
User Manual For The Rosenblatt

and RosenblattLite

 Perceptron Programs

Michael R.W. Dawson and Vanessa Yaremchuk
November 5, 2002

Biological Computation Project
University of Alberta

Edmonton, Alberta, Canada
http://www.bcp.psych.ualberta.ca

Inputs

Output

Wt = 1.0 Wt = 1.0

θ = 1.5

http://www.bcp.psych.ualberta.ca/

Rosenblatt Program User Manual Page 0

INTRODUCTION

 Rosenblatt is a program written in Visual Basic 6.0 for the demonstration and exploration of per-
ceptrons. It is designed for use on a computer based upon a Microsoft Windows operating system. The
program is part of a multimedia support package for a book in preparation by Michael R.W. Dawson. This
manuscript has the working title Minds and Machines: Connectionism and Psychological Modeling, and
has been accepted for publication by Blackwell Publishing. Michael Dawson and Vanessa Yaremchuk
programmed the current version of Rosenblatt. A second program, RosenblattLite, is identical to Rosen-
blatt with the exception that it does not include the capability to save network results in Microsoft Excel
workbooks. In this document, Rosenblatt will be the only program referred to, as the user interface for it is
identical to the interface for RosenblattLite. Both programs are distributed as freeware from the following
website:

http://www.bcp.psych.ualberta.ca/~mike/Book2/

 The purpose of the perceptron program is to learn a set of stimulus/response associations, and in
this respect it is very similar to distributed associative memories. However, the interpretation of these as-
socations is usually slightly different. First, unlike a distributed associative memory trained with the Hebb
rule or the Delta rule, a perceptron uses a nonlinear activation function in its output units. As a result, the
output units are generally trained to turn completely “on” or “off”. This means that perceptron responses
are usually interpreted as representing names or categories that are applied to stimuli. Thus, a percep-
tron is usually considered to be a pattern classification system.

 The current program explores pattern classification with three different versions of the perceptron.
In the first, the Rosenblatt training rule – which is equivalent to the Delta rule – is used to train a percep-
tron with a threshold activation function. In the second, a gradient descent learning rule is used to train a
perceptron that uses a logistic activation function as a continuous approximation of the threshold activa-
tion function. In the third, a variation of the gradient descent learning rule is used to train a perceptron that
uses a Gaussian activation function in its output units. This last function means that the output units in
essence have two different thresholds, instead of one. These variations of the perceptron are described
in more detail in Chapter 10 of the book for which this multimedia site has been constructed.

INSTALLING THE PROGRAM

 Rosenblatt is distributed from the above website as a .zip file. The following steps will result in the
program being installed on your computer:

1. Download the file Rosenblatt.zip to your computer by going to the website, click on the program
icon, and save the file in any desired location on your computer.

2. Go to the saved Rosenblatt.zip file on your computer, and unzip it with a program like WinZip.
The result will be three different objects: setup.exe, setup.lst and Rosenblatt.cab.

3. Run the setup.exe program. This will call an Install program that will complete the installation of
the program on your computer, which will include the installation of an Examples folder with a few
sample training files.

TRAINING A PERCEPTRON

Starting The Program

 The program can be started in two different ways. First, one can go into the directory in which the
program was installed and double-click on the file “Rosenblatt.exe”. Second, one can go to the start but-

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

http://www.bcp.psych.ualberta.ca/~mike/Book2/

Rosenblatt Program User Manual Page 1

ton on the computer, choose programs, scroll to the program group BCPNet, and select the program
Rosenblatt.exe.

Loading A File To Train A Network

 After the program is started, the first form that appears is used to select a file for training the dis-

tributed memory. This form is illustrated on
the right. By using the left mouse button
and the drive selection tool located in the
upper left of the form, one can choose a
computer drive on which directories and
files are located. The available directories
on the selected drive are listed in the
directory selection tool that is immediately
below the drive selection tool. One opens
a directory by double-clicking it with the left
mouse button. If the directory contains any
files that end with the extension .net, then
these files will be displayed in the file
selection box located in the upper middle of
the form. The properties of .net files are
described later in this manual. These files
have a particular format that the Rosenblatt
program is designed to read, and only files
that end in this extension can be used to
train the network.

 One chooses a .net file by double-

clicking one of the file names that is displayed in the file selection box. When this is done, the program
reads the desired file, some of the file’s properties are displayed, and another button appears on the form.
In the figure on the right, the file “AND.net” has been selected (and read). On the right of the form its gen-
eral properties are displayed, and the button permitting the user to proceed to the next part of the program
is displayed under the file selection box.

 In this example, if “AND.net” has been selected, but is not really the file that is desired, one can
simply go back to the file selection tools and choose another file. When its file name is double-clicked, the
new file will be read in, and will replace the properties of the previous (undesired) file.

 Once the desired file has been selected, all that is required is to press the “Go To Next Page To
Set Training Parameters” button with a left-click of the mouse. If instead one desires to close the pro-
gram, then one can left-click the “Exit” button displayed on the bottom right of the form.

Setting The Training Parameters And Training The Network

 When the program reads in the .net file, this only determines how many processing units are con-
nected in the network, and defines the input and desired output patterns that are used in training. It is up
to the user to define what learning rule to use, and to specify the value of the parameters to control (and
stop) learning. The second form displayed by the program allows the user to choose these parameters.
The paragraphs below describe how this is done. If the reader wishes to learn more about what exactly is
accomplished by setting these values on this form, then he or she should look through Chapter 10 of
Connectionism And Psychological Modeling.

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rosenblatt Program User Manual Page 2

The second form consists of a number of different tools that can be used to quickly control the
kind of learning that will be carried out by the distributed associative memory. The first tool is used to
choose which of three learning rules is to be used to train the perceptron. This choice also determines
what activation function is being used in the perceptron’s output units. The default rule is the Delta rule.
When this rule is selected, the activation function is a threshold function. An output unit will generate a
response of 1 when its net input is greater than a threshold, and a response of 0 otherwise. The second
rule is a gradient descent rule for training output units with a continuous activation function, which in this
case is the logistic equation. The derivative of the logistic equation is used to speed learning up by scal-
ing the error term. The third rule is a gradient descent rule for training output units that employ a Gaus-
sian activation function (i.e., value units). This rule is based on Dawson and Schopflocher’s modification
of gradient descent training, which uses an elaborated error term. It too scales error with the derivative of
the activation function to speed learning up. A left-click of the mouse on this tool is all that is required to
select which of the three learning rules will be used.

 A second tool is used to choose a method for stopping training. In the first method, training stops
after a maximum number of epochs (this value is set by the user). In the second method, training stops
when there is a “hit” for every pattern and every output unit. This means that when each output is gener-
ating an acceptably accurate response for each pattern, training will stop. A left-click of the mouse is used
to select either of these methods; when a method has been selected, a check mark appears in the tool.
Importantly, the user can select both methods to be used in the same simulation. When this is done, then
the simulation will stop as soon as one of the two conditions is met. This is the default situation, and it is
recommended

 A third tool determines the order in which patterns will be trained. The program is epoch-based,
which means that each epoch or “sweep” of training involves presenting every pattern once to the percep-
tron. When a pattern is presented, output unit error is used to modify the weight values. One can have
the program present patterns in a random order each epoch, which is the recommended practice. How-
ever, if pattern order is being manipulated, you can turn this option off with a left-click of the mouse.

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rosenblatt Program User Manual Page 3

When this is done, the patterns will always be presented in the order in which they are listed in the .net file
that has been input.

 A fourth tool determines whether the thresholds of the units (i.e., the threshold for the binary acti-
vation function, the bias for the logistic function, or the value of mu for the Gaussian function) is to be
trained. The default is to train this value, because this permits the output unit to “translate” its “cut”
through pattern space. However, in some situations it may be required to hold this value constant, which
can be done with a left-click of the mouse button.

 A fifth tool is used to deter-
mine the starting values of the con-
nection weights, which are randomly
selected from a distribution. In the
default situation, the maximum
value of a weight is 0.1, the mini-
mum value is 0, and the sign option
is “both”, which means that negative
and positive weights are possible.
These defaults are displayed to the
right of the weight-start tool. With
these default values, weights will be
randomly selected from a rectangu-
lar distribution that ranges from –0.1
to +0.1. However, in some cases it
may be desirable to explore different
starting states. This can be accom-
plished by left-clicking the “User de-
fined starts for weights” option.
When this option is selected, a new
form appears, as is shown on the
right. This form is used to set the
minimum (absolute) value for a weight, the maximum (absolute) value for a weight, and the desired sign
for the weight (positive, negative, or either). When the desired settings have been selected, the “Use
These Settings” button will select them, and close the form. If it is decided that the default settings are
desired, then this can be accomplished by using the “Use Default Settings” button. Whatever settings
have been selected will be updated on the right of the settings form.

 A sixth tool is used to determine the starting values of the randomly selected thresholds for the
output units. The default is to assign every output unit a threshold of 0, regardless of which activation
function has been selected. If different randomly selected starts are desired, then a left-click of the “User
defined starts for thresholds” option will reveal a form similar to the form described above for manipulating
the starting parameters for the weights.

 The four remaining tools on the form are used to set numerical values that control training.

 The first is a tool for specifying the maximum number of training epochs by left-clicking either ar-
row beside the value’s box. This will either increase or decrease the value of this parameter, depending
upon which arrow is selected. The maximum number of training epochs can also be set directly by left-
clicking the value’s box with the mouse, and typing in the desired value. Note that it if the user chooses a
value for this variable, then the “End After A Maximum Number Of Training Epochs” selection should also
be selected. If this latter option does not have a check mark beside it, then the program will ignore this
number when it is run! The default value (shown above) is 200.

 The second is a tool for specifying the number of training epochs between printouts of training
information. During training, the program will periodically print out information to tell the user how things
are progressing. This includes information about what epoch has been reached, what the network SSE is,

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rosenblatt Program User Manual Page 4

and the degree to which network SSE has changed since the last printout. The frequency of these print-
outs is controlled by the number displayed in this tool, which can be set in a fashion similar to that de-
scribed for the previous tool. The default value (displayed in the figure) is 10. If this value is selected,
then every 100 epochs the user will receive updates about network learning. The value selected for this
parameter also defines the spacing of the x-axis of the “SSE by Epochs” plot that can be created from a
form described later in this document.

 The third is a tool for specifying the learning rate used by either learning rule. More details on the
role of learning rate in the equations can be found in Chapter 10 of Connectionism And Psychological
Modeling. The learning rate is used for all three learning rules. In setting the learning rule, two rules of
thumb should be followed. First, if the learning rate is 0, then no learning will be accomplished. Second, it
would not be typical to set learning rates greater than 1, although the user is free to explore the behavior
of the network when this is done. The learning rate can be set in two different ways. One is to left-click
on the arrow of the slider tool that is beside the value, hold the mouse button down, and use the mouse to
slide the value of the learning rate up or down. The other is to select the box in which the learning rate is
displayed, and to type in the desired learning rate. The default learning rate is 0.5. For some problems,
when the Gaussian activation function is used, it may be desirable to speed learning up by decreasing this
value to 0.1 or even to 0.01. For the other activation functions, the speed of learning can usually be in-
creased by increasing the learning rate, provided that the learning rate is kept smaller than 1.0

 The fourth is a tool for specifying the minimum level of error (that is, SSE) to define a “hit”. The
default value for this setting is 0.01. With this setting, this means that if the desired value of an output unit
is 1.00, then if the unit generates activity of 0.9 or higher, a “hit” will have occurred. This is because 1.00
– 0.9 = 0.1, and the square of 0.1 is 0.01. Similarly, if the unit generates activity of 0.1 or smaller for a
desired output of 0.00,
then a “hit” will have
occurred. If a more
conservative definition
of “hit” is desired, then
this tool should be used
to make the minimum
SSE value smaller. If a
more liberal definition is
required, then this value
should be made larger.
The smaller the value,
the longer it will take
learning to occur. How-
ever, if this value is too
large, learning will end
quickly, but the percep-
tron’s responses to
stimuli will not be very
accurate.

 Once these
tools have been used to select the desired training parameters, associations (memories) can be stored in
the network by pressing the “Start Training” button with a left-click of the mouse. When this is done, new
boxes appear on the form to show the user how training is proceeding (see the figure above). When train-
ing stops, two new buttons appear on the form. By pressing the “Continue Training” button, more training
occurs using the settings that have already been selected on this form. By pressing the “Test Recall” but-
ton, the user moves to a new form that can be used to explore the performance of the trained network.
The details of this form are described below. Of course, pressing the “Exit” button terminates the pro-
gram. Note that as training proceeds, information about the number of sweeps, the total network SSE, and
the number of hits and misses is displayed. In the preceding figure, training stopped after 9 epochs be-
cause SSE had dropped to zero, and there were 4 hits and 0 misses on the training patterns.

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rosenblatt Program User Manual Page 5

TESTING WHAT THE MEMORY HAS LEARNED

 Once training has been completed, the perceptron has learned to classify a set of input patterns.
With the press of the “Test Recall” button of the form that has just been described, the program presents a
number of options for examining the ability of the network to retrieve the information that it has stored.
Some of these options involve the online examination of network responses, as well as the plotting of
learning dynamics. Other options permit the user to save properties of the network in files that can be
examined later. One of these file options enables the user to easily manipulate network data, or to easily
move the data into another program (such as a statistical analysis tool) for more detailed analysis (e.g.,
factor analytic analysis of final connection weights).

 The “Test Recall” causes the program
to present a form to the user that permits him
or her to do two general types of activities.
The first is the study/saving of network proper-
ties, which is described in more detail below.
The second is the ability to return to previous
forms to either continue network training on
the same problem, or to read in a new prob-
lem for training and study.

 For either of these two classes of ac-
tivity, the user selects the specific activity to
perform from either list that is illustrated in the
figure on the right. Double-clicking the list
item with the left mouse button results in the
activity being carried out. The sections that
follow first describe the different activities that
are possible by selecting any one of the four
actions laid out in the control box on the upper
part of the form. Later sections describe the
result of double-clicking any one of the three
actions made available in the control box on
the lower part of the form. Again, an “Exit Program” is also provided to allow the user to exit the program
from this form.

Testing Responses To Individual Patterns

 After the network has learned some classifications, it may be of interest to the user to examine the
particular responses of the network to individual cue patterns in the training set. For instance, in cases
where the network is not performing perfectly, it could be that it is responding correctly to some cues, but
not to others. By double-clicking on the list item “Probe Network Responses To Selected Patterns”, the
user causes the program to provide a form that allows the network to be tested one cue pattern at a time.

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rosenblatt Program User Manual Page 6

 The form that permits this is de-
picted on the right. The form provides a
large window in which network behavior is
printed. When the form is initially presented,
this large window is blank. Left-button
mouse clicks on the arrow controls at the top
of the form are used to select the number of
the pattern to be presented to the network.
When the desired pattern number has been
selected, the “Ok” button is pressed. The
cue pattern is then presented to the network,
and the network’s response is displayed.
The display provides details about the cue
pattern, the actual network response, the
desired network response, and the error of
the network. For instance, in the illustration,
Pattern 4 has just been presented to the
network.

 More than one pattern can be tested
in this way. The new pattern information is
always displayed on top of previous pattern information. One can use the two scroll bars on the window
to examine all of the information that has been requested. At any point in time, one can send this informa-
tion to the system’s default printer by pressing the button for printing. Also, one can erase the window by
pressing the button for clearing the display. When the “Close Form” button is pressed, this form closes,
and the user is back to the “Test Recall” list options.

Plotting Learning Dynamics

 A comparison of the three learning
rules for the perceptron might require ex-
amining how network error changes as a
function of epochs of training. If the user
chooses the “Plot SSE By Sweeps” option
from the list in the network testing form,
then the program automatically plots this
information using a bar chart. One can
import this chart directly into a word proc-
essing document by simultaneously press-
ing the “Alt” and “Print Screen” keys on the
keyboard (which copies the active window
into the clipboard), going to the document,
and pasting the clipboard into the docu-
ment. One can print this chart on the de-
fault printer by left-clicking the mouse over
the “Print The Graph” button. A left-click
of the “Exit This Page” button closes the
graph, and returns the user to the page
that provides the options for testing net-
work performance.

 With respect to the graph produced in this form, the SSE axis is computed automatically, and the
sampling of the bars across the Sweeps axis is determined by the choice of epochs between printouts
made by the user on the program’s second form. If the graph doesn’t look quite right, then the user might

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rosenblatt Program User Manual Page 7

consider re-running the simulation with a different choice for epochs between printouts. If a different kind
of graph is desired, then the user might wish to save the network data to file. The data used to create this
graph can be saved when this is done, and imported into a different software package that can be used to
create graphs of different appearance.

Saving Results In A Text File

 One of the options for storing in-
formation about network performance is to
save network results as a text file. The
form that permits this to be done, illus-
trated on the right, is accessed by choos-
ing the list item “Save Summary As A Text
File” from the “Test Network” page.

 There are two sets of controls on
this form. The first is a set of drive, direc-
tory, and file control boxes that are very
similar to those found on the very first form
seen when the program starts to run. One
uses the drive and directory controls to
navigate to a folder in which network data
is to be saved. If it is necessary to create
a new folder, a left-click of the mouse on
the “Create A New Directory” button cre-
ates a dialog that permits the new direc-
tory to be named and created. Once the
desired directory has been opened, the
existing text files (.txt) in it are displayed.
This is because the network data will be saved in such a file. One can overwrite an existing file by double-
clicking it with the left mouse button. If a new file needs to be created, the dialog for doing so is accessed
by a left-click of the mouse on the “Create A New Filename” button.

 After choosing the location in which information is to be saved, the check boxes on the right of the
form are set to determine what kinds of information will be saved. Appendix 1 provides an example of the
kind of information that is saved in a file if all of the check boxes have been selected. If a check box is not
selected, then the corresponding information is simply not written to the file. To save the file, after the de-
sired check boxes have been selected, the user left-clicks the “Save The File” button with the mouse. The
form remains open after this is done, because in some instances the user might wish to save different
versions of the network information in different locations. This form is closed by a left-mouse click on the
“Close Button”, which returns the user to the “Test Network” form.

Saving Results In An Excel Workbook

 A second method for saving network performance is to save it in a structured Microsoft Excel
workbook. This option is only available in the Rosenblatt program, and has been removed from Rosen-
blattLite. It should obviously only be selected by users who also have Microsoft Excel installed on their
computer. It is selected by a double-click of the “Create A Summary In Excel” list item that is offered in
the “Test Network” form.

 When this item is selected, a patience-requesting message is displayed on the “Test Network”
form, and a number of different programming steps are taken to build an Excel Worksheet. When this is
completed, the Worksheet is displayed as its own window, which will open on the user’s computer in front
of any of the Rosenblatt program’s windows. If the worksheet has been created successfully, then the
user should see something similar to the screen shot that is presented below.

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rosenblatt Program User Manual Page 8

 All of the possible information that could be saved in
the text version of a saved network is saved on this spread-
sheet. Each different class of information is saved on its
own worksheet in this Excel workbook. One can view differ-
ent elements of this information by using the mouse to se-
lect the desired worksheet’s tab on the bottom of the work-
sheet. The worksheet opens (as illustrated on the left) with
the “General Information” tab selected.

 When this workbook is open, it is running in Excel
as a standalone program that is separate from the Rosen-
blatt software. One can select different tabs in the work-
sheet to examine network properties. For example, in the
figure on the bottom, the “Connection Weights” tab has been
selected. After examining the worksheet, the user might
wish to save it to disk. This is done by using the Save File
utilities from Excel.

 One problem with having this information being dis-
played with a completely separate program is that it begins
to use up memory resources on the computer that cannot be

directly controlled by either program. For instance, it is pos-
sible to leave this workbook open, and to return to the
Rosenblatt program. This practice is not recommended.
Instead, potential system crashes are likely to be avoided by
closing the Excel workbook before returning to Rosenblatt.
When Rosenblatt is returned to, the “Test Network” form will
still be displayed.

If saving Excel files from Rosenblatt causes system
crashes, it is likely because of memory resource conflicts.
The Excel options were built into Rosenblatt because they
provide a convenient format for working with network data
after training has been accomplished. For instance, many of
the tables that are provided in Chapter 10 of Connectionism
And Psychological Modeling were created by selecting a ta-
ble from an Excel worksheet, copying it, and pasting it di-
rectly into a Microsoft Word document. The Excel data can
also be easily copied and pasted into statistical packages like
Systat. However, the Excel capability is not required for the
distributed associative memory software to be used produc-
tively. If Excel problems are encountered frequently on your
computer, our recommendation is to use RosenblattLite in-

stead, and save network performance as text files only.

Leaving The “Test Network” Form

 Once the user has finished examining the performance of a trained network, the list at the bottom
of the “Test Network” form provides different options for network training. If the “Reset Weights And Train
Again” option is selected, then all of the connection weights are randomized, the network is readied to be
trained on the same problem that it has just learned, and the user is returned to the form that permits
training parameters to be selected. If the “Keep Current Weights And Train Again” option is selected, the
network is trained on the same problem, but the weights created from the learning that was just completed
are not erased. The user is returned to the form that permits training parameters to be selected. They

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rosenblatt Program User Manual Page 9

must be set again if settings other than the default settings are desired. If the “Train A New Network On A
New Problem” option is selected, then the user is returned to the program’s first form to be able to read in
a new problem for training. If the “Train The Current Network On A New Problem” is selected, then the
user can read in a new problem, but it will be presented to the network with the weights preserved from
the previous training. This option can be used to study the effect of pretraining on learning a new prob-
lem. If none of these options are desired, then the program can be closed by pressing the “Exit Program”
button with a left-mouse click.

CREATING NEW TRAINING FILES

 When Rosenblatt is installed on your computer, a few example files for training the distributed as-
sociative memory are also included. Several of these files were used in the examples that are described
in Chapter 9 of Connectionism And Psychological Modeling. However, it is quite likely that the user might
wish to study the performance of the distributed associative memory on different problems. In this section
of the manual, we describe the general properties of the .net files that are used to train a network. We
then describe the steps that the user can take to define their own training sets for further study.

General Structure Of A .net File

 In Appendix 1 of this manual, the reader will find a copy of a network’s performance when trained
on the file AND.net via the Delta rule. The first step of training this network is to read in the file ortho8.net,
which contains the following information:

1
0
2
4
0 0
0 1
1 0
1 1
0
0
0
1

 This information is structured into three different categories, which are highlighted in different col-
ors to aid description. The first category (highlighted in yellow) consists of the first four rows in the file.
These rows define the number of processing units in the network, and the number of patterns in the train-
ing set. The first number indicates the number of output units (1 in this case). The second number indi-
cates the number of hidden units (0 in this case). The third number provides the number of input units (2).
The fourth number provides the number of training patterns (4). Note that even though there are no hid-
den units in this network, a digit specifying the number exists in this file. This is to make the files read by
the Rosenblatt program compatible with other software packages that we are developing.

The second category of information (blue) in the file is the set of input patterns. Each input pat-
tern is given its own row. Input pattern 1 occupies the first row, input pattern 2 occupies the second row,
and so on. Because the initial information in the file indicates that there are 4 different training patterns in
this training set, there are four different rows in this section of the file. Each row provides the value that
will be input, as a cue, to each of the 2 input units used in this network. The first value in the row will be
given to input unit 1, the second will be given to input unit 2, and so on. Each of these values is separated
from the others by a “space” character.

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rosenblatt Program User Manual Page 10

 The third category of information (gray) in the file is the set of output patterns. The first row of this
part of the file represents the first output pattern, which is to be associated with the first input pattern from
the previous information category. These second row represents the second output pattern, which is to
be associated with the second input pattern, and so on. The format of each output pattern row is the
same as that used for each input pattern row.

 The reason that the input patterns and the output patterns are given different sections of the file,
instead of appearing on the same row, is a historical convention. It does permit fairly easy modification of
training sets, however. For instance, the same input patterns can be paired with a completely new set of
output patterns by saving a copy of a .net file, opening it with an editor, selecting the existing output pat-
terns, and pasting in a new set of desired outputs.

Creating Your Own .net File

 All that one needs to do to create their own training set for the Rosenblatt program is to create a
text file that has the same general characteristics as those that were just described. The steps for doing
this are:

1. Decide on a set of input pattern/output pattern pairs of interest
2. Open a wordprocessor (e.g., the Microsoft Notepad program) to create the file
3. On separate lines, enter the number of output units, hidden units, input units, and training patterns
4. On separate rows, enter each input pattern. Remember to separate each value with a space
5. On separate rows, enter each output pattern. Remember to separate each value with a space
6. Save the file as a text file
7. In Windows, rename the file to end with the extension .net instead of the extension .txt. Remem-

ber that the Rosenblatt program will only read in files that have the .net extension.
8. Use the Rosenblatt program to explore associative learning of the training set that you have cre-

ated.

SOME EXERCISES FOR STUDYING THE PERCEPTRON

 As was noted earlier, one of the primary purposes of the Rosenblatt and RosenblattLite programs
is to provide students with a system that can be used to explore some of the properties of perceptrons.
This section of the manual provides some example exercises that can be performed with a small set of
sample .net files that are provided along with the software when it is installed. In all of the examples be-
low, it is assumed that the Rosenblatt program is being used. However, all of the examples can be per-
formed with RosenblattLite – provided the user checks some of the results by examining the text files that
are saved when the network has performed the desired tasks.

1. The purpose of the first exercise is to explore the training of a perceptron on a small, simple prob-
lem. Furthermore, it is designed to permit a comparison amongst all three learning rules. Start
the Rosenblatt program, and read in the AND.net file. Train the perceptron on this problem using
the Delta rule. To start, the default settings are probably appropriate. How long does it take for
the network to learn this problem? If you reset the network, does it always take the same amount
of time to converge? How do changes in the learning rate affect the network's performance?
Change the settings in order to generate a decent plot of network error as a function of epochs of
training. What is the appearance of this graph? Use Excel to display network properties. Does
the network converge to the same structure every time that it is trained? Repeat this investigation
by using the gradient descent method of training, first using the logistic activation function, then
using the Gaussian activation function. For each learning rule, make sure that you explore a vari-
ety of learning rates, etcetera. At the end of this exploration, you should be in a position to com-
pare and contrast the three different learning rules.

2. The purpose of the second exercise is to explore some of the limitations of perceptrons, as well as
one attempt to circumvent these limitations. Repeat Exercise 1, but use the file XOR.net. You
should find that the perceptron has difficulty learning this problem when the first two learning rules

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rosenblatt Program User Manual Page 11

are used. Describe the difficulty that the perceptron is having -- is there a particular problem that
it cannot solve, or easy generating areas for all of the patterns? Then train the perceptron on this
problem using the third learning rule. You should find that learning in this case is possible. Why
is it that this learning rule succeeds, while the other two failed? What does this imply for expand-
ing perceptrons to solve problems that are not linearly separable?

3. The purpose of this exercise is to explore perceptron training with multiple output units. Use the
file McCullfull.net. This file has four input patterns ([0,0], [1,0], [0,1], [1,1]) but has 16 output units.
Each output unit responds is a particular kind of logic gate. Train the perceptron on this training
set using each of the three rules. Can you get the perceptron to converge to a correct response
to every pattern? If not, explain why. If one of the rules appears to work better than the others,
then also provide an explanation of this. You might find your exploration of the perceptron in Ex-
ercise 2 useful in answering this question.

4. The purpose of the fourth exercise is to explore the utility of the perceptron in studying animal
learning. Delameter, Sosa, and Koch (1999) were interested in studying positive and negative pat-
terning in animals. In patterning, an animal learns to respond one way to indvidual stimuli, and
the opposite way when combinations of stimuli are presented at the same time. In their study,
they used 6 input units, for stimuli A, B, X, C, D, and Y. A and B were both of type X, and C and D
were both of type Y. So whenever A or B was activated, so was X. Similarly, whenever C or D
was activated, so was Y. In the first stage of their experiment, they trained a network to conver-
gence on a pretraining regimen. The network was trained to turn on to AX and CY, and was
trained to turn off to BX and DY. This is represented as (AX+, BX-, CY+, DY-). Then, without
changing connection weights, a new problem was loaded in, as is indicated in the table below:

 File Condition File Condition
+ve patterning pretrain.net AX+, BX-, CY+, DY- cell1.net AX-, CY-, AXCY+
+ve patterning pretrain.net AX+, BX-, CY+, DY- cell2.net BX-, DY-, BXDY+
-ve patterning pretrain.net AX+, BX-, CY+, DY- cell3.net AX+, CY+, AXCY-
-ve patterning pretrain.net AX+, BX-, CY+, DY- cell4.net BX+, DY+, BXDY-

One of the issues that they were interested in was the effect of pre-training on subsequent learning.
In this exercise, you can replicate the Delameter, Sosa, and Koch experiment. Start the Rosenblatt
program. Load in the file pretrain.net from the Examples\Delameter directory. Choose one of the
learning rules, and train the network on this problem until it converges. Go to the “Test Recall” form.
If you like, examine the properties of the trained network. Once you are done, tell the program to read
in a new problem without changing the current weights. Read in one of the other files in the directory
(cell1.net, cell2.net, cell3.net, or cell4.net). Train the network on this new file until it converges. Re-
cord the SSE at the start of training, the number of epochs to converge, and the SSE at the end of
training. Repeat this sequence of events (train new network on pretraining.net, then train trained net-
work on one of the cell?.net files) until all four of the post-training conditions have been examined.
Did the network learn all of the problems that you presented? Were any of the problems harder to
learn than the others? You could repeat this experiment with each of the learning rules. Does the
network behave any differently depending on which learning rule has been selected? Why might this
be the case? Finally, what if I told you that Delameter, Sosa, and Koch used a network that had four
hidden units? Given this information, what are the implications of your results to their experiment?

APPENDIX 1: AND.TXT

The information provided below is a copy of the file AND.txt. This provides an example of the in-
formation that is saved in a text file when all of the checkboxes in the “Save File” form have been se-
lected.

Perceptron Training Program
===
Results Of Training With File: AND.net
Date Of Analysis: 05/11/2002
Time Of Analysis: 11:20:15 AM

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

Rosenblatt Program User Manual Page 12

© Michael R.W. Dawson 2002 Please Do Not Quote Without Permission

==
Learning rule: Delta
Learning rate: 0.5
Training completed after 4 epochs

Settings For Initial Random Weights:
Maximum value: 0.1
Minimum value: 0
 Sign value: Both
Settings For Initial Random Biases:
Maximum value: 0
Minimum value: 0
 Sign value: Both
Pattern randomization during an epoch: True
===
Network Responses To Each Input Pattern:

Pattern 1 +.00
Pattern 2 +.00
Pattern 3 +.00
Pattern 4 +1.00
===
After training, sum of squared error was: 0
Network Response Errors To Each Input Pattern:

Pattern 1 +.00
Pattern 2 +.00
Pattern 3 +.00
Pattern 4 +.00
===
Connection weights from input units (rows) to output units (columns):

 Out 1
OutType Binary
Bias -1.00
INP 1 +.44
INP 2 +1.00
===
The set of input patterns was:

Pattern 1 +.00 +.00
Pattern 2 +.00 +1.00
Pattern 3 +1.00 +.00
Pattern 4 +1.00 +1.00
===
The set of desired outputs was:

Pattern 1 +.00
Pattern 2 +.00
Pattern 3 +.00
Pattern 4 +1.00
===
Network SSE as a function of sweeps of training was:

Sweeps Network SSE
0.00 8.00E+00
1.00 1.00E+00
2.00 3.00E+00
3.00 1.00E+00
4.00 0.00E+00
4.00 0.00E+00
===

	Michael R.W. Dawson and Vanessa Yaremchuk
	November 5, 2002
	Biological Computation Project
	University of Alberta
	Edmonton, Alberta, Canada
	http://www.bcp.psych.ualberta.ca
	INTRODUCTION
	INSTALLING THE PROGRAM
	TRAINING A PERCEPTRON
	Starting The Program
	Loading A File To Train A Network
	Setting The Training Parameters And Training The Network

	TESTING WHAT THE MEMORY HAS LEARNED
	Testing Responses To Individual Patterns
	Plotting Learning Dynamics
	Saving Results In A Text File
	Saving Results In An Excel Workbook
	Leaving The “Test Network” Form

	CREATING NEW TRAINING FILES
	General Structure Of A .net File
	Creating Your Own .net File

	SOME EXERCISES FOR STUDYING THE PERCEPTRON
	
	
	
	
	File
	Condition
	File
	Condition

	APPENDIX 1: AND.TXT

