.50, which is typical for this architecture (Dawson, 2005) is
employed. Networks are trained epoch by epoch, where each of the
24 training patterns is presented once each epoch. The order of
pattern presentation is randomized each epoch. Training continues
until the network generates a ‘hit’ for every output unit for each of
the 24 patterns in the training set. A hit is defined as an activity of
0.90 or higher when the desired output is 1 or as an activity of 0.10
or lower when the desired output is 0. Once a network converges
to a solution for the training patterns it is then presented each of the
296 test patterns without additional training, and its responses to
these patterns are recorded.

Because each network is trained from a random configuration of
small initial set of connection weights, it is possible that different
networks can achieve qualitatively different end states via training.
For this reason, 10 different perceptrons are trained on each of the
three sets of training patterns, making a total of 30 different
perceptrons being studied in this simulation. Each of these percep-
trons can be viewed as a different ‘subject’ in a simulation exper-
iment.

Results

Training

All 30 perceptrons successfully learned to map mean-centered
normalized tone profiles onto musical keys. On average the 10
perceptrons trained on the Krumhansl-Schmuckler profiles con-
verge after 1354.3 epochs of training (SD � 0.823). On average
the 10 perceptrons trained on the Temperley profiles converge
after 1453.4 epochs of training (SD � 1.17). On average the 10
perceptrons trained on the Albrecht-Shanahan profiles converge
after 1864.0 epochs of training (SD � 1.25).

As 10 different versions of each perceptron were trained, and as
each of these began from a different set of small randomly selected
initial weights, are there any qualitative differences between the
solutions reached by different versions of the same perceptron

type? Interestingly, it appears that each perceptron trained on the
same set of profiles reaches essentially the same solution (i.e., the
same set of connection weights, as is detailed later), and generates
essentially the same responses to stimuli. For example, we com-
puted the standard deviation (across the 10 different versions of
each perceptron) of the responses of each output unit to each of the
296 test patterns (i.e., a total of 7,104 different standard devia-
tions). On average, the standard deviation of one output unit to one
test pattern was 0.0003; the maximum standard deviation observed
was 0.01. This was true for each of the three different types of
perceptrons. In other words, despite starting from different initial
states, different perceptrons trained on the same profiles converged
on nearly identical sets of connection weights, and generated
nearly identical responses (across all 24 output units) to each of the
296 test stimuli.

Key-Finding Accuracy for Test Stimuli

We conducted testing by presenting a trained perceptron each
member of a set of 296 musical stimuli, each of which represented
as a mean-centered and normalized tone profile. The output unit
that generates the highest activity is used to assert the musical key
of the presented stimulus. This response is then compared to the
known key of the stimulus (i.e., the asserted key in the kern file for
the stimulus). The general performance of each of the three types
of perceptron for these novel stimuli is presented in Table 3, which
also presents the performance of the Krumhansl-Schmuckler cor-
relation algorithm for these same stimuli.

Because the responses discussed above are binary (a perceptron
is either correct or not in asserting the key of a stimulus), and there
are a large number of test stimuli that can be used to assess overall
accuracy, differences in performance of the algorithms can be
statistically compared using a test of proportions (Hays, 1981).
The test of proportions takes advantage of the fact that for large
samples (i.e., greater than 20 cases) the binomial distribution can
be approximated by a normal distribution. It uses this approxima-
tion to convert the difference between two proportions into a
z-score.

With respect to overall performance on the 296 test stimuli, tests of
proportions indicate that the perceptron trained on the Krumhansl-
Schmuckler profiles performed significantly poorer than the
Krumhansl-Schmuckler correlation algorithm (z � �6.498, p �
.001), significantly poorer than the Temperley perceptron

Table 3
Overall Accuracy in Percentage Correct for Various
Key-Finding Methods

Key-finding method All test stimuli Classical test stimuli only

KSP 74.4 77.1
TP 88.4 94.4
ASP 88.6 93.4
KS Corr 87.1 93.8

Note. Accuracy is provided for all 296 test stimuli as well as for only the
144 stimuli belonging to the classical genre (i.e. this column excludes the
Nova Scotia folk songs). KSP indicates Krumhansl-Schmuckler percep-
tron, TP indicates the Temperley perceptron, ASP indicates the Albrecht-
Shanahan perceptron, and KS Corr indicates the Krumhansl-Schmuckler
correlation algorithm.
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(z � �7.535, p � .001), and significantly poorer than the
Albrecht-Shanahan perceptron (z � �7.705, p � .001). The per-
formance of the perceptron trained on the Temperley profiles did
not differ significantly from the Krumhansl-Schmuckler correla-
tion algorithm (z � 0.689, p � .31) or from the Albrecht-Shanahan
perceptron (z � �0.111, p � .40). The performance of the
Albrecht-Shanahan perceptron did not differ significantly from the
Krumhansl-Schmuckler correlation algorithm (z � 0.795, p �
.29).

An identical pattern of statistical significance is revealed when
performance on just the 144 classical test stimuli is considered.
Tests of proportions indicated that the perceptron trained on the
Krumhansl-Schmuckler profiles performed significantly poorer
than the Krumhansl-Schmuckler correlation algorithm (z �
�8.310, p � .001), significantly poorer than the Temperley per-
ceptron (z � �9.029, p � .001), and significantly poorer than the
Albrecht-Shanahan perceptron (z � �7.878, p � .001). The per-
formance of the perceptron trained on the Temperley profiles did
not differ significantly from the Krumhansl-Schmuckler correla-
tion algorithm (z � 0.299, p � .38) or from the Albrecht-
Shanahan perceptron (z � 0.483, p � .6). The performance of
the Albrecht-Shanahan perceptron did not differ significantly
from the Krumhansl-Schmuckler correlation algorithm (z �
�0.199, p � .39).

Joshua Albrecht (personal communication) ran the Albrecht-
Shanahan algorithm on a subset of 288 of the test stimuli, and
reported that it identified the keys of classical genre stimuli with
97.1% accuracy, and generated 91% accuracy to the entire test set.
Tests of proportions indicate that this performance on the entire
test set is significantly better than that of the perceptron trained on
the Krumhansl-Schmuckler profiles (z � �9,829, p � .001), as
well as of the Krumhansl-Schmuckler correlation algorithm
(z � �2.319, p � .03). However, this overall performance was not
significantly better than either the perceptron trained on the Tem-
perley profiles (z � �1.523, p � .125), or the perceptrons trained
on the Albrecht-Shanahan profiles (z � �1.401, p � .150). With
respect to performance on the 136 classical stimuli that Albrecht
examined, the Albrecht-Shanahan model performs significantly
better than the Krumhansl-Schmuckler perceptron (z � �13.899,
p � .001), the Temperley perceptron (z � �2.571, p � .01), and
the Krumhansl-Schmuckler correlation algorithm (z � �2.293,
p � .03). However, it did not perform significantly better than the
Albrecht-Shanahan perceptron on these stimuli (z � �1.876, p �
.07. It should be pointed out that Albrecht’s test set did not include

eight of the preludes from the second book of the Well-Tempered
Clavier; only one of the perceptrons (the Albrecht-Shanahan per-
ceptron) made a mistake in asserting the key for one of these
omitted tests, and it only made a single mistake.

Table 4 provides a more detailed summary of performance of
the key-finding methods, providing accuracy rates for each of the
four different sets of test materials. For each set, accuracy is first
given as the percent correct for the entire subset of stimuli;
accuracy is then provided for only the major key stimuli and for
only the minor key stimuli.

One observation to make from Table 4 is that perceptrons
trained on tone profiles demonstrate different key-finding perfor-
mance depending upon whether stimuli are in major or in minor
keys. Interestingly, the perceptron that performs best on minor key
stimuli is the one trained on the Albrecht-Shanahan profiles; for
classical genre stimuli, it is 100% accurate. One of the motivations
that Albrecht and Shanahan (2013) provided for their profiles was
the goal of improving key-finding for minor key stimuli.

Another observation to make from Table 4 is that performance
on classical genre stimuli is much better—for both perceptrons and
for the correlation algorithm—than it is for the Nova Scotia folk
songs. This may be due to a variety of factors. For instance, the
folk songs are generally short univocal selections, while the clas-
sical pieces are generally longer and include harmony. As a result,
there may be more reliable information about key in the classical
selections than in the folk songs. Table 4 indicates that particular
sets of tone profiles for key-finding might have more success for
some genres, or for at least some subsets of stimuli, than for others.

At first glance, it appears that the algorithms that employ tone
profiles derived from experimental data (i.e., the Krumhansl-
Schmuckler tonal hierarchies) perform poorer than do the algo-
rithms that employ the other two types of profiles, both of which
are based on corpus data. This might suggest that the source from
which tonal hierarchies are derived might determine its ability to
assert key across musical genres. However, tests of proportions do
not provide enough evidence to warrant this possibility. Tests of
proportions were conducted on the overall accuracy of the various
methods for the 152 folk song stimuli. This revealed, for example,
that the Albrecht-Shanahan perceptron’s performance on these
stimuli was significantly better than was the performance of the
Krumhansl-Schmuckler perceptron (z � 2.060, p � .04), but was
not significantly better than the Krumhansl-Schmuckler correla-
tion algorithm (z � 1.897, p � .06). There were no significant
differences between the performance of the Temperley perceptron

Table 4
The Average Percent Accuracy of Classification of the Three Perceptrons Trained on Three Different Mean-Centered and Normalized
Key Profiles

Algorithm type

Bach WTC Chopin preludes Hummel preludes Nova Scotia folk songs

All Major Minor All Major Minor All Major Minor All Major Minor

KSP 89.58 89.58 89.58 54.17 75.00 33.33 87.50 100.00 75.00 66.45 70.37 35.29
TP 95.83 97.92 93.75 95.83 91.67 100.00 91.67 91.67 91.67 70.39 78.52 5.88
ASP 96.88 93.75 100.00 83.33 66.67 100.00 100.00 100.00 100.00 74.34 79.26 35.29
KS Corr 93.75 87.50 100.0 87.50 83.33 91.67 100.0 100.0 100.0 67.11 71.85 29.41

Note. KSP indicates the perceptron trained on the Krumhansl-Schmuckler profiles; TP indicates the perceptron trained on the Temperley profiles, and ASP
indicates the perceptron trained on the Albrecht-Shanahan profiles. The final row (KS Corr) provides the performance of the Krumhansl-Schmuckler
correlation algorithm for purposes of comparison.
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and the performance of the Krumhansl-Schmuckler perceptron
(z � 1.029, p � .24), the Krumhansl-Schmuckler correlation
algorithm (z � 0.861, p � .28), or the Albrecht-Shanahan percep-
tron (z � �1.115, p � .21).

One other observation to make, supported by the results in both
Tables 3 and 4, is that when the same set of profiles is used, but
processed with a different method, different performance is ob-
served. To be more particular, the Krumhansl-Schmuckler percep-
tron generates significantly different levels of accuracy than does
the Krumhansl-Schmuckler correlation algorithm, even though
both of these methods use the same profiles. This shows that the
perceptron is processing the profiles in a different fashion than is
the case when correlation is used. The nature of this different type
of processing is discussed in more detail below when the internal
structure of perceptrons are discussed.

Network Errors

The preceding paragraphs have discussed the accuracy of per-
ceptron responses. Another aspect of their performance to consider
concerns the errors that they make. Any given musical key is more
strongly related to some other musical keys than it is to others. The
degree of this relationship can be quantified by counting the
number of pitch-classes shared by the two keys in the set of seven
pitch-classes that define the scale for each key, where for major
keys the scale is taken to be the major, and for minor keys the scale
is taken to be the harmonic minor. The key of C major, for
instance, is most strongly related to both the keys of F major and
G major, because its scale shares six pitch-classes with the scales
of each of these keys; the maximum number of shared pitch-
classes is seven, which only occurs when a key is compared with
itself. The C major scale also shares six pitch-classes with the A
harmonic minor scale; this strong relationship makes musical
sense because A minor is called the relative minor of C major,
because both keys have the same key signature. C major is slightly
less related to its parallel minor, C minor, because their scales
share only five pitch-classes. C minor is the parallel minor to C
major because both keys are based on the same tonic (C), but they
each have different key signatures. C major also shares five pitch-
classes with A# major, D major, D minor and E minor. C major is
least related to the keys of B major, C# major, and F# major; it
shares only two pitch-classes with the scales of each of these keys.
The average number of shared pitch-classes between a key and the
23 other different keys is 3.96 with a standard deviation of 1.26.

Table 5 provides the frequencies of different types of errors for
each of the perceptrons, as well as for the Krumhansl-Schmuckler
correlation algorithm, for the 296 test stimuli. In this table, error
type is assigned in terms of the number of pitch-classes shared
between the incorrect key asserted by the perceptron and the
correct key of the stimulus. For instance, the first row of Table 5
indicates that the Krumhansl-Schmuckler perceptron generates
three errors in which the incorrect key shares three pitch-classes
with the correct key, generates 24 errors in which the incorrect key
shares four pitch-classes with the correct key, and so on.

In general, Table 5 indicates that when the various perceptrons
make mistakes, these mistakes involve asserting an incorrect key
that is similar to the correct key. For instance, for the Krumhansl-
Schmuckler perceptron and for the Albrecht-Shanahan perceptron,
the most common error involves asserting a key that is very

strongly related to the correct key, because the asserted key shares
six pitch-classes with the desired key. In contrast, Table 5 also
reveals that incorrect keys that share less than four pitch-classes
with the correct key are very rarely asserted.

To statistically test whether the errors made by the perceptrons
were systematic, �2 tests were performed. The final row of Table
5 provides the proportion of each type of error found in the set of
23 musical keys that are different from a selected key. These
proportions were used to generate the expected frequency of each
type of error for a particular algorithm by multiplying the total
number of errors by the proportion. As there are five categories of
errors, there were four degrees of freedom for each test. This
comparison revealed that the Krumhansl-Schmuckler perceptron
(�2 � 85.09, p � .001), the Temperley perceptron (�2 � 50.19,
p � .001), the Albrecht-Shanahan perceptron (�2 � 52.00, p �
.001), and the Krumhansl-Schmuckler correlation algorithm (�2 �
69.58, p � .001) all deviated significantly from this distribution.
This implies that each of these algorithms is generating errors
whose distribution differs significantly from that which would be
obtained if an error were randomly sampled from the set of
possible incorrect keys. In short, when all of the algorithms make
errors, these errors tend to be musically related to the correct
musical key.

Discrimination

One limitation with comparing the various algorithms using the
test of proportions is that this only examines one (i.e., the highest)
of the 24 responses made by the algorithm to an input stimulus.
This is unsatisfactory because it ignores the other 23 responses of
the algorithm made to each test stimulus. In addition to accuracy,
another desirable feature of a key-finding algorithm is its ability to
discriminate amongst competing keys. That is, a key-finding al-
gorithm should generate a high response to the correct key, but
should also generate much lower responses to all the other 23

Table 5
Frequency of Error Types Made by the Different Key-Finding
Algorithms, Where Errors Are Classified in Terms of the
Number of Pitch-Classes Shared by the Correct Musical Key
and the Incorrectly Asserted Musical Key

Algorithm
type

Number of pitch-classes shared by
incorrectly asserted musical key

Mean SD2 3 4 5 6

KSP 0 3 24 14 34 5.05 .43
TP 0 0 21 11 20 4.98 .40
ASP 0 0 16 10 20 5.09 .39
KS Corr 0 4 15 16 29 5.09 .43
Proportion .13 .26 .26 .22 .13

Note. KSP indicates the perceptron trained on the Krumhansl-
Schmuckler profiles; TP indicates the perceptron trained on the Temperley
profiles, and ASP indicates the perceptron trained on the Albrecht-
Shanahan profiles. The final row (KS Corr) provides the performance of
the Krumhansl-Schmuckler correlation algorithm for purposes of compar-
ison. The final two columns provide the mean number of shared pitch-
classes between the correct and the incorrectly asserted keys for each
algorithm, as well as the standard deviation of the mean. The final row in
the table provides the proportion of each type of error found when con-
sidering the 23 musical keys that differ from a selected musical key.
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incorrect keys. The greater the difference between response mag-
nitudes associated with the correct key and those associated with
the incorrect keys, the greater is the algorithm’s ability to discrim-
inate between possible keys.

The possibility that different algorithms might differ with re-
spect to this type of discrimination is illustrated in Figure 2. This
figure was created by examining the responses of two algorithms
to the 57 different test stimuli that belonged to the key of F major.
These stimuli were selected because this was the largest subset
of test stimuli that all belonged to the same musical key. For each
of these stimuli, the correlations between the stimulus’ profile and
each of the 24 Krumhansl-Schmuckler key profiles was calculated;
the graph on the left of Figure 2 presents the mean correlation for
each key profile, averaged over the 57 stimuli. Note that the
heights of the bars in this graph appear to be highly variable;
several of the bars (e.g., those for C major, F minor, C minor, D
minor, and A minor) are of similar height to the bar associated with
the correct key. The standard deviation of these 24 average cor-
relations in the graph is 0.41.

For comparison, the graph on the right of Figure 2 presents the
responses in the output units of the perceptron trained on the
Krumhansl-Schmuckler profiles; these responses are averaged
over the same 57 test stimuli. Note that this graph seems much less
variable than the one plotted beside it; most of the average re-
sponses are near zero, a handful have weak positive values that are
clearly smaller than the highest average response in the output unit
that represents the correct key. The standard deviation of these bars
is 0.12, about 3.4 times smaller than the standard deviation of the
graph on the left. In short, the bar for the correct key F on the right
in Figure 2 is much easier to discriminate from the other bars than
is the case for the graph on the left in Figure 2. This suggests that

the perceptron is a better discriminator between correct and incor-
rect keys than is the correlation algorithm, because the differences
between the highest response and the remaining responses are
greater for it than is the case for the correlation algorithm.

The analysis above uses a single musical key to illustrate higher
discrimination in the perceptron. To statistically test the hypothesis
that perceptrons are more discriminating than is the Krumhansl-
Schmuckler algorithm across the range of musical keys, we pro-
ceeded as follows: First, we created a 24-entry vector for each of
the 296 test stimuli, with each entry associated with a possible
musical key. The entry associated with the correct key of each
stimulus was given a value of 1; the other 23 entries in the vector
were given a value of 0. Second, we computed the squared Pearson
correlation between this stimulus vector and the 24 responses
generated by each algorithm to each stimulus (i.e., the 24 output
unit activities of each of the perceptrons, or the 24 correlations
generated by the Krumhansl-Schmuckler algorithm). The higher
the squared correlation between the stimulus vector and the re-
sponse vector, the closer the match between the two. An algorithm
that is more discriminating would be expected to generate signif-
icantly higher squared correlations to these test stimuli than would
an algorithm that is less discriminatory. The results of this analysis
are provided in Table 6.

An inspection of Table 6 indicates that on average the squared
correlations computed for the Krumhansl-Schmuckler algorithm
are markedly smaller than those for the three different types of
perceptron. These three differences are all statistically significant;
for instance, the comparison between the Krumhansl-Schmuckler
correlation algorithm and the perceptron trained on the
Krumhansl-Schmuckler profiles produces t � 29.49, df � 295,
p � .0001. The squared correlations for the perceptron trained on

Figure 2. Average responses of the Krumhansl-Schmuckler correlation algorithm (left) and of the perceptron
trained on the Krumhansl-Schmuckler profiles (right) when presented test stimuli from the key of F major. See
text for details.
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the Krumhansl-Schmuckler profiles are significantly smaller than
those of the perceptron trained on the Temperley profiles
(t � �5.491, df � 295, p � .001), as well as those for the
perceptron trained on the Albrecht-Shanahan profiles (t � �9.222,
df � 295, p � .001). The squared correlations for the perceptron
trained on the Temperley profiles are significantly smaller than are
those for the perceptron trained on the Albrecht-Shanahan profiles
(t � �3.678, df � 295, p � .001).

It might be argued that encoding the desired vector with a 1 and
with 0s puts the Krumhansl-Schmuckler algorithm at a disadvan-
tage, because its output values can fall in principle into the range
from �1 to 1, whereas the perceptron responses fall between 0 and
1. However, this is not the case. One can convert the vector of 1
and 0s into a vector of 1s and �1s with a linear transformation
(multiply by 2 and subtract 1). This puts the desired vector into a
range more consistent with the range of Krumhansl-Schmuckler
correlations. However, because this transformation is linear it has
no effect on the squared correlations that are computed, and does
not change the results of Table 6.

Of course, one might wonder what advantage is offered by
having greater discrimination. For example, the Krumhansl-
Schmuckler perceptron has significantly greater discriminatory
power than does the Krumhansl-Schmuckler correlation algorithm,
but also has significantly poorer accuracy in asserting keys for the
296 test stimuli! However, it is important to realize that asserting
a musical key is not the only task that is related to key-finding, as
is noted later in the General Discussion. For instance, it might be
of interest to determine whether two selections are in the same
musical key, or to determine when a change in musical key has
occurred. Such tasks involve comparing the musical keys of stim-
uli, but do not require absolute key assertion—for instance, one
might easily say that two selections are in the same musical key,
but not know what key they are in. Such tasks might plausibly
benefit by comparing representations delivered by algorithms with
higher discrimination, and the Table 6 results suggests that per-
ceptrons could provide such a capability.

Network Structure

One of the advantages of using artificial neural networks as
models is that they can provide new insights into the tasks that they
have been trained to accomplish. These insights are discovered by
examining the internal structure of networks after training has been
completed (Berkeley, Dawson, Medler, Schopflocher, & Hornsby,
1995; Dawson, 2004, 2013; Dawson, Medler, McCaughan, Will-
son, & Carbonaro, 2000; Dawson & Piercey, 2001). Even though
the perceptrons described above are very simple networks, analy-
ses of their connection weights at the end of training raise some
interesting issues about using key profiles for key-finding.

To begin, let us consider the structure of a perceptron trained on
the mean-centered normalized Albrecht-Shanahan key profiles. An

examination of weights of the connections between its input units
and each of the output units that represents a major key reveals
the same pattern of weights for each output unit when input units
are coded not in terms of pitch-class, but instead in terms of degree
within the key (i.e., by taking the input unit associated with the
tonic as 0, the input unit associated with the tone a semitone higher
than the tonic as 1, and so on). In other words, if inputs are
considered in terms of degree away from the tonic (and not in
terms of pitch class), then each major key output unit has nearly
identical patterns of connection weights feeding into it. As is
detailed below, a similar pattern is true for output units that
represent minor keys, but the specific values of the weights for
these units differ from those that feed into output units for major
keys.

Furthermore, each of the 10 perceptrons that were trained con-
verged on nearly the identical connection weight structure. We
calculated the standard deviation of each connection weight across
the 10 different perceptrons trained on these profiles (i.e., 288
different standard deviations were computed). On average, the
standard deviation of a weight across the different networks was
0.04, while the highest standard deviation was 0.07 and the small-
est standard deviation was 0.01. The high degree of similarity
between the structures of the different perceptrons permitted an
average perceptron to be created by averaging the biases and
weights of the 10 trained networks.

Table 7 presents the details of the major key connection weights
from this average perceptron. The first row of Table 7 provides the
mean-centered normalized major key profile from the Albrecht-
Shanahan model (also presented earlier in Table 2). The second
row provides the average connection weight from each input unit
(represented in terms of degree from tonic) to a major key output
unit, along with the average bias of the output unit (which is
analogous to the output unit’s threshold). These structural compo-
nents were averaged across all of the different instances of this
type of perceptron. The third row shows how the stimulus profile
is distorted when the perceptron multiplies each profile value by its
associated weight.

If the perceptron did not need to transform the input key profiles
when it was trained to map these profiles into musical keys, then
each of its connection weights would equal 1. This is clearly not
the case: the second row of Table 7 reveals that connection weights
range from over 7 to about �5. This indicates that different
components of stimulus profile have different degrees of impor-
tance in determining musical key.

To be more specific, when perceptrons use the logistic activa-
tion function in their output units, the perceptron is functionally
equivalent to logistic regression, and its weights can be interpreted
as being natural logarithms of odds ratios (Schumacher, Rossner,
& Vach, 1996). This means that the more extreme the weight, the
greater the likelihood that a signal from the input unit will affect

Table 6
The Average Squared Correlation (With Standard Deviations in Parentheses) Between the 24 Responses of a Key-Finding Algorithm
and the 24-Unit Vector Encoding of the Desired Musical Key for the 296 Test Stimuli

Krumhansl-Schmuckler perceptron Temperley perceptron Albrecht-Shanahan perceptron Krumhansl-Schmuckler algorithm

.64 (.32) .73 (.34) .77 (.32) .15 (.05)
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output unit activity. For the major weights in Table 6, this means
that the above-average presence of pitch-classes associated with
degrees of 0, 4, and 7 provide strong evidence that a stimulus
belongs to the output unit’s (major) key, because these profile
components are associated with large positive weights. Similarly,
the below-average presence of pitch-classes associated with de-
grees of 3, 8, 9, and 10 also provides strong evidence that a
stimulus belongs to the output unit’s key, because these profile
components are associated with large negative weights. Impor-
tantly, inputs associated with degrees of 1, 2, 5, 6, or 11 provide
much weaker evidence that an input stimulus belongs to the output
unit’s key, because these weights are much smaller than are the
others in the table.

It is important to realize that these weightings of input unit
signals are in addition to the different sized signals that are
reflected in the profiles themselves. For instance, the mean-
centered normalized Albrecht-Shanahan major key profile itself
indicates that the most common component in the profile is degree
0, because its profile value is 0.57. However, the perceptron
further amplifies this value by multiplying it by 7.29, indicating
that this high profile value is itself extremely informative relative
to the other profile values. Similarly, in the Albrecht-Shanahan
major profile the values of degree 1 and degree 3 both
equal �0.29. However, the perceptron weights these two values
quite differently, multiplying the degree 1 signal by a weight of
0.44, while multiplying the degree 3 signal by a weight of �5.04.
This indicates that the perceptron has learned that decreased oc-
currence of degree 3 pitch-classes is far more important for estab-
lishing the major key than is decreased occurrence of degree 1
pitch-classes.

Another way to consider the degree to which input profiles are
transformed by perceptron weights is to correlate perceptron struc-
ture with the key profile. For Table 7, the correlation between the
profile (first row) and the weights (second row) is 0.86. When the
profile is modified by the weights via multiplication (third row),
the correlation between the profile and the weighted profile is only
0.67. In short, the perceptron does not use the Albrecht-Shanahan
profiles as given when it learns to map profiles to keys; it distorts
the profiles with its weights because it learns that some compo-
nents of the profile are more informative than are others. This
distortion is reflected in the fact that these correlations are not
equal to 1.

A similar result holds when connection weights between input
units and output units that represent minor keys are examined for

the Albrecht-Shanahan perceptron. Once again, the same pattern of
weights is used by each minor key output unit when input signals
are represented in terms of degree from tonic instead of pitch-class.
The final three rows of Table 7 provide the profile, the average
weights, and the weighted profile for a minor key output unit in
this perceptron. Again, the fact that these weights are not all equal
to 1 indicates that the perceptron transforms the input profiles by
weighting their components differently. For minor keys, the cor-
relation between the profile and the weights is 0.86, while the
correlation between the profile and the weighted profile is 0.64.

With respect to minor keys, Table 7 indicates that the above-
average presence of pitch-classes associated with degrees of 0, 3,
and 7 provide strong evidence that a stimulus belongs to the output
unit’s (minor) key, because these degrees are associated with large
positive weights. Similarly, below-average presence of pitch-
classes associated with degrees of 2, 4, 9, and 10 also provide
strong evidence that a stimulus belongs to the output unit’s key,
because these degrees are associated with large negative weights.
Finally, the presence or absence of pitch-classes associated with
degrees of 1, 5, 6, 8, or 11 provide much weaker evidence about an
input stimulus’ belonging to the output unit’s key, because these
weights are much smaller than are the others in the table.

The discussion of Table 7 in the preceding paragraphs indicates
that not all components of a key profile are equally important. To
explore this observation, we created a ‘sparse profile’ for each
major and minor key. This was done by removing the five least
important the 12 components of each of the 24 Albrecht-Shanahan
profiles; these components were removed by setting their profile
values equal to 0. For each major key profile, we removed the
profile component from degrees 1, 2, 5, 6, and 11, because these
five components were associated with the smallest weights in
Table 6. For each minor key profile, we removed the profile
component from degrees 2, 5, 6, 8, and 11; these components had
the smallest weights for this profile in Table 7. We then trained 10
different perceptrons to assert musical key using these sparse
profiles, employing the same training method described earlier. On
average, they converged after 1008.5 sweeps of training. After
training, we tested their performance using the same test stimuli
and procedure as was described earlier.

Table 8 provides a summary of average performance of the
perceptrons trained on the sparse Albrecht-Shanahan profiles when
presented the various test stimuli. Overall, these perceptrons
achieved 82% accuracy on the total test set, and 90% accuracy on
the subset of the test set comprised of classical selections. For

Table 7
Comparison of Albrecht-Shanahan Mean Centered Normalized Profiles to the Weight Structure of the Albrecht-Shanahan Perceptron
for Both Major Key and Minor Key Profiles

Source Bias

Degree of pitch-class in relation to key

0 1 2 3 4 5 6 7 8 9 10 11

Major profile .57 �.29 .10 �.29 .20 .04 �.25 .49 �.28 �.01 �.28 �.01
Major weights �8.28 7.29 .44 �.92 �5.04 4.83 �.76 �1.12 4.31 �2.43 �2.45 �3.78 �.28
Product 4.19 �.13 �.09 1.45 .96 �.03 .28 2.09 .67 .03 1.06 .00
Minor profile .56 �.32 .09 .16 �.26 .08 �.29 .54 �.09 �.25 �.09 �.13
Minor weights �7.94 5.70 �2.18 .48 4.10 �5.62 �.29 �.52 5.09 �.70 �4.13 �3.00 1.08
Product 3.21 .69 .04 .67 1.48 �.02 .15 2.74 .06 1.04 .27 �.14

Note. See text for details.
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overall accuracy, tests of proportions reveals that this performance
is significantly poorer than the Albrecht-Shanahan perceptron
(z � �3.598, p � .001), significantly poorer than the Krumhansl-
Schmuckler correlation algorithm (z � �2.611, p � .01), and
significantly poorer than the Albrecht-Shanahan algorithm
(z � �5.86, p � .001). Given that this perceptron was trained on
profiles that had about 40% of their components removed, this
poorer performance is not surprising.

What is surprising is that removing this much of each profile
used in training did not result in poorer performance. An exami-
nation of Table 8 indicates that it is slightly poorer on both the
Bach and Hummel stimuli, equal in performance on the Chopin
stimuli, and slightly better on the Nova Scotia folk songs when
compared to the Albrecht-Shanahan perceptron results in Table 4.
In short, perceptron performance is only about 8% poorer than the
Albrecht-Shanahan perceptrons from Table 7, even though 40% of
the profiles were set to zero prior to training.

To this point, we have considered in detail the internal structure
of the perceptron trained on the Albrecht-Shanahan profiles. Very
similar accounts could be provided for the connection weights in
the other two types of perceptrons as well. Table 9 presents the
weights between a major key output unit and the 12 input units,
with input units coded in terms of degree instead of pitch-class, for
each of the three types of perceptron. Each column of weights in
the perceptron is averaged across the 10 different perceptrons of

that type that were trained. Table 8 also arranges the weights in
order from the most positive to the most negative.

The Albrecht-Shanahan perceptron weights in Table 9 have
already been discussed in detail. Table 9 indicates that the other
two types of perceptrons have similar patterns for their major key
weights. The weights are highly variable, indicating that some
profile components are more important for asserting major keys
than are others. Clearly all of the perceptrons discovered the need
to transform input profiles when they learn to use them to assert
keys.

Table 9 indicates some interesting differences between percep-
tron types. In particular, the three columns indicating the source of
input signals are not in the same order. This indicates that each
type of perceptron does not assign the same degree of importance
to each source of input. For instance, the most important source of
evidence for the Temperley perceptron is degree 4, while for the
other two perceptrons it is from degree 0.

Table 10 provides the same kind of information as Table 9, but
in this case, for an output unit that represents a minor key. It, like
Table 9, indicates that each type of perceptron learns that it has to
transform stimulus profiles in order to use them to assert keys, as
shown in the variety of weights in each column. The different
order in each of the source columns indicates that each type of
perceptron assigns different levels of importance to the various
degrees of an input profile.

Table 8
Average Performance (in Percent Correct) of Perceptrons Trained on Sparse Albrecht-Shanahan Profiles When Presented the Mean-
Centered Normalized Profiles of the 296 Test Stimuli

Bach WTC Chopin preludes Hummel preludes Nova Scotia folk songs

All Major Minor All Major Minor All Major Minor All Major Minor

89.58 79.17 100.00 83.33 66.67 100.00 95.83 100.00 91.67 75.59 79.04 48.24

Table 9
Weights Between Inputs Units (Coded in Terms of Degree) and
a Major Scale Output Unit for Three Different Types
of Perceptron

Albrecht-Shanahan
perceptron

Temperley
perceptron

Krumhansl-
Schmuckler
perceptron

Source Weight Source Weight Source Weight

0 7.27 4 5.67 0 6.68
4 4.84 7 4.52 4 3.57
7 4.33 0 3.67 7 3.44
1 .48 5 1.77 5 1.57

11 �.32 2 1.41 6 .39
5 �.78 1 �.76 1 �.63
2 �.95 11 �.77 8 �1.60
6 �1.13 6 �2.57 2 �1.63
9 �2.44 8 �2.57 9 �2.07
8 �2.46 3 �2.78 11 �2.39

10 �3.77 9 �3.63 10 �3.45
3 �5.04 10 �3.92 3 �3.78

Bias �8.28 Bias �7.47 Bias �7.15

Note. See text for details.

Table 10
Weights Between Inputs Units (Coded in Terms of Degree) and
a Minor Scale Output Unit for Three Different Types
of Perceptron

Albrecht-Shanahan
perceptron

Temperley
perceptron

Krumhansl-
Schmuckler
perceptron

Source Weight Source Weight Source Weight

0 5.73 3 3.30 0 6.46
7 5.05 0 3.13 3 4.61
3 4.08 7 2.76 11 1.28

11 1.13 2 1.80 2 .41
2 .46 11 1.74 7 .21
5 �.32 5 1.65 1 .11
6 �.59 8 .60 6 �.67
8 �.70 6 �.50 5 �1.69
1 �2.20 1 �1.71 10 �2.22

10 �2.97 9 �3.03 9 �2.30
9 �4.06 4 �4.14 8 �2.84
4 �5.66 10 �5.57 4 �3.35

Bias �7.94 Bias �6.14 Bias �6.05

Note. See text for details.
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With the logistic activation function, perceptron outputs can
literally be interpreted as conditional probabilities (Bishop, 1995,
2006; Dawson & Dupuis, 2012; Dawson, Dupuis, Spetch, & Kelly,
2009; Dawson & Gupta, 2017; Dupuis & Dawson, 2013a; Hastie,
Tibshirani, & Friedman, 2009). In our simulations, this is the
probability that a particular input unit represents the correct mu-
sical key given the presence of a particular input pattern. Further-
more, with the logistic activation function the weights of a per-
ceptron can be interpreted as being identical to the coefficients of
logistic regression and are therefore equivalent to the natural
logarithms of odds ratios (Hosmer & Lemeshow, 2000; Schum-
acher et al., 1996). The implication of this is straightforward: each
connection weight in a trained perceptron is an effect size, where
the effect is attributable to the presence of a certain value of an
independent variable (i.e., an input value), and the size of the effect
reflects the degree to which this independent variable alters the
state of the output unit.

Why do perceptrons learn to differentiate incoming signals in
terms of their effectiveness at signaling key? It is important to
remember that when learning begins, each training stimulus is
presented to the same set of input units (see Figure 1), so all of
these input units are activated both when the profile associated
with a particular output unit’s key and when the other 23 incorrect
profiles are presented. As a result, the perceptron must discover a
set of weights that cause a specific output unit to turn on when its
profile is presented. However, it must also use these same weights
to turn the output unit off when any of the other profiles are
presented. The gradient descent learning rule discovers an optimal
set of weights for accomplishing both of these goals, in the sense
that the connection weights at the end of training minimize net-
work response errors. However, one property of this configuration
is that not all input signals are given the same weights.

Discussion

Summary

The purpose of the current paper was to explore the suitability
of using very simple artificial neural networks, perceptrons, to
assert musical key. Perceptrons were trained to map mean-centered
normalized tone profiles to specific musical keys. Three different
sets of tone profiles (Albrecht & Shanahan, 2013; Krumhansl,
1990; Temperley, 2007) were used to train three different types of
perceptron. One main result was that when performance of these
perceptrons was tested on a set of 296 novel stimuli, two types of
perceptron—those trained on the Temperley profiles and those
trained on the Albrecht-Shanahan profiles—generated overall ac-
curacy that was not statistically different from two standard algo-
rithms (Albrecht & Shanahan, 2013; Krumhansl, 1990). Interest-
ingly, perceptrons trained on the Krumhansl-Schmuckler profiles
were significantly less accurate than were any of the other algo-
rithms.

A second interesting finding was that all three different types of
perceptrons exhibit greater discriminatory power than does the
Krumhansl-Schmuckler correlation algorithm. For all of these
algorithms, the goal is to have a value associated with the desired
key (i.e., an output unit activity or a correlation) achieve a greater
magnitude than the same value obtained for the remaining 23
incorrect keys. Our analyses revealed that all three types of per-

ceptrons generate, on average, significantly higher differences
between the correct value and the remaining incorrect values than
is the case for the correlation algorithm.

A third result of the simulation studies was that when a percep-
tron is trained on one set of tone profiles, it can generate different
responses than does a correlation algorithm which employs the
same profiles. In particular, perceptrons trained on the Krumhansl-
Schmuckler profiles perform significantly poorer in terms of ac-
curacy, and significantly better in terms of discrimination, than
does the Krumhansl-Schmuckler correlation algorithm. One reason
for this is that the logistic activation function used in a percep-
tron’s output units implements a nonlinear transformation of an
input signal that is not captured by correlation.

However, a more important reason for the difference in perfor-
mance is that the connection weights of all three types of percep-
trons dramatically distort input signals. One of the key discoveries
revealed by our simulations is that when tone profiles are used to
train a key-finding perceptron, it learns that not all components of
the profile are equally important with respect to signaling key. The
perceptrons adjust their weights to modify the input signals to
emphasize the information provided by important profile elements,
and to de-emphasize the information provided by less important
elements. The discovery of these distortions is an example of the
contributions that these networks can make to key-finding algo-
rithms as well as to the experimental psychology of musical
cognition.

Contributions to Key-Finding Algorithms

That perceptrons do not weight all components of a tonal
hierarchy equally illustrates how the structure of a trained percep-
tron can suggest possible modifications to other key-finding algo-
rithms that do not employ artificial neural networks.

For example, the Albrecht-Shanahan algorithm positions each
tone profile as a point in a 12-dimensional space, positions a
stimulus profile in the same space, and assigns the stimulus the key
that is represented by the point to which the stimulus is closest to
(Albrecht & Shanahan, 2013). However, this model assumes that
each dimension in the space has the same importance. The
Albrecht-Shanahan perceptron interpretation (see Table 6) indi-
cates that the space in which the Albrecht and Shanahan algorithm
measures distances could be distorted, with some dimensions
being stretched out (i.e., those associated with important profile
components), and with others being shortened in size (i.e., those
associated with less important profile components). The weights of
the perceptron provide magnitudes for distorting the Albrecht-
Shanahan space before points are plotted and distances are mea-
sured; it would be interesting to see what effect such distortions
would have on the algorithm’s performance. A similar approach
could be taken to incorporate weights into other algorithms that are
based on tone profiles by using them to scale profile components.
Of course, the weights in Table 6 would likely not be the precise
ones to use, because they arise from a network trained on mean-
centered normalized tone profiles. However, a perceptron trained
to map musical keys to tone profiles that have not been prepro-
cessed (i.e., those presented earlier in Table 1) would provide
weights that could be incorporated into another algorithm.

The preceding discussion is an example of how the perceptrons
described in the current paper can contribute to key-finding algo-

166 DAWSON AND ZIELINSKI



rithms. Importantly, the neural network approach taken here is
flexible enough to be used to conduct different simulations that can
provide other contributions.

For instance, the three sets of tone profiles (Albrecht & Shana-
han, 2013; Krumhansl, 1990; Temperley, 1999, 2007) used in the
current simulations are derived from different origins, are typically
employed using different algorithms, and involve different mag-
nitudes of values. Given these differences, it is perhaps not sur-
prising that no one has attempted to improve key-finding by
combining all three sets of profiles together in a single algorithm.
However, perceptrons can easily be used to perform key-finding
judgments using combinations of profiles. A single perceptron
could learn all three sets of tone profiles, and then use this
combined learning for key-finding. Perhaps this network could use
its combined knowledge to more accurately deal with stimuli that
provide problems to networks that only have knowledge of a single
type of profile. Related to this approach, one could use all three
different perceptrons from the simulations reported above and pool
their responses to assert musical key. Such an architecture is called
a committee of networks; committees of networks have been
shown to be superior to single networks in a variety of pattern
classification tasks (Buus et al., 2003; Das, Reddy, & Narayanan,
2001; Guo & Luh, 2004; Marwala, 2000; Medler & Dawson, 1994;
Zhao, Huang, & Sun, 2004).

As a second example, perceptrons could be trained to use tone
profiles to make judgments key-finding judgments that are differ-
ent from the key assertions made by the current networks and by
traditional algorithms. For instance, a network could be presented
pairs of tone profiles and learn to use a single output unit to
indicate whether the two profiles were from the same musical key.
The network could then be used to judge whether pairs of stimuli
belonged to the same musical key.

As a third example, one clear result from the simulation study is
that algorithm performance on the Nova Scotia folk songs is
poorer than is its performance on classical stimuli. One approach
to improving this situation would be to investigate whether per-
ceptron performance improved when different tone profiles, based
on different sources, were used as training stimuli. One approach
to conducting this research would be to train perceptrons on
stimuli derived from representations of musical selections (like the
various test stimuli discussed earlier) instead of on tone profiles
taken from existing algorithms. This approach could be used to
identify the kinds of stimuli that are better suited for making key
judgments about folk songs, and an interpretation of such networks
could lead to the discovery of new kinds of tone profiles.

As a fourth example, perceptrons can easily be used to explore
the impact of alternative representations of inputs or of responses.
The simulations reported above employed 24 output units to em-
ploy a response representation that could be directly compared
with that used by existing key-finding algorithms. However, net-
works are flexible enough to explore alternative output represen-
tations; it is unclear whether this is possible for other current
key-finding algorithms. For instance, a network could use 13
output units – 12 to represent the tonic of a musical key (A, A#,
and so on) and an additional unit to represent whether the key is
major (by turning this unit on) or not (by turning this unit off).
Note that this network is functionally equivalent to those described
earlier, in the sense that it learns the same task. The only difference
is with respect how the key-finding assertion is represented.

Pilot studies have shown that though a 13-output learns to assert
key tonics, but is not capable of learning to assert the correct key
mode for every tone profile. This result is similar to other results
that have examined training networks to identify properties of
musical scales (Dawson, in press): a perceptron can identify the
tonic of a scale, but cannot identify its mode. To identify mode, a
more complex network that employs hidden units is required. The
pilot studies on 13-output unit perceptrons indicate that it is a
simpler information processing task to retrieve a key’s tonic from
a tone profile than it is to identify a key’s mode.

Contributions to Musical Cognition

One advantage of the simulation approach used in the current
paper is that simulations can be used to explore a variety of
different manipulations and tasks. The purpose of this exploration
is to seek interesting predictions that can then be pursued experi-
mentally using subjects. Some of our previous research using
perceptrons has demonstrated this paradigm. For instance, after
using simulations and formal analyses to establish strong general
links between perceptrons and associative learning (Dawson,
2008), and to then use these networks to model phenomena in a
particular associative learning task, reorientation (Dawson et al.,
2010), perceptrons generated interesting hypotheses concerning
reorientation which were then explored and confirmed experimen-
tally (Dupuis & Dawson, 2013b).

The current paper has not explored the experimental predictions
of the simulations, because its primary concern was whether these
networks could serve as plausible key-finding algorithms. How-
ever, the demonstrated success of the current networks at asserting
musical key suggests that they too can serve to generate new
research questions to be evaluated via further study with human
subjects. Three such questions immediately arise from the simu-
lation results that have been reported above.

First, three different key-finding theories were used as the
sources of the tone profiles that were used to train our perceptrons
(Albrecht & Shanahan, 2013; Krumhansl, 1990; Temperley,
2007). However, these theories differ not only in their specific tone
profiles, but also in their method of processing tone profiles to
assert musical key. To our knowledge, the current paper is the first
example in which these different profiles were used to assert keys
by employing a common method. This permits the efficacy of the
different profiles themselves to be compared. Our results demon-
strated that perceptron performance on the test stimuli depended
upon which tone profiles were used (see Tables 3 and 4 above, for
instance). One empirical question that this result raises is whether
one of these profile pairs provides a better account of human
performance on various stimuli than do the others.

Second, perceptron performance varied significantly depending
upon the type of test stimulus that was used. In particular, percep-
trons were much better at asserting the musical key of novel
classical genre stimuli than they were at asserting the key of the
Nova Scotia folk songs. Do human listeners display a similar
pattern of results?

Third, one of the main results of the current simulations was that
some components of a tone profile are more informative than are
others when a perceptron uses these components to assert musical
key. Is this true of human listeners as well?
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These three experimental questions, all generated from the per-
formance of our perceptrons, could be explored using a variation
of the probe tone method. For instance, Schmuckler and Tomovski
(2005) investigated whether one characteristic of the Krumhansl-
Schmuckler algorithm—better performance on Bach preludes than
on Chopin preludes—was also true of human listeners. They tested
this possibility by using various short segments taken from the two
different types of preludes as contexts in the probe tone paradigm,
and discovered that their listeners also performed less ably when
presented contexts from Chopin. This sort of variation of the probe
tone methodology could easily be adapted to explore the three
research questions that were introduced above.

Importantly, it would be very easy to modify our simulation
methodology to train perceptrons on tasks that are related to
key-finding, but which do not necessarily involve the direct asser-
tion of musical key. One example was discussed earlier, where in
exploring alternative encodings of perceptron responses, we sep-
arate judgments of a key’s mode from judgments of a key’s tonic.
As discussed earlier, pilot simulations indicate that tone profiles
can be used by a perceptron to detect a key’s tonic, but identifying
whether a profile represents a major or a minor mode poses
problems for perceptrons. Exploring this issue with human exper-
iments would be interesting. Similarly, it is very straightforward to
present pairs of tone profiles to a network, and have it use a single
output unit to judge whether the two profiles are the same or
different with respect to key, to tonic, or to mode. Of interest in
this simulation would be determining whether a network has more
trouble learning to distinguish certain pairs of stimuli. Of course,
of further interest would be testing human subjects to see whether
they have similar difficulties in distinguishing certain types of
stimuli.

Both of the avenues of research suggested in the previous
paragraph would have to be experimentally explored by adopting
a methodology that begins to depart from the probe tone method.
For instance, one new methodology would involve presenting
listeners two stimuli in sequence and then making a same/different
judgment with respect to a musical attribute of interest (key, tonic,
or mode). From this perspective, changing the task that a network
learns to perform in turn leads to developing novel experimental
methodologies that can be used to compare human judgments to
those of the networks.

Résumé

Nous explorons ici la capacité d’un très simple réseau neural
artificiel, un perceptron, à affirmer la clé musicale de nouveaux
stimuli. Premièrement, les perceptrons sont formés pour associer
des profils de clés standardisés (prélevés parmi une à trois dif-
férentes sources) avec différentes clés musicales. Une fois la
formation achevée, nous avons mesuré l’exactitude avec laquelle
les perceptrons affirmaient les clés musicales pour 296 nouveaux
stimuli. Selon les profils clés utilisés pendant la formation, les
perceptrons peuvent produire les mêmes résultats que les algo-
rithmes de sélection de clés lors de cette tâche. Des analyses plus
poussées indiquent que les perceptrons génèrent plus d’activité
dans une unité qui représente une clé sélectionnée et beaucoup
moins d’activité dans les unités qui représentent les clés concur-
rentes qui n’ont pas été sélectionnées, comparativement à un
algorithme traditionnel. Finalement, nous avons examiné la struc-

ture interne des perceptrons formés et découvert qu’ils, contraire-
ment aux algorithmes traditionnels, attribuaient de très différents
poids aux différentes composantes d’un profil-clé. Les perceptrons
apprennent que certaines composantes de profil sont plus impor-
tantes dans la spécification de clés musicales que d’autres. Ces
poids différentiels pourraient être incorporés dans des algorithmes
traditionnels qui eux-mêmes n’emploient pas de réseaux neuraux
artificiels.

Mots-clés : réseaux neuraux artificiels, sélection de clé, perceptrons.
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