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ABSTRACT

The purpose of the article is to train an artificial neural network to make a judgment that is
intrinsically antisymmetric, and to determine how such a judgment is mediated by the network s
internal representations. One key component of navigation is judging the distance from one
location to another. A second key component of navigation is judging heading — that is, judg-
ing the direction from one location to another. Importantly, heading judgments do not preserve
the metric properties of space. In particular, they are antisymmetric: the judged heading from
location x to location y should be opposite to the judged heading from location y to location x.
What kind of representation can mediate such nonmetric navigational judgments? To explore
this question, we trained an artificial neural network to judge the various bearings amongst 13
different cities in Alberta. We then interpreted the internal structure of this network in order to
determine the nature of its internal representations. We found that he artificial neural network
had developed a coarse directional code, and that one of the advantages of such coding was its
ability to represent antisymmetric spatial regularities.
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INTRODUCTION

Cognitive informatics is an interdisci-

example of artificial neural network research in
the cognitive informatics tradition. The formal

plinary field of research in which formal aspects
of information processing problems are related
to biological mechanisms involved in such
processing (Wang, 2003). One kind of informa-
tion processing medium of interest to cognitive
informatics is that of artificial neural networks
(e.g., Anderson, 2003; Dawson & Zimmer-
man, 2003). The current article illustrates an

property of interest is the representation of re-
lations that are intrinsically antisymmetric. At
Issue are the kinds of internal representations
developed by neural networks to deal with this
formal property.

Representations that preserve the metric
properties of space have been fundamentally
important to the study of how humans and ani-
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mals navigate (Kitchin, 1994). Behavioral stud-
ies have demonstrated that animal representa-
tions of space do indeed appear to preserve a
good deal of its metric nature (for introductions,
see Cheng & Spetch, 1998; Gallistel, 1990
Gallistel & Cramer, 1996). Since the discovery
of place cells in the hippocampus (O’Keefe &
Dostrovsky, 1971; O’Keefe & Nadel, 1978),
many researchers have been concerned with
identifying the biological substrates that encode
metric space (Redish, 1999).

If a space is metric, then relationships
between points in the space are constrained by
three different principles (Blumenthal, 1953).
The first 1s the minimality principle, which
dictates that the shortest distance in the space
Is between a point x and itself. The second is
the symmetry principle, which dictates that
the distance in the space between two points x
and y 1s equal to the distance between points
y and x. The third is the rriangle inequality,
which dictates that the shortest distance in the
space between two points y and x is a straight
line. The fourth is the non-negativity principle,
which dictates that every distance in the space
between two points y and x must be greater
than or equal to 0.

The assumption that some mental repre-
sentations are metric spaces has had important
theoretical and methodological impacts on
cognitive science. With respect to theory, met-
ric spaces have been used to explain a variety
of cognitive phenomena, including models of
similarity judgments (Shepard, 1974), analogi-
cal reasoning (Sternberg, 1977), judgments of
metaphor aptness (Tourangeau & Sternberg,
1981, 1982), and transformations of mental im-
ages (Shepard, 1984). With respect to method,
the assumption that some cognitive judgments
are constrained by metric properties has led
researchers to analyze a variety of behaviours
using multidimensional scaling (Romney,
Shepard & Nerlove, 1972; Shepard, Romney
& Nerlove, 1972).

Navigation and Nonmetric

Relationships

Importantly, the principles that character-
1ze a metric space are all defined as properties
of distance. Knowing the distance from a cur-
rent location to a goal location is obviously an
important component of navigation. However,
knowing this distance is not by itself sufficient
for successful navigation. In addition, it is also
crucial to know the direction in which to travel:
the bearing of the goal location from the current
location. Interestingly, the notion of direction
does not fit well with the metric properties of
space. Consider a place on the map of Alberta,
the city of Calgary. The town of Banff is west
of Calgary. But this directional relationship vio-
lates the symmetry property of a metric space,
because the direction from Banff to Calgary is
east, not west. Indeed, For example, if one were
to create a table of directions between cities,
representing these directions as cosines, this
table would be an antisymmetric matrix. That
is, the value recorded in row x and column y of
the table would be equal to the negative of the
value recorded in row y and column x of the
same table for every pair of off-diagonal cells.
Given their intrinsically antisymmetric nature,
how might a navigating system represent the
bearings between pairs of locations? Of course,
one possibility would be to represent the posi-
tions of the locations in a metric space, and then
compute the required bearings.

However, it is not clear that this ap-
proach is appropriate for biological systems.
O’Keefe and Nadel (1978) argued that the
hippocampus represents the metric proper-
ties of space in a cognitive map. Importantly,
a number of researchers have argued against
this position, and against the proposal that the
hippocampus provides a metric, systematic,
and cohesive cognitive map. First, place cells
are not organized topographically; the arrange-
ment of place cells in the hippocampus 1s not
isomorphic to the arrangements of locations in
an external space (Burgess, Recce & O’Keefe,
1995: Eichenbaum, Dudchenko, Wood, Sha-
piro & Tanila, 1999; McNaughton, Barnes,
Gerrard, Gothard, Jung & Knierim, 1996).
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Second, place cell receptive fields (“place
fields™) are at best /ocally metric (Touretzky,
Wan & Redish, 1994), and as a result a good
deal of spatial information (e.g., information
about bearing) cannot be derived from place
cell activity. Third, the responses of different
place cells do not appear to be related to one
another in a coherent and holistic spatial frame-
work (Eichenbaum et al., 1999). Fourth, hip-
pocampal cells appear to be sensitive to a wide
variety of nonspatial variables (Best, White &
Minai, 2001; Eichenbaum, 2002). Evidence of
this sort has led some to abandon the view that
the hippocampus provides a spatial cognitive
map (Bennett, 1996).

Artificial neural networks represent an
alternative approach to representing spatial
relationships. For example, Dawson, Boechler,
and Valsangkar-Smyth (2000) trained a net-
work on a distance judgment task that violated
the minimality principle. Interestingly, the
internal components of this network(i.e., the
“hidden units™ in the network) were not very
map-like. The responses of each hidden unit
were at best locally metric. However, when
several different patterns of such distorted
representations were combined, an accurate
spatial judgment (1.e., a distance rating) could
be generated. Dawson, Boechler, and Valsang-
kar-Smyth called this representational scheme
coarse allocentric coding. Clearly such coding
is capable of representing spatial relations in a
nonmetric space.

The purpose of the current article is to
explore the capability of an artificial neural
network to make directional judgments based
on the antisymmetric data that was presented
in Table 1. There are two questions of interest.
First, is a network capable of making this set
of judgments? Second, if a network can learn
to respond in this way, then what is the nature
of its internal representations?

METHOD

Problem Definition
A network was trained to make judg-
ments about the bearing from one city to

another. We chose thirteen different locations
in the province of Alberta: Banft, Calgary,
Camrose, Drumbheller, Edmonton, Fort Mc-
Murray, Grande Prairie, Jasper, Lethbridge,
Lloydminster, Medicine Hat, Red Deer, and
Slave Lake. We took all possible pairs from
this set to create a set of 169 different stimuli,
each of which could be described as the ques-
tion “In the context of a compass with 16
different directional petals, what bearing is
City 1 from City 27" where City | served as
an origin to which a reference heading vector
pointing north was assigned. Because all pos-
sible pairs of place names were used, thirteen
of the stimuli involved rating the direction from
one city to itself (e.g., the bearing from Banft
to Banft). As well, for different place names
a rating would be obtained for both orders of
places (e.g., the bearing from Banff to Calgary
would be judged, as would be the bearing from
Calgary and Banft).

The desired ratings for each stimulus
were created as follows. First, the cosines of
each bearing were computed, as was described
earlier when Table |1 was introduced. Second,
these cosines were converted into discrete
directions. This was done by converting each
cosines into the nearest corresponding petal of
the 16 petal compass rose that is illustrated in
Figure 1. If a stimulus involved rating the di-
rection from one place to itself, the rating was
assigned a value of 0, which did not correspond
to any of the 16 petals. For these stimuli, the
network was trained not to make any directional
Judgment.

The resulting set of compass petal as-
signments is provided in Table 1. Because only
positive numbers were used when petals were
assigned, this matrix is not antisymmetric. That
s, 1t 1s nof the case that the value recorded in
row x and column y of is equal to the negative
of the cosine recorded in row y and column x for
every pair of off-diagonal cells in Table 1. How-
ever, the table 1s strongly asymmetric. Follow-
ing accepted procedures (Dawson & Harshman,
1986), the proportion of antisymmetric vari-
ance in the matrix was 0.593. In other words,
symmetric variance makes up less than half of
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Figure 1. The 16 petal compass rose that was used to define how the network judged bearing.
When asked to judge the bearing from one city to another, the network was trained to turn on
an output unit associated with the closest petal on this compass.

W 13 =<

the overall variance in Table 1, indicating that
this table is extremely asymmetric. This also
indicates that this table strongly violates the
symmetry assumption of metric space.

Network Architecture

Artificial neural network architectures
can differ from one another along a variety of
dimensions. One important distinction between
different classes of architectures involves the
activation function that converts a unit’s total
input into an internal level of activity (Duch &
Jankowski, 1999). Typically, neural networks
are composed of units whose activation func-
tion is a sigmoid-shaped curve that is defined
by the logistic equation; such units have been
called integration devices (Ballard, 1986).
However, not all networks are composed of
integration devices. Some networks use proces-
sors that are tuned to activate to a small range of
net inputs, and generate weak responses to net
inputs that are either too small or too large to
fall in this range. Ballard calls such units value
units. The network that was trained in the cur-
rent study had 16 output units, 7 hidden units,
and 26 input units. All of the output units and

N o=

all of the hidden units were value units that used
the Gaussian activation function G(net) = exp
(-n(net, - pf)i’, where net is the net input to the
unit, and p_is the mean of the unit’s activation
function (Dawson & Schopflocher, 1992).

Input Unit Representation

Twenty-six input units were used to
define a local code for pairs of cities to be
compared. Each input unit represented a place
name; the first input unit represented “Banft.”
the second input unit represented “Calgary,”
and so on alphabetically.

Every stimulus presented to the network
was a request to judge the bearing “from City
A to City B.” Thus two different city names
had to be represented in an input pattern: the
name of the “from™ city (i.e., the first name
in a pair of names, and the origin from which
the bearing was being judged), and the name
of the “to” city (i.e., the second name in a pair
of names). The first thirteen input units repre-
sented the name of the “from™ city, while the
remaining thirteen input units represented the
name of the “to” city. As a result, each pattern
that was presented to the network involved
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Table 1. Assignment of compass petals to each city pair. See text for explanation.
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turning two input units on, one that belonged
to the first set of thirteen input units, and one
that belonged to the second set of thirteen input
units. For example, to ask the network to judge
the bearing from Banff to Calgary, the first and
the fifteenth input units would be turned on,
and all other input units would be turned off.
Similarly, to ask the network to judge the bear-
ing from Calgary to Banft, the second and the
fourteenth input units would be turned on, and
all other input units would be turned off.

This representational scheme was chosen
because it contains absolutely no information
about the location of the different places on a
map of Alberta. In other words, the input units
themselves did not provide any information that
the network could use to perform the ratings
task. All possible pairs of names from the set of
thirteen cities were used as training patterns. As
aresult, there were 169 different input patterns
that were used to train the network.

Output Unit Representation

Sixteen output units were used to repre-
sent the network’s rating of the bearing between
the two place names presented as input. The
output units were also value units. To represent
a judgment of bearing, the network was trained
to turn on one, and only one, of its output units.
Each of these output units represented one
of the compass rose petals from 1 to 16. For
example, if the network turned output unit 13
on, this indicated that it was judging the bear-
ing to be 270° (i.e., west). For the 13 cases in
which the direction of a city to itself was to be
judged, the network was trained to turn all of
its output units off.

Number of Hidden Units

Seven hidden units were used in this net-
work to solve the problem. Each of these units
was a value unit. We selected this number of
hidden units because pilot tests had shown that

Copynight © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.

is prohibited.



58 Int'l Journal of Cognitive Informatics and Natural Intelligence, 1(1), 53-65, January-March 2007

this was the smallest number of hidden units
that could be used by the network to discover
a mapping from input to output. When fewer
than seven hidden units were used, the network
was never able to completely learn the task.
Previous research has suggested that forcing
a network to learn a task with the minimum
number of hidden units produces a network
that is much easier to interpret, in comparison
to a network that has more hidden units than are
required to solve a problem (Berkeley, Dawson,
Medler, Schopflocher & Hornsby, 1995).

Network Training

The network in the current article was
trained using the variation of the generalized
delta rule that has been developed for networks
of value units (Dawson & Schopflocher, 1992).
Prior to training, all of the connection weights
were randomly assigned values ranging from
~0.10 to +0.10. The biases of processing units
(i.e., the means of the Gaussian activation func-
tions, which are analogous to thresholds) were
all initialized to a value of 0. The network was
trained with a learning rate of 0.01 and zero
momentum. During each epoch of training,
each of the 169 stimuli was presented to the
network, with the order of presentation of the
set of 169 patterns randomized prior to begin-
ning the epoch. The learning rule was used to
update connection weights in the network after
each stimulus presentation.

Training proceeded until the network
generated a “hit” for every output unit on ev-
ery pattern. A hit was operationalized as an
activation of 0.90 or higher when the desired
activation was 1.00 and as an activation of 0.10
or lower when the desired activation was 0.00.
The network converged on a solution to the
problem — generating a correct response for
each of the 169 patterns — after 7645 epochs
of training.

RESULTS

Asymmetry of Hidden Unit Responses
We noted earlier that the matrix of com-
pass rose points (Table 1) is highly asymmetric.

One question of interest is the degree to which
the asymmetry of the desired responses to vari-
ous city pairs 1s reflected in the responses and
the connection weights of the seven hidden
units in this network.

Our first approach in answering this ques-
tion was to create a 13 X 13 matrix of hidden
unit responses for each hidden unit. The rows
and columns of each matrix corresponded to the
thirteen cities, and each matrix entry was the re-
sponse of a hidden unit to a particular city pair.
After creating these matrices, we decomposed
them into their symmetric and antisymmetric
components in order to determine the degree to
which hidden unit responses were asymmetric.
The first column of numbers in Table 2 presents
the proportion of antisymmetry for the activa-
tion matrix of each hidden unit. It can be seen
from this table that all of the activation matrices
had substantial antisymmetric components. In
other words, the asymmetry of the direction
judgment task is reflected in the asymmetry of
each hidden unit’s responses.

Given that hidden unit activations are
strongly asymmetric, it would not be surpris-
ing to discover that the net inputs to the hidden
units are strongly asymmetric as well. Howev-
er, because hidden unit activations represent a
Gaussian transformation of net inputs, it is not
completely clear what the relationship between
the structure of hidden unit activations and
hidden unit net inputs should be. Therefore we
computed a second set of 13 X 13 matrices for
each hidden unit. These were identical to the
first set, with the exception that each matrix en-
try was the net input to the hidden unit instead
of the hidden unit’s activation to a particular
city pair. The proportions of antisymmetry
of the net input matrices are also reported in
Table 2. Again, these matrices have substantial
antisymmetric components. Furthermore, there
15 a strong relationship between the degree of
antisymmetry in the activation matrices and
the degree of antisymmetry in the net input
matrices. The correlation between the first two
columns of numbers in Table 2 is 0.96.

The source of the strong asymmetry in
hidden unit activations and net inputs must be
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Table 2. Measures of asymmetries of the activations and net inputs of the hidden units to each
pair of cities, and the correlation between the two sets of weights that feed into each hidden

unit. See text for details.

* | Proportion Asymmetry OF Proportion Cnrrelatiunﬁﬂetween
Hidden Unit X oiivntisn Mkt Asymmetry Of Net | “From”™ Weights and
Input Matrix “To” Weights

H1 0.47 .63 -0.27

H2 0.36 0.36 0.28

H3 0.51 0.49 0.03

H4 0.92 0.95 -0.91

HS (.72 (.86 -().76

H6 0.45 0.50 -0.01

H7 0.81 (.92 -0.86

the connection weights from the input units to
the hidden units. Each hidden unit has two con-
nection weights feeding into it from the same
location: one weight for when the location is
the “from™ city, and the other weight for when
it is the “to” city. For each hidden unit, we took
each set of weights (i.e., the 13 “from™ weights
and the 13 “to” weights) and correlated them
to find their relationship. The resulting correla-
tions are reported in the last column of Table
2. It can be seen from this table that these cor-
relations range from being weakly positive to
strongly negative. This indicates that the source
of asymmetry in hidden unit responses are dif-
ferences between the “from™ weights and the
“to”" weights that feed into a hidden unit from
the same city. Furthermore, as the correlation
between weights becomes more negative, there
Is a greater proportion of antisymmetry in both
the activation and the net input matrices. In-
deed, the correlation between the last column
of Table 2 and the proportion of antisymmetry
in the activation matrices (i.e., the first column
of numbers) is —0.95. The correlation between
the last column of Table 2 and the proportion
of antisymmetry in the net input matrices (i.e.,
the middle column of numbers) is —0.99.

Directional Selectivity of Hidden Units

The previous section has shown that hid-
den unit responses reflect the intrinsic asym-
metry of the direction judgment task. But how
do hidden unit responses represent information
relevant to city bearings? Figure 2 presents a
polar bar chart for each hidden unit. These
charts present the median hidden unit activity
to city pairs as a function of the desired output
(i.e., the appropriate compass rose petal) for
each of the city pairs, excluding the thirteen
stimuli to which the network was trained not
to respond.

There are four important observations
that can be made from the graphs in Figure 2.
First, all of the hidden units can be described
as being directionally selective. This is because
all of the hidden units generate strong responses
when input city pairs are associated with some
directions, but generate weak responses when
input city pairs are associated with other direc-
tions. Second, the directional selectivity of all
of the hidden units is approximately confined
to a hemisphere of the compass rose or less;
for example, Hidden Unit 5’s directional se-
lectivity is confined to almost a quadrant of
the compass. Third, taken as a whole, all of
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Figure 2. Bar plots of the median hidden unit activity as a function of the petal on the compass
rose, for each of the seven hidden units in the network. The 13 stimuli to which the network was
trained not to respond have been excluded from each of these plots.

the compass directions generate a response in
some of the hidden units. In other words, the
combined directional selectivity of the entire
set of hidden units covers the complete compass
rose. Fourth, the directional selectivity of in-
dividual hidden units 1s sometimes systematic,
but at other times is not. For example, Hidden
Unit 4 exhibits systematic responses, because it
generates strong responses to directions in the
northern hemisphere of the compass (petals 3
through 14 in Figure 1). However, Hidden Unit
| is much less systematic, generating strong
responses to compass petals 1, 12, and 9, but
not to other directions that lay between these
petals (e.g., petals 10 and 11).

Coarse Coding of Hidden Units
One key contribution of connectionism
to general theories about representation is the

Tl 34350

TL34350H

notion of coarse coding (Hinton, McClelland,
& Rumelhart, 1986). In general, coarse coding
means that an individual processor 1s sensitive
to a broad range of features, or at least to a
broad range of values of an individual feature
(e.g., Churchland & Sejnowski, 1992). How-
ever, 1f different processors have overlapping
sensitivities, then their outputs can be pooled,
which can result in a highly useful and accurate
representation of a specific feature. There are
two sources of evidence that indicate that the
hidden units of the current network are involved
In the coarse coding of city bearings. The first
comes from the observations of Figure 2 that
have already been made. The facts that each
hidden unit is sensitive to a variety of differ-
ent directions, and that more than one hidden
unit exhibits sensitivity to the same direction,
both are strong indicators that this network uses
coarse coding.
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Table 3. Activation produced in three different hidden units by the 15 city pairs that all cause
the network to choose compass petal 6 as the response

“From™ City “To” City H3 H5 Ho6
BANFF LETHBRIDGE 0.96 0.41 0.01

BANFF MEDICINE HAT .96 0.46 0.01

CALGARY MEDICINE HAT 0.06 0.87 .61
GRANDE PRAIRIE CAMROSE 0.17 LT 0.85
GRANDE PRAIRIE DRUMHELLER 0.64 0.75 0.60
GRANDE PRAIRIE EDMONTON (.89 (.99 0.97
GRANDE PRAIRIE LLOYDMINSTER 0.01 0.49 0.39
GRANDE PRAIRIE MEDICINE HAT 0.66 0.72 0.23
GRANDE PRAIRIE RED DEER 0.00 0.75 0.81
JASPER CALGARY 0.72 (.86 (.49

JASPER DRUMHELLER 0.37 0.57 0.41

JASPER LETHBRIDGE 0.68 0.66 0.37

JASPER MEDICINE HAT 0.35 0.61 0.38

RED DEER DRUMHELLER (.78 0.56 0.00

SLAVE LAKE LLOYDMINSTER 0.61 0.76 0.53

The second source of evidence comes
from taking a more detailed examination of
directional sensitivity than can be made by
simply examining the median levels of activity
that are graphed in Figure 2. Let us take as an
example compass petal 6 from Figure 1. There
are 15 different city pairs that lead the network
to choose this particular direction; each of these
pairs is listed in Table 3. An examination of
Figure 2 indicates that Hidden Units 3, 5, and
6 all exhibit either a moderate or a strong sensi-
tivity to this direction. Table 3 also presents the
activity of each of these hidden units produced
by each of the 15 city pairs in the table.

Table 3 indicates that the hidden units
are involved in coarse coding by demonstrating
that their directional sensitivity is noisy. For
example, consider the activity of Hidden Unit
3. It generates very strong activity to some of
the city pairs (e.g., Banffand Lethbridge, Banff
and Medicine Hat), but also generates near
zero activity to other city pairs (e.g., Calgary
and Medicine Hat, Grand Prairie and Lloyd-
minster), even though all of these city pairs
are associated with the same bearing. Similar

examples exist for the other two hidden units.
In other words, while a case can be made that
these hidden units have a preference for com-
pass petal 6 (as well as to a handful of other
directions), it is also clear that this preference
is mixed. None of these hidden units generate
strong activity to every pattern associated with
this compass direction.

A second property that one expects to
see in coarse coding is a complementary pat-
tern of activation. That is, if one hidden unit
fails to respond to one stimulus that it might
be expected to be sensitive to, then this failure
should be compensated by the behavior of other
hidden units involved in the coarse coding.
Table 3 also provides evidence of this type.
Consider for example the city pair of Red Deer
and Drumbheller. Hidden Unit 6 fails to generate
any activity to this pattern at all. However, Hid-
den Unit 5 generates a moderate response to it,
while Hidden Unit 3 generates an even stronger
response. Indeed, there i1s no example in Table
3 of a stimulus pair that generates near zero
activity in all three of these hidden units.
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DISCUSSION

Relation to Head Direction Cells

Given the directional selectivity of the
hidden units in the network, one obvious ques-
tion concerns their relationship to head direc-
tion cells that have been extensively studied
by neuroscientists (for overviews see Redish,
1999; Sharp, Blair & Cho, 2001; Taube, 1998).
In general, head direction cells have a pre-
ferred direction of firing, and generate strong
signals when an animal’s head is pointing in
this preferred direction. Usually, head direc-
tion neurons for a variety of different directions
are available, and cooperative and competitive
interactions between these different cells result
in one direction being selected (and represented
with neural activity in the appropriate cells).
Most models of this type of processing use an
attractor network (a self-organizing artificial
neural network) with different head direction
cells linked with excitatory and inhibitory con-
nections to create a directional cell assembly
(e.g., Redish, 1999),

The source of this directional sensitiv-
ity 1s complex. While the responses of head
direction cells can come under the control of
visual landmarks, these neurons are also able
to maintain their directional heading when such
landmarks are absent, most likely under the
control of self-motion cues such as vestibular
input (e.g., Knierim, Kudrimoti, & McNaugh-
ton, 1998). Such idiothetic cues as this latter
type are an important source of input to head
direction cells, and as a result these cells are
well suited for performing navigation via path
integration (e.g., Gallistel, 1990). Furthermore,
there 1s an important temporal component to
head direction cells. For example, head direc-
tion cells located in the postsubiculum repre-
sent head direction 10 ms in the past, while
head direction cells located in the anterior dor-
sal thalamus anticipate head direction by 25 ms
into the future (Taube & Muller, 1998).

In many respects, the kind of information
that head direction cells appear to encode dif-
fers from the kind of information to which the
hidden units in the artificial neural network are

sensitive. For instance, while individual head
direction cells are sensitive to a unary direc-
tional feature (e.g., the compass direction of the
animal’s head), each hidden unit is sensitive to a
more complex directional feature (e.g., several
different headings emanating from an origin
city). Furthermore, individual head direction
cells represent an egocentric direction: that 1s,
the direction from the animal’s head to some
location in space. In contrast, each hidden unit
uses an allocentric frame of reference rather
than an egocentric frame of reference. That is,
each hidden unit is sensitive to directions from
one location on a map to others, whether none
of the map locations correspond to the hidden
unit’s location.

However, some general similarities be-
tween the two types of processors exist as well.
For example, head direction 1s usually viewed
as being represented by the activities of an en-
semble of neurons, each sensitive to a different
direction (e.g., Redish, 1999). This is function-
ally very similar to the notion of a coarse code
that was revealed in the network. Head direc-
tion cells also often exhibit Gaussian-shaped
tuning functions (Goodridge & Touretzky,
2000), although the shape of this function can
be distorted as an animal moves.

Relation to Other Spatial Network
Codes

We have studied other networks on tasks
that can be related to the one described above,
and it 1s interesting to consider the relationships
between the current network and these other
“navigational nets”.

Dawson, Boechler, and Valsangkar-
Smyth (2000) trained one network to make
distance judgments between all possible pairs
of the same 13 Albertan cities that were used
in the current simulation. They discovered a
representation in which hidden units occupied
positions on the map of Alberta, and hidden unit
connection weights represented transformed
distances between city and hidden unit loca-
tions. One key similarity between this network
and the current one is that both used coarse
coding. A second similarity was that the coarse
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coding discovered by Dawson, Boechler and
Valsangkar-Smyth was flexible enough to me-
diate distance judgments that violated the met-
ric properties of space. A second network that
they trained violated the minimality principle.
This network required an additional hidden unit
to deal with this violation, but all of the hidden
units used the same representational code as did
the hidden units in the network in which the
minimality principle was not violated. How-
ever, a key difference between these networks
and the current one was that a compressed input
representation (13 input units) was used, and so
it could not be trained on distance judgments
that violated other metric principles, such as
symmetry.

[n a more recent study, a second network
was trained to make distance judgments when
all of the metric principles were preserved, but
the input representation was identical to the
one used in the current simulation (Dawson,
Boechler & Orsten, 2005). This network also
used coarse coding in its internal representa-
tions. Interestingly, even though this network
was trained to make distance judgments, it
used a coarse coding of direction. However,
the representation of direction in its hidden
units was quite different from that described
above. Dawson and Boechler found that each
hidden unit could be described as occupying
a position on the map of Alberta, and had a
particular point of view of the map from this
position. The hidden unit then acted somewhat
as a sextant, where connection weights were
related to the angle between the heading of
the hidden unit (1.e., its point of view) and the
bearings of the cities.
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