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The “chick-a-dee” call of the black-capped chickadee �Poecile atricapillus� contains four note types,
A, B, C, and D that have important functional roles. This provides strong motivation for studying
the classification of acoustic components of the call into different note types. In this paper, the
spectrograms from a sample of A, B, and C notes �370 in total� were each described as a set of 9
summary features. An artificial neural network was trained to identify note type on the basis of these
features, and was able to obtain better than 98% accuracy. An internal analysis of this network
revealed a distributed code in which different hidden units generated high activities to different
subsets of notes. By combining these different sensitivities, the network could discriminate all three
types of notes. The performance of this network was compared to a discriminant analysis of the
same data. This analysis also achieved a high level of performance �95%�. A comparison between
the two approaches revealed some striking similarities, but also some intriguing differences. These
results are discussed in terms of two related issues: developing a research tool for note classification,
and developing a theory of how birds themselves might classify notes. © 2006 Acoustical Society
of America. �DOI: 10.1121/1.2189028�
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I. INTRODUCTION

Songbirds are a popular model for the study of verte-
brate acoustic communication �e.g., Slater, 2003�. One rea-
son for this is that the circumstances under which songbirds
learn song from a model can be viewed as being analogous
to human language learning �Doupe and Kuhl, 1999; Gold-
stein et al., 2003�. That said, song is not the only class of
vocalizations that songbirds learn from a model. For ex-
ample, songbirds also learn calls that are used in the context
of specific behavioral interactions. As a result, more general
studies of acoustic signaling and communication in song-
birds are broadening their scope to include examinations of
learned calls and other vocalizations in addition to learned
songs �e.g., Hailman and Ficken, 1996; Hughes et al., 1998;
Vicario et al., 2002�. The purpose of this paper is to report
the results of one such examination of the notes of a learned
call of a small songbird native to North America, the black-
capped chickadee �Poecile atricapillus�. We show that when
the notes of this call are represented as small sets of acoustic
features, a nonlinear statistical method �artificial neural net-
work� and a linear statistical method �linear discriminant
analysis� are both capable of using these features to correctly
classify notes into different note types.

The black-capped chickadee is one songbird that has
provided a great deal of information about learned calls. One
of the learned calls for this species is the “chick-a-dee” call,
for which the species was named �Ficken et al., 1978�.
Chick-a-dee calls contain four note types, labeled A, B, C,
and D. Chick-a-dee calls are interesting because while their
component notes are generated in a fixed order �A→B
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→C→D�, in a particular call note types can be either re-
peated or omitted. As a result, a seemingly infinite variety of
different chick-a-dee calls can be produced �e.g., ACCCCD,
ABDDD; see Figs. 1 and 2 for examples of calls and the
constituent note types, respectively�. Indeed, the combinato-
rial nature of the chick-a-dee call has been used to draw
interesting analogies between it and human speech �Hailman,
1985�.

The different note types from which the chick-a-dee call
is composed are important for a number of reasons. First,
chickadees appear to vary the note-type composition of their
chick-a-dee calls depending on the particular context �e.g.,
Ficken et al., 1994; Gaddis, 1985; Smith, 1972�, suggesting
that different distributions of note types within calls convey
different information. Second, chickadees fail to respond in a
species-typical fashion to the playback of chick-a-dee calls
that have an atypical syntax. Reduced responsiveness can be
caused by gross syntactical violations, such as complete re-
versal of call syntax �DCBA rather than ABCD�; �Charrier
and Sturdy, 2005�, or from more subtle syntactical violations
�CACACA instead of AAACCC; Clucas et al., 2004�. Third,
even more subtle alterations of notes within chickadee calls
can cause birds to treat calls as atypical. Charrier and Sturdy
�2005� found that chickadee calls with the correct syntax
�ABCD� but in which each individual note was time-
reversed, thus altering both amplitude and frequency modu-
lation patterns of the notes within the calls, led to signifi-
cantly reduced responding compared to normal calls. Fourth,
black-capped chickadees are themselves able to discriminate
and categorize the different note types of the chick-a-dee
call, although they sometimes confuse adjacent note types

�Sturdy et al., 2000�. Finally, different chick-a-dee call note
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types have been associated with conveying specific informa-
tion. For instance, the D note appears to be critical for birds
being able to distinguish between chick-a-dee calls from

FIG. 1. Sound spectrograms of black-capped chickadee chick-a-dee calls f
AABBDDD �middle�, and AAABDDDD �bottom�, respectively. �Hamming
members of their flock from the same kind of calls produced
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by members of a foreign flock �Mammen and Nowicki,
1981; Nowicki, 1983�. The C note appears to be used to
indicate the location or availability of food sources �Freeberg

3 different birds. The note composition of these calls is AABCDDD �top�
ow size=1024 points, frequency precision=21 Hz�.
rom
and Lucas, 2002�. Taken together, it seems clear that the
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accurate perception of individual note types in the chick-a-
dee call is a crucial and fundamental building block of
chickadee’s acoustic communication system.

The fact that the constituent notes of the chick-a-dee call

FIG. 2. Sound spectrograms of the four different note types found in black-c
type from 2 different birds. �Hamming window size=1024 points, frequenc
have important functional roles provides strong motivation
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for studying the classification of acoustic components of the
call into one of the four different note types. Nowicki and
Nelson �1990� describe such note classification as identifying
natural categories in the acoustic signal. They point out that

chickadee chick-a-dee calls: A, B, C, and D notes. Exemplars for each note
cision=21 Hz�.
apped
one critical research question is to determine how black-
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capped chickadees themselves identify such natural catego-
ries. A related and equally crucial question, studied in detail
by Nowicki and Nelson, is how researchers themselves can
identify these natural categories to aid in studying the prop-
erties of the call.

The traditional approach to this classification problem is
exemplified by bioacousticians, who examine the visual rep-
resentation of a vocalization �e.g., a chick-a-dee call� in the
form of a sound spectrogram, and use visual features of the
call to identify and classify its component note types. This
technique has been used by several researchers to classify the
notes of vocalizations from several songbird species �e.g.,
mountain chickadee, Poecile gambeli, chick-a-dee call notes,
Bloomfield et al. �2004�; Carolina chickadee, P. carolinensis,
chick-a-dee call notes, Bloomfield et al. �2005�; Black-
capped chickadee chick-a-dee call notes, Charrier et al.
�2005�; Ficken et al. �1978�; and Nowicki and Nelson
�1990�; zebra finch, Taeniopygia guttata, song notes, Sturdy
et al. �1999b��. Some of these visual classifications have
been verified with the species that produces them via operant
conditioning discrimination tasks �e.g., Sturdy et al., 1999a,
2000�, providing a necessary validation to the visual classi-
fication. That said, not all visually-guided classifications of
animal vocalizations have been verified empirically, and de-
pending on the species under study, many laboratory-based
verifications may be impractical or impossible to conduct.

A less subjective approach to identifying natural catego-
ries of notes is to take spectrograms as raw data for tradi-
tional statistical analyses. Nowicki and Nelson �1990� pro-
vided one example of this approach. They took spectrograms
representing 240 different notes �60 notes from each of 4
different birds�, and cross-correlated all possible pairs of
notes from this dataset. They then took the resulting correla-
tion matrix and analyzed it with multidimensional scaling
�MDS�. MDS is a technique that provides a graphical repre-
sentation of data, where data instances are represented as
points in a multidimensional space �Kruskal and Wish,
1978�. The more similar two instances of data are to one
another, the nearer are their corresponding points in the
space. Nowicki and Nelson found that a two-dimensional
space provided an excellent account of their data. The MDS
plot revealed a good segregation of each note type into dif-
ferent clusters with little overlap. This result was particularly
encouraging because Nowicki and Nelson included D notes
in addition to A, B, and C notes in their analysis. Because D
notes are dramatically different than the other three in terms
of acoustic properties, their inclusion possibly made differ-
ences between A, B, and C notes less apparent.

Another approach, also explored by Nowicki and Nelson
�1990�, is to take raw spectrograms and summarize them into
a more tractable set of summary features. These summary
features can then be used as input to a variety of statistical
methods as an aid to note classification.

For example, Nowicki and Nelson �1990� described
each of their non-D notes, that is A, B, and C notes �a sample
of 185 stimuli�, as a small set of different acoustic features
that were derived from the spectrogram of the note. These
features included such measurements as the total note dura-

tion, the starting, peak, and ending frequencies of the note,
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and so on. They created a matrix of correlations between
every pair of notes on the basis of these features, and then
performed principal components analysis on this matrix.
They were able to account for over 68% of the variance in
the correlation matrix with three principal components. They
then described each of the 185 notes in terms of their load-
ings on these three factors, and processed this stimulus rep-
resentation with k-means cluster analysis. They found that
three clusters provided the most parsimonious account of the
data.

A classification matrix based on the k-means solution
indicated that this statistical approach generated a 77.3%
agreement with visual classification of notes. That is, 143 of
the notes were given the same classification that was as-
signed after a visual inspection of the spectrogram. With re-
spect to misclassifications, 8 of the 71 A notes were classified
as B notes, and 6 were classified as C notes. Similarly, 1 of
the 65 B notes was classified as an A note, and 22 were
classified as C notes. Finally, 5 of the 49 C notes were clas-
sified as B notes.

On the one hand, Nowicki and Nelson �1990� demon-
strated that it is possible to use a variety of statistical analy-
ses to classify notes in such a way that there is a high amount
of agreement between statistical classifications and visual
classifications. On the other hand, their research raises two
questions that deserve additional study. First, is it possible to
improve the already good fit between statistical and visual
classifications by exploring alternative statistical methods?
Second, is it possible to explore some form of statistical
classification that might provide additional insight into how
the birds themselves might perform note classification?

The purpose of this paper is to explore both of these
questions by examining the ability of an artificial neural net-
work to classify notes when these notes are described as a
small set of features that have been derived from a spectro-
gram. The artificial neural network that we investigated is
called a multilayer perceptron. In comparison to traditional
statistics, this kind of network can provide classification
power because it determines an optimal nonlinear combina-
tion of features. This kind of technique is also of interest
because many researchers have argued that it is more bio-
logically plausible than other techniques �Clark, 1989; Mc-
Clelland et al., 1986; Schneider, 1987; Smolensky, 1988�. As
a result, if one can produce an artificial neural network that is
capable of classifying note types, this network might suggest
general ways in which note classification is performed by the
birds themselves.

This paper proceeds as follows. First we describe the
methods used to obtain and summarize a set of A, B, and C
notes from the chick-a-dee call. Second, we provide a brief
overview of the multilayer perceptron, and examine its abil-
ity to classify this new set of notes. Third, to compare this
approach to more traditional statistical approaches, we ex-
plore the ability of discriminant analysis to classify this same
set of stimuli. Finally, we use the results of these two sets of
analyses to discuss some issues related to the statistical and

to the biological classification of chick-a-dee call notes.
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II. METHODS

The animals, recording procedure, acoustic measure-
ments, and analyses have been published previously �Char-
rier et al., 2004� and will be outlined only briefly here.

A. Animals

Six male and four female adult black-capped chickadees
were captured during the winters of 2002 and 2003 from two
locations in Alberta. Birds were housed in individual cages,
had ad libitum access to food and were maintained on natural
day–night cycle typical for the season in Edmonton and at
approximately 20 °C.

B. Recording procedure, signal acquisition, and
analysis

Each bird was recorded until we had a sample of at least
20 calls for each bird. Recordings �effective frequency range:
90–12 000 Hz� were digitized at 44 100 Hz, 16 bit samples/s
using a 16 bit DartDisk Direct-to-Disk recorder �Engineering
Design, Belmont, Massachusetts, USA�. Calls were analyzed
using SIGNAL version 4.0 �Engineering Design 2003�.

From a sample of 100 calls, 370 non-D �i.e., A, B, and
C� notes were visually classified and measured �205 A notes,
134 B notes, and 31 C notes� as was described in a previous
paper �Charrier et al., 2004�. Nine acoustic features, partially
based on the methods described in Nowicki and Nelson
�1990�, were measured including: start frequency �SF in
hertz�, peak frequency �PF in hertz�, end frequency �EF in
hertz� all of which were measured on a digital spectrogram
�window size=1024 points, frequency precision=43 Hz;
Fig. 2�a�� using a cutoff amplitude of −35 dB relative to the
peak amplitude in the note. We also measured the loudest
frequency �Fmax in hertz� using a power spectrum �average
window size=4096 points, frequency precision=11 Hz; Fig.
2�c��. The duration measurements included were ascending
duration �AD in milliseconds�, descending duration �DD in
milliseconds�, and total duration �TD in milliseconds�, and
were measured on a digital spectrogram �window size
=256 points, temporal precision=5.8 ms; Fig. 2�b��.

Two other measurements of frequency modulation were
also made: the slope of the ascending frequency modulation
�FMasc in hertz per milliseconds following the formula �PF–
SF�/AD� and the slope of the descending frequency modula-
tion �FMdesc in hertz per milliseconds following the formula
�EF–PF�/ DD�.

C. Data preprocessing

There is a tremendous range in the values of the differ-
ent input features that were described earlier. This raised a
concern about how the artificial neural networks would per-
form on these raw data, because the processing units of the
networks must “squash” input values into a narrow range of
from zero to one. We decided to preprocess the data in such
a way that the range of the input features would be reduced,
but the essential characteristics of the raw data would be
unchanged. This was accomplished by normalizing the value

of each feature. That is, for each feature we took the 370
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features values and converted them into z-scores. This pre-
processed data served as the input to both of the different
classification tools that are described in the following.

D. Note classification by artificial neural networks: A
brief introduction to artificial neural networks

An artificial neural network is a computer simulation of
a “brain-like” system of interconnected processing units �see
Fig. 3�. In general, such a network can be viewed as a
multiple-layer system that generates a desired response to an
input stimulus. The stimulus is provided by the environment,
and is encoded as a pattern of activity in a set of input units.
The response of the system is represented as a pattern of
activity in the network’s output units. Intervening layers of
processors in the system, called hidden units, detect features
in the input stimulus that allow the network to make a correct
or appropriate response.

The behavior of a single processing unit in this system
can be characterized as follows: First, the unit computes the
total signal being sent to it by other processors in the net-
work. Second, the unit adopts a particular level of internal
activation on the basis of this computed signal. Third, the
unit generates its own signal, which is based on its level of
internal activity, and sends this signal on to other processors.

The signal sent by one processor to another is transmit-
ted through a weighted connection, which amplifies or at-
tenuates a numerical signal being sent through it. This is
accomplished by multiplying the signal’s value by the weight
associated with the connection. The weight defines the nature
and strength of the connection. For example, inhibitory con-
nections are defined with negative weights, and excitatory
connections are defined with positive weights. Strong con-
nections have strong weights �i.e., the absolute value of the
weight is large�, while weak connections have near-zero
weights.

The pattern of connectivity in an artificial neural net-

FIG. 3. An example multilayer perceptron. The network trained in the cur-
rent manuscript is illustrated in which two hidden units processed the values
of nine input features in order to assign a note to one of three different
output categories.
work �i.e., the network’s entire set of connection weights�
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defines how signals flow between the processors. As a result,
a network’s connection weights are analogous to a program
in a conventional computer �Smolensky, 1988�. However, in
contrast to a conventional computer, an artificial neural net-
work is not given an explicit program to perform some de-
sired task. Instead, the network is taught to do the task.

Multiple layer networks �i.e., networks that contain one
or more layers of hidden units�, are frequently trained with a
learning procedure called the generalized delta rule �Rumel-
hart et al., 1986�. One starts with a network that has small,
randomly assigned connection weights. The network is then
taught by presenting it a set of training patterns, each of
which is associated with a known correct response. Each
pattern is presented to the network’s input units, and �on the
basis of its existing connection weights� the network gener-
ates a response to it. An error term for each output unit is
calculated by measuring the difference between the desired
response of the unit and its actual response.

Error is used to modify connection weights by sending it
backwards through the network. Once the error term for each
output unit has been calculated, the weights of the connec-
tions directly attached to each output unit are modified. Then
the output units send their error as a signal through the modi-
fied connections to the next layer of hidden units. Each hid-
den unit computes its overall error by treating the incoming
error signals as net input �i.e., a hidden unit’s total error is
the sum of the weighted error signals that it is receiving from
each output unit�. Once a hidden unit has computed its over-
all error, then the weights of the connections that are directly
attached to it can be modified. This process can be repeated,
if necessary, to send error signals to the next layer of hidden
units, and stops once all of the connections in the network
have been modified. By repeating this procedure a large
number of times for each pattern in the training set, the net-
work’s response errors for each pattern can be reduced to
near zero. At the end of this training, the network will have a
very specific pattern of connectivity �in comparison to its
random start�, and will have learned to perform a particular
stimulus/response pairing.

E. Network architecture

The network trained in this study was a multilayer per-
ceptron with 9 input units, 2 hidden units, and 3 output units
�see Fig. 3�. Each input unit was used to represent one of the
9 spectrogram features; the input data for network training is
identical to that used as predictors in the discriminant analy-
sis reported later. Each input unit was connected to each
hidden unit, and each hidden unit was connected to each
output unit. There were no direct connections between input
units and output units. The hidden units and the output units
used the sigmoid-shaped logistic function to convert their
incoming signals into internal activity that ranged between 0
and 1.

The network was trained to activate an appropriate out-
put unit to classify a 9-feature input pattern. If the input
pattern was an “A” note, then the network was trained to turn
the first output unit on �and to turn the other two output units

off�. If the input pattern was a “B” note, then the network
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was trained to turn the second output unit on. If the input
pattern was a “C” note, then the network was trained to turn
the third output unit on.

F. Training

The ANN was trained using generalized delta rule. Ini-
tially, all connection weights were randomly assigned values
between 0.1 and −0.1. The biases of the output unit and the
two hidden units �which are analogous to neuronal thresh-
olds� were initialized to a value of 0. The network was
trained with a learning rate of 0.1 and zero momentum.
Weights and biases were updated after the presentation of
each training pattern. Each input pattern was presented once
during a training epoch. Prior to each epoch, the order of
presentation of the individual patterns was randomized. Pilot
studies had indicated that the ANN never converged to a
perfect solution to this problem—that is, it never learned to
classify all of the notes with 100% accuracy. As a result, the
achievement of perfect performance could not be used as a
criterion to terminate training. Instead, the network was
trained to the point that total network error �i.e., the sum of
squared errors, with the sum taken over all of the output
units and all of the training patterns� reached an acceptably
low level. For the network reported in this paper, this was
accomplished after training it for 2000 epochs. At the end of
this amount of training, network SSE was 6.02. As is shown
in the following, this level of SSE is associated with a very
satisfactory degree of classification performance.

III. RESULTS

A. Network performance

The first question of interest at the end of network train-
ing concerns the amount of agreement between the visual
classification of note types and the classifications performed
by the network. In order to make this comparison, we first
converted the activation patterns in the network’s three out-
put units into a specific note classification �A, B, or C�. This
was easily accomplished, because for each of the input notes,
one of the output units generated activity of 0.9 or higher,
while the other output units generated activity of 0.1 or
lower. We classified the network’s response by assigning it
the note name associated with the output unit that was pro-
ducing high activity. Table I provides the relationship be-

TABLE I. Classification of three types of input notes �first column� into
three note classes by an artificial neural network.

Note type according to artificial neural
network

Note type from visual
examination A B C

%
correct

A 203 3 0 98.5
B 1 132 1 98.5
C 0 0 30 100
Total 195 144 31 98.6
tween the visual classifications and the network classifica-
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tions. As can be seen from that table, the network was
extremely accurate, misclassifying only 5 of the 370 stimuli
for an accuracy level of 98.6%.

How is the network capable of performing at this high
level? Some information relevant to answering this question
can be obtained by examining the responses of the hidden
units to all of the input patterns. In this network, the role of
the hidden units is to map each pattern from a nine-
dimensional space defined by the input features into a two-
dimensional space defined by hidden unit activity. That is,
each pattern can be described as a point in a two-dimensional
space in which the coordinates of the point are provided by
the activities produced by the pattern in the two hidden units.

A graph of this space is provided in Fig. 4. In this graph,
each input pattern is represented as a letter that provides the
note’s type according to visual classification. By examining
this graph, it appears that the two hidden units have very
well defined functional roles. Hidden unit 1 is an “A-note
detector,” producing high activity to notes that belong to the
A category, and producing little activity to other notes. In
contrast, hidden unit 2 is a “not-C note detector,” producing
high activities to notes that do not belong to the C class, and
producing near zero activities to notes that do belong to this
class. These two hidden units classify notes as follow, then:
if hidden units 1 and 2 are both on, the note is assigned to
class A. If hidden units 1 and 2 are both off, then the note is
assigned to class C. If hidden unit 1 is off, and hidden unit 2
is on, then the note is assigned to class B. This classification
scheme works for 365 of the 370 notes in the training set.

How do these two hidden units respond in this fashion to
discriminate between the different note types? One approach
to answering this question requires an examination of the
average feature profile of each note type in relation to the
size of the connection weights that feed into each hidden
unit.

Figure 5 provides the first type of information that is
required for this interpretation. It is a graph of the average
feature values for each of the three different note types in the
training set. Two important observations follow from this

FIG. 4. The distribution of note types as a function of the activity produced
in each hidden unit. See the text for details.
graph. First, the feature profile for the average A note is
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markedly opposite to the feature profiles for the other two
note types—the bars for each of its features point in an op-
posite direction than do the corresponding bars for the other
two note types. Indeed, when the profile of the A note in Fig.
5 is correlated with the B note profile, the result is −0.99.
When the A note profile is correlated with the C note profile,
the result is −0.94.

The second important observation from this graph is the
similarity of the profiles for B and C notes. For almost all of
the features, the bars for these two notes presented in Fig. 5
point in the same direction. The correlation between these
two profiles is 0.89. The difference between the two notes, as
indicated in Fig. 5, would appear to be the fact that for many
of the features the average C note has a more extreme value
than does the average B note.

In order for a hidden unit to differentially respond to the
various note types, the connection weights that feed into the
hidden unit must transform the input features in such a way
that the total signal is high for some notes �causing the hid-
den unit to activate� and is low for other notes �preventing
the hidden unit from activating�. Consider hidden unit 1,
which generates high activity to A notes, and which gener-
ates little activity to B or C notes. The connection weights
for this unit are presented in Table II. The bias for this unit,
which is analogous to the unit’s threshold, is also presented
in Table II. The total signal coming into this unit from a
pattern is equal to the sum of the input values of the features,
after these input values have been multiplied by the weights.
This signal is then combined with the bias, and passed as an
input into the logistic equation �f�neti�=1/ �1+exp�−neti
+� j��, where neti is the total signal and � j is the bias� to
convert net input into an activation value that falls in the
range from 0 to 1.

The connection weights for hidden unit 1 are arranged in
such a way that A note features tend to generate high positive
net inputs, while features from the other two note types gen-
erate strong negative net inputs. For example, if the average
feature values of an A note from Fig. 5 are converted into a
net input using the weights in Table II, the result is 31.36. In

FIG. 5. Average values of the normalized features for each of the three note
types. See the text for details.
contrast, the average feature values of a B note produce a net
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input of −19.08, and the average feature values of a C note
produce a net input of −49.18. Clearly, if one views the
weights feeding into this hidden unit as a vector, then the
orientation of this vector is far more similar to the orientation
of the vector an average set of A note features than to the
orientation of the vectors representing B and C notes.

This is not to say that all of the input features have equal
importance in determining the response of hidden unit 1. The
following regression equation includes only those input fea-
tures that were found to be significant predictors of hidden
unit 1’s activity, and accounted for 80.1% of the variance in
this activity �F5364=293.83, p�0.0001�:

H1activity = 0.375 SF − 0.114 EF − 0.114 FMasc

+ 0.059 Fmax − 0.039 TD + 0.550.

From Fig. 5, it can be seen that all of these features corre-
spond to average feature values that demonstrate the largest
differences between A notes and the other two note types.
The one exception is peak frequency �PF�. However, this
feature has a very large correlation with Fmax �r=0.964�, and
because of this redundancy the inclusion of PF in the re-
gression equation would not provide a significant increase
in predictive power.

A similar analysis can be provided for hidden unit 2,
whose connection weights and bias are also presented in
Table II. This hidden unit has a different function than hid-
den unit 1: it generates low responses to C notes, and high
responses to the other two note types. Again, this is because
the orientation of its weight vector is more similar to the
orientation of the average feature vectors for A and B notes,
and much less similar to the orientation of the average fea-
ture vector for a C note. When average features for A and B
notes are combined with the Table II weights to produce
hidden unit 2 net input, the results are 42.19 and 15.84, re-
spectively. In contrast, when the average features of a C note
are used to determine net input, the result is −10.54.

Again, not all nine input features are equally important
for determining the activity of this hidden unit. The follow-

TABLE II. Connection weights from the 9 input units �features� to the two
hidden units of the network. The bias of each hidden unit—analogous to a
threshold—is also provided.

Input unit Hidden unit

1 2

Unit bias 6.55 28.33
TD −2.20 −4.08
AD −0.05 −0.57
DD −4.24 10.82
SF 33.88 29.80
PF 8.73 −9.36
EF −16.20 1.94
FMasc −7.11 4.41
FMdesc 1.96 −6.06
Fmax −2.80 0.04
ing regression equation includes only those input features
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that were found to be significant predictors of hidden unit 1’s
activity, and accounted for 47.0% of the variance in this ac-
tivity �F6363=53.60, p�0.0001�:

H2activity = 0.332 SF − 0.214 Fmax + 0.152 PF

− 0.098 TD + 0.087 FMasc + 0.042 DD

+ 0.916.

From Fig. 5, it can be seen that many of these features cor-
respond to average feature values that demonstrate the larg-
est differences between A notes and the other two note types.
Indeed, there are numerous features shared in both regression
equations. Interestingly, this equation includes PF and not
EF, these two features have a high correlation with each
other �r=0.672�, and EF also has a high correlation with
Fmax �r=0.68�. This equation also includes an additional
variable not found in the first regression equation, DD.

B. Note classification using discriminant
analysis

The previous section demonstrated that a neural network
is able to classify chick-a-dee call notes, described in terms
of a small set of spectrogram features, with a very high de-
gree of accuracy. This was accomplished by having two dif-
ferent hidden units separate one note type from the other two
�in one case, A from B and C; in the other, A and B from C�,
and by then combining the activities of these hidden units to
segregate all three note types. The hidden units operated by
weighting input features in such a way to maximize the dis-
tinction between note types, and appeared to favor features
that seem to distinguish note types �Fig. 5�. Therefore it may
not be surprising, though it is interesting, to find that both
hidden units are sensitive to an overlapping set of note fea-
tures, though they weight these features differently, and that
one hidden unit is also sensitive to a handful of features that
the other unit is not sensitive to.

While these results are encouraging, it is important to
compare them to those produced by alternative classification
methods. For instance, can traditional statistical methods per-
form this classification task as well as the neural network
did? If so, do these methods use the same sets of features, or
do they use an alternative method to classify notes? In this
section, we investigate these questions by using discriminant
analysis to categorize notes using the identical data that were
presented to the neural network that was described previ-
ously.

C. Discriminant analysis

When researchers are faced with data cases that can be
assigned to a set of predefined classes, they often classify the
data using discriminant analysis �e.g., Klecka, 1980�, al-
though Nowicki and Nelson �1990� did not study this
method. Discriminant analysis is similar in many ways to
multiple regression. Discriminant analysis determines a set
of discriminant functions that can be used to categorize each
instance. Each discriminant function has the form of a re-
gression equation, L=b1x1+b2x2+ ¯ +bnxn+c, where L is

the value of the function, each bi is a discriminant coeffi-
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cient, each xi is a predictor variable, and c is a constant. If
there are k different classes that cases can be assigned to,
then discriminant analysis will compute a set of k different
discriminant functions. The coefficients of these functions
are selected in such a way that classification errors are mini-
mized. A case is classified by providing its input features as
the predictors for each of the discriminant functions. The
case is assigned to the class whose discriminant function
generates the maximum value.

We used discriminant analysis to classify the 370 notes
into the three predefined classes of A, B, and C on the basis
of the 9 input features that were described earlier. Table III
provides the classification matrix that was produced from
this analysis. In general, while discriminant analysis was
slightly poorer at classifying the note types than was the
artificial neural network, its performance was still excellent:
it correctly classified 95% of the 370 notes.

As noted earlier, in order to make the classifications that
are summarized in Table III, three different discriminant
functions—one for each note type—had to be computed.
Each of these functions is similar to the connection weights
that were presented in Table II, insofar as each discriminant
function is a set of coefficients that are used to weight an
input pattern’s features to make a classification decision. The
constants and discriminant coefficients for the three discrimi-
nant functions are provided in Table IV.

As was the case for the two hidden units of the neural
network, not all of the input features are equally important
contributors to the discriminant functions. Table V provides

TABLE III. Classification of three types of input notes �first column� into
three note classes by discriminant analysis.

Note type according to discriminant
analysis

Note type from visual
examination A B C

%
correct

A 193 13 0 94
B 2 129 3 96
C 0 2 28 93
Total 195 144 31 95

TABLE IV. Discriminant coefficients for the three discriminant functions
used to classify the 370 notes into classes A, B, and C on the basis of the 9
predictors listed in the leftmost column.

Predictor Discriminant Function

A B C

Constant −3.027 −3.033 −14.696
TD −0.846 0.547 3.350
AD −0.205 0.144 0.760
DD −0.092 0.241 −0.462
SF 5.284 −4.468 −16.291
PF 1.737 −0.870 −8.007
EF −1.206 1.332 2.303
FMasc −0.965 1.376 0.463
FMdesc 0.370 −0.344 −0.984
Fmax −1.246 0.109 8.049
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the F-test of the contribution of each predictor variable to the
set of discriminant functions. As can be seen from Table V,
six of the nine note features were statistically significant pre-
dictors. Table V reveals a striking similarity between the dis-
criminant analysis of the notes and the classifications made
by the artificial neural network. All six of the statistically
significant contributors in Table V also appear in at least one
of the regression equations that were reported earlier; four of
the six appear in both of the regression equations. This sug-
gests that the classification power of both techniques may be
rooted in processing similar sets of features. Only one feature
�DD� was not a significant contributor in the table below, but
was a significant contributor in the regression equation that
predicted the activity of hidden unit 2.

The similarities between the discriminant analysis and
the artificial neural network, in terms of their sensitivity to
input features, suggest that a more detailed comparison of
the two is in order. Table VI provides such a comparison. It
presents the correlations between the two sets of connection
weights in Table II �excluding the biases� and the three sets
of coefficients in Table IV �excluding the constants�.

These correlations are very informative. First, consider
the correlations among the three sets of coefficients. The
discriminant function for A notes has a strong negative cor-
relation with the other two discriminant functions; however,
the discriminant functions for B and C notes have a strong

TABLE V. F statistics for evaluating the contributions of each note feature
to the discriminant functions. Each F value was evaluated with degrees of
freedom of 2367.

Feature F To remove p value

SF 89.59 0.0001
Fmax 26.99 0.0001
TD 25.39 0.0001
PF 14.83 0.0001
EF 14.26 0.0001
FMasc 8.82 0.0002
DD 1.66 0.193
FMdesc 1.17 0.312
AD 1.04 0.354

TABLE VI. Pearson product moment correlations between the two vectors
of connection weights that feed into the neural network’s hidden units and
the three vectors of coefficients for the discriminant functions.

H1 weights H2 weights A function B function C functio

Weights for
hidden unit 1

1.000

Weights for
hidden unit 2

0.600 1.000

Discriminant
function for
A

0.958 0.649 1.000

Discriminant
function for
B notes

−0.979 −0.663 −0.966 1.000

Discriminant
function for
C notes

−0.860 −0.583 −0.958 0.851 1.000
awson et al.: Note classification with artificial neural networks 3169



positive correlation. This suggests that the discriminant func-
tions are taking advantage of the same regularities in note
properties that the artificial neural network also exploited.
Recall from Fig. 5 that, on average, A notes have an opposite
feature profile to both B and C notes, while B and C notes
have similar profiles, but that C notes tend to have more
extreme feature values. The relationships between notes in
Fig. 5 are consistent with the correlations between discrimi-
nant function coefficients in Table VI.

Now consider the correlation between the connection
weights and the discriminant function coefficients. Recall
that in order to be classified as an A note, a note’s features
must produce higher activity in the A function than in the
other two discriminant equations. In this sense, the discrimi-
nant function for A notes has exactly the same function as
hidden unit 1 in the network, which only generates high ac-
tivity to A notes. One can see in Table VI that this similarity
in function is reflected in the strikingly high correlation be-
tween the weights for hidden unit 1 and the discriminant
function for A notes. Convergent evidence for this is re-
flected in the extreme negative correlations between these
weights and the other two sets of coefficients; this mirrors
the relationship between the A function coefficients and the
other two sets of coefficients. In short, the mechanisms feed-
ing into hidden unit 1 are functionally equivalent to the dis-
criminant function for classifying A notes.

In contrast, the relationship between the connection
weights for hidden unit 2 and the discriminant functions is
less clear. On the one hand, the correlations are all quite
strong, and show the same general pattern as the weights for
hidden unit 1: a positive relationship with the A function’s
coefficients, and a negative relationship with the other two
sets of coefficients. This is to be expected, perhaps, because
of the relationships between average note profiles in Fig. 5,
which showed an opposite trend of features between A notes
and the other two note types. This is also to be expected
because there is a strong positive correlation between the two
sets of connection weights, indicating that they should have
similar relationships to the three discriminant functions.

On the other hand, because none of the correlations in-
volving the weights of hidden unit 2 are as high as those for
hidden unit 1, we are not in a position to declare any func-
tional equivalence. However, this is completely consistent
with our previous analysis of that unit �e.g., Fig. 4�. Hidden
unit 2 generates high activity to A notes or B notes, and does
not respond to C notes. Therefore its behavior, unlike that of
hidden unit 1, is much less likely to be directly related to any
one of the discriminant functions.

IV. DISCUSSION

It was noted earlier that there are two important and
related issues concerning note identification in the chick-a-
dee call. The first is the development of an objective research
tool for identifying note types in the lab. The second is the
development of a theory about how the birds themselves
process the acoustic signal to identify the different note

types.
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With respect to the first issue, the above-reported results
are significant in several respects. They show that two very
different techniques—artificial neural networks and linear
discriminant analysis—are capable of classifying notes with
a very high degree of accuracy. This is the case even when
the large amount of information contained in a spectrogram
is reduced to a small, manageable set of descriptive features.
For our stimuli, the artificial neural network achieved an ac-
curacy level of over 98%, and discriminant analysis achieved
an accuracy level of 95%, for a relatively large set of stimuli
�370 notes�. The fact that both techniques performed so well
would indicate that there is little reason to prefer one tech-
nique over another. Either method would perform extremely
well as a note classification tool in a research lab.

With respect to the second issue, our analysis of the
methods by which both techniques classified notes provides
some important information to be considered in the develop-
ment of a theory of how the birds themselves process acous-
tic signals to classify notes.

First, both the neural network and the discriminant
analysis were able to classify notes by focusing on a particu-
lar subset of acoustic features. From a statistical perspective,
it would appear that these features are particularly useful for
note classification. The empirical issue that this observation
raises is whether black-capped chickadees also focus on
these features when they process this call.

Recent research from our laboratory suggests that in
fact, black-capped chickadees do in fact attend to at least a
subset of the acoustic features described here. Charrier et al.
�2005� trained black-capped chickadees on four different
note type discrimination tasks, A+B−, A−B+, B+C− and
B−C+, and then conducted transfer tests with two sets of
probe stimuli to determine to which features birds were at-
tending in order to solve the task. Test notes were either pitch
shifted, with the overall pitch of the note shifted up or down
in frequency, or truncated notes, with either the ascending
portion or descending portion presented. The results of these
tests were quite clear. When notes were shifted in pitch to-
ward the pitch space of another note type �e.g., when A notes
had their overall note pitch lowered closer to that typical for
B notes� the perception of that note also shifted from one
type to the next. Further, birds could discriminate among
note types using only the ascending portion of the note, and
could generally do so better than using the descending por-
tion of the note. This suggests that pitch cues contained in
the notes such as SF, PF, EF and Fmax, as well as particular
“dynamic” temporal/spectral cues such as FMasc, are salient
to the birds and control the perception of note types in the
chick-a-dee call. Interestingly, these same features also ap-
pear to contribute to the functioning of the ANN reported
here, based on the interpretation of the activity of hidden
units 1 and 2, and, suggesting that perhaps the ANN is tap-
ping into similar features when it sorts notes as when the
birds themselves do an analogous task.

A second important piece of information, related to the
first, is the fact that both statistical techniques took advan-
tage of the fact that when notes are described as normalized
sets of summary features, B and C notes are more related to

one another �and therefore harder to discriminate from one

Dawson et al.: Note classification with artificial neural networks



another�, while A notes seem quite different �Fig. 5�. This
was reflected in the patterns of correlations among the three
sets of discriminant function coefficients, and in the fact that
one of the functional components of the neural network was
an A note detector. Again, this raises empirical questions
about how birds process this call. Which note types do they
appear to have more trouble discriminating? If they behave
as if A notes are easier to differentiate than the other two note
types, then this would suggest that the birds are processing a
similar set of features as those represented in Fig. 5. How-
ever, if a different pattern of difficulties is in evidence, then
this would suggest that the birds are processing different fea-
ture profiles.

Initial research on note type perception �Sturdy et al.,
2000� did in fact suggest that birds confused A, B, and C
note types. When the pattern of errors was more closely ex-
amined, some interesting patterns emerged. Rewarded A note
were confused with unrewarded B notes, rewarded B notes
were confused with unrewarded A and unrewarded C notes,
and rewarded C notes were confused with unrewarded B
notes. These results, of an apparent perceptual continuum
from A to B to C notes, mirrored the observation made ear-
lier by Hailman et al. �1985� of a production continuum in
these same notes types when the call is produced. Said an-
other way, A notes, although sometimes confused, are only
confused with one note type, B notes, whereas B notes are
confused with both A and C note types. C notes are confused
with B notes more than A notes, but Sturdy et al. also found
that there was a trend for C notes to be confused with the
next note type in the call sequence, D notes, not analyzed in
the current paper. These findings provides some support, al-
beit indirectly, for the notion that both the birds and the ANN
have difficulty in similar note type assignments, with A notes
being misclassified less often than either B or C notes. This
notion would have to be tested directly, perhaps by determin-
ing the number of notes of each type that a bird could dis-
criminate, and to what level of accuracy, possibly in a choice
task that required the discrimination and classification of all
three note-types simultaneously, in a fashion similar to that
of the ANN.

A third important point of information is that while the
two techniques that we studied demonstrated similarities in
features being processed, and also demonstrated some func-
tional similarities, there were important differences between
them too. The key similarity between the two techniques was
that both included a distinct detector for A notes. By defini-
tion, the discriminant analysis produced distinct detectors for
B and for C notes as well. Importantly, the artificial neural
network did not develop these latter two types of detectors.
Instead, its second hidden unit was an A or B note detector,
which only turned off to C notes.

This difference between the two techniques demon-
strates two different representational formats. In a local rep-
resentation, each functional component of a system has a
particular localized role, and can perform a meaningful task
independently of the other functional components. The three
discriminant functions created by the discriminant analysis
are example of such local functional components. In con-

trast, artificial neural networks often develop distributed
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codes �Dawson, 2004; Dawson et al., 2000a; Dawson et al.,
2000b; Dawson and Piercey, 2001; Hinton et al., 1986;
Leighton and Dawson, 2001�. In a distributed code, different
functional components of a system may not individually
function in a fashion that can be directly related to the sys-
tem’s output. Instead, the meaningfulness of the functional
components requires that their separate functions be consid-
ered simultaneously. The artificial neural network demon-
strated this kind of representation. While the one hidden unit
can be considered as being a local component �an A note
detector�, the behavior of the second hidden unit only makes
sense when considered in the context of the behavior of hid-
den unit 1. That is, the representation is distributed because
whether a note is an A, B, or C requires considering the
activities of both hidden units at the same time �see the pre-
vious discussion of Fig. 4�.

This is an important point for developing a theory of
how birds process acoustic signals because it demonstrates
that even when one focuses on the same set of features, there
are different ways in which these features can be combined
or processed to mediate note classification. The two tech-
niques that we have described in this paper demonstrate two
different approaches to using similar sets of features to make
the same kind of classification. As theories of how chicka-
dees process acoustic signals become related to the brain,
one issue to address is whether acoustic features are repre-
sented in a local or distributed fashion. One advantage of
artificial neural networks is that they provide examples of
possible neural representations that can be used to guide this
aspect of theory development �Dawson, 2004�.
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