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Abstract. Single-photon emission tomographic (SPET) 
images using technetium-99m labelled hexamethyl- 
propylene amine oxime were obtained from 97 patients 
diagnosed as having Alzheimer's disease, as well as 
from a comparison group of 64 normal subjects. Mul- 
tiple linear regression was used to predict subject type 
(Alzheimer's vs comparison) using scintillation counts 
from 14 different brain regions as predictors. These 
results were disappointing: the regression equation 
accounted for only 33.5% of the variance between 
subjects. However, the same data were also used to train 
parallel distributed processing (PDP) networks of 
different sizes to classify subjects. In general, the PDP 
networks accounted for substantially more (up to 95%) 
of the variance in the data, and in many instances were 
able to distinguish perfectly between the two subjects. 
These results suggest two conclusions. First, SPET 
images do provide sufficient information to distinguish 
patients with Alzheimer's disease from a normal 
comparison group. Second, to access this diagnostic 
information, it appears that one must take advantage of 
the ability of PDP networks to detect higher-order non- 
linear relationships among the predictor variables. 
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I n t r o d u c t i o n  

Investigations of the applicability of single-photon emis- 
sion tomography (SPET) to the understanding and the 
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diagnosis of patients with probable Alzheimer's disease 
(pAD) have led to reports of encouraging results by a 
number of authors [e.g. 1-8]. First, using a variety of 
tracers, many researchers have found that perfusion in 
the temporal and parietal lobes is characteristically low- 
er in pAD patients than in a variety of comparison 
groups. Second, some authors have shown that quantita- 
tive measures of perfusion from SPET can demonstrate 
strong positive correlations with a variety of behavioral 
measures of disease severity [e.g. 5, Fig. 4]. Third, the 
abnormalities revealed by SPET images of pAD patients 
tend to be quite consistent with those revealed by posi- 
tron emission tomography (PET). This last finding is im- 
portant in that SPET imaging techniques are less expen- 
sive and as a result are more widely available than PET 
techniques. Form a clinical perspective, SPET appears to 
have significant potential for identifying patients with 
Alzheimer's disease. 

However, the results cited above primarily represent 
average differences between groups of patients, or be- 
tween patient groups and control groups. When the em- 
phasis shifts to using SPET to determine whether a par- 
ticular individual has Alzheimer's disease, the results are 
not as compelling. In a recent literature review, Albert 
and Lafleche [9] noted that the accuracy of diagnosis on 
the basis of SPET measures is highly variable, and is 
strongly dependent on disease severity. For example, ac- 
curacy in discriminating severely impaired patients from 
controls is typically very high, ranging from 85% to 
100%, In contrast, discriminating mildly impaired pa- 
tients from controls has resulted in accuracy rates as low 
as 25%. Albert and Lafleche concluded that PET and 
even computed tomography (CT) are generally more ac- 
curate than SPET. 

This paper describes a new quantitative technique for 
using SPET measurements to diagnose pAD. The quan- 
titative technique that we utilize is a particular artifical 
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neural network (ANN), namely the network of value 
units originally described by Dawson and Schopflocher 
[10]. With any quantitative technique for medical diag- 
nosis, two separate issues must be considered. First, it 
must be shown that the technique is capable of perform- 
ing a differential diagnosis for patient/non-patient sam- 
ples. Second, c(ter it has been established that the tech- 
nique can distinguish patients from non-patients, it must 
then be shown that this diagnostic capability generalizes 
to new patients. This paper is primarily concerned with 
establishing the first property for ANNs, namely the 
ability to correctly discriminate pAD patients from a 
comparison group in a large sample of subjects. 

This paper proceeds as follows: First, we argue that 
ANNs may be required for pAD diagnosis using SPET, 
because this diagnosis may be a "hard" (i.e., not a linear- 
ly separable) pattern recognition task [see II]. Second, 
we briefly describe the basic properties of an ANN, and 
show how in principle its pattern recognition abilities are 
more powerful than those of other quantitative tech- 
niques, such as multiple regression. Third, we present 
the results of a study that compared the diagnostic abili- 
ties of ANNs to those of multiple regression. The results 
of this study show that ANNs are significantly better 
quantitative tools for pAD diagnosis. Indeed, we show 
that in some cases an ANN can use SPET data do per- 
fectly discriminate pAD patients from healthy compari- 
son subjects, even when a large, heterogeneous sample is 
used (97 pAD patients and comparison subjects). 

Why use ANNa" for pAD diagnosis ? 

SPET diagnosis of pAD as a "hard" pattern recognition 
problem. Computer vision researchers are often interest- 
ed in developing programs to recognize or classify input 
patterns [e.g. 11]. Clearly, the use of SPET images to di- 
agnose specific diseases can be viewed from this pattern 
recognition framework. For example, in the research re- 
ported below, each patient is described as a pattern of 14 
different features, where each feature is the number of 
scintillation counts detected by SPET measurement of a 
specific brain region. The goal of a pattern recognition 
system would be to classify a particular patient (i.e., to 
label them as normal or as pAD) on the basis of these in- 
put features. 

Importantly, not all pattern recognition tasks have the 
same level of difficulty. Some pattern recognition tasks 
are very easy, because a patient can be classified as be- 
ing a member of particular group by noting the presence 
or absence of a definite feature. For example, let us im- 
aginge that using SPET to diagnose pAD was this kind 
of task. This would mean that the presence of one fea- 
ture (say, reduced temporal lobe perfusion) would indi- 
cate that the subject had probable Alzheimer's disease, 
and the absence of this feature would indicate this was 
not the case. In general, an easy pattern recognition task 
like this is linearly separable. For instance, in our exam- 
ple each patient could be represented as a single point in 

a 14-dimensional space, where their coordinate in each 
dimension of this space was the value of a specific SPET 
feature. In a linearly separable problem, a single straight 
cut (i.e. a hyperplane) could be made through this space 
that would separate all the pAD patients from all the non- 
pAD patients. In our imaginary example, this cut would 
separate all the patients with low temporal lobe perfu- 
sion from those with normal temporal lobe perfusion. 

Previous studies that have attempted to diagnose pAD 
using SPET appear to have implicitly adopted the as- 
sumption that this pattern recognition problem is "easy", 
in the technical sense that it is linearly separable. For in- 
stance, many researchers have attempted to discover a 
single positive feature (e.g. some quantitative index of 
temporal or parietal perfusion capable of discriminating 
pAD patients from comparison groups [e.g. 1, 4, 5]. Fur- 
thermore, most studies have used very small numbers of 
patients, and, in some cases, have also used prescreening 
methods that have ensured that these small groups are 
quite homogeneous [e.g. 5]. In general, pattern recogni- 
tion systems trained on a small number of instances will 
only correctly classify new patterns if they are dealing 
with a linearly separable class [ e.g. 12, 13]. 

Unfortunately, it is not at all clear that a SPET basis 
for the diagnosis of pAD is "easy" or linearly separable. 
This is because there is a good deal of neurological [e.g. 
14] and behavioural [15, 16] variability within the popu- 
lation of pAD patients. As a result, there may not be a 
definite quantitative feature that leads to a unique and 
correct diagnosis. Perhaps SPET's poorer diagnostic 
utility relative to other imaging techniques [9] may sim- 
ply reflect that researchers have mistakenly treated the 
identification of pAD patients as a linearly separable 
problem. If this is the case, then more accurate diagnosis 
will require that complex interactions among many dif- 
ferent input features be considered. Furthermore, more 
than one of these interactions may be indicative of pAD. 
In short, the diagnosis of pAD using SPET may be a 
"hard" or linearly non-separable problem, and as a re- 
sult may require novel quantitative approaches in order 
to be solved. 

In general, the solution to a linearly non-separable 
problem requires that many different cuts be made 
through a pattern space in order to separate members of 
one class from the members of another. Because of this, 
standard statistical techniques (e.g. multiple regression) 
which are capable of discovering definite features that 
solve linearly separable pattern recognition problems are 
very poor at discovering solutions to linearly non-sepa- 
rable problems (see below). In contrast, a modern ANN 
is admirably suited to solving linearly non-separable 
problems [e.g. 17] because it can use internal feature de- 
tectors to discover multiple non-linear interactions 
among a set of input variables, which in turn permit a 
complex partitioning of the pattern space. 

Introduction to ANNs'. An ANN is a computer simulation 
of a "brain-like" system of interconnected processing 

European Journal of Nuclear Medicine Vol. 21, No. 12, December 1994 



1305 

units (Fig. 1). In general, an ANN can be viewed as a 
multiple-layer system for generating a desired response 
to an input stimulus. The stimulus is provided by the en- 
vironment, and is encoded as a pattern of activity in a set 
of  input units. The response of the system is represented 
as a pattern of activity in the network's output units'. In- 
tervening layers of processors, called hidden units', detect 
higher-order regularities in the input stimulus that allow 
the network to make a correct or appropriate response. It 
is these hidden units that result in the multiple partition- 
ing of a pattern space, permitting the solution of linearly 
non-separable problems. 

Processing units in an ANN are typically viewed as 
being analogous to neurons, and are presumed to operate 
in parallel. The behaviour of  a single processing unit in 
this system can be characterized as follows: First, the 
unit computes the total signal being sent to it by other 
processors in the network. Second, the unit adopts a par- 
ticular level of  internal activation on the (non-linear) ba- 
sis of this computed signal. Third, the unit sends a signal 
based on this internal activity to other processors in the 
network. 

The signal that one processor sends to another is 
transmitted through a weighted connection, which is typ- 
ically described as being analogous to a synapse. The 
connection itself is merely a communication channel. 
The weight associated with this connection defines the 
nature and strength of the connection. For example, in- 
hibitory connections are defined with negative weights, 
and excitatory connections are defined with positive 
weights. The strength of the connection is defined by the 
size (i.e. absolute value) of  the weight. The pattern of 
connectivity in an ANN (i.e. the networks's entire set of 
connection weights) defines the causal relations between 
the network's processors and is therefore analogous to a 
program in a conventional computer [e.g. 18]. 

However, in contrast to a conventional computer, the 
ANN is not given a step by step procedure to perform 
some desired task. Instead, the network is taught to do 
the task. For example, consider a popular supervised 
learning procedure called the generalized delta rule [e.g. 
19]. To train a system with this rule, one starts with a 
network (of a prespecified number of processing units) 
that has small, randomly assigned connection weights. 
The network is then "developed" by presenting it a set of  
training patterns, each of which is associated with a 
known correct response. To train a network on one of 
these patterns, the pattern is presented to the network's 
input units, and the network generates a response to this 
stimulus using its existing connection weights. An error 
value for each output unit is generated by comparing the 
actual output to the desired output. This error value is 
then fed backwards through the network, and is used to 
modify connection weights in such a way that the next 
time this pattern is presented to the network, the net- 
work's  output errors will be smaller. By repeating this 
procedure a large number of times for each pattern in the 
training set, the network's response errors for each pat- 

OUTPUT UNITS 

HIDDEN UNITS 

INPUT UNITS 

Fig. 1. An illustration of an artificial neural network architecture. 
The circles represent processing units, and the lines between 
circles represent modifiable connections. This particular network 
was used to classify subjects on the basis of SPET scores (see 
Materials and methods). As indicated by the labels at the bottom, 
each input unit is used to encode a subject's measure of perfusion 
for a particular ROI. The two output units are used to identify 
subject types. As indicated by the labels, one of these units was 
trained to generate a response of 1 to a pAD patient and to 
generate a response of 0 to a comparison subject. The other unit 
was trained to generate the opposite set of responses. A varying 
number of hidden units were used in different networks, ranging 
from zero (there were only direct connections between input and 
output units) to 20 

tern can be reduced to near zero. At the end of this pro- 
cedure, the network will have a very specific pattern of  
connectivity (in comparison to its random start) and will 
have learned to perform the desired stimulus/response 
pairing (if it is possible for such a pairing to be learned). 

Regression vs ANNs. In order to see why an ANN may be 
more capable than standard statistical techniques of  dis- 
criminating pAD from control SPET images, let us brief- 
ly describe multiple regression in the ANN framework. 
Figure 2a represents multiple linear regression as a sim- 
ple ANN. The input units are used to represent the values 
of predictor variables, the weights of the connections are 
used to represent the regression coefficients associated 
with these variables, and the line in the output unit indi- 
cates that the response of the network is only a linear 
combination of the (weighted) predictors. Figure 2b rep- 
resents multiple non-linear regression (e.g. probit analy- 
sis) as an ANN. The only difference between it and Fig. 
2a is the non-linear transformation of (weighted) predic- 
tors that is accomplished by the non-linear function in the 
output unit. It has been proved [20] that the networks il- 
lustrated in Fig. 2a and b can only solve linearly separa- 
ble pattern recognition problems, and that they cannot 
solve linearly non-separable problems. This is because 
the activation function in the output unit for either type of 
network can only be used to carve a single cut through a 
pattern space. 

Figure 2c represents a network from modern connec- 
tionism. In contrast to the networks illustrated in Fig. 2a 
and b, it has a layer of hidden units that permit a variety 
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OUTPUT = aX + bY + cZ 

�9 
OU'I 'PUT = f( aX + bY + eZ ) 

x Y z 
X Y Z 

A B 
OUTPUT = f(af(X,Y,Z) + bf (X,Y,Z)) 

X Y Z 

C 
Fig, 2 A-C.  A comparison of statistical techniques from a neural 
network perspective. A Multiple linear regression can be viewed 
as a network with a linear activation function (straight line in 
output unit) whose connection weights are analogous to coeffi- 
cients in a regression equation. B Multiple non-linear regression is 
similar, with the exception that some non-linear functionfdefines 
output unit activity. C A modern connectionist network has an 
additional layer of non-linear feature detectors that result in 
additional predictive power 

o f  n o n - l i n e a r  t r a n s f o r m a t i o n s  and  c o m b i n a t i o n s  of  the 
inpu t  var iab les  to be  c o m p u t e d  pr ior  to their  b e i n g  
passed  to the ou tpu t  uni t .  T h e  p re sence  o f  these  h idden  
uni ts  pe rmi t s  such ne tworks  to d i s c r i m i n a t e  pa t te rns  that  
cou ld  no t  be  d i s c r i m i n a t e d  by  the  o ther  ne tworks  be-  
cause  each  h idden  uni t  can  p rov ide  a new pa r t i t i on ing  of  

the pa t te rn  space  [ 19, 21 ]. 

Purpose of the study 

The  p rev ious  sec t ion  has a rgued  that,  in  p r inc ip le ,  A N N s  
are capab le  of  p r o v i d i n g  bet ter  d i agnos i s  o f  p A D  fu 
S P E T  m e a s u r e m e n t s .  Is this  t rue in prac t ice?  The  re- 
search repor ted  be lo w  a t t empted  to d e t e rmi n e  the capa-  
b i l i ty  o f  A N N s  to d i s c r i m i n a t e  p A D  pat ients  f rom a 
hea l thy  c o m p a r i s o n  g roup  on  the bas is  o f  SPET.  In  con-  
trast  to m a n y  p rev ious  s tudies ,  a ve ry  large and  he te roge-  
neous  g roup  of  p A D  pa t ien ts  was  e x a m i n e d ,  to accura te -  
ly ref lect  the po ten t i a l  c o m p l e x i t y  o f  this pa t te rn  recog-  
n i t ion  task. T h e  d i agnos t i c  ab i l i ty  o f  a n u m b e r  o f  A N N s ,  
each  d i f fe r ing  f rom the o thers  in  te rms  of  the n u m b e r  of  
their  h i d d e n  uni t s ,  was  assessed.  The  p e r f o r m a n c e  o f  the 

A N N s  was c o m p a r e d  to the ab i l i ty  of  mu l t i p l e  l inear  re- 
g ress ion  to pred ic t  g roup  m e m b e r s h i p  on  the bas is  o f  the  
s ame  set o f  S P E T  predic tors .  

Materials and methods 

Subjects 

Alzheimer's patients. Ninety-seven patients with a diagnosis of 
pAD consistent with the NINCDS-ADRDA [22] criteria participat- 
ed in the research. The CAMDEX [23] served as the primary diag- 
nostic tool, with CT scans being obtained for most patients. The 
CT scans showed no evidence of vascular events or space-occupy- 
ing lesions. 

The patients ranged in age from 63 to 93 years (mean: 78.6 
years), with 23 males and 74 females in the group. These patients 
came from two sources. One set was in-patients recruited from the 
Geriatric Psychiatry Unit, Edmonton General Hospital. These pa- 
tients were in the hospital for assessment and rehabilitation, with 
their average stay being about 4 weeks. The other participants 
were out-patients who had been referred to the Memory Clinic of 
the same hospital. There were differences in the male to female 
ratio (6/42 for the in-patients and 17/32 for the out-patients), but 
there was Iittle in the way of differences between the two groups 
in terms of age or dementia severity. The mean age of the in-pa- 
tient group was 79.2 years and the mean age of the out-patient 
group was 76.6 years. The number of persons in each of the cate- 
gories of dementia severity were minimum = 13, mild = 18, mod- 
erate = 15 and severe = 2 for the in-patient group, and minimum = 
5, mild = 33, moderate = 9 and severe = 2 for the out-patient 
group. 

Comparison subjects. Sixty-four community-dwelling adults 
served as a comparison group. This group consisted of 25 males 
and 39 females. The mean age of the group was 53.2 years, and the 
mean number of years of education for the group was 14.4 years. 
Comparison subjects had been screened for any neurological im- 
pairments (e.g. strokes, head injuries, alcoholic blackouts) that 
could have led to abnormal SPET images. While there was a sig- 
nificant difference in mean age for these two groups, in normal 
subjects this alone does not typically lead to differences in SPET 
measurements [24]. 

Imaging procedures 

All individuals were imaged according to the same protocol; the 
protocol for each group of subjects was approved by the hospital 
ethics committee and all individual subjects or their caregivers 
gave appropriate written informed consent prior to the procedure. 

Prior to injection, each subject rested supine in a quiet, dark- 
ened room for 5-10 min with a butterfly inserted. The subject was 
then injected with 550 750 MBq 9~ without chang- 
ing the ambience and rested for a further 5 rain. Imaging was 
commenced 30-60 min after injection. Image acquisition was 
identical between the two groups. All images were acquired for 64 
frames with a total 100 K per frame acquired. Acquisition time 
per frame is usually 20-25 s. 

Projection images were acquired with a GE 400AC o1 GE 
400AT rotating gamma camera equipped with a low-energy all- 
purpose parallel hole collimator and interfaced to a Picker PCS 
512 dedicated computer running a TSX operating system. The re- 
construction parameters have been previously described [25]. Im- 
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ages were displayed in sagittal, axial and coronal sections for 
qualitative evaluation and prior to the quantitative data fitting. 

Determination of SPET measures 

Data from each subject's SPET examination were analysed using 
an iterative three-dimensional ROI model [25]. The model con- 
sists of seven continguous but non-overlapping volumes in each 
side of the brain, resulting in 14 regions in total [see 25, Fig. 1]. 
These are labelled as the (left or right) superior frontal (LSF, 
RSF), inferior frontal (L1F, R1F), parietal (LR RP), occipital (LO, 
RO), temporal (LT, RT), midbrain (LM, RM) and cerebellar (LC, 
RC) regions. After the model is fit, data from an individual patient 
are represented as the total number of counts measured in each of 
the 14 different volumes. For the purpose of analysis by the net- 
works, each of these measures for each subject was then divided 
by 10 000 in order that they be within the range of 0 to approxi- 
mately 12. This did not alter the relationships of any of the mea- 
sures to one another, but merely represented these measures in a 
scale that is typically presented to a network. 

Results 

Standard statistical analyses 

Prior to analysing the SPET data with ANNs,  we at- 
tempted to determine whether a more traditional statisti- 
cal approach would suffice. First, descriptive statistics 
were employed  to determine whether there were any 
ROI measures that revealed significant differences be- 
tween the two groups. Table 1 provides the mean counts 
for each ROI for the two groups, as well as the results of  
independent  t tests used to compare the statistical differ- 
ence between these means. This table reveals four im- 
portant findings. First, the mean number  of  counts in a 
ROI  were always lower for the Alzheimer ' s  group than 
for the comparison group. Second, an examination o f  the 
means and standard deviations for each RO! indicates a 
substantial overlap between the two groups in the distri- 
butions of  their SPET measures. Third, and not surpris- 
ingly given the overlapping distributions, differences be- 
tween groups were statistically significant tbr only two 
ROIs:  the left and right midbrain. Fourth, while this 
study indicates that both temporal  and parietal counts 
were lower for the pAD group than for the control, this 
difference was not statistically significant. 

These last two findings are inconsistent with those of  
previous researchers. On the one hand, the significant 
difference between the groups for the two midbrain 
ROls are likely an artefact of  the dataset. Specifically, in 
Hooper  et al.'s [25] three-dimensional ROI model,  the 
two midbrain volumes are substantially smaller than the 
other 12 ROIs. The result is lower mean cerebral perfu- 
sion, and more importantly lower within-group variabili- 
ty, for these two small ROIs (see Table 1). With the large 
number  of  subjects in our sample, this decrease in vari- 
ability was sufficient to make these two mean differenc- 
es statistically significant. On the other hand, the failure 
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Table 1, Mean scaled counts for the two groups as measured in 
each region of interest; standard deviations of each mean are 
presented in parentheses. The t tests used to compare means used 
pooled variances, and each had 159 degrees of freedom 

Region Perfusion in ROI 
of 
interest pad Comparison 

t Probability 

RSF 5.001 5.241 -1.188 0.237 
(1.269) (1.264) 

LSF 4.960 5.138 -0.892 0.373 
(1.246) (1.267) 

RIF 5.247 5.422 -0.831 0.407 
(1.314) (1.330) 

LIF 5.198 5.331 -0.638 0.525 
(1.318) (1.297) 

RP 11.761 12.279 -1.099 0.273 
(2.967) (2.925) 

LP 11.802 12.187 -0.816 0.415 
(2.968) (2.935) 

RO 11.038 11.623 -1.316 0.190 
(2.815) (2.747) 

LO 11.107 11.645 -1.205 0.230 
(2.864) (2.692) 

RT 1 / .268 11.776 -1.142 0.255 
(2.832) (2.727) 

LT 11.245 11.690 -1.000 0.319 
(2.807) (2.754) 

RM 3.214 3.550 -2.621 0.010 ..... 
(0.785) (0.834) 

LM 3.199 3.551 -2.746 0.007 
(0.778) (0.842) 

RC 7.195 7.408 -0.798 0.426 
(1.750) (1.548) 

LC 7.375 7.545 -0.622 0.535 
(1.771) (1.612) 

to find significant differences in the temporal  or parietal 
ROIs is due to the fact that in these larger ROIs, particu- 
larly with a large and heterogeneous sample of  subjects, 
within-group variability an overlap between the distribu- 
tions o f  the two groups are both high enough to prevent 
significant between-group differences f rom emerging.  
Furthermore,  the majority o f  our patient sample was in 
the minimum to mild range (71%) and Frlich et al. [14] 
have shown that dysfunct ion in temporal  and parietal ar- 
eas is correlated with dementia  severity. 

Our second statistical approach to this dataset was to 
use multiple regression to determine whether a linear 
combinat ion of  the 14 SPET measures could be used to 
reliably discriminate the two groups. In this analysis, the 
predicted variable was group membership,  which was 
coded as -1  for the p A D  patients and as 1 for the com-  
parison group. The regression equation that included all 
14 SPECT measures was statistically significant (R = 
0.579, F = 5.323, df= 14, 148; P < 0.001). Even so, this 
equation still accounted for only 33.5% of  the variance 
in the data. 
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In summary, while traditional statistical analyses did 
reveal a few statistically significant effects, they did not 
provide sufficient predictive power to serve as a diagnos- 
tic instrument. 

Results from ANNs 

A series of  ANNs were trained to discriminate the two 
groups of subjects using the SPET data as input. Each 
ANN had 14 input units, each of which was used to en- 
code counts for a particular ROI (see Fig. 1). Each ANN 
also had two output units. One of these output units was 
trained to generate a response of 1 to a pAD patient and 
a response of 0 to a comparison subject. The other out- 
put unit was trained to generate a response of 1 to a 
comparison subject, and a response of 0 to a pAD pa- 
tient. We used two output units instead of one to allow 
the network to encode anomalies; for example, if both 
output units generated 0 activation, then this would indi- 
cate that the subject in question was not characteristic of 
the Alzheimer 's  group, but was also not characteristic of  
the comparison group. Networks differed from one an- 
other only in terms of the number of  hidden units that 
were employed. We examined five different types of net- 
works: 0 hidden units (i.e. there were direct connections 
from input to output), and 5, 10, 15 and 20 hidden units. 
This approach was taken because the predictive power of 
a network (i.e. its ability to learn the desired discrimina- 
tion) should increase with the number of  hidden units 
employed. 

Dawson and Schopflocher 's  [10] value unit architec- 
ture was used to define the properties of  each processing 
unit in the networks. In this architecture, every output 
unit and hidden unit uses a Gaussian activation function 
to perform a non-linear transformation of its net input. 
As a result, each hidden unit makes two cuts in a pattern 
space, instead of the single cuts provided by the units il- 
lustrated in Fig. 2. This architecture was adopted be- 
cause previous studies have shown that it can outperform 
standard architectures [e.g. 19] at difficult pattern dis- 
crimination tasks. Furthermore, there is reason to believe 
that value unit networks are better at generalizing what 
they have learned to new instances [13], and that it is 
easier to interpret how a particular network is perform- 
ing a particular pattern recognition task [26]. 

Each network was trained using Dawson and Schopf- 
locher's [10] elaboration of Rumelhart et al.'s [19] gen- 
eralized delta rule, with a learning rate of 0.03 and a mo- 
mentum of 0. Connection weights and unit biases (i.e. 
the mean of the Gaussian) were randomly selected from 
the range -0.3 to +0.3. Each network was trained for 20 
000 epochs (i.e. 20 000 presentations of each subject's 
data); the order of pattern presentation was randomized 
during learning. At the end of training, the response of 
each output unit in the network was determined for each 
subject's SPET data, and the proportion of variance ac- 
counted for was used as a measure of the network's di- 

agnostic ability. (Note that each output unit is being 
trained to discriminate all 161 subjects, and as a result 
proportion of variance accounted for can be computed 
independently for output unit 0 and output unit 1 .) In or- 
der to determine the average ability of the networks to 
learn this pattern discrimination task, ten separate train- 
ing sessions were conducted for each size of  network. 

The mean proportion of variance accounted for by the 
networks is illustrated in Fig. 3. Two conclusions can be 
drawn from this figure. First, on average the ANN ac- 
counted for a great deal more of the variance in the data 
than is accounted for by the multiple regression. Second, 
as the number of  hidden units is increased, the predictive 
power of the networks also increases. Indeed, if one uses 
15 or 20 hidden units, then one is accounting for be- 
tween 80% and 90% of the variance in the data. 

While none of the network that were trained account- 
ed for 100% of the variance of the data, this does not 
necessarily mean that the networks were unable to per- 
fectly discriminate the two groups of subjects. Figure 4 
presents a scatterplot of  the output activities produced by 
each subject's SPET data in a 15 hidden unit network. It 
can be seen that in this scatterplot there is absolutely no 
overlap between members of  the two groups of subjects. 
Clearly, even with this sample of relatively mild pAD 
patients, the ANN approach was able to differentiate the 
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output of an output unit and the desired output of the unit. The 
dashed line represents the proportion of variance accounted for by 
the multiple regression equation. Note that the solid line plots the 
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patient and normal samples when the traditional statisti- 
cal approach was unsatisfactory. 

Transfer of  learning to new cases 

The goal of the simulations described above was to de- 
termine the ability of ANNs to discover a mapping be- 
tween SPET measures and patient categories. In light of 
this goal, the networks were trained on a single data set, 
and the dependent measure reflected the amount of clas- 
sification error that remained at the end of training. The 
results of these simulations demonstrated that ANNs are 
very capable of learning a mapping that allows accurate 
patient classification on the basis of the input data. 

Some researchers, with their first glance at Figs. 3 
and 4, might argue that these results are not interesting. 
After all, during training the network is "told" which pa- 
tient category each set of SPET scores belongs to. As a 
result, these researchers tend not to be surprised that the 
network can learn to categorize patients in the training 
set. In their mind, it would be much more interesting to 
see how well a network transfers what is has learned 
about one set of patients to new patients who have not 
previously been used during training. 

This view of the data fails to recognize the fact that 
discovering an accurate mapping fi'om SPET measures 
to patient categories is a non-trivial achievement. For ex- 
ample, the multiple regression technique to which the 
ANNS were compared also "knew" which patient cate- 
gory each set of SPET scores was associated with, but 
was far less successful in using this information to deter- 
mine an accurate metric for subject classification. In our 
view, one should determine that a system has the poten- 
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tial to make accurate diagnoses prior to testing its ability 
to generalize. Testing the ability of a system to general- 
ize when it was, say, only 25% accurate on a training set 
would be fruitless. This perspective is particularly ger- 
mane when standard statistical techniques are relatively 
poor in using the SPET measures for diagnosis. 

The results reported above clearly indicate that ANNs 
have the potential to be accurate tools for the diagnosis 
of pAD on the basis of SPET measures. As a result, the 
next logical step in evaluating their potential for applica- 
tion in a clinical setting is to investigate how well perfor- 
mance generalizes to new patient samples. 

ANNs are attractive because they have, in principle, 
very high potential to generalize what they have learned 
to new instances [e.g. 27]. In practice, however, the abil- 
ity of an ANN to transfer its knowledge is strongly af- 
fected by many factors, including the number of hidden 
units in the network, the number of connections in the 
network, the amount of training sweeps that have been 
used, the number of patterns in the training set, the types 
of processing units that are used in the network and the 
complexity of the mapping that the network is learning 
[e.g. 13, 28-30]. As a result, a complete study of the fac- 
tors that produce good (or bad) generalization in the net- 
works described above is beyond the scope of the cur- 
rent manuscript. However, pilot results on network gen- 
eralization have been very encouraging. 

For example, in one study we randomly deleted 40 
patients from the training set, and then trained a 15 hid- 
den unit network on the remaining patients using the 
same methods described above. At the end of training, 
the network's ability to categorize the 40 patients that it 
had not seen was tested. This was done by recording the 
network's response to each patient's set of SPET mea- 
sures, converting the network's response into a forced 
choice diagnosis. This conversion was accomplished by 
assigning the subject to the patient category to which the 
network's response was more similar. (In graphical 
terms, if the network's response was plotted as a point in 
Fig. 4, then the patient was assigned to the patient cate- 
gory to which this point was closest to. In Fig. 4 the A1- 
zheimer category is the upper left hand corner, and the 
comparison category is the lower right hand corner.) The 
results of this simulation indicated that the network 
achieved an overall accuracy rate of 72.5% in classifying 
the 40 new patients (18 correct classifications of 24 pAD 
patients and 11 correct classifications of 16 comparison 
patients). We are currently studying generalization more 
rigorously in order to determine how changes in network 
architecture (e.g. reductions in number of hidden units, 
reduction of the amount of training of the network) can 
produce even higher transfer rates. 

D i s c u s s i o n  

While a few researchers have attempted to use ANNs to 
model to memory deficits observed in Alzheimer's dis- 
ease [e.g. 31], to our knowledge no one has attempted to 
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use A N N s  as an aid to its d iagnosis .  The results  present-  
ed above  c lear ly  indicate  that A N N s  have a s ignif icant  
amount  o f  c l inical  potent ia l  in this field. As well,  these 
results  conf i rm those o f  previous  researchers ,  and indi-  
ca te  that SPET also offers an ex t r eme ly  va luable  tool for 
the ear ly d iagnos is  o f  this disorder.  

However ,  the results  also indicate  three re la ted cave-  
ats to the c l in ica l  use of  SPET for this disease.  First ,  our  
" t rad i t iona l"  stat is t ical  ana lyses  ind ica ted  that even 
though one could  f ind s ta t is t ical ly  s ignif icant  di f ferences  
be tween  group means ,  these di f ferences  could  not be 
t ransla ted into a power fu l  quant i ta t ive measure  capable  
of  d i sc r imina t ing  the two groups  o f  subjects.  Second,  a 
s ingle posi t ive  feature for  the d iagnos is  o f  A l z h e i m e r ' s  
d isease  did  not reveal  itself. Third,  as subject  samples  
b e c o m e  larger  and more  he te rogeneous ,  typica l  indices  
used to d i scr imina te  p A D  pat ients  f rom other  groups - 
such as reduced  par ie ta l  and tempora l  lobe perfusion - 
c lear ly  do not work  as well .  In short, our data  suggest  
that  p A D  diagnos is  using SPET is a l inear ly  non-separa-  
ble  pat tern recogni t ion  problem.  As  a result ,  ANNs ,  or  
some  other  sophis t ica ted  stat ist ical  technique capable  o f  
de tec t ing  complex  non- l inear  re la t ionships ,  may  be nec- 
essary  to tap the d iagnos t ic  potent ia l  o f  SPET. 

Whi l e  these results  are ex t remely  encouraging ,  many  
addi t ional  quest ions  mus t  still be addressed.  Our  current  
research is focus ing  on three different  issues:  the extent  
to which the predic t ive  power  o f  the current  networks  
will  genera l ize  to new samples ,  the extent  to which a 
ne twork  can d i sc r imina te  more  than two different  groups  
o f  subjects  on the basis  o f  SPET, and the extent  to which  
one can interpret  the structure o f  a t rained ne twork  to de- 
te rmine  the kinds o f  non- l inear  re la t ionships  being used 
to de te rmine  group membersh ip .  
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