
1

PSYCO 457
Week 8: The Subsumption Architecture

Brooks’ Philosophy

Introducing The Subsumption Architecture

Levels Of Control In AntiSLAM

• Seeking comments or
questions concerning the
main themes of readings to
this point in “From Bricks To
Brains” and in “Embodied
Cognition”

Preliminary Discussion

• No explicit knowledge
representation
– "The world is its own

best model".

• Distributed control
• Sense-act cycle

– Minimize sense-think-
act processing!

• Higher-order
competences are built
upon existing lower-
order competences
– Principle of modular

design

Behavior-Based Robotics

Rodney Brooks
on how brains

work

• The subsumption
architecture is an explicit
reaction against the
classical sandwich

• Subsumption architecture
is built in layers

• Each layer has sensors and
motors

• Lower layers provide low
level competences

• Higher layers depend on
lower layers, but might
modify them

Layers Of Behaviors

Classical Sandwiches

Subsumption Architecture

• Within a layer in
the subsumption
architecture,
capabilities are
implemented as
modules

• Modules in higher
layers might
modify (inhibit)
activity of modules
in lower layers

Modular Design And Control

• Within the
subsumption
architecture, layers
are usually
implemented as
augmented finite
state machines

• Layers operate in
parallel

• Layers operate
asynchronously

Control Properties

2

• Our interest is a robot that uses the
subsumption architecture for navigating

• We also study its behavior in a classic
navigational setting, the reorientation task

AntiSLAM SLAM: The Classical Navigator

• Typical accounts of navigation exploit
disembodied sense-think-act processing

• Gallistel (1990, p. 121) notes “orienting towards points in the
environment by virtue of the position the point occupies in
the larger environmental framework is the rule rather than the
exception and, thus, cognitive maps are ubiquitous.”

• Similar accounts for robots, such as SLAM
(simultaneous localization and mapping), are
common

• “Low level robots may function quite adequately in their
environment using simple reactive behaviors and random
exploration, but more advanced capabilities require some
type of mapping and navigation system” (Milford, 2008, p. 10).

Randy Gallistel

Michael Milford

The Reorientation Task

• One aspect of navigation is studied
by using the reorientation task

– Find a reinforced location in an arena

– Use geometric information (shape)

– Use local information (wall color,
landmarks)

– Later, reorient one’s self to the goal
location when placed in new arena

• How is this accomplished? What
cues are used? What happens
when geometric and local cues
conflict?

• One approach to answering these
questions is very classical in nature

Rotational Error

• Geometric cues on
their own are
ambiguous

• Rotational error: go
to A and C mostly
and equally, and
rarely go to B or D

• Rotational error is
often viewed as
evidence of
geometric cues being
processed by a
geometric module

Affine Transformation

• When landmarks are rotated, this is equivalent to an affine
transformation of the entire shape of the arena. How will
the agent reorient – will it use the landmarks alone?

• This short video clip on YouTube provides an example of this
robot’s behavior both in the “real world” and in the restricted
world of the reorientation arena

antiSLAM’s Behavior

3

• The subsumption
architecture is an explicit
reaction against the
classical sandwich, and
was pioneered by Rodney
Brooks

• antiSLAM is programmed
using a particular instance
of the subsumption
architecture

AntiSLAM’s Layers

Classical Sandwiches

Subsumption Architecture

• “We start by building a complete robot control system
which achieves level 0 competence. It is debugged
thoroughly. We never alter that system” (Brooks,
1999, p.10)

• Our choice for Tortoise Level 0 is drive

antiSlam Level 0

/*=====Level 0: Drive==================================
Feed the distance from each ultrasonic sensor to a motor.
The robot is wired contralaterally, and thus avoids all walls
equally. As a result, when it reaches a corner, it slows down
and ends up stopping in the corner "for free".
*/

task DriveRight(){
while(true){
OnFwd(RightMotor, RightSpeed);

}
}

task DriveLeft(){
while(true){
OnFwd(LeftMotor, LeftSpeed);

}
}

• AntiSlam Level 1 is escape

Level 1: Escape Corners

/*=====Level 1: Escape=======================================
If the motors move less than a stated threshold over a delay period,
the robot's sensors are temporarily overriden (zero sensitivity) as it
spins around. It ends up pointing approx. 45 degrees from the corner
when normal operation resumes.
*/

int Threshold, Delay;

task Retreat(){
long RotCount;//Tracks motor rotation.
while(true){
RotCount = MotorRotationCount(LeftMotor) + MotorRotationCount(RightMotor);
Wait(Delay);
if((MotorRotationCount(LeftMotor)+MotorRotationCount(RightMotor)-RotCount)

< Threshold){ //If, after Delay, the motors haven't moved enough:
PlayTone(440, 500); //Beep to indicate feature flipping
Sensitivity = 0; Reverse = 35; //Disable sensors, enable spin term
Wait(4000); //Time to spin in milliseconds
Reverse = 0; Sensitivity = 1; //Return to default settings
ResetRotationCount(LeftMotor); ResetRotationCount(RightMotor);
Wait(500);

}
}

}

• AntiSlam Level 2 is Follow Walls

Level 2: Follow Walls

/*=====Level 2: Follow==
Introduce a bias in the robot's movement. This bias varies depending on its
preferred side (which sensor it reads), and results in the robot turning toward
a wall. The bias overcomes its natural wall aversion (level 0), causing it to
follow a wall more closely on one side.
*/

//Return the value of the sensor nearest the wall.
int Nearest(bool hand){ //Note: "nearest" is defined by which handedness the robot's using.

True = left.

if (hand) return SensorUS(LeftEar);
else return SensorUS(RightEar);

}

bool preferred;

task Seek(){
int bias;
while(true){

bias = Nearest(preferred) * (-1) + 40; //Linear function: Wall dist. -> bias
if (bias < 5) bias = 5; //Constraint: No zero or negative biases
//Assign the bias to the correct motor and unbias the other one.
if (preferred) {RightBias = bias; LeftBias = 0;}
else {LeftBias = bias; RightBias = 0;}

}
}

• Using Levels 0 through 2 alone, antiSLAM will generate
rotational error, without using cognitive maps, and without
relying on associative cues

antiSLAM’s Rotational Error

Starting States for antiSLAM Locations of turnarounds

• AntiSlam Level 3 is light attraction
• Light sensors affect motors to attract robot to light,

while interacting with other levels
• Nolfi’s robots were not sensitive to features
• Now a lit corner can be described as the “place with

the correct landmark”
/*=====Level 3: Feature ==
Enables and reads the light sensors (eyes) as a percentage based on "Vision"
(a sensitivity term), such that more light = more speed. Since the connection is contralateral, this results in the

robot turning toward sources of light.
However, level -1 weighs this visual sense with the earlier ultrasonic sense,
allowing both terms to influence the robot's final behavior. */
int Vision; //The strength of the light sensors in percent.
task See(){
//Sets the strength of the robot's visual response to a scaled percentage.

while(true){
LVis = Sensor(LeftEye)*Vision/100;
RVis = Sensor(RightEye)*Vision/100;

}
}

Level 3: Move To Light

4

• Using bricolage, we need to find some way of
integrating competing signals into an integrated
sense-act link to motors

• We typically use a ‘Level -1’ to do this; in other
systems this would just be ‘wiring’

/*====="Level -1": Integration==
Each of the terms (Sensitivity, Reverse, LeftBias, RightBias) is part of a later
level's connection to the motors. See the main task to see their defaults.
On its own, this task does nothing. However, it will function at every level
without modification.
*/

int Sensitivity,Reverse, LeftSpeed,RightSpeed, LeftBias,RightBias, LVis,RVis;
int Hearing;

task Drive(){
while(true){
//"Hearing/255" converts from responsive raw ultrasonic to % motor speed.
RightSpeed = ((SensorUS(RightEar)*(Hearing-LeftBias)/255)+RVis)

* Sensitivity+Reverse;
LeftSpeed = ((SensorUS(LeftEar)*(Hearing-RightBias)/255)+LVis)

* Sensitivity-Reverse;

Level -1: Integration
//=====Main Task==

task main(){
//Set up ultrasonic sensors and speed calculation weights.
SetSensorLowspeed(LeftEar);
SetSensorLowspeed(RightEar);
SetSensorMode(LeftEar, SENSOR_MODE_RAW);
SetSensorMode(RightEar, SENSOR_MODE_RAW);
Sensitivity = 1; //Level 0 connection: Ultrasonic sensitivity. Default 1.
Reverse = 0; //Level 1 connection: Lets robot spin and escape. Default 0.
LeftBias = 0; //Level 2 connection: Causes robot to prefer left turns. Def. 0.
RightBias = 0;//Level 2 connection: As above, but prefers right turns. Def. 0.
LVis = 0; //Impact of the left eye on movement. Zero at this level.
RVis = 0; //Impact of the right eye on movement. Zero at this level.
Hearing = 100; //Strength of ultrasonic sense. (Overridden at level 3.)
start Drive; //Starts mapping the motor speeds to the collective input.
//Level 0.
start DriveRight; //Turn the right motor on.
start DriveLeft; //Turn the left motor on.
//Level 1. (Delete below this line for a level 0 robot.)
Threshold = 360; //Combined motor movement to be considered 'on'. Default 360.
Delay = 5000; //How long the robot needs to have been stopped. Default 5000ms.
start Retreat; //Allow the robot to escape corners.
//Level 2. (Delete below this line for a level 1 robot.)
preferred = true; //True for left-handed (right-following), false otherwise.
bias = 40; //Fixed value for handedness bias. Default 40.
start Seek; //Follow the wall on your preferred side.
//Level 3. (Delete below this line for a level 2 robot.)
//Set up eyes.
SetSensorType(LeftEye, SENSOR_TYPE_LIGHT_INACTIVE);
SetSensorMode(LeftEye, SENSOR_MODE_PERCENT);
SetSensorType(RightEye, SENSOR_TYPE_LIGHT_INACTIVE);
SetSensorMode(RightEye, SENSOR_MODE_PERCENT);
Hearing = 40;// % of ultrasonic sense that feeds to the motors. Default 40.
Vision = 60;// % of light sense that feeds to the motors. Default 60.
start See;

}

Main Task

• We can test antiSLAM when the light cue cooperates with
geometric information

• Using all 3 levels, antiSLAM prefers the lit corner

• Note how its trajectory is altered compared to the previous
study

Light Cooperates With Geometry

Starting States for antiSLAM Locations of turnarounds

• When cues are in conflict,
antiSLAM generates animal-like
behavior that reflects combined
influences of local and geometric
features

• It prefers the light, but also
generates rotational error

• It also generates very complex
trajectories – data not typically
reported in animal studies

• Note that all of this was obtained
“for free” by building a robot that
would follow walls, escape
corners, and be attracted to light

• Might navigation be scaffolded
exploration?

Light Competes With Geometry

