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Learning About Environmental Geometry: A Flaw in Miller and
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Many studies have examined how humans and other animals reestablish a sense of direction following
disorientation in enclosed environments. Results showing that geometric shape of an enclosure is
typically encoded, sometimes to the exclusion of featural cues, have led to suggestions that geometry
might be encoded in a dedicated geometric module. Recently, Miller and Shettleworth (2007) proposed
that the reorientation task be viewed as an operant task and they presented an associative operant model
that appears to account for many empirical findings from reorientation studies. In this paper we show that,
although Miller and Shettleworth’s insights into the operant nature of the reorientation task may be
sound, their mathematical model has a serious flaw. We present simulations to illustrate the implications
of the flaw. We also propose that the output of a simple neural network, the perceptron, can be used to
conduct operant learning within the reorientation task and can solve the problem in Miller and
Shettleworth’s model.
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The reorientation task is a paradigm that has been used exten-
sively to study the types of information used by humans and
animals to navigate in their environment (Cheng & Newcombe,
2005). In this task, participants are reinforced for going to a
particular location in an arena that is typically rectangular in shape.
The participant then has to find that location again after being
disoriented, and possibly after changes have been made to the
arena. This task is used to determine the geometric and featural
cues that can be used to “map” the arena. Although there are
extensive empirical results from this task, there are few models of
how it might be accomplished. Moreover, some results from
reorientation studies have been different from those of other spatial
learning studies. For example, geometric information is typically
encoded despite the presence of more informative featural infor-
mation and this has led to the suggestion that organisms may
process shape information in a dedicated “geometric module”
(Cheng, 1986; see Cheng & Newcombe, 2005, for a review).

Recently Miller and Shettleworth (2007) proposed an associa-
tive model that appears to deal with some of the unusual and
interesting results obtained in the reorientation task. They argued

that the reorientation task should primarily be viewed as one of
operant learning, and that this type of learning is responsible for
many of the task’s empirical regularities (Miller & Shettleworth,
2007). Miller and Shettleworth proposed an operant version of
Rescorla and Wagner’s (1972) learning model, and used this
model to replicate a large number of experimental results. How-
ever, although Miller and Shettleworth’s insight about the operant
nature of the reorientation task is extremely valuable, there is a
serious mathematical problem with their model. As is detailed in
the following paragraphs, their model does not implement operant
learning in the manner that they intended.

The Miller and Shettleworth Model

In Miller and Shettleworth’s (2007) model, geometry and fea-
tures serve as cues that indicate whether a particular location is a
likely source of reinforcement. That is, there is no real distinction
between geometric and featural cues apart from there being dif-
ferent sources of information relevant to the same task. As a result,
Miller and Shettleworth describe locations (e.g., the four corners of
a rectangular arena) in terms of whatever cues are present. Learn-
ing in the reorientation task occurs when the associative strengths
of the available cues change as a function of a participant’s
exposure to them (as well as to a participant’s exposure to rein-
forcement). More important, they employ a variant of the
Rescorla–Wagner model that views the reorientation task in the
context of operant conditioning. As a participant is reinforced for
exploring a location that has given cues, it will be more likely to
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explore that and other locations having those cues and less likely
to explore locations lacking them. They modify the Rescorla–
Wagner model to reflect the changing probabilities of visiting the
different locations. This is done by modifying associative strengths
using the Rescorla–Wagner equation, but making this modification
contingent on the probability that a particular location is visited,
which of course will vary as cues at that location change in
associative strength.

To be more precise, let VL represent the total associative
strengths of all of the cues available at some location L at some
point in training, and let � VL represent the sum of all of the VLs
for all of the locations at the same time. Miller and Shettleworth
(2007, their Equation 2) define the probability (PL) of visiting a
particular location L at this point in training as:

PL �
VL�VL

. (1)

Miller and Shettleworth (their Equation 3) then use this defini-
tion of the probability of visiting a location to formulate an operant
version of the Rescorla–Wagner model as:

�VE � ��� � VL�PL. (2)

In this equation �VE is the change in associative strength of
some element E that is available at location L, � is a constant (set
to a value of 0.15 in Miller and Shettleworth’s simulations), and �
is equal to 1 if the participant is reinforced at L, and to 0 otherwise.

A Flaw in the Miller and Shettleworth Model

In mathematical psychology, there is a long history associated
with the type of equation that Miller and Shettleworth (2007) used
to define the probability of visiting a location (Gulliksen, 1953;
Herrnstein, 1970; Luce, 1959, 1961, 1977; Thurstone, 1930).
Thurstone (p. 470) defined the probability of an act leading to
successful consequences (P) as P � s/(s � e), where s can be
viewed as the strength of a successful response and e can be
viewed as the strength of competing responses. Luce (1959, The-
orem 3) explored the possibility of creating a numerical scale,
which he called the “v-scale”, that could be used to represent
choice behavior when a number of different choices were possible,
as is the case in the reorientation task. Luce’s equation is strikingly
similar to the probability equation used by Miller and Shettle-
worth:

PT�x� �
v�x�

�
y�T

v�y�
. (3)

In Luce’s equation PT(x) is the probability of choosing x from
the set T, v(x) is the current strength of x, and the denominator is
the sum of the strengths of all of the possible choices from the set.
Herrnstein (1970) used similar equations to model the law of
effect; that is, to account for the relationship between rates of
making particular responses and the various reinforcements that
these responses receive.

More important, one requirement in all of the equations cited in
the previous paragraph is that all of the elements in the numerator
and in the denominator must have positive values. Luce (1959, p.
95) called this the positiveness condition. The problem with the

Miller and Shettleworth (2007) model is that they violate the
positiveness condition when probabilities are calculated in Equa-
tion 1 above. This is because their calculation of probabilities is
based on associative strength, which can be positive or negative
(see e.g., their Figure 1). Because some associative strengths of

Figure 1. Aberrant behavior of the Miller and Shettleworth (2007)
model, using example equations from their paper. In both graphs, “correct”
is the probability associated with the correct corner, “near” is the proba-
bility associated with the nearest incorrect corner, “rotation” is the prob-
ability associated with the incorrect corner diagonally opposite to the
correct corner, and “far” is the probability associated with the remaining
incorrect corner, as per the terminology used by Miller and Shettleworth.
(A) The example they provide, using � of .15 but with training extended to
150 trials. Note several instances where PL extends beyond the range
between 0 and 1, which is impossible if this value represents a probability.
(B) Similar aberrant behavior is observed much earlier in the set of
equations when � is increased to .60.
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elements can be negative, it is possible that the iterative application
of their learning rule (Equation 2 above) can cause some values of
VL to become negative. This in turn can produce “impossible”
values for PL, if PL is to be interpreted as a probability. That is, PL

can become negative or (because the sum of PLs over all the
locations must equal 1), greater than one. When “impossible
probabilities” are used in Equation 2 above, unanticipated changes
in associative strengths occur. In short, when strengths of elements
change as specified in Equation 2, Equation 1 can violate the
positiveness condition.

The aberrant behavior of the Miller and Shettleworth (2007)
model can easily be demonstrated. They provided detailed equa-
tions for an example reorientation task. We implemented these
equations in a Microsoft Excel® spreadsheet. In our first simula-
tion, we replicated their results for the first 20 trials of learning,
and then continued training. Small negative probabilities appeared
for two of the locations in the reorientation task at Trial 48, and the
“probability” of choosing the correct location rose to greater than
1 at Trial 84. Radical shifts in probability were observed at about
Trial 100 and then again around Trial 140, as is illustrated in
Figure 1A, which demonstrates (for example) that the probability
of choosing the correct location drops to 	36.22 at Trial 142. In
our second simulation, we took their example equations again, but
increased � from .15 to .60. This caused the impossible probabil-
ities to be generated much earlier during the simulation (Figure
1B). Clearly Miller and Shettleworth’s equations are flawed. Their
model performed as well as they reported only because they chose
a small enough value for �, and because they examined the results
of their equations over only the first 20 learning trials.

Although the mathematics of the Miller and Shettleworth (2007)
model are flawed, their operant interpretation of the reorientation
task is sound. Fortunately it is possible to use the activation
produced by a perceptron to correct the mathematical problem
with their model and to implement an operant learning scheme. A
perceptron is a particular type of artificial neural network that has
a set of input units that are used to encode stimuli, and has one or
more output units that are used to represent responses to stimuli
(Dawson, 2004, 2005).

As noted above, the mathematical problem faced by the Miller
and Shettleworth (2007) model was that violation of the positive-
ness condition produced impossible probabilities (i.e., PL 
 0, or
PL � 1). This problem can be solved by making the likelihood of
associative strengths being modified a function of a number that is
guaranteed to remain between zero and one. One such number is
the activity produced by the output unit of a perceptron.

The perceptron is a simple artificial neural network that has a set
of input units to represent stimuli, one or more output units to
represent responses, and connections (with modifiable weights)
from input units to output units (Rosenblatt, 1958, 1962). The
output unit can use one of a variety of nonlinear equations to
transform the total, weighted signal from the input units into a
response (e.g., Dawson, 2004, chapter 10). Perceptrons can be
used to model a variety of animal learning tasks by using input
units to represent the presence or absence of cues (e.g., Dawson,
2008; Sutton & Barto, 1981).

When the activity of a perceptron’s output unit is defined by the
logistic equation (which transforms an incoming signal using a
sigmoid-shaped function that ranges between 0 and 1), this activity
cannot become negative and it cannot exceed 1. Furthermore, this

value is based on current associative strengths, as is desired in the
Miller and Shettleworth model, because output unit activity de-
pends on the signals sent through existing connection weights. In
addition, increases in activity represent increases in expectation of
reinforcement. This is because the desired value of output unit
activity is analogous to � in the Rescorla–Wagner model (Dawson,
2008; Gluck & Bower, 1988; Sutton & Barto, 1981).

We have conducted simulations of the reorientation task and
have shown that output unit activity can be viewed as an approx-
imation of the likelihood of reward (Dawson, Kelly & Spetch,
2007). When the target location is uniquely identifiable, output
activity to it is in the order of 0.90 and activity to other locations
is near zero. When ambiguity exists between two geometrically
equivalent locations, output unit activity to the correct location and
to its geometrically equivalent counterpart is in the order of 0.45.
In a square arena, output activity to any of the corner locations is
in the order of 0.24. In sum, output unit activation can serve as a
replacement for PL when this value is used to guide operant
learning. Simulations of operant behavior have revealed the value
of this approach (Dawson, Dupuis, Spetch, & Kelly, 2008). We are
currently developing the perceptron model to show how it can be
used to simulate other variations of the reorientation task, to test
hypotheses about how spatial information may be encoded, and to
make novel predictions for tasks that have yet to be empirically
explored.

References

Cheng, K. (1986). A purely geometric module in the rat’s spatial repre-
sentation. Cognition, 23, 149–178.

Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for
spatial orientation? Squaring theory and evidence. Psychonomic Bulletin
& Review, 12, 1–23.

Dawson, M. R. W. (2004). Minds and machines: Connectionism and
psychological modeling. Malden, MA: Blackwell.

Dawson, M. R. W. (2005). Connectionism: A hands-on approach. Oxford,
England: Blackwell.

Dawson, M. R. W. (in press). Connectionism and classical conditioning.
Comparative Cognition and Behavior Reviews.

Dawson, M. R. W., Dupuis, B., Spetch, M. L., & Kelly, D. M. (2008).
Simple artificial neural networks that match, exploit, and explore when
confronting a multiarmed bandit. Neural Information Processing: Let-
ters and Reviews, under editorial review.

Dawson, M. R. W., Kelly, D. M., & Spetch, M. L. (2007, June). Using
artificial neural networks to simulate the reorientation task. Poster pre-
sented at the 17th annual meeting of the Canadian Society for Brain,
Behaviour, and Cognitive Science, Victoria, British Columbia.

Gluck, M. A., & Bower, G. H. (1988). From conditioning to category
learning—An adaptive network model. Journal of Experimental Psy-
chology—General, 117, 227–247.

Gulliksen, H. (1953). A generalization of Thurstone’s learning function.
Psychometrika, 18, 297–307.

Herrnstein, R. J. (1970). On the law of effect. Journal of the Experimental
Analysis of Behavior, 13, 243–266.

Luce, R. D. (1959). Individual choice behavior. New York,: Wiley.
Luce, R. D. (1961). A choice theory analysis of similarity judgments.

Psychometrika, 26, 151–163.
Luce, R. D. (1977). The choice axiom after 20 years. Journal of Mathe-

matical Psychology, 15, 215–233.
Miller, N. Y., & Shettleworth, S. J. (2007). Learning about environmental

geometry: An associative model. Journal of Experimental Psychology:
Animal Behavior Processes, 33, 191–212.

417BRIEF REPORTS



Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian condi-
tioning: Variations in the effectiveness of reinforcement and nonrein-
forcement. In A. H. Black & W. F. Prokasy (Eds.), Classical condition-
ing II: Current research and theory (pp. 64–99). New York: Appleton-
Century-Crofts.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for informa-
tion storage and organization in the brain. Psychological Review, 65,
386–408.

Rosenblatt, F. (1962). Principles of Neurodynamics. Washington, DC:
Spartan Books.

Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive
networks: Expectation and prediction. Psychological Review, 88, 135–
170.

Thurstone, L. L. (1930). The learning function. Journal of General Psy-
chology, 3, 469–493.

Received September 21, 2007
Revision received November 1, 2007

Accepted February 12, 2008 �

418 BRIEF REPORTS


