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Abstract. One new tradition that has emerged from early research on autonomous robots is embodied cognitive
science. This paper describes the relationship between embodied cognitive science and a related tradition, synthetic
psychology. It is argued that while both are synthetic, embodied cognitive science is antirepresentational while
synthetic psychology still appeals to representations. It is further argued that modern connectionism offers a
medium for conducting synthetic psychology, provided that researchers analyze the internal representations that
their networks develop. The paper then provides a detailed example of the synthetic approach by showing how
the construction (and subsequent analysis) of a connectionist network can be used to contribute to a theory of how
humans solve Piaget’s classic balance scale task.
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1. Embodied Cognitive Science

Cognitive informatics is an interdisciplinary study of cognition, perception, and action. It
is based on the assumption that cognition is information processing (Dawson, 1998), where
information processing is generally construed as the rule-governed manipulation of data
structures that are stored in a memory.

Of course, not all researchers are comfortable with adopting this research program, be-
cause they have fundamental disagreements with this foundational assumption. For exam-
ple, the embodied cognitive science movement challenges the symbol-based conception of
cognitive processing by using many of the same arguments that were employed by connec-
tionist researchers in the early 1980s. Embodied cognitive science is a reaction against the
traditional view that human beings as information processing systems “receive input from
the environment (perception), process that information (thinking), and act upon the deci-
sion reached (behavior). This corresponds to the so-called sense-think-act cycle” (Pfeifer
and Scheier, 1999). Thesense–think–act cycle, which is a fundamental characteristic of
conventional theories of cognition, is an assumption that the embodied approach considers
to be fatally flawed.

Embodied cognitive science argues that theories of intelligence should exhibit two basic
characteristics. First, they should be embodied, meaning that the theory should take the form
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of a working computer simulation or robot. Second, they should be situated, meaning that
the simulation or robot should have the capability of sensing its environment. Embodied
cognitive scientists create embodied, situated agents in order to create novel and surprising
behaviors that emerge from the interaction between agents and their environments. One of
the aims of embodied cognitive science is to replace the sense–think–act cycle with mech-
anisms of sensory-motor coordination (Pfeifer and Scheier, 1999) that might be construed
as forming asense–act cycle. The purpose of this change is to reduce, as much as possible,
the role of internal representations in mediating intelligence. If one situates an autonomous
agent in such a way that the agent can sense the world, then no internal representation of the
world is necessary. “The realization was that the so-called central systems of intelligence —
or core AI as it has been referred to more recently — was perhaps an unnecessary illusion,
and that all the power of intelligence arose from the coupling of perception and actuation
systems” (Brooks, 1999).

1.1. HISTORICAL EXAMPLES OF THE EMBODIED APPROACH

One reason that embodied cognitive science is attractive and is growing in popularity is
because it can call on a long history of success stories in which extremely interesting
behaviors emerged from fairly simple devices.

1.1.1. The Homeostat

One important historical example of the embodied approach comes from Ashby’s study of
feedback between generic machines (Ashby, 1960). For Ashby, a machine was simply a
device which, when given a particular input, generates a corresponding output. Of particular
interest to Ashby was a system of four different machines coupled together with feedback.
Ashby realized that this system was sufficiently complex that it could not be studied analyt-
ically. Ashby (1960) dealt with this problem by constructing a device, called the homeostat,
which allowed him to observe the behavior of this complicated set of feedback relationships.
In other words, he adopted a synthetic approach for exploring feedback of this type.

In general the homeostat was a device that monitored its own internal stability (i.e., the
amount of current being generated by each of its four component devices). If subjected to
external forces, such as an experimenter manipulating one of its four component machines by
hand, this internal stability was disrupted and the homeostat was moved into a higher energy,
less stable state. When this happened, the homeostat would modify the internal connections
between its component units by advancing one or more of its internal switches to modify
the states of its internal potentiometers, which essentially served as ‘connection weights’
for the signals being sent between its component machines. The modified potentiometer
settings enabled the homeostat to return to a low energy, stable state. The homeostat was
“like a fireside cat or dog which only stirs when disturbed, and then methodically finds a
comfortable position and goes to sleep again” (Grey Walter, 1963).

The homeostat was tested by placing some of its components under the direct control
of the experimenter, by manipulating these components, and by observing the changes
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in the system as a whole. Even with this fairly simple pattern of feedback amongst four
component devices, many surprising emergent behaviors were observed. For example, in
one interesting study Ashby (1960) demonstrated that the system was capable of a simple
kind of learning. Ashby went on to demonstrate that the homeostat was also capable of
adapting to two different environments that were alternated.

1.1.2. The Tortoise

Ashby’s homeostat could be interpreted as supporting the claim that the complexity of the
behavior of whole organisms largely emerges from (a) a large number of internal components
and from (b) the interactions between these components. In the late 1940s, some of the
first autonomous robots — called tortoises because of their appearance — were built to
investigate a counterclaim (Grey Walter, 1950, 1951, 1963). Grey Walter’s research program
“held promise of demonstrating, or at least testing the validity of, the theory that multiplicity
of units is not so much responsible for the elaboration of cerebral functions, as the richness
of their interconnection” (Grey Walter, 1963). His goal was to use a very small number of
components to create robots that generated much more life-like behavior than that exhibited
by Ashby’s homeostat.

At a general level, a tortoise was an autonomous motorized tricycle. One motor was
used to rotate the two rear wheels forward. The other motor was used to steer the front
wheel. The behavior of these two motors was under the control of two different sensing
devices. The first was a photoelectric cell that was mounted on the front of the steering
column, and which always pointed in the direction that the front wheel pointed. The other
was an electrical contact that served as a touch sensor. This contact was closed whenever
the transparent shell that surrounded the rest of the robot encountered an obstacle.

Of a tortoise’s two reflexes, the light-sensitive one was the more complex. In low light,
the rear motor would propel the robot forward while the steering motor slowly turned the
front wheel. As a result, the machine could be described as exploring its environment.
When moderate light was detected by the photoelectric cell, the steering motor stopped.
As a result, the robot moved forward, approaching the source of the light. However, if the
light source were too bright, then the steering motor would be turned on again at twice
the speed that was used during the robot’s exploration of the environment. As a result, “the
creature abruptly sheers away and seeks a more gentle climate. If there is a single light
source, the machine circles around it in a complex path of advance and withdrawal” (Grey
Walter, 1950).

The touch reflex that was built into a tortoise was wired up in such a way that when it
was activated, any signal from the photoelectric cell was ignored. When the tortoise’s shell
encountered an obstacle, an oscillating signal was generated that rhythmically caused both
motors to run at full power, turn off, and to run at full power again. As a result, “all stimuli
are ignored and its gait is transformed into a succession of butts, withdrawals and sidesteps
until the interference is either pushed aside or circumvented” (Grey Walter, 1950).

In spite of their simple design, Grey Walter demonstrated that his robots were very capable
of complex and interesting behaviors. One of his tortoises could move around an obstacle,
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and then orbit a light source with complicated movements that would not take it too close,
but also would not take it too far away. If presented two light sources, complex choice
behavior was observed. If a tortoise encountered a mirror, then a light source mounted on
top of the robot became a stimulus for its light sensor, and resulted in what became known as
the famous mirror dance, in which the robot “lingers before a mirror, flickering, twittering
and jigging like a clumsy Narcissus. The behavior of a creature thus engaged with its own
reflection is quite specific, and on a purely empirical basis, if it were observed in an animal,
might be accepted as evidence of some degree of self-awareness” (Grey Walter, 1963).

1.2. THE SYNTHETIC APPROACH

Most models in classical cognitive science and in experimental psychology are derived
from the analysis of existing behavioral measurements (Dawson, 2003). In contrast, both
the homeostat and the tortoise are examples of a much more synthetic approach to research.
They both involved making some assumptions about primitive capacities, which were then
built into working systems whose behaviors were observed. In the synthetic approach, model
constructionprecedesbehavioral analysis.

Braitenberg (1984) has argued that psychology should adopt the synthetic approach,
because theories that are derived via analysis are inevitably more complicated than is nec-
essary. This is because cognitive scientists and psychologists have a strong tendency to
ignore the parable of the ant, and prefer to locate the source of complicated behavior within
the organism, and not within its environment. Pfeifer and Scheier (1999) call this the frame-
of-reference problem. A consequence of the frame-of-reference problem is that because of
nonlinear interactions (such as feedback between components, and between a system and its
environment), relatively simple systems can surprise us, and generate far more complicated
behavior than we might expect. The further appeal of the synthetic approach comes from the
belief that if we have constructed this simple system, we should be in a very good position
to propose a simpler explanation of its complicated behavior. In particular, we should be in
a better position than would be the case if we started with the behavior, and attempted to
analyze it in order to understand the workings of an agent’s internal mechanisms.

Clearly, the synthetic approach is worth exploring, particularly if it offers the opportunity
to produce simple theories of complex, and emergent, behaviors. For this reason, Braitenberg
(1984) has called for the development of a new approach that he has namedsynthetic
psychology. However, the synthetic approach as it appears in embodied cognitive science
is associated with a view that many psychologists would not be comfortable in endorsing.

1.3. REACTING AGAINST REPRESENTATION

Modern embodied cognitive science can be viewed as a natural evolution of the histor-
ical examples that were presented earlier. Researchers have used the synthetic approach
to develop systems that generate fascinatingly complicated behaviors (Braitenberg, 1984;
Brooks, 1999; Pfeifer and Scheier, 1999). However, much of this research is dramati-
cally antirepresentational. “In particular I have advocated situatedness, embodiment, and
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highly reactive architectures with no reasoning systems, no manipulable representations, no
symbols, and totally decentralized computation” (Brooks, 1999). One of the foundational
assumptions of behavior-based robotics is that if a system can sense its environment, then
it should be unnecessary for the system to build an internal model of the world.

This is strongly reminiscent of a failed tradition in experimental psychology, calledbe-
haviorism, that attempted to limit psychological theory to observables (namely, stimuli and
responses), and which viewed as unscientific any theories that attempted to describe inter-
nal processes that mediated relationships between sensations and actions (Watson, 1913).
The resemblance of embodied cognitive science to behaviorism is unfortunate, because it
decreases the likelihood that the advantages of the synthetic approach will be explored in
psychology. The reason for this is that many higher order psychological phenomena require
an appeal to internal representations in order to be explained.

2. Synthetic Psychology

2.1. THE NEED FOR REPRESENTATION

That stimulus–response reflexes are not sufficient to account for many higher order psycho-
logical phenomena is a theme that has dominated cognitivism’s replacement of behaviorism
as the dominant theoretical trend in experimental psychology. In the study of language, this
theme was central to Chomsky’s critical review (Chomsky, 1959) of Skinner (1957). Many
of the modern advances in linguistics were the direct result of Chomsky’s proposal that
generative grammars provided the representational machinery that mediated regularities
in language (Chomsky, 1965; Chomsky and Halle, 1991; Chomsky, 1995). Similar argu-
ments were made against purely associationist models of memory and thought (Anderson
and Bower, 1973). For example, Beveret al. (1968) formalized associationism as a finite
state automaton, and demonstrated that such a system was unable to deal with the clausal
structure that typifies much of human thought and language. Paivio (1969, 1971) used the
experimental methodologies of the verbal learners to demonstrate that a representational
construct — the imageability of concepts — was an enormously powerful predictor of hu-
man memory. The famous critique of ‘old connectionism’ by Minsky and Papert (1988)
could be considered a proof about the limitations of visual systems that do not include
mediating representations. These examples, and many more, have lead to the status quo
view that representations are fundamental to cognition and perception (Fodor, 1975; Marr,
1982; Pylyshyn, 1984; Jackendoff, 1992; Dawson, 1998).

Some robotics researchers also share this sentiment, although it must be remembered that
behavior-based robotics was a reaction against their representational work (Brooks, 1999).
Moravec (1999) suggests that the type of situatedness that characterizes behavior-based
robotics (for example, the simple reflexes that guided Grey Walter’s tortoises) probably
provides an accurate account of insect intelligence. However, at some point systems built
from such components will have at best limited abilities. “Real insects illustrate the problem.
The vast majority fails to complete their life cycles, often doomed, like moths trapped
by a streetlight, by severe cognitive limitations.” Internal representations are one obvious
medium for surpassing such limitations. The question that this leads to is this: can the
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synthetic approach be conducted in a way that provides the advantages that have been
raised above, but that also provides insight into representational processing?

2.2. CONNECTIONISM, SYNTHESIS, REPRESENTATION

Of course, the answer to this question is a resounding yes. There is nothing in the synthetic
approach per se that prevents one from constructing systems that use representations. De-
scribing a model as being synthetic or analytic is using a dimension that it is completely
orthogonal to the dimension used when describing a model as being representational or not.
Dawson (2003, Chapter 8) has provided a detailed argument that for the study of higher
order cognition, researchers should adopt an approach that is both synthetic and represen-
tational. He then goes on to suggest that connectionist or parallel distributed processing
(PDP) models are an attractive medium for carrying out this kind of research program.

2.2.1. Connectionism in Brief

This section provides a brief overview of the general properties of connectionist models.
For a more detailed overview of these models, the reader is referred to Dawson (1998,
Chapter 3). Dawson (2003, Chapters 9–11) provides a complete introduction to a variety of
connectionist architectures.

A connectionist or PDP network is a system of interconnected, simple processing units
that can be used to classify patterns presented to it. A PDP network is usually made up
of three kinds of processing units:Input unitsencode the stimulus or activity pattern that
the network will eventually classify;hidden unitsdetect features or regularities in the
input patterns, which can be used to mediate classification; andoutput unitsrepresent the
network’s response to the input pattern (i.e., the category to which the pattern is to be
assigned) on the basis of features or regularities that have been detected by the hidden units.
Processing units communicate by means of sending signals through weighted connections.

In most cases, a processing unit carries out three central functions: First, a processor
computes the total signal that it receives from other units. Anet input functionis used to
carry out this calculation. After the processing unit determines its net input, it transforms
it into an internal level of activity, which typically ranges between 0 and 1. The internal
activity level is calculated by means of anactivation function. Finally, the processing unit
uses anoutput functionto convert its internal activity into a signal to be sent to other units.

The signal sent by one processor to another is transmitted through a weighted connection,
which is typically described as being analogous to a synapse. The connection itself is merely
a communication channel. The weight associated with the connection defines its nature
and strength. For example, inhibitory connections are defined with negative weights, and
excitatory connections are defined with positive weights. A strong connection has a weight
with a large absolute value, while a weak connection has a weight with a near-zero absolute
value. The pattern of connections in a PDP network defines the clausal relations between the
processors and is therefore analogous to a program in a conventional computer (Smolensky,
1988).
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Unlike a conventional computer, though, a network is not given a step-by-step proce-
dure for performing a desired task. It is insteadtrained to solve the task on its own. For
instance, consider a popular supervised learning procedure called thegeneralized delta rule
(Rumelhartet al., 1986). To train a network with the generalized delta rule, one begins
with a network that has small, randomly assigned connection weights. The network is then
presented a set of training patterns, each of which is paired with a known desired response.
To train a network on one of these patterns, the pattern is presented to the network’s input
units, and the network generates a response using its existing connection weights. An error
value for each output unit is then calculated by comparing the actual output to the desired
output. This error value is then used to modify connection weights in such a way that the
next time this pattern is presented to the network, the network’s output errors will be smaller.
By repeating this procedure a large number of times for each pattern in the training set, the
network’s response errors for each pattern can be reduced to near zero. At the end of this
procedure, the network will have a very specific pattern of connectivity (in comparison to
its random start) and will have learned to perform the desired stimulus/response pairing.

2.2.2. Connectionism and the Synthetic Approach

How are connectionist networks related to synthetic research? First, a researcher identifies a
problem of interest, and then translates this problem into some form that can be presented to
a connectionist network. Second, the researcher selects a general connectionist architecture,
which involves choosing the kind of processing unit, the possible pattern of connectivity,
and the learning rule. Third, a network is taught the problem. This usually involves making
some additional choices specific to the learning algorithm — choices about how many
hidden units to use, how to present the patterns, how often to update the weights, and about
the values of a number of parameters that determine how learning proceeds. If all goes
according to plan, at the end of the third step the research will have constructed a network
that is capable of solving a particular problem.

Connectionist networks that are built according to this general strategy are synthetic in
the sense that a researcher is taking a basic set of building blocks, and is constructing a
system from them in a fairly unconstrained fashion. The network does not fit existing data,
but instead will create new behavior to be investigated. Specifically, while a supervised
learning rule requires a researcher to dictate what a network’s desired responses are, the
researcher has very little control over the regularities that are used by a network to implement
a mapping between input and output patterns. Indeed, one of the main surprises that can be
delivered by a connectionist networks is new kinds of representations, or the discovery of
new kinds of input regularities, that can be used to solve a problem, and that are completely
surprising to the researcher who constructs the system.

2.2.3. Connectionism, Representation, and Analysis

Many of the early successes in connectionism merely involved showing that a PDP network
was capable of accomplishing some task that was traditionally explained by appealing to
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rule-governed symbol manipulation. However, modern analyses have demonstrated con-
clusively that a broad variety of PDP architectures have the same computational power as
the architectures that have been incorporated into symbolic accounts of cognition (Dawson,
1998). What this means is that a connectionist network can learn to perform any task that
can be accomplished by a classical model. The mere fact that a network can learn a task is
no longer an emergent phenomenon of any interest to researchers.

While it is neither interesting nor surprising to demonstrate that a network can learn
a task of interest, it can be extremely interesting, surprising, and informative to deter-
mine what regularities the network exploits. What kinds of regularities in the input pat-
terns has the network discovered? How does it represent these regularities? How are
these regularities combined to govern the response of the network? In many instances,
the answers to these questions can reveal properties of problems, and schemes for rep-
resenting these properties, that were completely unexpected. This means that in order
for connectionist modelers to take advantage of the emergent properties of their syn-
thetic systems, the modelers must analyze the internal structure of the networks that they
train.

Unfortunately, connectionist researchers freely admit that it is extremely difficult to
determine how their networks accomplish the tasks that they have been taught (Seidenberg,
1993). Difficulties in understanding how a particular connectionist network accomplishes
the task that it has been trained to perform has raised serious doubts about the ability
of connectionists to provide fruitful theories about cognitive processing. Because of this,
McCloskey (1991) suggested “connectionist networks should not be viewed as theories
of human cognitive functions, or as simulations of theories, or even as demonstrations of
specific theoretical points.” Fortunately, connectionist researchers are up to this kind of
challenge. Several different approaches to interpreting the algorithmic structure of PDP
networks have been described in the literature (for an introduction, see Dawson, 2003,
Chapter 12). The next section describes how one connectionist network was synthesized,
and then analyzed, in order to contribute to our knowledge concerning one measure of
higher order reasoning, Piaget’s balance scale task.

3. A Case Study: The Balance Scale Task

The balance scale is considered a task of naive or intuitive physics (e.g. Wilkening and
Anderson, 1982; diSessa, 1993). It has also been described as a task of ‘proportional reason-
ing’ (e.g., Kliman, 1987; Chletsoset al., 1989; Normandeauet al., 1989). Piaget introduced
the balance scale task as a method for assessing stages of cognitive development (Inhelder
and Piaget, 1958; Piaget and Inhelder, 1969). Piaget used a scale with either a sliding basket
on each side of the fulcrum or 28 holes for hanging weights on each arm. Using the clinical
method, Piaget allowed children of various ages to manipulate and explore the apparatus.
On the basis of verbal protocols, Piaget suggested that children go through different levels of
performance. By the formal operational period, children over the age of 11 or 12 were able
to reason using proportions, and thereby discover the correct formula for solving balance
scale problems.
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3.1. PREVIOUS APPROACHES TO THE TASK

3.1.1. The Rule Assessment Approach

Siegler (1976) modified the balance apparatus so that there were four equidistant pegs on
each side of the fulcrum. Blocks are placed under the arms to prevent the scale from tipping.
The participant’s task is to predict whether the scale will balance, tip to the left, or tip to
the right if the blocks are removed. If one calculatestorque(i.e., mass× distance) for each
arm and compare the values, then one should be able to predict the correct response to any
balance scale problem.

Siegler (1976, 1978, 1981) hypothesized that children go through a series of develop-
mental stages in which different binary decision-tree rules are used to solve the balance
scale problem. Younger children consider weight alone when deciding whether the scale
will balance or not. At the next level, children focus on weight, but will consider distance
information in cases where the weights are equal. Next, children realize the importance of
both weight and distance, but there is some confusion when one side has the greater weight
and the other side has the greater distance: performance is usually described as guessing
or ‘muddling through.’ Lastly, the child or adult can apply the torque rule by multiplying
the distance by the weight and comparing the products to determine whether the scale will
balance.

Siegler (1976) described several different problem types that are defined by the com-
bination of weight and distance from the fulcrum.Balanceproblems have equal weights
at equal distances. Distance is held constant inweightproblems, so that the side with the
most weight goes down. In contrast, the weight is held constant indistanceproblems, so
that the side with the farther distance goes down. Conflict problems have a different num-
ber of weights and distances on each side of the fulcrum. Three types of conflict problem
were defined:conflict-weight(the side with more weight at a shorter distance goes down),
conflict-distance(the side with the greater distance but with fewer weights goes down), and
conflict-balance(despite the conflict, the scale balances).

The assessment of rule use is determined by testing the participant on a set of balance
scale problems. Typically, the test set consists of four of each of the six problem types
outlined above. The task is to judge which arm will tip or if the scale will balance. If a
participant is using one of the four rules described above, then a characteristic pattern of
performance on the different problem types should emerge (Siegler, 1976). In particular, a
number of different developmental trends are predicted for the various problem types.

For instance, performance is not expected to change with age for balance or weight
problems (i.e., all children should show a high level of accuracy). For distance problems,
however, a dramatic improvement with age is predicted, as accuracy is expected to jump
from none correct to all correct. A U-shaped trend is predicted for conflict-weight problems.
Younger children should get them correct if they focus only on the weight dimension. Once
children take note of distance information, performance should drop to chance level as they
try to reconcile the two dimensions. When the relationship between weight and distance is
understood, performance should then improve to near perfect levels. Conflict-distance and
conflict-balance problems are expected to show the same pattern. Initially, performance is
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always incorrect; it then ‘improves’ to chance level as participants attempt to incorporate
both dimensions. Finally, perfect performance follows an understanding of the multiplicative
relationship between weight and distance.

3.1.2. Symbolic Simulations of the Balance Scale Problem

The earliest attempts to model the balance scale task used production system simulations.
Klahr and Siegler (1978) used a separate set of production rules for each of the four stages
of development. As there was no transition between these different rule models, the model
is silent with respect to issues of stage-like development, transition mechanism, and the
U-shaped trend on conflict-weight problems.

Sage and Langley (1983) created a revised model that was similar to Klahr and Siegler’s,
but which included a possible mechanism to account for the transition between stages. They
posited that the rules might be learned through a process of discrimination. The model
was given two rules that provided initial behavior, and rules for storing information about
failures and successes. New rules were acquired, and then weakened or strengthened based
on the success of the predictions. Although the model never mastered conflict problems or
developed a representation of torque, it learned a set of rules to make correct predictions
despite the incomplete representation of the problem, just as children do. Newell (1990)
developed a similar model, with similar performance, using the Soar architecture.

The most successful symbolic or rule-based model thus far has been Schmidt and Ling’s
model (Schmidt and Ling, 1996) of the balance scale using Quinlan’s C4.5 machine learning
algorithm (Quinlan, 1993). This algorithm generates simple decision trees that classify data
that vary along a number of dimensions. For each balance problem, seven attributes were
presented: (a) whether the problem was a simple balance problem (yes/no format), (b) the
side with the greater weight (left, right, neither), (c) the side with the greater distance (left,
right, neither), (d) left weight, (e) left distance, (f) right weight, and (g) right distance (all
weight and distance values expressed as integers ranging from 1 to 5). The initial simulation
displayed an orderly stage progression of all four rules when tested with Siegler’s rule-
assessment technique. It also displayed a U-shaped trend on conflict-weight problems.
Schmidt and Ling modified this model by using continuous values between−4 and 4 to
represent attributes (b) and (c), encoding the right side minus the left side for both weight
and distance, respectively. Information about weight and distance was no longer presented
in an ‘all-or-none’ manner. Rather, the attribute was presented as a graded representation.
Under these conditions, the model displayed all of the key regularities that were observed in
psychological experiments. Schmidt and Ling concluded that their model was successful,
as the selection of problem representation and learning algorithm resulted in a good match
to the human data.

3.1.3. Connectionist Models of the Balance Scale Problem

McClelland (1989) reported the first connectionist model of balance scale phenomena. He
trained a multilayer perceptron on balance scale problems that involved a scale with five
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pegs and a maximum of five weights on any peg. Twenty input units were used: the first 10
input units represented the left and right weight values and the remaining 10 represented left
and right distance values. Inputs were segregated such that the weight and distance inputs
were connected to different hidden units. A higher activation of the left or right output unit
was used to indicate the side that would tip, and neutral activation of both units indicated
balance.

The segregation of weight and distance information at the hidden unit level is what
McClelland (1989) referred to as thearchitecture assumption. McClelland’s model also
included anenvironment assumption. McClelland assumed that the average child has more
experience with balance scenarios in which distance is not important. Instead of training
the network on the entire set of 625 possible five-peg, five-weight problems, two corpuses
were developed in which there was either 5 or 10 times the equal distance problems (i.e.,
simple-balance and weight problems). For each training epoch, 100 patterns were randomly
selected. The network was trained using a standard back-propagation learning algorithm.
After each epoch, the network was tested on a 24-item test set. The network’s performance
was classified using Siegler’s rule-assessment method (Siegler, 1976).

Without these two assumptions, McClelland’s network learned the problems too quickly,
often skipping the first two developmental stages, and the final developmental stage was
not reliably established (Schmidt and Shultz, 1992). However, this first model did manage
to demonstrate some stage-like behavior and was a fairly close fit to Siegler’s predictions.

Shultz and his colleagues (Shultz and Schmidt, 1992; Shultzet al., 1994, 1995) modeled
balance scale phenomenon using the cascade-correlation architecture and learning algorithm
(Fahlman and Lebiere, 1990). Cascade-correlation is described as a generative algorithm
(Mareschal and Shultz, 1996) or one that “constructs its own network topology as it learns”
(Shultzet al., 1994, p. 57). The network begins without any hidden units, and then creates
additional hidden units when changes in its error rates asymptote to levels that indicate that
the problem has not yet been solved. To simulate the child’s gradually changing environment,
Shultz and Schmidt used ‘expansion training,’ where one new pattern was added to the
training set every epoch. McClelland’s architecture assumption (i.e., the segregation of
weight and distance information), however, was not implemented in this model.

Sixteen “computer subjects” were used in the Shultz and Schmidt experiment (i.e., the
simulation was run 16 separate times with different initial weight states). After each training
epoch, the network was tested on 24 randomly selected test patterns. Rule diagnosis was
similar to that used by Siegler (1976) for human subjects. With respect to matching the
developmental sequence, the majority of the computer subjects progressed through all four
stages in the appropriate order. Most of the remaining simulations progressed through stages
in the correct order, but did not achieve the final stage of competence with the balance scale
task. These same patterns are found with human subjects (e.g., Siegler, 1981; Chletsoset al.,
1989).

Shultzet al. (1995) reported a second cascade-correlation model of the balance scale.
Rather than biasing the training environment toward weight information, the internal state
of the network was prestructured so that preferential treatment would be given to the weight
information. The entire set of 625 possible problems was presented during training. The
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network displayed the regularities found in human performance, including the use of all four
of Siegler’s rules in the correct order, some stage skipping and regressions and U-shaped
development on conflict-weight problems.

3.2. A SYNTHETIC APPROACH TO THE BALANCE SCALE PROBLEM

3.2.1. Problems With Previous Analytic Approaches

To date, models of the balance scale problem have been analytic, because they have been
created in the service of fitting the psychological data. For each of the models discussed
above, one of the primary goals of the researcher was to generate data that conformed to the
pattern of experimental results of the sort reported by Siegler (1976). For example, Schmidt
and Ling (1996) commented that, “Regardless of the learning algorithm that one adopts
(connectionist or symbolic), the choice of attributes to use is crucialif the model’s output
is to match the human data(p. 211, emphasis added).

One major problem with this approach is that, ultimately, a model’s match to the
human data is determined by its fit to Siegler’s rule assessment approach (Siegler, 1976).
This is an issue because rule assessment has been subject to a number of criticisms
(e.g., Wilkening and Anderson, 1982; Ferrettiet al., 1985; Flavell, 1985; Ferretti and
Butterfield, 1986; Kliman, 1987; Lavireeet al., 1987; Chletsoset al., 1989; Normandeau
et al., 1989; van Maanenet al., 1989; Jansen and van der Mass, 1997) The criticisms that
have been leveled against rule assessment include (a) arbitrary criteria for scoring, (b)
assessment varying with the torque difference of the items used, (c) assessment varying
with the priority given to the various rules, (d) assessment varying with task demands, (e)
scoring criteria that are not diagnostic with respect to other postulated rules, and (f) lack
of clarity regarding the “muddle through” stage. These critiques, cumulatively, make the
interpretation of data from psychological studies either doubtful or ambiguous. They in
turn pose questions for studies that attempt to compare model outputs to rule assessment
data.

One approach to dealing with this problem would be to adopt the synthetic perspective
advocated by Dawson (2003). Rather than designing a model to fit human data, it is plausible
to synthesize a model that is capable of solving the balance scale task. The task can then be
explored by interpreting the internal structure of this model. This approach is described in
the sections that follow.

3.2.2. Synthesis of a Network for the Balance Scale Task

3.2.2.1. Network architecture.We trained a multilayer perceptron to solve the balance scale
problem. The network had 20 input units and 4 hidden units, and was fully connected in
that every input unit was connected to every hidden unit (i.e., the input was not segregated
as in McClelland, 1989). Two output units were used. Activation of either the left or right
output unit represented the corresponding side of the balance scale that would tip. Problems
in which the scale balanced were represented by zero values on both output units. All
hidden units and output units werevalue units(Dawson and Schopflocher, 1992), which
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use a Gaussian activation function. Value units were selected because value units have been
shown to be particularly interpretable (Dawson, 2003).

3.2.2.2. Training set.The network was presented with all 625 possible five-peg, five-weight
problems. balance scale problems were represented on 20 input units. The first five units
represented left weight and were thermometer coded. In this coding, a unit was turned on
for every weight that was placed on a peg. So, if two weights were on a peg, the first two
input units were activated; if four weights were on a peg, then the first four input units
were activated. The second set of five units represented left distance and were unary coded.
With this coding, only one unit is turned on to represent which peg the weights were placed
on. For example, if the third peg were to be used, then only the third input unit in this
group would be activated. The same encoding was repeated for the remaining 10 input
units to represent right weight and right distance. The desired response of the network was
determined by applying the torque rule for each of the 625 input patterns.

3.2.2.3. Training the network.The network was trained using Dawson and Schopflocher’s
version of the generalized delta rule designed for use with value units (Dawson and
Schopflocher, 1992). The learning rate was 0.005, and no momentum term was used. Con-
nection weights were randomly set in the range of±0.1 and the biases of all value units
(i.e., the mean for the Gaussian for each unit) were initialized to zero. In pilot tests, these
parameter settings resulted in reliable convergence. The network was trained until a ‘hit’
was obtained on every output unit for every input pattern. The criterion for a ‘hit’ was set at
0.01 (i.e., an output unit’s activity had to be greater than or equal to 0.90 when the desired
output was 1, and less than or equal to 0.10 when the desired output was 0). Pattern order
presentation was randomized every epoch. Network connections and biases were updated
after each pattern presentation. The network converged to a solution to the balance scale
problem after 4120 epochs of training.

3.2.3. Interpretation of Hidden Unit Activations

At the end of training, the network was capable of making the correct balance scale judgment
for each of the 625 problems. That is, its input/output behavior was as if the network was
using its internal structure to compute torque. How exactly were the hidden units being used
to solve this problem?

One possibility was that each hidden unit was computing a different aspect of the torque
equation. For instance, it was plausible that one hidden unit was computing the left weight,
a second was computing the right weight, and that the remaining hidden units were each
computing the left and right distance. However, an examination of the connection weights
feeding into each hidden unit, and an examination of each hidden unit’s response to the
input patterns, indicated that the problem wasnot being solved in this manner. There was
no evidence that individual hidden units were tuned to weight or to distance alone. Instead,
each hidden unit appeared to be generating a response that was sensitive to a combination
of both weight and distance.
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How were the hidden units combining weight and distance? The hidden units could not
be explicitly computing torque, because this would require signals from different input units
(i.e., units representing weight and units representing distance) to be multiplied together.
Multiplication is not a primitive operation in the net input function for a value unit. The only
way that the hidden units could combine weight and distance would be to add them together
in some manner. This suggests that the hidden units might be computing some additive rule,
such as the equation [RW+ RD] − [LW + LD], which is one of the alternative rules for
the balance scale problem suggested by Wilkening and Anderson (1982).

In order to test the possibility that the hidden units might be approximating the torque
rule with an additive equation, the net input for each hidden unit was computed for each
of the 625 input patterns. These net inputs were then correlated with the torque equation
([LW × LD] − [RW × RD]) and with the additive rule ([RW+ RD] − [LW + LD]). For
the torque equation, the correlations obtained for hidden units 1 through 4 were 0.92, 0.92,
−0.87, and−0.92. For the additive rule, the four correlations were even higher: 0.97, 0.97,
−0.92, and−0.97. What this suggests is that the net inputs being computed were almost
perfectly related to the additive rule, which in turn provides a very strong approximation to
the torque rule.

Why, then, does the network require four hidden units to compute the same function?
The answer is that while each hidden unit appears to be computing the additive rule, it has
only a limited sensitivity to the result of the calculation when it is converted into internal
activity by the Gaussian equation. Four hidden units are required because each hidden unit
is sensitive to different range of additive rule results.

This can be seen in Figure 1, which illustrates the activity of each hidden unit as a
function of the additive rule result for each problem in the training set. When the value
returned by the additive rule is extreme, a single hidden unit responds (i.e., Hidden units
1 and 3 for left and right problems, respectively). When the value returned is nearer to

Figure 1. Activation of the four hidden units as a function of the additive equation computed for each of the
patterns in the training set.
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zero, the overlapping sensitivities of all four hidden units are required to make the correct
prediction. This situation is analogous to the use of overlapping receptive fields in the visual
system to make fine spatial discriminations, and is a representational scheme calledcoarse
coding(Hintonet al., 1986).

3.2.4. Exploration of the Network’s Pattern Space

In interpreting the internal structure of a network, examining the role of individual hidden
units is just one step. A second step involves examining how the activities of different
hidden units are combined to determine the network’s output. In value unit networks, when
coarse coding is discovered, this second step is typically accomplished by performing a
cluster analysis of hidden unit activities (for details, see Dawson, 2003, Chapter 12). In
general,k-means cluster analysis is applied to the set of activities of all of the hidden units
for all of the input patterns in order to identify pattern regularities that are distributed across
hidden units. In other words, the result of this analysis is a clustering of different input
patterns, based on the similarities of activation patterns that they produce in the entire set of
a network’s hidden units. The number of clusters that patterns are assigned to is determined
by a heuristic stopping rule: we choose the smallest number of clusters such that each pattern
that falls into the same cluster maps onto the same output response in the network.

Using this stopping heuristic, the input patterns were assigned to seven different clusters.
Three clusters (1, 6, and 7) containedleft problems, three (2, 4, and 5) containedright
problems, and one cluster (3) contained allbalanceproblems. The representation of these
clusters in a pattern space for the network is provided in Figure 2. The pattern space for the
training set cannot be shown properly in four dimensions, and so these figures illustrate the
pattern space in two dimensions by plotting patterns as a function of left torque (i.e., LW×
LD) and right torque (i.e., RW× RD).

It is apparent from Figure 2 that the problems associated with each cluster fall into a
different, nonoverlapping region of the pattern space. Most of the regions are in the shape
of a relatively narrow triangle, and all are extended through the space. This kind of pattern
space is ideally suited for classification by value units. This is because value units carve two
parallel cuts through a pattern space, and every pattern that falls between the cuts will turn
the output unit on. By arranging the orientation of the cuts in such a way that only certain
clusters of problems fall between them, the output units could easily use this pattern space to
generate correct responses to the balance scale problem. In short, the different sensitivities
of the four hidden units to the additive rule create a pattern space in which seven different
types of problems are arranged in a regular fashion that permits the output units to correctly
generate a problem response.

Further to this, there is a pattern of hidden unit activity that characterizes each cluster.
For example, hidden unit 1 (H1) is associated with left patterns. Cluster 1 includes the
patterns with large torque differences (TD) and strong activation of H1. Cluster 7 includes
patterns with a medium level TD and a medium-level activation of H1. The same pattern
holds for right patterns, with H3 having strong and moderate levels of activation for patterns
in Clusters 2 and 5, respectively. A slightly different pattern emerged for patterns with low
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Figure 2. Location of input patterns for each of seven clusters in a pattern space defined by torque difference. For
each graph, thex-axis is right torque, and they-axis is left torque. Each graph represents the locations of patterns
in the space where every pattern in the graph belongs to the same cluster.

TD. For left and right patterns with low TD, there were rather high activations for H2 and
H4 respectively, along with low levels of activation distributed across the other two hidden
units. Similarly, balance problems (i.e., TD= 0) were associated with distributed hidden
unit activities. In general then, the network was sensitive to differences in torque. This kind
of sensitivity was found by Ferretti and Butterfield (1986) in human subjects, and was found
independently by Shultz and Schmidt (1992) using cascade-correlation networks.

The cluster analysis reported above provides a classification of different types of balance
scale problems. We have already seen balance scale problems classified in a different theory,
the rule assessment approach of Siegler (1976). What is the relationship between the two
classification schemes?

If one were to use Siegler’s taxonomy (Siegler, 1976) to generate problem space plots
similar to those in Figure 2, then one would find that this space would not lend itself very
well to solving the balance scale problem by carving the pattern space into different regions.
This would only work for two of his problem types, balance and conflict balance. This is
because the balance problems would fall on the diagonal of the pattern space, similar to
Cluster 3 in Figure 2. However, the other four problem types are smeared in overlapping
regions across much of the pattern space. As a result, their position in the pattern space could
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not be used to make a correct response, because problems (defined by Siegler’s taxonomy)
that lead to very different responses occupy similar locations in the space.

To make this point mathematically, for each of Siegler’s problem types, one can correlate
its left torque value with its right torque value to determine how constrained its region in
the pattern space would be. For the two types of balance problems in his taxonomy, the
correlations are 1.00. However, for the other four types of problems in his taxonomy, the
correlations range from only 0.29 to 0.31. In contrast, if one were to compute the same
correlations for the clusters illustrated in Figure 2, they are much higher, ranging from
0.64 to 0.99 for clusters involving problems other than those that balance. Of course the
correlation for balance problems is 1.00. In short, the problem types identified by analyzing
the network are quite different from those proposed by Siegler, and occupy much more
constrained regions in the pattern space than would patterns organized by his classification
scheme.

3.3. IMPLICATIONS

The sections above have described a synthetic approach to the balance scale task. In contrast
to previous approaches, which have primarily attempted to develop models that fit the data
predicted by Siegler’s rule assessment approach (Siegler, 1976), we simply constructed a
network that was capable of solving the balance scale task. Then we interpreted its internal
structure, with the intent of discovering surprising emergent properties that could inform
us about the nature of this task, and hopefully provide insights that could be incorporated
in the study of how children might approach this task. What new insights has this synthetic
approach revealed?

3.3.1. A New Rule for the Balance Scale Task

In most previous studies of the balance scale task, it has been assumed that perfect per-
formance is defined by a multiplicative torque rule. There has been little work that has
explored alternative approaches to defining solutions to the problem (for an exception, see
Wilkening and Anderson, 1982). In the analysis of the network above, we were forced to
consider alternative equations for solving the problem, because (a) it was apparent that each
hidden unit was computing a function that combined weight and distance, and (b) con-
straints on the processes that are present in the hidden units prevented the traditional torque
equation from being this function. Our analysis revealed that hidden units were computing
an additive rule ([RW+ RD] − [LW + LD]), that this rule was capable of generating the
correct solution to each balance scale problem in the training set, and that this rule was an
excellent approximation to the more traditional torque rule. It is important to stress that the
only reason that this rule was discovered was because of our need to interpret the internal
structure of the network after it was trained. We did not (analytically) attempt to build a
network that computed this function; rather, we (synthetically) built a network that solved
the problem, and were informed about the existence of this rule by exploring the structure
of the system that we had constructed.
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3.3.2. A New Taxonomy of Balance Scale Problems

The rule assessment approach of Siegler (1976) is based on a decision-tree theory in which
particular rules are applied in a particular order. One consequence of this theory has been
the proposal of a particular taxonomy of balance scale problems. Siegler proposed that there
were six different classes of problems (for more details, see Section 3.1.1), and his theory
predicted different courses of development for the different types of problems.

Siegler’s taxonomy (Siegler, 1976) has been central to the experimental study of the
balance scale task. It is not possible to test children on all possible problems. Instead, the
assessment of rule use is determined by testing the participant on a set of balance scale
problems. Typically, the test set consists of a small number of each of the six problem types
that were outlined earlier. In order to be consistent with data from human experiments, the
evaluation of many of the simulation studies that were reviewed above follows a similar
practice. For example, Shultz and Schmidt (1992) used this exact procedure to apply the
rule assessment theory to their cascade correlation network.

The application of Siegler’s taxonomy and rule assessment method to computer models
of the balance scale task is understandable (Siegler, 1976), but it neglects to address one
extremely interesting issue: given all the criticisms of the rule assessment, are there other
plausible taxonomies of problems that could be used to develop an alternative theory of the
balance scale task? Our cluster analysis of hidden unit activations can be interpreted as pro-
viding an alternative taxonomy of balance scale problems. The network that was described
above wasnot responding to the different types of problems as defined by Siegler’s taxon-
omy. Instead, the network was arranging the problems in a pattern space that defines one
general problem characteristic, torque difference. Furthermore, there were seven distinct
regions within this pattern space, and each can be considered as defining a new category
type for the balance scale problems that fall into this region. This new approach to classi-
fying balance scale problems would never have been revealed had we adopted an analytic
approach, and attempted to fit the behavior of our network to Siegler’s preexisting theory
that the task is solved via a series of binary decision-tree rules.

3.3.3. New Predictions for Experimental Study

In previous work on the balance scale task (e.g., Siegler, 1976; McClelland, 1989; Shultz
and Schmidt, 1992) the problem types defined by Siegler are essential for determining the
rule used (by humans or computer models) to solve balance problems. The results of the
network analysis yield a number of novel predictions to be contrasted with Siegler’s theory.
For example, the network responded differentially to problems based on a characteristic
of the problem:torque difference(the absolute difference between the torque on the left
and right side). One prediction for human performance then, is that reaction times (time
to make a prediction) should vary as a function of the torque difference of a problem. In
contrast, the decision-tree theory suggests that a number of properties must be considered
prior to making a prediction and therefore RT differences are predicted for the different
typesof problems, but is silent with respect to the torque difference of a problem (e.g., all
weight problems require fewer decisions than all conflict-weight problems and should be
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solved faster, regardless of torque difference). This, and other predictions for performance,
were outlined and tested with a large set of balance scale problems (Zimmerman, 1999),
with the results for adults matching the predictions derived from the network analysis. Pilot
studies with younger participants (age 8) show the same performance trends as adults. That
is, it was found that RT varied as a function of TD (which is closely correlated with cluster
membership) but not as a function of Siegler’s problem types.

4. General Implications

The preceding case study demonstrates that one can use connectionism to conduct a synthetic
psychology that is representational, and use the interpretation of the internal structure of
a network to contribute to our understanding of balance scale phenomena. This synthetic
approach suggested an alternative way that the balance scale task could be solved (an
additive heuristic rather than binary decision rules), revealed additional evidence for the
importance of a particular characteristic of balance problems (i.e., torque difference) for
making predictions, and provided empirically testable predictions for human performance.
At this early stage in this research program, we are not yet ready to decide what problem
domains are well suited to the kind of approach that was illustrated above. General claims
about the limitations of this synthetic methodology await future research. However, we
have also used this approach to contribute to a wide variety of other psychological domains,
including solving logic problems (Dawsonet al., 1997), deductive and inductive reasoning
(Leighton and Dawson, 2001), spatial reasoning (Dawsonet al., 2000), and the relation
between symbolic and subsymbolic theories of mind (Dawson and Piercey, 2001). To the
extent that researchers are eager to explore alternative representational approaches to a
variety of cognitive problems, we would suggest that this synthetic use of connectionist
modeling could make important contributions to the field of cognitive informatics.
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