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Brief Papers

Equilibria of Perceptrons for Simple
Contingency Problems

Michael R. W. Dawson and Brian Dupuis

Abstract— The contingency between cues and outcomes is
fundamentally important to theories of causal reasoning and
to theories of associative learning. Researchers have computed
the equilibria of Rescorla–Wagner models for a variety of
contingency problems, and have used these equilibria to iden-
tify situations in which the Rescorla–Wagner model is con-
sistent, or inconsistent, with normative models of contingency.
Mathematical analyses that directly compare artificial neural net-
works to contingency theory have not been performed, because of
the assumed equivalence between the Rescorla–Wagner learning
rule and the delta rule training of artificial neural networks.
However, recent results indicate that this equivalence is not as
straightforward as typically assumed, suggesting a strong need
for mathematical accounts of how networks deal with contingency
problems. One such analysis is presented here, where it is proven
that the structure of the equilibrium for a simple network trained
on a basic contingency problem is quite different from the
structure of the equilibrium for a Rescorla–Wagner model faced
with the same problem. However, these structural differences lead
to functionally equivalent behavior. The implications of this result
for the relationships between associative learning, contingency
theory, and connectionism are discussed.

Index Terms— Artificial neural networks, associative learning,
contingency.

I. INTRODUCTION

A fundamental characteristic of an adaptive agent is the
ability to detect causal relations [1]. However, the real world
poses constant challenges to this ability, because cues do
not signal outcomes with complete certainty [2]. It has been
argued that adaptive systems deal with worldly uncertainty,
whether these systems are humans [3] or animals [4], [5],
by becoming “intuitive statisticians.” The notion of “intuitive
statistician” has been rigorously developed in a series of
important papers to mean sensitivity to contingency, where
contingency is defined in a normative model as a contrast
between conditional probabilities [1], [6]–[11]. For instance,
consider the simple situation that is detailed in the contingency
table provided in Table I. The contingency between the cue and
the outcome is formally defined as the difference in conditional
probabilities �P, where �P = P(O|C) − P(O| ∼C) [6].
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More sophisticated models, such as the probabilistic contrast
model (e.g., [8]) or the power PC theory [7], define more
complex probabilistic contrasts that are possible when multiple
cues occur and when what they signal depends upon the
context in which they are considered.

Because many associative learning paradigms can be inter-
preted as teaching contingencies to humans or animals, another
issue that has arisen in the literature is the relationship between
formal contingency theories and formal theories of associative
learning [12]. In particular, researchers have compared the
predictions of the Rescorla–Wagner model of learning [13] to
formal theories of contingency [1], [7], [14]. This is typically
accomplished by determining the equilibria for the Rescorla–
Wagner model, and then comparing the associative strengths of
the Rescorla–Wagner model at equilibrium with probabilistic
contrasts defined by contingency theory. An equilibrium of
the Rescorla–Wagner model is a set of associative strengths
defined by the model at the point where changes in error
defined by Rescorla–Wagner learning asymptote to zero [15].
While in some instances the Rescorla–Wagner model predicts
the conditional contrasts defined by a formal contingency
theory like the power PC model, in other situations it fails
to generate these predictions [9].

The formal results relating contingency theory to the
Rescorla–Wagner model have been assumed to also apply
to connectionist models of associative learning [1], [5].
Researchers have claimed that there is a formal equivalence
[16]–[18] between learning as defined by the Rescorla–Wagner
model and learning as defined by the so-called delta rule,
which is an error-correcting method that is used to train simple
artificial neural networks [19], [20]. Such claims are used to
support the informal conclusion that any results pertaining
to the relationship between the Rescorla–Wagner model and
contingency theory also apply to artificial neural networks
trained with the delta rule. That is, if for at least some
cases x , the Rescorla–Wagner model and contingency theory
are equivalent, and if the Rescorla–Wagner model is equivalent
to delta rule learning, then it seems safe to conclude that for
these same cases x , networks trained with the delta rule should
be equivalent to contingency theory.

One example of this indirect argument is provided by
Cheng [9], who performs a detailed computational analysis
of the relationship between the Rescorla–Wagner model and
contingency theory. She emphasizes the Rescorla–Wagner
model because “the learning rule it incorporates is a version
of the “delta rule” commonly used in connectionist models.
My analysis of this model should therefore be relevant to
connectionist models using this rule, whatever the content
domain of the model” [9, p. 371]. However, Cheng neglects
to conduct a computational analysis that directly relates
contingency theory to artificial neural networks. Cheng and
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TABLE I

SIMPLE CONTINGENCY SITUATION IN WHICH A CUE CAN OCCUR (C ) OR

NOT (∼C ), AND AN OUTCOME CAN OCCUR (O ) OR NOT (∼O ) AS WELL

O ∼O

C a b

∼C c d

Note: The four letters in the table represent the frequency of
co-occurrence of the two types of events. Using this table,
�P = P(O|C) − P(O| ∼ C) = a/(a + b) − c/(sc + d).

Holyoak [1] provide a second example of the indirect argument
when they use the assumed equivalence between the delta
rule and the Rescorla–Wagner model to define asymptotic
associative weights for the latter. A third example of this
indirect argument is provided by Shanks’ [5] interpretation
of the computation work of Chapman and Robbins [14]. In an
appendix to their article, Chapman and Robbins prove that in
a particular situation “the Rescorla–Wagner model reduces to
the �P rule” [14, p. 545]. However, Shanks [5, p. 112] uses
the indirect argument to interpret the proof in a connectionist
light, claiming that “Chapman and Robbins have established
the very important fact that the delta rule, at asymptote, yields
weights that are identical to �P.”

However, there are important reasons to be wary of using
the assumed relationship between the Rescorla–Wagner model
and the simple artificial neural networks to infer relationships
between networks and contingency theory. First, previous
proofs of the formal equivalence between the Rescorla–
Wagner model and the delta rule [16]–[18] neglect to include
a critical component of artificial neural networks trained by
the delta rule—the nonlinear activation function that converts
an output unit’s net input into activation. Dawson [23] has
shown that these proofs assume a linear relationship between
net input and activity, and therefore do not apply to simple
neural networks such as the traditional perceptron [21], [22]
that uses a step function to compute output unit activity, or
a modern variation of the perceptron [19], [23] that uses
a logistic activation function. When the nonlinear activation
function is taken into account, a formal relationship between
the Rescorla–Wagner model and the complete (i.e., nonlinear)
networks can still be established [23]. However, the inclusion
of the activation function imposes a crucial algorithmic dif-
ference between network learning and the Rescorla–Wagner
model: the activation function serves as a theory of how
internal associations are converted into network behavior,
while a theory of behavior is not part of the Rescorla–Wagner
formalism [13], [24]. As a result, a perceptron that uses the
logistic activation can generate different behaviors than can a
model trained using the Rescorla–Wagner model, and in many
cases can overcome some limitations faced by the Rescorla–
Wagner model [23].

In short, the relationship between Rescorla–Wagner learning
and artificial neural network learning is more complicated
than one might expect from older comparisons [16], [18].
As a result, it is unwise to use these older analyses as the
basis for an indirect link between networks and contingency
theory. Instead, computational analyses that directly explore

the relationships between connectionist networks and contin-
gency theory are required. The purpose of this brief is to
provide one such analysis. It is proven below that when a
simple artificial neural network reaches equilibrium for a basic
contingency theory problem, this equilibrium appears to be
quite different from the equilibrium of the Rescorla–Wagner
model for the same contingency problem. That is, in contrast
to Shanks [5] connectionist interpretation of Chapman and
Robbins’ [14] proof, the connection weights of the network
are not identical to �P. However, �P can be recovered
by comparing the behavior of the network in different cue
situations.

II. DERIVING THE EQUILIBRIUM

A. Derivation

To begin, consider the simple contingency problem that was
presented earlier in Table I. Chapman and Robbins [14] proved
that when Rescorla–Wagner learning reaches equilibrium for
this problem the associative strength between the cue and
the outcome was exactly equal to �P. Their proof required
the assumption that there were two cues involved, the one
of interest (C) that was present on some trials and absent
on others (as in Table I), and a second (X) that represented
cues from an experimental context that were present on every
trial. Rescorla–Wagner learning would alter the strengths of
two associations, the one between C and the outcome (VC)
and the one between X and the outcome (VX ). For the
situation defined in Table I, Chapman and Robbins found that
at equilibrium VC = a/(a+b)−c/(c+d). Let us now proceed
to derive the equilibrium for a perceptron faced with the same
contingencies.

One can train a simple perceptron on the Table I contingency
problem. The perceptron would have a single input unit that
would be turned on with a value of 1 when C is present, and
turned off with a value of 0 when C is absent. This signal
would be sent through a single connection, with connection
weight wc, to a single output unit. The desired response of
this output unit would be 1 in trials in which the outcome O
occurred, and would be 0 in trials in which O did not occur.
On any given trial, the net input net, (i.e., the total signal)
to the output unit is equal to wc times the activation value
of the input unit. A nonlinear transformation of the net input
produces the output unit’s response for the trial. Let us define
this nonlinear transformation as the logistic equation, which is
an activation function that is commonly employed in artificial
neural networks [19], [25], [26]

f (net) = 1

1 + e−(net)−θ
. (1)

The logistic equation is often described as a “squashing”
function, because it is a sigmoid-shaped function that squashes
values of net input, which can range from negative to positive
infinity, into the range from 0 to 1. In (1), net is the net
input from the perceptron’s input unit, and θ is a constant
that is called the bias of the logistic equation. When net input
equals θ , the logistic equation returns a value of 0.5. θ can be
described as the value of a weight between an “extra” input
unit and the output unit, where this “extra” input unit has
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an activation value of 1 for every pattern that the perceptron
is presented. In other words, the use of θ in the logistic
equation is equivalent to Chapman and Robbins’ [14] use of
a extra cue to represent the constant presence of experimental
context [23].

Assume that when the cue is present, the logistic activation
function computes an activation value that we will designate
as oc, and that when the cue is absent it returns the activation
value designated as o∼c. We can now define the total error
of responding for the perceptron [i.e., its total error for the
(a + b + c + d) number of patterns that represent a single
“sweep” in which each instance of the contingency problem
given in Table I is presented once]. For instance, on a trial
in which C and O both occur (i.e., both C and O equal 1),
the perceptron’s error for that trial is the squared difference
between O and oc. As there are a of these trials, the total
contribution of this type of trial to overall error is a(1 − oc)

2.
Applying this logic to the other three cells of Table I, overall
error E can be defined as follows:
E = a(1 − oc)

2 + b(0 − oc)
2 + c(1 − o∼c)

2 + d(1 − o∼c)
2

= a(1 − oc)
2 + b(oc)

2 + c(1 − o∼c)
2 + d(1 − o∼c)

2. (2)

For a perceptron to be at equilibrium, it must have reached
a state in which the error term defined in (2) has been
optimized, so that error can no longer be decreased by using
the learning rule to alter the perceptron’s weight. To determine
the equilibrium of the perceptron for the Table I problem, we
begin by taking the derivative of (2) with respect to the activity
of the perceptron when the cue is present (oc). This derivative
is presented as (3). We also need to determine the derivative
of (2) with respect to the activity of the perceptron when the
cue is not present (o∼c). This derivative is presented as (4)

∂ E

∂oc

= 2(a(oc − 1) + boc) (3)

∂ E

∂o∼c

= 2(C(o∼c − 1) + do∼c). (4)

One condition of the perceptron at equilibrium is that oc

is a value that causes the derivative in (3) to be equal to 0.
In (5), this derivative is set to 0 and the equation is solved
to determine the value of oc. The reader will note that this
value is equal to a/(a + b), which is equal to the conditional
probability P(O|C)

0 = 2(a(oc − 1) + boc)

= a(oc − 1) + boc

= aoc − a + b0c

a = oc(a + b)
a

a + b
= oc

P(O|C) = oc. (5)

A second condition of the perceptron at equilibrium is that
o∼c is a value that causes the derivative in (4) to be equal
to 0. In (6), this derivative is set to 0 and the equation is
solved to determine the value of o∼c. The reader will note
that this value is equal to c/(c + d), which is equal to the

conditional probability P(O| ∼ C)

0 = 2(c(o∼c − 1) + do∼c)

= c(o∼c − 1) + do∼c

= co∼c − c + d0∼c

c = o∼c(c + d)
c

c + d
= o∼c

P(O| ∼ C) = o∼c. (6)

To provide a concrete example of the implications of these
equations, let us consider the result of training a perceptron
on a “toy problem” consistent with Table I. Imagine a training
set consisting of 20 patterns, each involving a single cue
represented by the activation of a perceptron that has only one
input unit. The cue is present in exactly half of these patterns,
and is reinforced (i.e., the perceptron is trained to output a
value of 1.0) for eight of these training patterns, and is not
reinforced (i.e., the perceptron is trained to output a value
of 0.0) for the remaining two patterns. The cue is absent in
the remaining 10 patterns, 2 of which are reinforced, while the
remaining 8 are not reinforced. This statement of the problem
permits the four entries of Table I to be filled out as follows:
a = 8, b = 2, c = 2, and d = 8. For these table values, �P =
(a/(a + b)) − (c/(c + d)) = (8/(8 + 2)) − (2/(2 + 8)) = 0.6.
Using software developed in our laboratory [27], a gradient
descent rule was used to train a perceptron on this problem
using a learning rate of 0.1, with the bias of the output unit
and the connection weight randomly initiated in the range
[−0.1, 0.1]. Four hundred training epochs, in which each of the
20 patterns is presented once in random order, were conducted;
after 400 epochs, the network had stabilized. At the end of
this training, the weight of the connection between the input
unit and the output unit was 2.76, and the bias of the output
unit was −1.38. When the cue was presented by turning the
input unit on, an output value of 0.8 was generated, which
is P(O|C). When the cue was not presented by turning the
input unit off, an output value of 0.2 was presented, which is
P(O| ∼ C).

B. Implications

One implication of the proof developed above is that for
the type of contingency problem described in Table I, at
equilibrium, the output of a perceptron trained on this problem
can literally be described as a conditional probability. When
the cue is present, perceptron output can be literally interpreted
as the likelihood of the outcome given the cue. Similarly, when
the cue is absent, perceptron output can be literally interpreted
as the likelihood of the outcome in the absence of the cue.
This was shown in the toy example provided above, where
the perceptron activity was equal to the appropriate condi-
tional probability depending upon the presence or absence of
the cue.

This result makes contact with the extensive empirical
literature on probability matching. Probability matching occurs
when the probability with which an agent makes a choice
among alternatives mirrors the probability associated with the
outcome or reward of that choice [28]. Studies involving a
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variety of subjects, including insects, fish, turtles, pigeons,
and humans have not only shown the existence of probability
matching but have also shown that probability matching is
adaptive: when the probability of reinforcement associated
with a cue changes, the choice probabilities exhibited by the
agent are quickly adjusted [29]–[36]. It was recently shown
that perceptrons that use the logistic activation function match
probabilities, and also quickly adapt these probabilities when
reinforcement contingencies are altered [37]. The proof above
grounds this empirical finding in mathematics by demon-
strating that perceptron outputs are identical to conditional
probabilities.

A second implication of the proof developed above is
that an equilibrium for a perceptron faced with the Table I
contingency problem is not, as expected by Shanks [5],
identical to the equilibrium for the Rescorla–Wagner model.
At equilibrium, the associative strength for the cue C that
is determined by Rescorla–Wagner training is literally �P .
This is not the case for the perceptron. This was shown, for
instance, in the example given above; in the network that was
trained, neither the connection weight nor the bias was equal
to �P .

The fact that the associative strengths at equilibrium for
the Rescorla–Wagner model differ from those at equilibrium
for the perceptron does not indicate qualitative differences
between the two in the context of the contingency problem
being solved. That is, the two systems achieve equilibria that
appear to be different because the two systems use associa-
tive strengths in different ways to produce behavior (i.e., to
generate judgments of contingency). For the Rescorla–Wagner
model, the general assumption is that associative strengths are
converted into responses by a linear transformation [23]. Thus,
if the behavior of such a model is to reflect �P , then �P must
be directly represented in associative strengths, as proved by
Chapman and Robbins [14]. In contrast, the perceptron uses a
nonlinear transformation when it converts associative strengths
into responses. Therefore �P cannot be directly encoded as
a connection weight. Instead, �P must be computed after
a response is generated—by taking the difference between a
perceptron’s output when the cue is present and the same when
the cue is absent. For instance, in the example provided earlier,
if after training, one takes the difference between perceptron
activity when the cue is present (0.8) and perceptron activity
when the cue is absent (0.2), the result is 0.6, which is the
value of �P given the representation of that problem in Table I
format.

It might be argued that a proper difference between the two
equilibria has not been established because one is framed in
terms of associative strength, while the other is framed in terms
of perceptron output. However, the value of θ and the value
of the connection weight wc can easily be computed given the
results in (5) and (6). First, if one sets the value of the logistic
function in (1) to c/(c + d), assumes net = 0, and solves for
θ , then it is found that θ equals ln(d/c). Second, if one sets the
value in (1) to a/(a + b), assumes θ = ln(d/c), and solves for
wc, then it is found that wc equals ln(d/c) − ln(b/a)—which
is not equal to �P . (One can solve for wc in this case because
in this simple network, when C = 1, net = wc.)

A third implication of the proof developed above is that
one cannot naively assume that the formal equivalence of
Rescorla–Wagner learning and delta rule learning [16]–[18]
also establishes that the Rescorla–Wagner model is identical
to a connectionist network like the perceptron. The analysis
of the perceptron’s equilibrium reveals a final state that is
structurally quite different from that predicted from Shanks’
[5] interpretation of the Chapman and Robbins’ [14] proof.
That is, for the perceptron, �P is not directly represented as
a connection weight.

This simply suggests that further formal research is required
to directly establish the relationship between contingency
theory and artificial neural networks. Modern contingency
theory is concerned with contrasts between probabilities in
situations involving multiple cues, and Danks [15] has demon-
strated how equilibria for Rescorla–Wagner models can be
computed in multiple-cue situations. Future formal research is
required to determine equilibria for artificial neural networks
in multiple-cue situations in order to investigate the degree of
agreement or disagreement between networks and contingency
theory. Beginning such work with the study of simple percep-
trons is likely to bear fruit, because these simple networks
are still the source of surprising and interesting results [38],
[39], and because the behavior of perceptrons in multiple-
cue situations suggests that this simple kind of network
can mimic core empirical regularities. For instance, one key
aspect of adaptive animal behavior is using multiple cues to
maximize survival, and to use changes in the information
provided by multiple cues to modify behavior accordingly [4].
Perceptrons have been shown to demonstrate such abilities, for
instance, by reacting to new combinations of multiple cues
to modify response probabilities in a navigation task [40].
It would be expected that formal analyses of the equilibria
of such networks would shed a great deal of insight about
their relation to more sophisticated versions of contingency
theory.

A fourth implication of our results follows from the third:
if naïve assumptions about the equivalence between the
Rescorla–Wagner and neural networks are incorrect (as we
have demonstrated), then a more rigorous account of the
relationship is likely to shed new insights into the relationships
between Rescorla–Wagner learning, neural network models,
and contingency theory. In particular, mathematical knowledge
concerning neural networks may provide new approaches to
understanding learning about contingency.

For example, the proof developed above was based on a
quadratic definition of network error, because this formulation
of error has been central to studying the relation between
Rescorla–Wagner and neural network learning [16], [18], [23].
However, other definitions of error are possible [39]. For
instance, some researchers have suggested that network error
for noisy or stochastic environments might be better charac-
terized in terms of measures of entropy [41]–[44], or equiva-
lently using error metrics that maximize information [45]–[47].
Future research that explores the relationships between con-
tingency theory, animal learning, and neural networks using
the mathematics of information theory is likely to produce
interesting and important results.
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